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Attention : Much of this lecture is a quick review of material in Analytic Combinatorics, Part I

Bored because you understand it all?

GREAT! Skip to the section on labelled trees and do the exercises.

To: Students who took Analytic Combinatorics, Part I

Moving too fast?  Want to see details and motivating applications?

No problem, watch Lectures 5, 6, and 8 in Part I.

To: Students starting with Analytic Combinatorics, Part II

One consequence: it is a bit longer than usual
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Analytic combinatorics overview

1. Use the symbolic method 

• Define a class of combinatorial objects

• Define a notion of size (and associated generating function)

• Use standard operations to develop a specification of the structure
Result: A direct derivation of a GF equation (implicit or explicit)

Classic next steps:

• Extract coefficients 

• Use classic asymptotics to estimate coefficients
Result: Asymptotic estimates that quantify the desired properties

To analyze properties of a large combinatorial structure:

4

See An Introduction to the Analysis of Algorithms for a gentle introduction

http://aofa.cs.princeton.edu



Analytic combinatorics overview

1. Use the symbolic method 
• Define a class of combinatorial objects.
• Define a notion of size (and associated generating function)
• Use standard operations to develop a specification of the structure.

Result: A direct derivation of a GF equation (implicit or explicit).

2. Use complex asymptotics  to estimate growth of coefficients. 

• [no need for explicit solution]

• [stay tuned for details] 
Result: Asymptotic estimates that quantify the desired properties

To analyze properties of a large combinatorial structure:

5

See Analytic Combinatorics for a rigorous treatment

http://ac.cs.princeton.edu



Analytic combinatorics overview

A. SYMBOLIC METHOD

1. OGFs

2. EGFs

3. MGFs

B. COMPLEX ASYMPTOTICS

4. Rational & Meromorphic

5. Applications of R&M

6. Singularity Analysis

7. Applications of SA

8. Saddle point

specification

GF
equation

desired 
 result !

asymptotic
estimate

⬅

6

SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



The symbolic method 

An approach for directly deriving GF equations.

• Define a class of combinatorial objects.

• Define a notion of size (and associated generating function)

• Define operations suitable for constructive definitions of objects.

• Prove correspondences between operations and GFs.
Result: A GF equation (implicit or explicit).

This lecture: An overview that assumes some familiarity.

7

See Analytic Combinatorics for a rigorous treatment

See An Introduction to the Analysis of Algorithms for a gentle introduction

Ex: Part I of this course



Basic definitions

class name roman A

OGF name roman 
with arg A(z )

object variable lowercase a

coefficient subscripted AN

size N or nN or n

Usual conventions

With the symbolic method, we specify the class and at the same time characterize the OGF

8

Def. A combinatorial class is a set of combinatorial objects and an associated size function. 

Def. The ordinary generating function (OGF) associated

       with a class is the formal power series ((a) =
�

H�(
a|H|

object name class name

size function

Fundamental (elementary) identity

((a) �
�

H�(
a|H| =

�

5��

(5a5 Fantasy : 
   Different letter for each class

Reality : 
   Only 26 letters!

Q. How many objects of size N ?

A. (5 = [a5]((a)



Unlabeled classes: cast of characters

TREES
Recursive structures

TN = [Catalan #s]

STRINGS
Sequences of characters

SN = NM

COMPOSITIONS
Positive integers sum to N

CN = 2N−1

INTEGERS
N objects

IN = 1

PARTITIONS
Unordered compositions

[enumeration not elementary]

LANGUAGES
Sets of strings
[REs and CFGs]

9



The symbolic method (basic constructs)

10

operation notation semantics OGF

disjoint 
union A + B disjoint copies of objects from A and B

Cartesian 
product A × B ordered pairs of copies of objects,

one from A and one from B

sequence SEQ (A ) sequences of objects from A

Suppose that A and B are classes of unlabeled objects with enumerating OGFs A(z) and B(z).

