$$a_0 = 0$$
 $a_1 = 1/2$

Q. What is the average number of 0 bits in a random bit string of length *n* containing no 00?

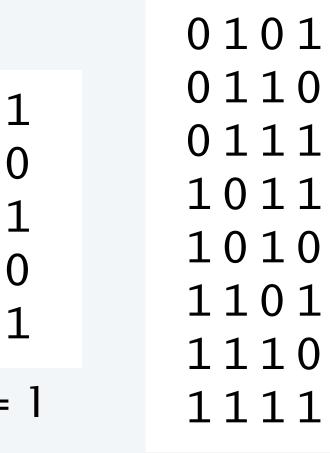
Q. What is the average number of 0 bits in a random bit string of length *n* containing no 00?

 $0\,1\,1$ 01 010 0 10 101 1 11 $1\,1\,0$ $a_0 = 0$ $a_1 = 1/2$ 111 $a_2 = 2/3$ $a_3 = 1$

Q. What is the average number of 0 bits in a random bit string of length *n* containing no 00?

 $0\,1\,1$ 01 010 0 10 1011 11 $1\,1\,0$ $a_0 = 0$ $a_1 = 1/2$ 111 $a_2 = 2/3$ $a_3 = 1$

Q. What is the average number of 0 bits in a random bit string of length *n* containing no 00?

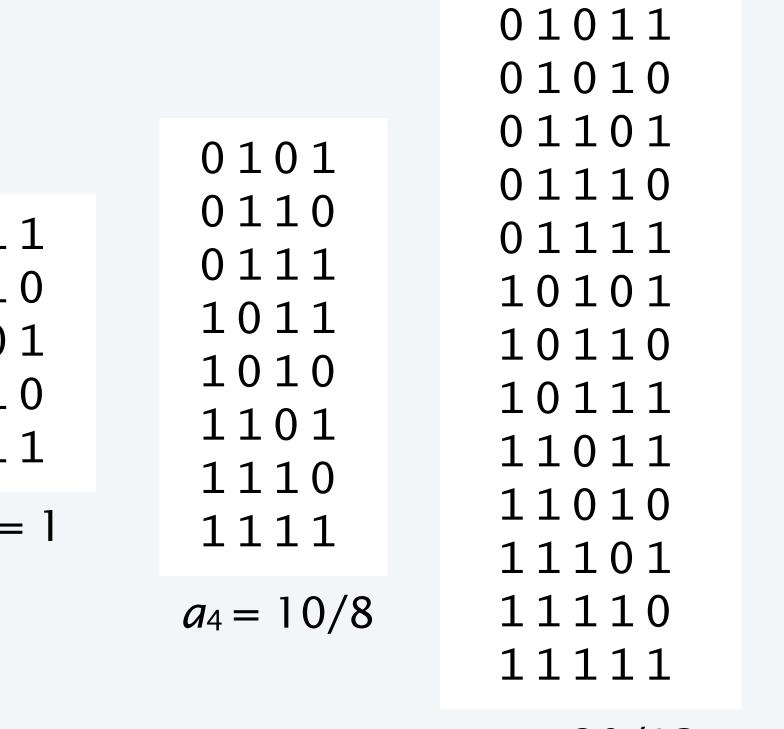


0	1	1	0
0	1	1	1
1	0	1	1
1	0	1	0
1	1	0	1
1	1	1	0
1	1	1	1

 $a_4 = 10/8$

 $0\,1\,1$ 01 010 0 10 1011 11 $1\,1\,0$ $a_0 = 0$ $a_1 = 1/2$ 111 $a_2 = 2/3$ $a_3 = 1$

