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ANALYTIC COMBINATORICS

Analytic combinatorics aims to enable precise quantitative predictions of the proper-
ties of large combinatorial structures. The theory has emerged over recent decades
as essential both for the analysis of algorithms and for the study of scientific models
in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combination of symbolic enumera-
tion methods and complex analysis, drawing heavily on generating functions, results
of sweeping generality emerge that can be applied in particular to fundamental struc-
tures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.
This account is the definitive treatment of the topic. In order to make it self-
contained, the authors give full coverage of the underlying mathematics and give a
thorough treatment of both classical and modern applications of the theory. The text is
complemented with exercises, examples, appendices and notes throughout the book to
aid understanding. The book can be used as a reference for researchers, as a textbook
for an advanced undergraduate or a graduate course on the subject, or for self-study.
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Preface

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of study of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions: these make their first appearance as
purely formal algebraic objects. Next, generating functions are interpreted as analytic
objects, that is, as mappings of the complex plane into itself. Singularities determine
a function’s coefficients in asymptotic form and lead to precise estimates for counting
sequences. This chain of reasoning applies to a large number of problems of discrete
mathematics relative to words, compositions, partitions, trees, permutations, graphs,
mappings, planar configurations, and so on. A suitable adaptation of the methods also
opens the way to the quantitative analysis of characteristic parameters of large random
structures, via a perturbational approach.

THE APPROACH to quantitative problems of discrete mathematics provided by
analytic combinatorics can be viewed as an operational calculus for combinatorics
organized around three components.

Symbolic methods develops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions that exactly encode counting sequences.

Complex asymptotics elaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complex domain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random structures concerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

The present book expounds this view by means of a very large number of examples
concerning classical objects of discrete mathematics and combinatorics. The eventual
goal is an effective way of quantifying metric properties of large random structures.

ix
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Given its capacity of quantifying properties of large discrete structures, Analytic
Combinatorics is susceptible to many applications, not only within combinatorics it-
self, but, perhaps more importantly, within other areas of science where discrete prob-
abilistic models recurrently surface, like statistical physics, computational biology,
electrical engineering, and information theory. Last but not least, the analysis of al-
gorithms and data structures in computer science has served and still serves as an
important incentive for the development of the theory.

* k ok kk Kk

Part A: Symbolic methods. This part specifically develops Symbolic methods, which
constitute a unified algebraic theory dedicated to setting up functional relations be-
tween counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinatorial
constructions and operations on generating functions. This translation process is a
purely formal one. In fact, with regard to basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then form Part A: Chapter I deals
with unlabelled objects; Chapter II develops labelled objects in a parallel way; Chap-
ter III treats multivariate aspects of the theory suitable for the analysis of parameters
of combinatorial structures.

* Kk %k Kk ok Kk

Part B: Complex asymptotics. This part specifically expounds Complex asymptotics,
which is a unified analytic theory dedicated to the process of extracting asymptotic in-
formation from counting generating functions. A collection of general (and simple)
theorems now provide a systematic translation mechanism between generating func-
tions and asymptotic forms of coefficients. Five chapters form this part. Chapter IV
serves as an introduction to complex-analytic methods and proceeds with the treatment
of meromorphic functions, that is, functions whose singularities are poles, rational
functions being the simplest case. Chapter V develops applications of rational and
meromorphic asymptotics of generating functions, with numerous applications related
to words and languages, walks and graphs, as well as permutations. Chapter VI devel-
ops a general theory of singularity analysis that applies to a wide variety of singular-
ity types, such as square-root or logarithmic, and has consequences regarding trees as
well as other recursively-defined combinatorial classes. Chapter VII presents appli-
cations of singularity analysis to 2—regular graphs and polynomials, trees of various
sorts, mappings, context-free languages, walks, and maps. It contains in particular a
discussion of the analysis of coefficients of algebraic functions. Chapter VIII explores
saddle-point methods, which are instrumental in analysing functions with a violent
growth at a singularity, as well as many functions with a singularity only at infinity
(i.e., entire functions).

* k ok kk Kk
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Part C: Random structures. This part is comprised of Chapter IX, which is dedi-
cated to the analysis of multivariate generating functions viewed as deformation and
perturbation of simple (univariate) functions. Many known laws of probability theory,
either discrete or continuous, from Poisson to Gaussian and stable distributions, are
found to arise in combinatorics, by a process combining symbolic methods, complex
asymptotics, and perturbation methods. As a consequence, many important character-
istics of classical combinatorial structures can be precisely quantified in distribution.

* Kk k ok ok Kk

Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, among others. Appendix B recapitulates the necessary background
in complex analysis. It may be viewed as a self-contained minicourse on the subject,
with entries relative to analytic functions, the Gamma function, the implicit function
theorem, and Mellin transforms. Appendix C recalls some of the basic notions of
probability theory that are useful in analytic combinatorics.

* ok kK Kk ok

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concrete Emmples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offering a complete treatment of
a specific problem. These are borrowed not only from combinatorics itself but also
from neighbouring areas of science. With a view to addressing not only mathemati-
cians of varied profiles but also scientists of other disciplines, Analytic Combinatorics
is self-contained, including ample appendices that recapitulate the necessary back-
ground in combinatorics, complex function theory, and probability. A rich set of short
Notes—there are more than 450 of them—are inserted in the text?> and can provide
exercises meant for self-study or for student practice, as well as introductions to the
vast body of literature that is available. We have also made every effort to focus on
core ideas rather than technical details, supposing a certain amount of mathematical
maturity but only basic prerequisites on the part of our gentle readers. The book is
also meant to be strongly problem-oriented, and indeed it can be regarded as a man-
ual, or even a huge algorithm, guiding the reader to the solution of a very large variety
of problems regarding discrete mathematical models of varied origins. In this spirit,
many of our developments connect nicely with computer algebra and symbolic ma-
nipulation systems.