Stay tuned for other constructs

((a) + )(a)

((a))(a)

�
� � ((a)



Proofs of correspondences

SEQ( A )
construction OGF

11

A + B �

J�(+)

a|J| =
�

H�(
a|H| +

�

I� )

a|I| = ((a) + )(a)

:,8R(() � (R ((a)R

((a)[� + ((a)[� + ((a)[� + . . .

� + ((a) + ((a)� + ((a)� + . . . =
�

� � ((a)

:,8;(() � ([� + ([� + ([� + . . .
^OLYL ; � [�, [�, [�, . . . PZ�H�Z\IZL[�VM�[OL�PU[LNLYZ

:,8(() � � + (+ (� + (� + . . .

A × B
�

J�H�I

a|J| =
�

H�(

�

I�)

a|H|+|I| =
��

H�(
a|H|

���

I�)

a|I|
�

= ((a))(a)
Text
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Classic example of the symbolic method

Q. How many trees with N nodes?

G3 = 2

G1 = 1 G2 = 1

G4 = 5

G5=14
14



Classic next steps

Binomial theorem .(a) = −�
�

∑

5≥�

( �
�
5

)
(−�a)5

Analytic combinatorics: How many trees with N nodes?

Symbolic method

Combinatorial class G, the class of all trees

.5 � �5��
�
�5�Simplify

15

Construction G = ● × SEQ(G )
"a tree is a node and 
a sequence of trees"

Stirling’s approximation � �
�5

exp
�
�5 ln(�5) � �5+ ln

�
��5� �(5 ln(5) �5+ ln

�
��5)

�

Extract coefficients
.5 = −�

�

( �
�
5

)
(−�)5 =

�
5

(
�5− �
5− �

)

detailed
calculations

omitted

=
�

�5� �

�
�5
5

�

OGF equation .(a) = a(� +.(a) +.(a)� +.(a)� + . . .) =
a

� �.(a)

Quadratic equation .(a) =
�+

√
�− �a
�

.(a) �.(a)� = a



Analytic combinatorics: How many trees with N nodes?

Symbolic method

Combinatorial class G, the class of all trees

16

Construction G = ● × SEQ(G )
"a tree is a node and 
a sequence of trees"

OGF equation .(a) = a(� +.(a) +.(a)� +.(a)� + . . .) =
a

� �.(a)

.(a) �.(a)� = a

This lecture: Focus on symbolic method for deriving OGF equations (stay tuned for asymptotics).

Complex asymptotics

Singularity analysis .5 = [a5].(a) ∼ �5

Γ(�/�)
√
5

=
�5√
�5

GF equation directly
implies asymptotics



A standard paradigm for the symbolic method

Fundamental constructs

•elementary or trivial

•confirm intuition

Variations

•unlimited possibilities

•not easily analyzed otherwise

Compound constructs

•many possibilities

•classical combinatorial objects

•expose underlying structure

•one of many paths to known results

17



Variations on a theme 1: Trees

Fundamental construct

Combinatorial class G, the class of all trees

18

Construction G = ● × SEQ(G )

"a tree is a node and 
a sequence of trees"

OGF equation .(a) = a(� +.(a) +.(a)� +.(a)� + . . .) =
a

� �.(a)

.(a) �.(a)� = a

Variation on the theme: restrict each node to 0 or 2 children

Combinatorial class T, the class of binary trees

Construction T = ● × SEQ0,2(T )

"a binary tree is a 
node and a sequence 
of 0 or 2 binary trees"

OGF equation ;(a) = a(� + ;(a)�)



Variations on a theme 1: Trees (continued)

Variation on the theme: multiple node types

Combinatorial class T ●, binary trees, enumerated by internal nodes

19

Construction T = ☐ + T × ● × T 

Combinatorial class T ●, binary trees, enumerated by external nodes

Still more variations: gambler’s ruin sequences, context-free languages, triangulations, ...