Q. What is the average number of 0 bits in a random bit string of length *n* containing no 00?



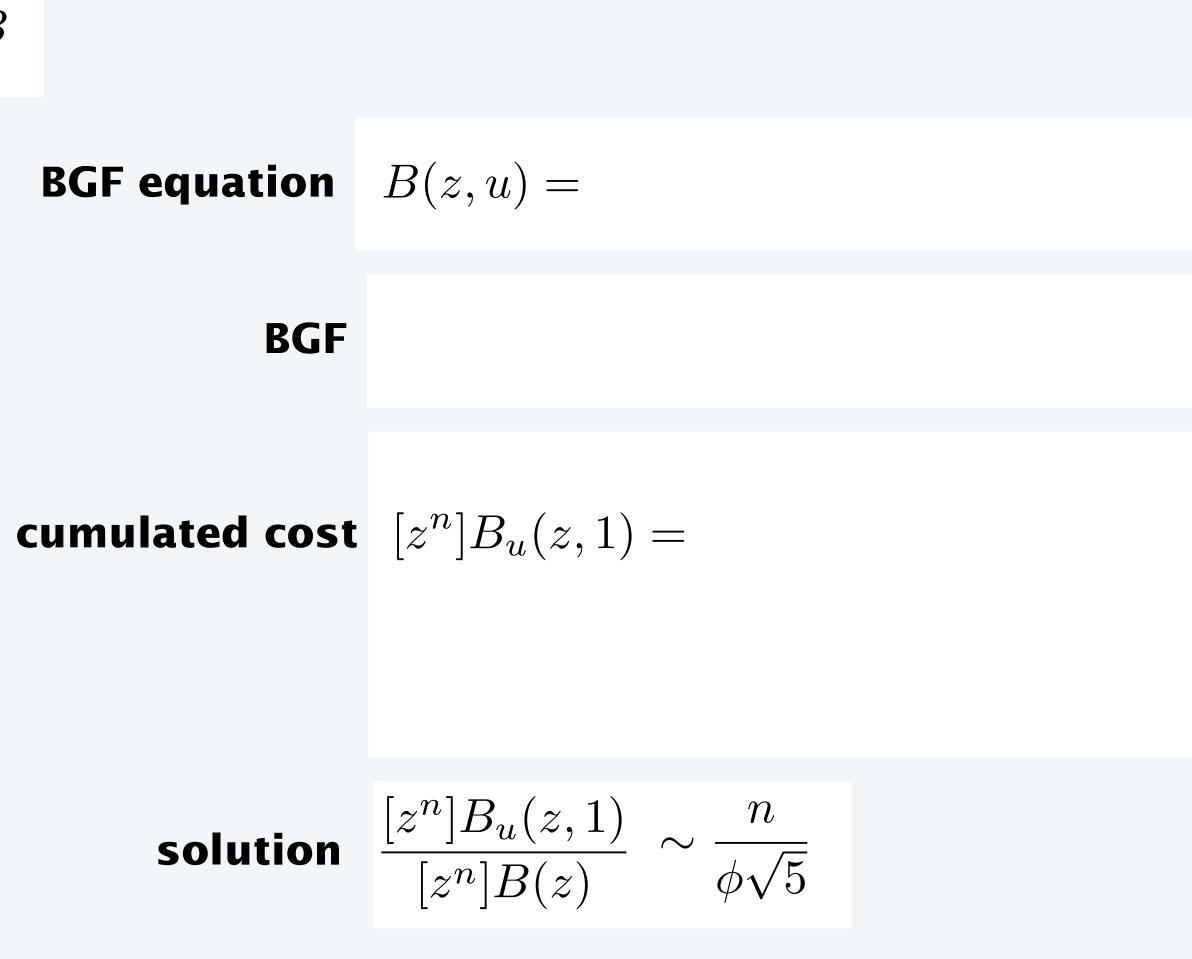
 $a_5 = 20/13$

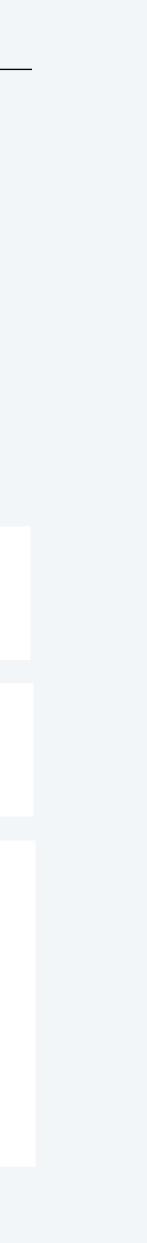
Q. Recalling the derivation at left, fill in the boxes at right to prove that the

construction $B = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B$ **OGF equation** $B(z) = 1 + z + (z + z^2)B(z)$ **OGF** $B(z) = \frac{1+z}{1-z-z^2}$ enumeration $[z^n]B(z) \sim \frac{1+1/\phi}{1-\hat{\phi}/\phi}\phi^n = \frac{\phi^{n+2}}{\sqrt{5}}$ cumulated cost $[z^n]B_u(z,1) =$