COURSES can be (and indeed have been) based on the book in various ways.
Chapters I-III on Symbolic methods serve as a systematic yet accessible introduc-
tion to the formal side of combinatorial enumeration. As such it organizes trans-
parently some of the rich material found in treatises® such as those of Bergeron—
Labelle-Leroux, Comtet, Goulden—Jackson, and Stanley. Chapters IV-VIII relative to
Complex asymptotics provide a large set of concrete examples illustrating the power

IExamples are marked by “Example --- W,

2Notes are indicated by > --- <.

3References are to be found in the bibliography section at the end of the book.
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of classical complex analysis and of asymptotic analysis outside of their traditional
range of applications. This material can thus be used in courses of either pure or
applied mathematics, providing a wealth of non-classical examples. In addition, the
quiet but ubiquitous presence of symbolic manipulation systems provides a number of
illustrations of the power of these systems while making it possible to test and con-
cretely experiment with a great many combinatorial models. Symbolic systems allow
for instance for fast random generation, close examination of non-asymptotic regimes,
efficient experimentation with analytic expansions and singularities, and so on.

Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, Mahmoud, and Szpankowski, in
the survey by Vitter—Flajolet, as well as in our earlier Introduction to the Analysis of
Algorithms published in 1996. This book, Analytic Combinatorics, can then be used
as a systematic presentation of methods that have proved immensely useful in this
area; see in particular the Art of Computer Programming by Knuth for background.
Studies in statistical physics (van Rensburg, and others), statistics (e.g., David and
Barton) and probability theory (e.g., Billingsley, Feller), mathematical logic (Burris’
book), analytic number theory (e.g., Tenenbaum), computational biology (Waterman’s
textbook), as well as information theory (e.g., the books by Cover—Thomas, MacKay,
and Szpankowski) point to many startling connections with yet other areas of science.
The book may thus be useful as a supplementary reference on methods and applica-
tions in courses on statistics, probability theory, statistical physics, finite model the-
ory, analytic number theory, information theory, computer algebra, complex analysis,
or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less informative
without Neil Sloane’s Encyclopedia of Integer Sequences, Steve Finch’s Mathematical Con-
stants, Eric Weisstein’s MathWorld, and the MacTutor History of Mathematics site hosted at
St Andrews. We have also greatly benefited of the existence of open on-line archives such
as Numdam, Gallica, GDZ (digitalized mathematical documents), ArXiv, as well as the Euler
Archive. All the corresponding sites are (or at least have been at some stage) freely available on
the Internet. Bruno Salvy and Paul Zimmermann have developed algorithms and libraries for
combinatorial structures and generating functions that are based on the MAPLE system for sym-
bolic computations and that have proven to be extremely useful. We are deeply grateful to the
authors of the free software Unix, Linux, Emacs, X11, TgX and IATEX as well as to the design-
ers of the symbolic manipulation system MAPLE for creating an environment that has proved
invaluable to us. We also thank students in courses at Barcelona, Berkeley (MSRI), Bordeaux,
Caen, Graz, Paris (Ecole Polytechnique, Ecole Normale Supérieure, University), Princeton,
Santiago de Chile, Udine, and Vienna whose reactions have greatly helped us prepare a better
book. Thanks finally to numerous colleagues for their contributions to this book project. In
particular, we wish to acknowledge the support, help, and interaction provided at a high level
by members of the Analysis of Algorithms (AofA) community, with a special mention for Nico-
las Broutin, Michael Drmota, Eric Fusy, Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy
Louchard, Andrew Odlyzko, Daniel Panario, Carine Pivoteau, Helmut Prodinger, Bruno Salvy,
Michele Soria, Wojtek Szpankowski, Brigitte Vallée, Mark Daniel Ward, and Mark Wilson. In
addition, Ed Bender, Stan Burris, Philippe Dumas, Svante Janson, Philippe Robert, Loic Tur-
ban, and Brigitte Vallée have provided insightful suggestions and generous feedback that have
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University Press, who has been an exceptionally supportive (and patient) companion of this
book project, throughout all these years. Finally, support of our home institutions (INRIA and
Princeton University) as well as various grants (French government, European Union, and NSF)
have contributed to making our collaboration possible.
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An Invitation to Analytic
Combinatorics

OO O1) CUPPELYVOUEVOL aUTd TE TROG alTd ol TEOG GAANAN THV
mowahioy €otiv dnetpar fig 07 del Vewpois yiyveodon Tolg
péMovTag Tepl QUOEWS EIXOTL AOY

— PLATO, The Timaeus!

ANALYTIC COMBINATORICS is primarily a book about combinatorics, that is, the
study of finite structures built according to a finite set of rules. Analytic in the title
means that we concern ourselves with methods from mathematical analysis, in par-
ticular complex and asymptotic analysis. The two fields, combinatorial enumeration
and complex analysis, are organized into a coherent set of methods for the first time
in this book. Our broad objective is to discover how the continuous may help us to
understand the discrete and to quantify its properties.

COMBINATORICS is, as told by its name, the science of combinations. Given
basic rules for assembling simple components, what are the properties of the resulting
objects? Here, our goal is to develop methods dedicated to quantitative properties
of combinatorial structures. In other words, we want to measure things. Say that
we have n different items like cards or balls of different colours. In how many ways
can we lay them on a table, all in one row? You certainly recognize this counting
problem—finding the number of permutations of n elements. The answer is of course
the factorial number

n!l=1-2.-...-n.