More variations: unary-binary trees, ternary trees, ...

OGF equation ;�(a) = a + ;�(a)�

OGF equation ;•(a) = � + a;•(a)�

type class size GF

external node ☐ 0 1

internal node ● 1 z

Atoms



Bracketings

S = ● + SEQ≥2(S )

:(a) = a +
:(a)�

� � :(a)

T = ● × SEQ0,3(T )

Ternary

;(a) = a(� + ;(a)�)

Unary-binary

M = ● × SEQ≤2(M )
4(a) = a(� +4(a) +4(a)�)

Ordered

G = ● × SEQ(G )

.(a) =
a

� �.(a)

Binary

T = ● × SEQ0,2(T )
;(a) = a(� + ;(a)�)

Some variations on ordered (rooted plane) trees

20

Arbitrary restrictions

T = ● × SEQΩ(T )

;£(a) = a�(;£(a))

�(\) �
�

��£
\�



Variation on a theme 2: Strings

Fundamental construct

21

Variation on the theme: disallow sequences of P or more 0s

“a binary string is empty or
a bit followed by a binary string”Construction ) = ,+ (A� + A�)× )

OGF equation )(a) = �+ �a)(a)

Combinatorial class B, the class of all binary strings

Combinatorial class BP, the class of all binary strings with no 0P

More variations: disallow any pattern (autocorrelation), REs, CFGs ...

OGF equation )7(a) = (�+ a+ . . .+ a7)(�+ a)7(a))

“a string with no 0P is a string of 0s 
of length <P followed by an empty 
string or a 1 followed by a string 

with no 0P ”

Construction )7 = A<7(,+ A�)7)



Some variations on strings

22

Binary

Context-free languages

[Algebraic OGFs]

Regular languages

[Rational OGFs]

) = ,+ (A� + A�)× )

)(a) =
�

�− �a

Exclude pattern p

:W(a) =
JW(a)

a7 + (� � �a)JW(a)

[See Part I, Lecture 8]

) = :,8(A� + A�)

M-ary

) = :,8(A� + . . .+ A4−�)

)(a) =
�

�−4a

Exclude 0P

)7(a) =
�− a7

�− �a+ a7+�

)7 = A<7(,+ A� × )7)
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The symbolic method (two additional constructs)

25

operation notation semantics OGF

powerset PSET (A ) finite sets of objects from A
(no repetitions) [stay tuned]

multiset MSET (A ) finite sets of objects from A
(with repetitions) [stay tuned]

Suppose that A is a class of unlabeled objects with enumerating OGF A(z).



Powersets

{}
{a}

{}
{a}
{b}

{a, b}

{}
{a}
{b}

{a, b}
{c}

{a, c}
{b, c}

{a, b, c}

PSET {a }
{}
{a}
{b}

{a, b}
{c}

{a, c}
{b, c}

{a, b, c}

PSET {a, b }

PSET {a, b,c } PSET {a, b,c,d }

Lemma: PSET {a1, a2, ... aM } = PSET {a1, a2, ... aM−1} × ( {}  +  {aM } )
26

Def. The powerset of a class A is the class consisting of all subsets of A. 

{d}
{a, d}
{b, d}

{a, b, d}
{c, d}

{a, c, d}
{b, c, d}

{a, b, c, d}

subsets
without d

same subsets
with d

P2 = 4
P1 = 2

P3 = 8

P4 = 16



Powersets

27

Combinatorial class PM, the powerset class for M atoms

Construction PM = ( {}  +  {a1} ) × ( {}  +  {a2} ) × . . . × ( {}  +  {aM} )

OGF equation 74(a) = (� + a)4

OGF 74(a) =
�

W�74

a|W| =
�

5��

745a5 PMN is the # of subsets of size N
(no repetitions)

Expansion 745 =

�
4
5

�

✓
74(�) = �4

total # subsets
of M atoms

✓

notation size GF

ak 1 z

Atoms

{a, c, f, g, h}Example



Multisets

{}
{a}

{a, a}
{a, a, a}

...