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^{-n} n^{\alpha-1}$$

average number of 0 bits in a random bit string of length n containing no 00 is $\sim \frac{\pi}{d\sqrt{5}}$

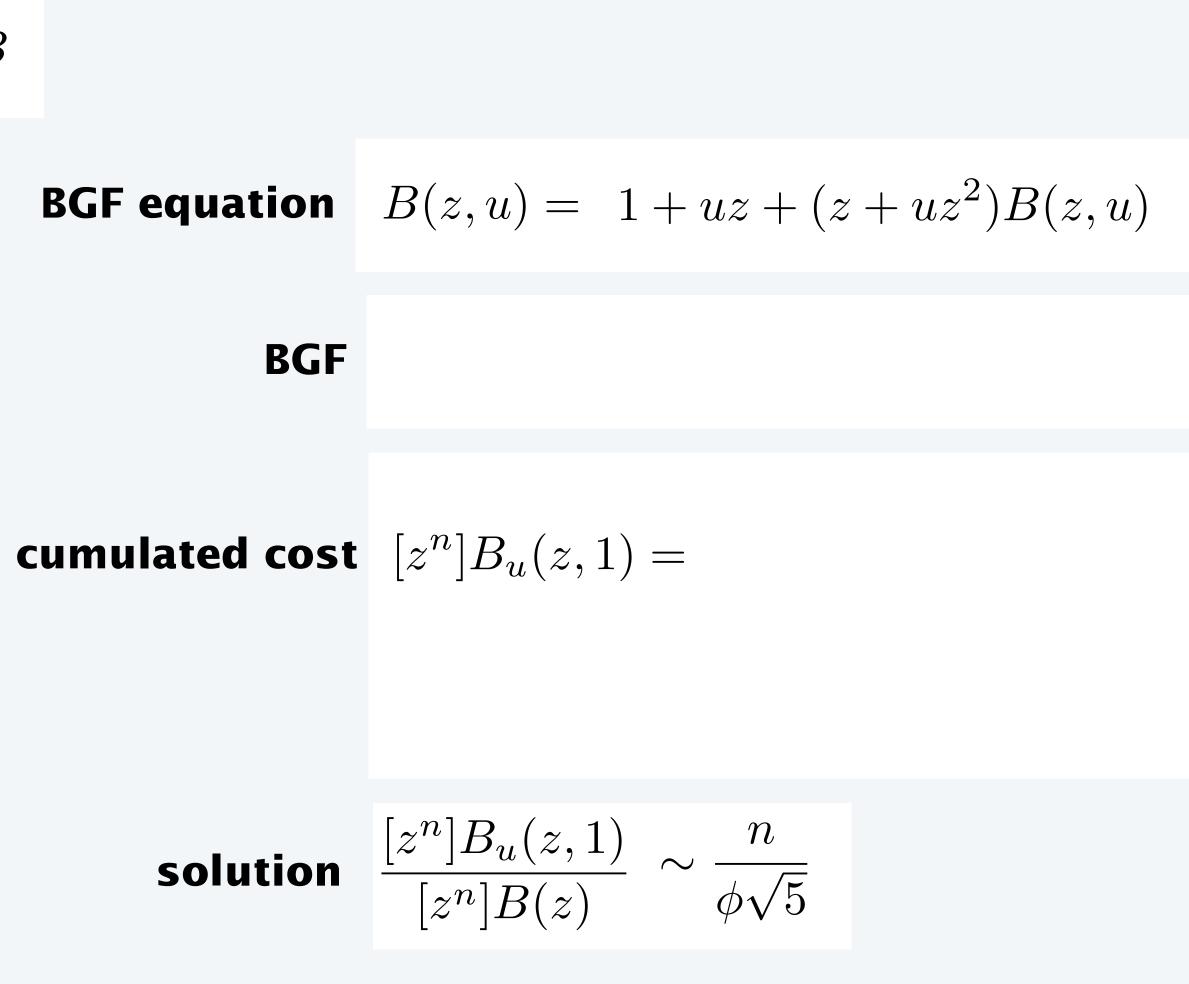




Q. Recalling the derivation at left, fill in the boxes at right to prove that the average number of 0 bits in a random bit string of length n containing no 00 is $\sim \frac{\pi}{d\sqrt{5}}$