This is a good start, and, equipped with patience or a calculator, we soon determine
that if n = 31, say, then the number of permutations is the rather large quantity

31! = 8222838654177922817725562880000000, .

an integer with 34 decimal digits. The factorials solve an enumeration problem, one
that took mankind some time to sort out, because the sense of the “- - - ”” in the formula
for n! is not that easily grasped. In his book The Art of Computer Programming

1So their combinations with themselves and with each other give rise to endless complexities, which
anyone who is to give a likely account of reality must survey.” Plato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

1
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7N\
® ©

Figure 0.1. An example of the correspondence between an alternating permutation
(top) and a decreasing binary tree (bottom): each binary node has two descendants,
which bear smaller labels. Such constructions, which give access to generating func-
tions and eventually provide solutions to counting problems, are the main subject of
Part A.

(vol I, p. 23), Donald Knuth traces the discovery to the Hebrew Book of Creation
(c. AD 400) and the Indian classic Anuyogadvara-sutra (c. AD 500).

Here is another more subtle problem. Assume that you are interested in permuta-
tions such that the first element is smaller than the second, the second is larger than the
third, itself smaller than the fourth, and so on. The permutations go up and down and
they are diversely known as up-and-down or zigzag permutations, the more dignified
name being alternating permutations. Say that n = 2m + 1 is odd. An example is for
n=09:

/! ’ NS ’ NS ’ NS : N\
4 6 5 1 2
The number of alternating permutations forn = 1, 3, 5, ..., 15 turns out to be

1,2,16,272,7936, 353792, 22368256, 1903757312.

What are these numbers and how do they relate to the total number of permutations of
corresponding size? A glance at the corresponding figures, that is, 1!, 3!, 5!, ..., 15!,
or

1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000,

suggests that the factorials grow somewhat faster—just compare the lengths of the last
two displayed lines. But how and by how much? This is the prototypical question we
are addressing in this book.

Let us now examine the counting of alternating permutations. In 1881, the French
mathematician Désiré André made a startling discovery. Look at the first terms of the
Taylor expansion of the trigonometric function tan z:

3 5 7 9 11

Z Z Z Z Z Z
t =1—42—4+16—~+272— +7936— +353792— +--- .
R TR TR T T TR m
The counting sequence for alternating permutations, 1, 2, 16, .. ., curiously surfaces.

We say that the function on the left is a generating function for the numerical se-
quence (precisely, a generating function of the exponential type, due to the presence
of factorials in the denominators).
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André’s derivation may nowadays be viewed very simply as reflecting the con-
struction of permutations by means of certain labelled binary trees (Figure 0.1 and
p. 143): given a permutation o a tree can be obtained once o has been decomposed as
atriple (o7, max, og), by taking the maximum element as the root, and appending, as
left and right subtrees, the trees recursively constructed from o, and o. Part A of this
book develops at length symbolic methods by which the construction of the class 7 of
all such trees,

7T = @® U (7,max,7),

translates into an equation relating generating functions,
: 2
Ty = =z + / T (w)* dw.
0

In this equation, T (z) := Y, T,z"/n! is the exponential generating function of the
sequence (7,,), where T, is the number of alternating permutations of (odd) length n.
There is a compelling formal analogy between the combinatorial specification and
its generating function: Unions (U) give rise to sums (+), max-placement gives an
integral (), forming a pair of trees corresponds to taking a square (1.

At this stage, we know that 7 (z) must solve the differential equation

d 2
—T@)=1+T()", T(0) =0,
dz

which, by classical manipulations?, yields the explicit form
T(z) =tanz.

The generating function then provides a simple algorithm to compute the coefficients
recurrently. Indeed, the formula,

implies, for n odd, the relation (extract the coefficient of z" in T (z) cos z = sin z)

_(n B o \=D)2 ay al
T, <2> n— 2+<4) n—d — o= (—1) ,  where <b>_—b!(a—b)!

is the conventional notation for binomial coefficients. Now, the exact enumeration
problem may be regarded as solved since a very simple algorithm is available for
determining the counting sequence, while the generating function admits an explicit
expression in terms of well-known mathematical objects.

ANALYSIS, by which we mean mathematical analysis, is often described as the
art and science of approximation. How fast do the factorial and the tangent number
sequences grow? What about comparing their growths? These are typical problems
of analysis.

2We have T'/(1 + T2) =1, hence arctan(7) = zand T = tan z.
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2.1

Figure 0.2. Two views of the function z + tanz. Left: a plot for real values of z €
[—6, 6]. Right: the modulus |tanz| when z = x + iy (withi = J=1) is assigned
complex values in the square £6 + 6i. As developed at length in Part B, it is the
nature of singularities in the complex domain that matters.

First, consider the number of permutations, n!. Quantifying its growth, as n gets
large, takes us to the realm of asymptotic analysis. The way to express factorial num-
bers in terms of elementary functions is known as Stirling’s formula’

n

n! ~n"e "\ 2mn,

where the ~ sign means “approximately equal” (in the precise sense that the ratio of
both terms tends to 1 as n gets large). This beautiful formula, associated with the
name of the Scottish mathematician James Stirling (1692-1770), curiously involves
both the basis e of natural logarithms and the perimeter 27 of the circle. Certainly,
you cannot get such a thing without analysis. As a first step, there is an estimate

n n n
logn!:ZIOgj’\'/ logxdenlog(—),
j=1 ! ¢

explaining at least the n"e™" term, but already requiring a certain amount of elemen-
tary calculus. (Stirling’s formula precisely came a few decades after the fundamental
bases of calculus had been laid by Newton and Leibniz.) Note the utility of Stirling’s
formula: it tells us almost instantly that 100! has 158 digits, while 1000! borders the
astronomical 10>398,