{}
{a}

{a, a}
{a, a, a}MSET {a }

MSET {a, b } MSET {a, b,c }

Lemma: MSET {a1, a2, ... aM } = MSET {a1, a2, ... aM−1} × SEQ {aM } 
28

Def. The multiset of a class A is the class consisting of all subsets of A with repetitions allowed. 

{b}
{a, b}

{a, a, b}
{a, a, a, b}

{b, b}
{a, b, b}

{a, a, b, b}
{a, a, a, b, b}

{}
{a}

{a, a}
{a, a, a}

{b}
{a, b}

{a, a, b}
{a, a, a, b}

{b, b}
{a, b, b}

{a, a, b, b}
{a, a, a, b, b}

{c}
{a, c}

{a, a, c}
{a, a, a, c}

{b, c}
{a, b, c}

{a, a, b, c}
{a, a, a, b, c}

{b, b, b, c}
{a, b, b, b, c}

{a, a, b, b, b, c}
{a, a, a, b, b, b, c}

{c, c}
{a, c, c}

{a, a, c, c}
{a, a, a, c, c}

{b, c, c}
{a, b, c, c}

{a, a, b, c, c}
{a, a, a, b, c, c}

{b, b, c, c}
{a, b, b, c, c}

{a, a, b, b, c, c}
{a, a, a, b, b, c, c}



Multisets

29

Combinatorial class SM, the multiset class for M atoms

Construction SM = SEQ (a1) × SEQ (a2) × . . . × SEQ (aM )

notation size GF

ak 1 z

Atoms

OGF SMN is the # of subsets of size N
(with repetitions)

:4(a) =
�

Z�:4

a|Z| =
�

5��

:45a5

OGF equation :4(a) =
�

(� � a)4

Expansion ✓:45 =

�
5+4� �
4� �

�

{a, a, a, b, b, b, c}Example



The symbolic method (two additional constructs)

30

operation notation semantics OGF

powerset PSET (A ) finite sets of objects from A
(no repetitions)

multiset MSET (A ) finite sets of objects from A
(with repetitions)

Suppose that A is a class of unlabeled objects with enumerating OGF A(z).

�

U��

(� + aU)(U = exp
�
�

�

R��

(��)R((aR)
R

�

�

U��

�
(� � aU)(U

= exp
��

R��

((aR)
R

�



Proof of correspondences for powersets

construction OGF

31

PSET (A )

7:,;({H,I}) =
�
{} + {H}

�
�

�
{} + {I}

�

7:,;(() �
�

H�(

�
{} + {H}

�

(� + a|H|)(� + a|I|)

�

H�A
(� + a|H|) =

�

5��

(� + a5)(5

= exp
�
�

�

5��

(5
�

R��

(��)R
a5R

R

�

exp-log version
�

5��

(� + a5)(5 = exp
��

5��

(5 ln(� + a5)
�

= exp
�
�

�

R��

(��)R
((aR)
R

�

= exp
�
((a) � ((a�)

�
+
((a�)
�

� . . .
�



Proof of correspondences for multisets

construction OGF

32

MSET (A )

4:,;({H,I}) = :,8
�
{H}

�
� :,8

�
{I}

�

exp-log version
�

5��

�
(� � a5)(5

= exp
��

5��

(5 ln
�

� � a5
�

= exp
(∑

5≥�

(5
∑

R≥�

a5R

R

)

4:,;(() �
�

H�(
:,8

�
{H}

� �

H�(

�
(� � a|H|)

=
�

5��

�
(� � a5)(5

�
(� � a|H|)(� � a|I|)

= exp
(∑

R≥�

((aR)
R

)

= exp
�
((a) +

((a�)
�

+
((a�)
�

+ . . .
�



Multiset application example

Q. How many unordered trees with N nodes?

H3 = 2

H1 = 1 H2 = 1

H4 = 4

33

Combinatorial class H, the class of all unordered trees

Construction H = ● × MSET(H )
"a tree is a node and 
a multiset of trees"

H5=9

OGF equation /(a) = a exp
�
/(a) +/(a�)/� +/(a�)/� + . . .

