AC Pole Apps Q&A: Making change in Canada

Q. How many ways to make change for N cents using only nickels, dimes and quarters?

MONEY / CANADA

Canadian Pennies Are No More

Mint stops distributing coins today
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(NEWSER) - That's it for Canada's penny: ‘ l
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circulation, says a Royal Canadian Mint rep.
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AC Pole Apps Q&A: Compositions with restrictions

Q. How many ways to write N as an ordered sum of (positive) odd integers?
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Exercise. Direct proof that it is a Fibonacci sequence ?



AC Pole Apps Q&A: “Black and white reversible strings”
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Exercise. Prove that G(z) is the OGF for “black-and-white reversible strings”