We are now left with estimating the growth of the sequence of tangent numbers,
T,. The analysis leading to the derivation of the generating function tan(z) has been
so far essentially algebraic or “formal”. Well, we can plot the graph of the tangent
function, for real values of its argument and see that the function becomes infinite at
the points =75, £37%, and so on (Figure 0.2). Such points where a function ceases to be

31n this book, we shall encounter five different proofs of Stirling’s formula, each of interest for its
own sake: (i) by singularity analysis of the Cayley tree function (p. 407); (ii) by singularity analysis of
polylogarithms (p. 410); (iii) by the saddle-point method (p. 555); (iv) by Laplace’s method (p. 760);
(v) by the Mellin transform method applied to the logarithm of the Gamma function (p. 766).
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“smooth” (differentiable) are called singularities. By methods amply developed in this
book, it is the local nature of a generating function at its “dominant” singularities (i.e.,
the ones closest to the origin) that determines the asymptotic growth of the sequence of
coefficients. From this perspective, the basic fact that tan z has dominant singularities
at £7 enables us to reason as follows: first approximate the generating function tan z
near its two dominant singularities, namely,

tan(z) ~

8z

i>tr2 w2 — 4727

then extract coefficients of this approximation; finally, get in this way a valid approx-

imation of coefficients:

T, (2
LR
n! n—oo T

n+1
) (n odd).

With present day technology, we also have available symbolic manipulation sys-
tems (also called “computer algebra” systems) and it is not difficult to verify the ac-

curacy of our estimates. Here is a small pyramid forn = 3,5, ..., 21,
211
16 | 15
272 | 271
7936 | 7935
353792 | 353791
22368256 | 22368251
1903757312 | 1903757267
209865342976 | 20986534 2434
29088885112832 | 290888851 04489
4951498053124096 | 495149805 2966307
(Th) (T

comparing the exact values of 7}, against the approximations 7,7, where (n odd)

2 n+1
Tn* =|2-n! (;) 5

and discrepant digits of the approximation are displayed in bold. For n = 21, the error
is only of the order of one in a billion. Asymptotic analysis (p. 269) is in this case
wonderfully accurate.

In the foregoing discussion, we have played down a fact—one that is important.
When investigating generating functions from an analytic standpoint, one should gen-
erally assign complex values to arguments not just real ones. It is singularities in the
complex plane that matter and complex analysis is needed in drawing conclusions re-
garding the asymptotic form of coefficients of a generating function. Thus, a large
portion of this book relies on a complex analysis technology, which starts to be de-
veloped in Part B dedicated to Complex asymptotics. This approach to combinatorial
enumeration parallels what happened in the nineteenth century, when Riemann first
recognized the deep relation between complex analytic properties of the zeta function,
¢(s) := > 1/n*, and the distribution of primes, eventually leading to the long-sought
proof of the Prime Number Theorem by Hadamard and de la Vallée-Poussin in 1896.
Fortunately, relatively elementary complex analysis suffices for our purposes, and we
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Figure 0.3. The collection of binary trees with n = 0, 1,2, 3 binary nodes, with
respective cardinalities 1, 1, 2, 5.

can include in this book a complete treatment of the fragment of the theory needed to
develop the fundamentals of analytic combinatorics.

Here is yet another example illustrating the close interplay between combina-
torics and analysis. When discussing alternating permutations, we have enumerated
binary trees bearing distinct integer labels that satisfy a constraint—to decrease along
branches. What about the simpler problem of determining the number of possible
shapes of binary trees? Let C, be the number of binary trees that have n binary
branching nodes, hence n 4 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values of n (Figure 0.3), from which we determine that

Co=1, Ci=1, Cr=2, C3=5 Cs=14, Cs=42.

These numbers are probably the most famous ones of combinatorics. They have come
to be known as the Catalan numbers as a tribute to the Franco-Belgian mathemati-
cian Eugene Charles Catalan (1814-1894), but they already appear in the works of
Euler and Segner in the second half of the eighteenth century (see p. 20). In his refer-
ence treatise Enumerative Combinatorics, Stanley, over 20 pages, lists a collection of
some 66 different types of combinatorial structures that are enumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very much in the style of what has
been done earlier, but without labels:

C = 0O U (C,e,0).

(Here, the O—symbol represents an external node.) With symbolic methods, it is easy
to see that the ordinary generating function of the Catalan numbers, defined as

C) =) Cut",

n>0

satisfies an equation that is a direct reflection of the combinatorial definition, namely,
Cz = 1 + zC@*~
This is a quadratic equation whose solution is

|- VT %

C@x) = 2
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Figure 0.4. Left: the real values of the Catalan generating function, which has a
square-root singularity at z = %. Right: the ratio Cy,/ @"n=3/2) plotted together
with its asymptote at 1//7 = 0.56418. The correspondence between singularities

and asymptotic forms of coefficients is the central theme of Part B.

Then, by means of Newton’s theorem relative to the expansion of (1 4+ x)*, one finds
easily (x = —4z,a = %) the closed form expression

1 (211)
Cn, = .
n+1\n
Stirling’s asymptotic formula now comes to the rescue: it implies

4n
C,~C; where C) :=
n?

This last approximation is quite usable*: it gives C* = 2.25 (whereas C; = 1), which
is off by a factor of 2, but the error drops to 10% already for n = 10, and it appears to
be less than 1% for any n > 100.

A plot of the generating function C(z) in Figure 0.4 illustrates the fact that C(z)
has a singularity at 7 = zl; as it ceases to be differentiable (its derivative becomes infi-
nite). That singularity is quite different from a pole and for natural reasons it is known
as a square-root singularity. As we shall see repeatedly, under suitable conditions
in the complex plane, a square root singularity for a function at a point p invariably
entails an asymptotic form p~"n~3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in order to deduce an asymptotic
approximation of its coefficients. This correspondence is a major theme of the book,
one that motivates the five central chapters (Chapters IV to VIII).