�
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Compositions

1
1 + 1
2

I2 = 2I1 = 1

1 + 1 + 1
1 + 2
2 + 1
3

I3 = 4

A. IN = 2 N−1 

1 + 1 + 1 + 1
1 + 1 + 2
1 + 2 + 1
1 + 3

2 + 1 + 1
2 + 2
3 + 1
4

I4 = 8

1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 1 + 2 + 1
1 + 1 + 3

1 + 2 + 1 + 1
1 + 2 + 2
1 + 3 + 1
1 + 4

2 + 1 + 1 + 1
2 + 1 + 2
2 + 2 + 1
2 + 3

3 + 1 + 1
3 + 2
4 + 1
5

I5 = 16

36

Q. How many ways to express N as a sum of positive integers? 



Integers as a combinatorial class

37

Combinatorial class I, the class of all positive integers

Construction I = SEQ>0 (●)

unary notation for 7

notation size GF

● 1 z

Atom

● ● ● ● ● ● ●Example

OGF 0(a) =
�

P�0

a|P| =
�

5��

05a5

OGF equation 0(a) =
a

� � a

Expansion ✓05 = � MVY 5 > �



Compositions

38

Combinatorial class C, the class of all compositions

unary notation for 
1+3+1+5+2=12

Example ● | ●●● | ● | ●●●●● | ●● = ●●●●●●●●●●●●●●●●

OGF *(a) =
�

J�*
a|J| =

�

5��

*5a5

Construction C = SEQ (I ) "a composition is a sequence 
of positive integers"

OGF equation *(a) =
�

� � 0(a)

=
�

� � a
��a

=
� � a
� � �a

Expansion

✓
*5 = �5 � �5�� = �5�� MVY 5 > �

● ● ● ● ●  . . . ● ● ● ● ● ● ●

N−1 spaces between dots
each could have a bar or not

=2N−1 possibilities ✓



1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 2
1 + 1 + 2 + 1
1 + 1 + 3

1 + 2 + 1 + 1
1 + 2 + 2
1 + 3 + 1
1 + 4

2 + 1 + 1 + 1
2 + 1 + 2
2 + 2 + 1
2 + 3

3 + 1 + 1
3 + 2
4 + 1
5

P5 = 7

Partitions

1
1 + 1
2

1 + 1 + 1
1 + 2
2 + 1
3

P2 = 2P1 = 1
P3 = 3

A. Not so obvious !

1 + 1 + 1 + 1
1 + 1 + 2
1 + 2 + 1
1 + 3

2 + 1 + 1
2 + 2
3 + 1
4

P4 = 5

39

Q. How many ways to express N as a sum of unordered positive integers? 

representations
of the same

partition

keep the one
whose parts

are nonincreasing



Ferrers diagrams

Applications. AofA, representation theory, Lie algebras, particle physics, . . . 

Q. How many Ferrers diagrams with N dots? 

A.  Not so obvious  [need symbolic method plus saddle-point asymptotics—stay tuned]

40

Def. A Ferrers diagram is a 2D representation of a partition: one column of dots per part.

 8 + 8 + 6 + 5 + 4 + 4 + 4 + 2 + 1  =  42   partition

42 dots

Ferrers
diagram



Partitions

41

Combinatorial class P, the class of all partitions

OGF

Ferrers diagram for 
5+3+2+1+1=12

Example

Construction P = MSET (I ) "a partition is a multiset of positive integers"

7(a) =
�

W�7
a|W| =

�

5��

75a5

OGF equation 7(a) =
�

(� � a)(� � a�)(� � a�) . . .