construction $B = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B$ **OGF equation** $B(z) = 1 + z + (z + z^2)B(z)$ **OGF** $B(z) = \frac{1+z}{1-z-z^2}$ enumeration $[z^n]B(z) \sim \frac{1+1/\phi}{1-\hat{\phi}/\phi}\phi^n = \frac{\phi^{n+2}}{\sqrt{5}}$ cumulated cost $[z^n]B_u(z,1) =$

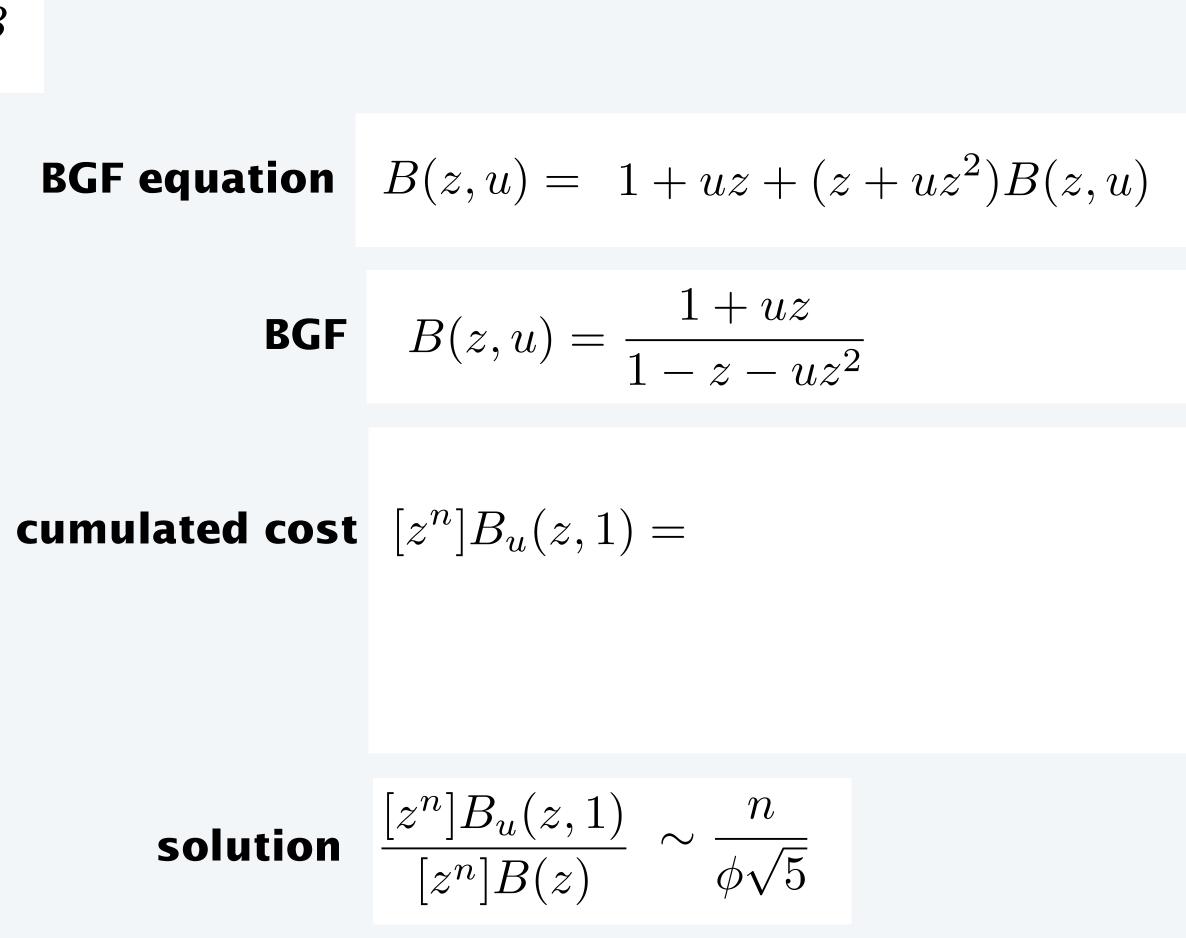
$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^{-n} n^{\alpha-1}$$