A consequence of the complex analytic vision of combinatorics is the detection of
universality phenomena in large random structures. (The term is originally borrowed
from statistical physics and is nowadays finding increasing use in areas of mathema-
tics such as probability theory.) By universality is meant here that many quantitative

“Weuse o =d to represent a numerical approximation of the real « by the decimal d, with the last
digit of d being at most 1 from its actual value.
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properties of combinatorial structures only depend on a few global features of their
definitions, not on details. For instance a growth in the counting sequence of the form

K - Ann—3/2’

arising from a square-root singularity, will be shown to be universal across all varieties
of trees determined by a finite set of allowed node degrees—this includes unary—
binary trees, ternary trees, 0—11-13 trees, as well as many variations such as non-plane
trees and labelled trees. Even though generating functions may become arbitrarily
complicated—as in an algebraic function of a very high degree or even the solution to
an infinite functional equation—it is still possible to extract with relative ease global
asymptotic laws governing counting sequences.

RANDOMNESS is another ingredient in our story. How useful is it to determine,
exactly or approximately, counts that may be so large as to require hundreds if not
thousands of digits in order to be written down? Take again the example of alter-
nating permutations. When estimating their number, we have indeed quantified the
proportion of these among all permutations. In other words, we have been predicting
the probability that a random permutation of some size n is alternating. Results of
this sort are of interest in all branches of science. For instance, biologists routinely
deal with genomic sequences of length 10°, and the interpretation of data requires de-
veloping enumerative or probabilistic models where the number of possibilities is of
the order of 41, The language of probability theory then proves of great convenience
when discussing characteristic parameters of discrete structures, since we can interpret
exact or asymptotic enumeration results as saying something concrete about the like-
lihood of values that such parameters assume. Equally important of course are results
from several areas of probability theory: as demonstrated in the last chapter of this
book, such results merge extremely well with the analytic—combinatorial framework.

Say we are now interested in runs in permutations. These are the longest frag-
ments of a permutation that already appear in (increasing) sorted order. Here is a
permutation with 4 runs, separated by vertical bars:

258(39(14716.

Runs naturally present in a permutation are for instance exploited by a sorting algo-
rithm called “natural list mergesort”, which builds longer and longer runs, starting
from the original ones and merging them until the permutation is eventually sorted.
For our understanding of this algorithm, it is then of obvious interest to quantify how
many runs a permutation is likely to have.

Let P, i be the number of permutations of size n having & runs. Then, the problem
is once more best approached by generating functions and one finds that the coefficient
of u*z" inside the bivariate generating function,

2 3

—Uu Z Z
=1+zu+5u(u+1)+§u(u2+4u+1)+---,

e =
gives the desired numbers P, x/n!. (A simple way of establishing the last formula
bases itself on the tree decomposition of permutations and on the symbolic method;

the numbers P, x, whose importance seems to have been first recognized by Euler,
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Figure 0.5. Left: A partial plot of the real values of the Eulerian generating function
z — P(z,u) for z € [0, %], illustrates the presence of a movable pole for A as u

varies between 0 and %. Right: A suitable superposition of the histograms of the
distribution of the number of runs, for n = 2, ..., 60, reveals the convergence to a
Gaussian distribution (p. 695). Part C relates systematically the analysis of such a
collection of singular behaviours to limit distributions.

are related to the Eulerian numbers, p. 210.) From here, we can easily determine
effectively the mean, variance, and even the higher moments of the number of runs
that a random permutation has: it suffices to expand blindly, or even better with the
help of a computer, the bivariate generating function above as u — 1:

1 +1z(2—z) 122(6—4z+2%)

-z 2 (1-2)2 (=Dts (1-2)°

-1+,

When u = 1, we just enumerate all permutations: this is the constant term 1/(1 — z)
equal to the exponential generating function of all permutations. The coefficient of
the term u — 1 gives the generating function of the mean number of runs, the next one
provides the second moment, and so on. In this way, we discover the expectation and
standard deviation of the number of runs in a permutation of size n:

n+1 n+1
n = s oy = .
Hn =5 "V 12

Then, by easy analytic—probabilistic inequalities (Chebyshev inequalities) that other-
wise form the basis of what is known as the second moment method, we learn that the
distribution of the number of runs is concentrated around its mean: in all likelihood,
if one takes a random permutation, the number of its runs is going to be very close to
its mean. The effects of such quantitative laws are quite tangible. It suffices to draw a
sample of one element for n = 30 to get, for instance:

13,22,29(12, 15, 23|8, 281816, 264, 10, 16|1, 5, 27|3, 14, 17, 20|12, 21, 30[25|11, 19]9]7, 24.

For n = 30, the mean is 15%, and this sample comes rather close as it has 13 runs.
We shall furthermore see in Chapter IX that even for moderately large permutations
of size 10 000 and beyond, the probability for the number of observed runs to deviate
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Figure 0.6. Left: The bivariate generating function z — C(z, #) enumerating binary
trees by size and number of leaves exhibits consistently a square-root singularity, for
several values of u. Right: a binary tree of size 300 drawn uniformly at random has
69 leaves. As shown in Part C, singularity perturbation properties are at the origin of
many randomness properties of combinatorial structures.

by more than 10% from the mean is less than 107%. As witnessed by this example,
much regularity accompanies properties of large combinatorial structures.