4:,;(() �
�

H�(
:,8

�
{H}

�

�

H�(

�
(� � a|H|)

=
�

5��

�
(� � a5)(5

Expansion 75 � L�
�

�5/�

�5
�
�

Classic result of Hardy and Ramanujan
(need saddle-point asymptotics)



Some variations on compositions and partitions

42

Restricted compositions

T = { any subset of  I }
C 

T = SEQ (SEQT (Z ))

*;(a) =
�

� � ;(a)

Compositions

C = SEQ (I )

*(a) =
� � a
� � �a

Partitions

P = MSET (I )

75 � L�
�

�5/�

�5
�
�

Restricted partitions

T = { any subset of  I }
P 

T = MSET (SEQT (Z ))

7;(a) =
�

5�;

�
� � a5

Compositions
into M parts

CM = SEQM ( I )

*4(a) =
a4

� � a4

Partitions into distinct parts

Q = PSET (I )

8(a) = (� + a)(� + a�)(� + a�) . . .



In-class exercises
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Q. OGF for compositions into parts less than or equal to R ?

�

Q��

(� + a�
Q
) = (� + a)(� + a�)(� + a�)(� + a�) . . .

Q. How many partitions into parts that are powers of 2?

A.  1

Q. How many ways to represent an integer as a sum of powers of 2?

�

Q��

(� + a�
Q
) =

�
� � a

A.  1

= (� + a + a� + a�)(� + a�)(� + a�) . . .

= (� + a + a� + a� + a� + a� + a� + a�)(� + a�) . . .

= � + a + a� + a� + a� + a� + a� + a� + a� + a + a�� + . . .



How many ways to change a dollar?
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Q. How many ways to change a dollar with quarters ?

A.  1 [a���]
�

� � a��
= [a���](� + a�� + a�� + . . .) = �

Q. How many ways to change a dollar with quarters and dimes?

A.  3 [a���]
�

� � a��
�

� � a��
= [a���](� + a�� + a�� + . . .)(� + a�� + a�� + . . .)

= [a���](� + a�� + a���)(� + a�� + a���)



How many ways to change a dollar?
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Q. How many ways to change a dollar with quarters ?

A.  1 [a���]
�

� � a��
= [a���](� + a�� + a�� + . . .) = �

Q. How many ways to change a dollar with quarters and dimes ?

A.  3 [a���]
�

� � a��
�

� � a��
= [a���](� + a�� + a�� + . . .)(� + a�� + a�� + . . .)

Q. How many ways to change a dollar with quarters, dimes and nickels ?

A.  ? [a���]
�

� � a��
�

� � a��
�

� � a�
need a computer?

Q. How many ways to change a dollar with quarters, dimes, nickels and pennies ?

A.  ? [a���]
�

� � a��
�

� � a��
�

� � a�
�

� � a
need a computer?



How many ways to change a dollar?
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Key insight (Pólya):  If                              then                                and thereforeI(a) = H(a)
�

� � a4
I(a)(� � a4) = H(a) IU = IU�4 + HU

Gives an easy way to compute small values by hand.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121

1 13 49 121 242[aU]
�

� � a
�

� � a�
�

� � a��
�

� � a��

[aU]
�

� � a
�

� � a�

[aU]
�

� � a

[aU]
�

� � a
�

� � a�
�

� � a�� +



In-class exercise
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For whatever reason, the government switches to 20-cent pieces instead of dimes. 

How many ways to change a dollar?