Q. Recalling the derivation at left, fill in the boxes at right to prove that the average number of 0 bits in a random bit string of length n containing no 00 is $\sim \frac{\pi}{d\sqrt{5}}$

construction $B = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B$ **OGF equation** $B(z) = 1 + z + (z + z^2)B(z)$ **OGF** $B(z) = \frac{1+z}{1-z-z^2}$ enumeration $[z^n]B(z) \sim \frac{1+1/\phi}{1-\hat{\phi}/\phi}\phi^n = \frac{\phi^{n+2}}{\sqrt{5}}$ cumulated cost $[z^n]B_u(z,1) =$

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^{-n} n^{\alpha-1}$$





Q. Recalling the derivation at left, fill in the boxes at right to prove that the average number of 0 bits in a random bit string of length n containing no 00 is $\sim \frac{\pi}{d\sqrt{5}}$

construction $B = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B$ **OGF equation** $B(z) = 1 + z + (z + z^2)B(z)$ **OGF** $B(z) = \frac{1+z}{1-z-z^2}$ enumeration $[z^n]B(z) \sim \frac{1+1/\phi}{1-\hat{\phi}/\phi}\phi^n = \frac{\phi^{n+2}}{\sqrt{5}}$

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^{-n} n^{\alpha-1}$$

BGF equation
$$B(z,u) = 1 + uz + (z + uz^2)B(z,u)$$
BGF $B(z,u) = \frac{1 + uz}{1 - z - uz^2}$ **cumulated cost** $[z^n]B_u(z,1) = [z^n]\frac{z}{(1 - z - z^2)^2}$ **solution** $\frac{[z^n]B_u(z,1)}{[z^n]B(z)} \sim \frac{n}{\phi\sqrt{5}}$



Q. Recalling the derivation at left, fill in the boxes at right to prove that the

construction $B = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B$ **OGF equation** $B(z) = 1 + z + (z + z^2)B(z)$ **OGF** $B(z) = \frac{1+z}{1-z-z^2}$ enumeration $[z^n]B(z) \sim \frac{1+1/\phi}{1-\hat{\phi}/\phi}\phi^n = \frac{\phi^{n+2}}{\sqrt{5}}$

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^{-n} n^{\alpha-1}$$

average number of 0 bits in a random bit string of length n containing no 00 is $\sim \frac{\pi}{d\sqrt{5}}$

BGF equation
$$B(z,u) = 1 + uz + (z + uz^2)B(z,u)$$
BGF $B(z,u) = \frac{1 + uz}{1 - z - uz^2}$ cumulated cost $[z^n]B_u(z,1) = [z^n]\frac{z}{(1 - z - z^2)^2}$
 $\sim \frac{1/\phi}{(1 - \dot{\phi}/\phi)^2}n\phi^n = n\frac{\phi^{n+1}}{5}$ solution $\frac{[z^n]B_u(z,1)}{[z^n]B(z)} \sim \frac{n}{\phi\sqrt{5}}$

Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

Has periodic behavior

F

Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

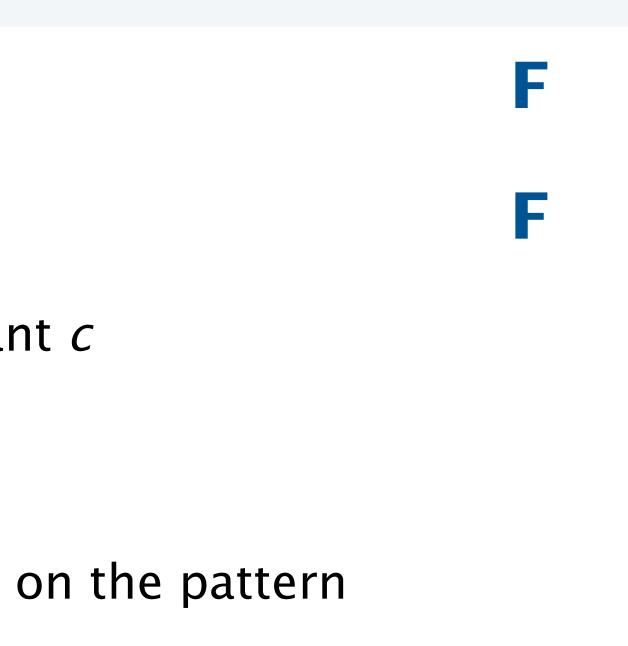
Has periodic behavior

Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

Has periodic behavior

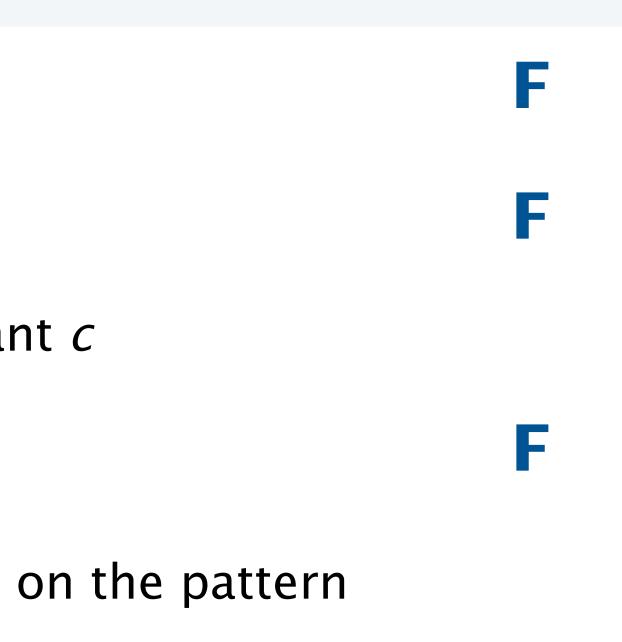


Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

Has periodic behavior

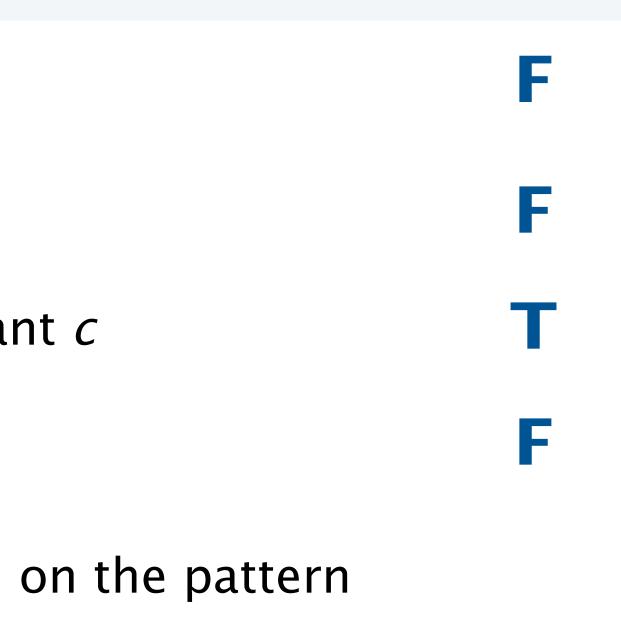


Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

Has periodic behavior



Approaches 0

Approaches 1

Approaches *cn* for some fixed constant *c*

Has periodic behavior