More refined methods combine the observation of singularities with analytic re-
sults from probability theory (e.g., continuity theorems for characteristic functions). In
the case of runs in permutations, the quantity P(z, u) viewed as a function of z when u
is fixed appears to have a pole: this fact is suggested by Figure 0.5 [left]. Then we are
confronted with a fairly regular deformation of the generating function of all permu-
tations. A parameterized version (with parameter u) of singularity analysis then gives
access to a description of the asymptotic behaviour of the Eulerian numbers P, . This
enables us to describe very precisely what goes on: in a random permutation of large
size n, once it has been centred by its mean and scaled by its standard deviation, the
distribution of the number of runs is asymptotically Gaussian; see Figure 0.5 [right].

A somewhat similar type of situation prevails for binary trees. Say we are inter-
ested in leaves (also sometimes figuratively known as “cherries”) in trees: these are bi-
nary nodes that are attached to two external nodes (O). Let C,, x be the number of trees
of size n having k leaves. The bivariate generating function C(z, u) := Zn’ X Cnx 2" u*
encodes all the information relative to leaf statistics in random binary trees. A mod-
ification of previously seen symbolic arguments shows that C(z, u) still satisfies a
quadratic equation resulting in the explicit form,

1—/1—4z+422(1 —u)
2z ’

This reduces to C(z) for u = 1, as it should, and the bivariate generating func-
tion C(z, u) is a deformation of C(z) as u varies. In fact, the network of curves of
Figure 0.6 for several fixed values of u illustrates the presence of a smoothly varying
square-root singularity (the aspect of each curve is similar to that of Figure 0.4). It is
possible to analyse the perturbation induced by varying values of u, to the effect that

C(z,u) =
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( Combinatorial structures )

SYMBOLIC METHODS (Part A) Exact
Generating functions, OGF, EGF Multivariate generating functions, MGF counting
Chapters I, I Chapter III
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Figure 0.7. The logical structure of Analytic Combinatorics.

C(z, u) is of the global analytic type

P

p)’
for some analytic p (u). The already evoked process of singularity analysis then shows
that the probability generating function of the number of leaves in a tree of size n is of

the rough form
1 n
<&> (1+o0(1)).
p(u)

This is known as a “quasi-powers” approximation. It resembles very much the
probability generating function of a sum of n independent random variables, a sit-
uation that gives rise to the classical Central Limit Theorem of probability theory.
Accordingly, one gets that the limit distribution of the number of leaves in a large
random binary tree is Gaussian. In abstract terms, the deformation induced by the
secondary parameter (here, the number of leaves, previously, the number of runs) is
susceptible to a perturbation analysis, to the effect that a singularity gets smoothly
displaced without changing its nature (here, a square root singularity, earlier a pole)
and a limit law systematically results. Again some of the conclusions can be verified
even by very small samples: the single tree of size 300 drawn at random and dis-
played in Figure 0.6 (right) has 69 leaves, whereas the expected value of this number
is = 75.375 and the standard deviation is a little over 4. In a large number of cases of
which this one is typical, we find metric laws of combinatorial structures that govern
large structures with high probability and eventually make them highly predictable.

Such randomness properties form the subject of Part C of this book dedicated to
random structures. As our earlier description implies, there is an extreme degree of
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generality in this analytic approach to combinatorial parameters, and after reading this
book, the reader will be able to recognize by herself dozens of such cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEW of combinatorics emerges from the previous discus-
sion; see Figure 0.7. A combinatorial class, as regards its enumerative properties, can
be viewed as a surface in four-dimensional real space: this is the graph of its gener-
ating function, considered as a function from the set C = R? of complex numbers to
itself, and is otherwise known as a Riemann surface. This surface has “cracks”, that is,
singularities, which determine the asymptotic behaviour of the counting sequence. A
combinatorial construction (such as those freely forming sequences, sets, and so on)
can then be examined through the effect it has on singularities. In this way, seemingly
different types of combinatorial structures appear to be subject to common laws gov-
erning not only counting but also finer characteristics of combinatorial structures. For
the already discussed case of universality in tree enumerations, additional universal
laws valid across many tree varieties constrain for instance height (which, with high
probability, is proportional to the square root of size) and the number of leaves (which
is invariably normal in the asymptotic limit).

What happens regarding probabilistic properties of combinatorial parameters is
this. A parameter of a combinatorial class is fully determined by a bivariate generating
function, which is a deformation of the basic counting generating function of the class
(in the sense that setting the secondary variable u to 1 erases the information relative
to the parameter and leads back to the univariate counting generating function). Then,
the asymptotic distribution of a parameter of interest is characterized by a collection
of surfaces, each having its own singularities. The way the singularities’ locations
move or their nature changes under deformation encodes all the necessary informa-
tion regarding the distribution of the parameter under consideration. Limit laws for
combinatorial parameters can then be obtained and the corresponding phenomena can
be organized into broad categories, called schemas. It would be inconceivable to attain
such a far-reaching classification of metric properties of combinatorial structures by
elementary real analysis alone.

Objects on which we are going to inflict the treatments just described include
many of the most important ones of discrete mathematics, as well as the ones that sur-
face recurrently in several branches of the applied sciences. We shall thus encounter
words and sequences, trees and lattice paths, graphs of various sorts, mappings, al-
locations, permutations, integer partitions and compositions, polyominoes and pla-
nar maps, to name but a few. In most cases, their principal characteristics will be
finely quantified by the methods of analytic combinatorics. This book indeed devel-
ops a coherent theory of random combinatorial structures based on a powerful analytic
methodology. Literally dozens of quite diverse combinatorial types can then be treated
by a logically transparent chain. You will not find ready-made answers to all questions
in this book, but, hopefully, methods that can be successfully used to address a great
many of them.

Bienvenue! Welcome!
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Combinatorial Structures and
Ordinary Generating Functions

Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series
and put it to great use to solve a variety of combinatorial problems.