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4 6 8 10 12 15 18 21 24 28 32 36 40 45 50 55 60 66

1 9 30 70 136[aU]
�

� � a
�

� � a�
�

� � a��
�

� � a��

[aU]
�

� � a
�

� � a�

[aU]
�

� � a

[aU]
�

� � a
�

� � a�
�

� � a�� +
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The symbolic method for unlabeled objects (summary)

50

operation notation semantics OGF

disjoint 
union A + B disjoint copies of objects

from A and B

Cartesian 
product A × B ordered pairs of copies of objects,

one from A and one from B

sequence SEQ (A ) sequences of objects from A

powerset PSET (A ) finite sets of objects from A
(no repetitions)

multiset MSET (A ) finite sets of objects from A
(with repetitions)

Additional constructs are available (and still being invented)—one example to follow

((a) + )(a)

((a))(a)

�
� � ((a)

�

U��

�
(� � aU)(U

= exp
��

R��

((aR)
R

�

�

U��

(� + aU)(U = exp
�
�

�

R��

(��)R((aR)
R

�



Another construct for the symbolic method: substitution
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operation notation semantics OGF

substitution A ○ [ B ]
replace each object in an instance of A 

with an object from B

Suppose that A and B are classes of unlabeled objects with enumerating OGFs A(z) and B(z).

(()(a))



Substitution application example

Q. How many 2-3 trees with N nodes?

W4 = 1

W2 = 1

W3 = 1
W5 = 2

52

W6 = 2

W7 = 3

W8 = 4



Substitution application example

Q. How many 2-3 trees with N nodes?

53

Combinatorial class W, the class of all 2-3 trees

OGF equation

Construction
“a 2-3 tree is a 2-3 tree with each external 
node replaced by a 2-node or a 3-node”W  = Z + W ○ [ ( Z × Z ) + ( Z × Z × Z ) ] 

= a� + a� + (a� + �a� + a�) + (a� + �a� + �a� + a ) + a� + . . .✓

See A. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional equations, Adv. in Mathematics (1982).

Coefficient asymptotics are complicated (oscillations in the leading term).

>(a) = a+>(a� + a�)

>(a� + a�) = a� + a� + (a� + a�)� + (a� + a�)� + (a� + a�)� + . . .

>(a) = a� + a� + a� + �a� + �a� + �a� + �a� + . . .



Two French mathematicians on the utility of GFs

54

“ Generating functions are the central objects of the theory, rather than 
a mere artifact to solve recurrences, as it is still often believed. ”

                                                                                          — Philippe Flajolet, 2007

“A property... is understood better, when one constructs a bijection... than when one calculates the 

coefficients of a polynomial whose variables have no particular meaning.  The method of 

generating functions, which has had devastating effects for a century, has fallen into 

obsolescence, for this reason.                                                                                       — Claude Bergé, 1968



Analytic combinatorics overview

1. Use the symbolic method 
• Define a class of combinatorial objects.
• Define a notion of size (and associated generating function)
• Use standard operations to develop a specification of the structure.

Result: A direct derivation of a GF equation (implicit or explicit).

2. Use complex asymptotics  to estimate growth of coefficients (stay tuned). 

To analyze properties of a large combinatorial structure:

55

Important note: GF equations vary widely in nature

7(a) =
�

(� � a)(� � a�)(� � a�) . . .

.(a)� �.(a) + a = �

)(a) =
�

�− �a

:4(a) =
�

(� � a)4

*(a) =
�

� � 0(a)

8(a) = (� + a)(� + a�)(� + a�) . . .)7(a) =
�− a7

�− �a+ a7+�

;(a) = a + ;(a� + a�)

/(a) = a exp
�
/(a) +/(a�)/� +/(a�/� + . . .

�
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Note 1.23

Alice, Bob, and coding bounds
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.



Note 1.43

Calculating Cayley numbers and partition numbers

59

.



Assignments
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Program I.1. Determine the choice of four coins that maximizes 
the number of ways to change a dollar.

1. Read pages 15-94 in text.

3. Programming exercises.

2. Write up solutions to Notes 1.23 and 1.43.

Program I.2. Write programs that estimate the rate of growth of the Cayley 
numbers and the partition numbers (Hn/Hn−1 and Pn/Pn−1). See Note I.43.
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