— GIAN-CARLO ROTA [518]

I.1. Symbolic enumeration methods 16
L.2. Admissible constructions and specifications 24
L.3. Integer compositions and partitions 39
1.4. Words and regular languages 49
I.5. Tree structures 64
L. 6. Additional constructions 83
L.7. Perspective 92

This chapter and the next are devoted to enumeration, where the problem is to deter-
mine the number of combinatorial configurations described by finite rules, and do so
for all possible sizes. For instance, how many different words are there of length 17?
Of length n, for general n? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? The solutions are exactly
encoded by generating functions, and, as we shall see, generating functions are the
central mathematical object of combinatorial analysis. We examine here a framework
that, contrary to traditional treatments based on recurrences, explains the surprising
efficiency of generating functions in the solution of combinatorial enumeration prob-
lems.

This chapter serves to introduce the symbolic approach to combinatorial enumer-
ations. The principle is that many general set-theoretic constructions admit a direct
translation as operations over generating functions. This principle is made concrete by
means of a dictionary that includes a collection of core constructions, namely the op-
erations of union, cartesian product, sequence, set, multiset, and cycle. Supplementary
operations such as pointing and substitution can also be similarly translated. In this
way, a language describing elementary combinatorial classes is defined. The problem
of enumerating a class of combinatorial structures then simply reduces to finding a
proper specification, a sort of computer program for the class expressed in terms of
the basic constructions. The translation into generating functions becomes, after this,
a purely mechanical symbolic process.

We show here how to describe in such a context integer partitions and compo-
sitions, as well as many word and tree enumeration problems, by means of ordinary

15
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generating functions. A parallel approach, developed in Chapter II, applies to labelled
objects—in contrast the plain structures considered in this chapter are called unla-
belled. The methodology is susceptible to multivariate extensions with which many
characteristic parameters of combinatorial objects can also be analysed in a unified
manner: this is to be examined in Chapter III. The symbolic method also has the great
merit of connecting nicely with complex asymptotic methods that exploit analyticity
properties and singularities, to the effect that precise asymptotic estimates are usually
available whenever the symbolic method applies—a systematic treatment of these as-
pects forms the basis of Part B of this book Complex asymptotics (Chapters IV-VIII).

I.1. Symbolic enumeration methods

First and foremost, combinatorics deals with discrete objects, that is, objects that
can be finitely described by construction rules. Examples are words, trees, graphs,
permutations, allocations, functions from a finite set into itself, topological configu-
rations, and so on. A major question is to enumerate such objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial class, or simply a class, is a finite or denumerable set
on which a size function is defined, satisfying the following conditions:

(i) the size of an element is a non-negative integer;
(ii) the number of elements of any given size is finite.

If A is a class, the size of an element o € A is denoted by |«/|, or || 4 in the few cases
where the underlying class needs to be made explicit. Given a class A, we consistently
denote by A4, the set of objects in .4 that have size n and use the same group of letters
for the counts A, = card(A4,) (alternatively, also a, = card(A4,)). An axiomatic
presentation is then as follows: a combinatorial class is a pair (A, | - |) where A is at
most denumerable and the mapping | - | € (A > Zxo) is such that the inverse image
of any integer is finite.

Definition I.2. The counting sequence of a combinatorial class is the sequence of
integers (An)n>0 where A,, = card(A,) is the number of objects in class A that have
size n.

Example 1.1. Binary words. Consider first the set VV of binary words, which are sequences of
elements taken from the binary alphabet A = {0,1},

w:={e 0, 1,00, 01, 10, 11, 000, 001, 010, ..., 1001101, ...},

with ¢ the empty word. Define size to be the number of letters that a word comprises. There are
two possibilities for each letter and possibilities multiply, so that the counting sequence (Wj,)
satisfies

Wp =2".
(This sequence has a well-known legend associated with the invention of the game of chess: the
inventor was promised by his king one grain of rice for the first square of the chessboard, two

for the second, four for the third, and so on. The king naturally could not deliver the promised
264 SrainS!) .o u
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Figure I.1. The collection 7 of all triangulations of regular polygons (with size de-
fined as the number of triangles) is a combinatorial class, whose counting sequence
startsas To =1, T1 =1, T, =2, T3 =5, Ty = 14, T5 = 42.

Example 1.2. Permutations. A permutation of size n is by definition a bijective mapping of the
integer interval! Z;, :=[1..n]. It is thus representable by an array,

1 2 n
op 03 -+ op )’

or equivalently by the sequence 005 - - - 5, of its distinct elements. The set P of permutations
is

P={..,12,21,123,132,213,231, 312, 321, 1234, ..., 532614, ...},
For a permutation written as a sequence of n distinct numbers, there are n places where one can
accommodate n, then n — 1 remaining places for n — 1, and so on. Therefore, the number P,
of permutations of size n satisfies

P,=n'=1-2-...-n.

As indicated in our Invitation chapter (p. 2), this formula has been known for at least fifteen
0TS 1111 3PP |

Example 1.3. Triangulations. The class 7 of triangulations comprises triangulations of con-
vex polygonal domains which are decompositions into non-overlapping triangles (taken up to
smooth deformations of the plane). We define the size of a triangulation to be the number of tri-
angles it is composed of. For instance, a convex quadrilateral ABC D can be decomposed into
two triangles in two ways (by means of either the diagonal AC or the diagonal B D); similarly,
there are five different ways to dissect a convex pentagon into three triangles: see Figure I.1.
Agreeing that Ty = 1, we then find

o =1, T =1, T, =2, T3 =5, T4 = 14, Ts = 42.

It is a non-trivial combinatorial result due to Euler and Segner [146, 196, 197] around 1750 that
the number 7, of triangulations is

1 2n 2n)!
)] I, = =
n+1\n (n+1D!n!
a central quantity of combinatorial analysis known as a Catalan number: see our Invitation,
p- 7, the historical synopsis on p. 20, the discussion on p. 35, and Subsection I. 5.3, p. 73.

'We borrow from computer science the convenient practice of denoting an integer interval by 1..n or
[1..n], whereas [0, n] represents a real interval.
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Following Euler [196], the counting of triangulations is best approached by generating
functions: see again Figure 1.2, p. 20 for historical context. .................c..cooin... |

Although the previous three examples are simple enough, it is generally a good
idea, when confronted with a combinatorial enumeration problem, to determine the
initial values of counting sequences, either by hand or better with the help of a com-
puter, somehow. Here, we find:

n 01 2 3 4 5 6 7 8 9 10
@) Whn 1 2 4 8 16 32 64 128 256 512 1024
Py 1 1 2 6 24 120 720 5040 40320 362880 3628800
Ty 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identify sequences. For instance,
had we not known the formula (1) for triangulations, observing unusual factorizations
such as

Tao=2>-5-7%-11-23-43-47.53.59.61-67-71-73-79,

which contains all prime numbers from 43 to 79 and no prime larger than 80, would
quickly put us on the track of the right formula. There even exists nowadays a huge
On-line Encyclopedia of Integer Sequences (EIS) due to Sloane that is available in
electronic form [543] (see also an earlier book by Sloane and Plouffe [544]) and con-
tains more than 100 000 sequences. Indeed, the three sequences (W,,), (P,), and (7,)
are respectively identified? as EIS A000079, EIS A000142, and EIS A000108.

B> L.1. Necklaces. How many different types of necklace designs can you form with n beads,
each having one of two colours, o and e, where it is postulated that orientation matters? Here
are the possibilities forn =1, 2, 3,

2+ QOO OO0

This is equivalent to enumerating circular arrangements of two letters and an exhaustive listing
program can be based on the smallest lexicographical representation of each word, as suggested
by (20), p. 26. The counting sequence starts as 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352 and
constitutes EIS A000031. [An explicit formula appears later in this chapter (p. 64).] What if
two necklace designs that are mirror images of one another are identified? <

> 1.2. Unimodal permutations. Such a permutation has exactly one local maximum. In other
words itis of the formoy - - -0, witho| <0y <--- <oy =nandoy =n > o4 > -+ > oy,
for some k > 1. How many such permutations are there of size n? For n = 5, the number is 16:
the permutations are 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their
reversals. [Due to Jon Perry, see EIS A000079.] <

It is also of interest to note that words and permutations may be enumerated using

the most elementary counting principles, namely, for finite sets 5 and C

card(BUC) = card(B) + card(C) (provided BNC = @)
card(B x C) card(B) - card(C).

3

2Throughout this book, a reference such EIS Axxx points to Sloane’s Encyclopedia of Integer Se-
quences [543]. The database contains more than 100 000 entries.
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We shall see soon that these principles, which lie at the basis of our very concept of
number, admit a powerful generalization (Equation (19), p. 23, below).

Next, for combinatorial enumeration purposes, it proves convenient to identify
combinatorial classes that are merely variants of one another.

Definition 1.3. Two combinatorial classes A and B are said to be (combinatorially)
isomorphic, which is written A = B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection from A to B that preserves size,
and one also says that A and B are bijectively equivalent.

We normally identify isomorphic classes and accordingly employ a plain equality
sign (A = B). We then confine the notation .4 = B to stress cases where combinato-
rial isomorphism results from some non-trivial transformation.

Definition I.4. The ordinary generating function (OGF) of a sequence (A,) is the
formal power series

(7) AR =) A"
n=0

The ordinary generating function (OGF) of a combinatorial class A is the generating
function of the numbers A, = card(A,). Equivalently, the OGF of class A admits the
combinatorial form

®) A) =Y 7.
acA

It is also said that the variable z marks size in the generating function.

The combinatorial form of an OGF in (8) results straightforwardly from observing
that the term z” occurs as many times as there are objects in .4 having size n. We stress
the fact that, at this stage and throughout Part A, generating functions are manipulated
algebraically as formal sums; that is, they are considered as formal power series (see
the framework of Appendix A.5: Formal power series, p. 730)

Naming convention. We adhere to a systematic naming convention: classes, their
counting sequences, and their generating functions are systematically denoted by the
same groups of letters: for instance, A for a class, {A,} (or {a,}) for the counting
sequence, and A(z) (or a(z)) for its OGF.

Coefficient extraction. We let generally [z"] f (z) denote the operation of extract-
ing the coefficient of z" in the formal power series f(z) = >_ f,4z", so that

©) (1| D a2 | = fa-

n>0

(The coefficient extractor [z"] f (z) reads as “coefficient of z”* in f(2)”.)
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Ich bin neulich auf eine Betrachtung gefallen,
welche mir nicht wenig merkwiirdig vorkam.
Dieselbe betrifft, auf wie vielerley Arten ein
gegebenes polygonum durch Diagonallinien in
triangula zerchnitten werden konne.

Setze ich nun die Anzahl dieser verschiedenen
Arten = x [...]. Hieraus habe ich nun den
Schluss gemacht, dass generaliter sey

2.6.10.14....(4n — 10)

YT 2345 .- 1)

[...] Ueber die Progression der Zahlen
1,2,5, 14,42, 132, etc. habe ich auch diese
Eigenschaft angemerket, dass 1 + 2a + 542 +
14a3 + 42a* + 13245 + etc. = M.

2aa

1. On September 4, 1751, Euler writes to his friend Goldbach [196]:

I have recently encountered a question, which
appears to me rather noteworthy. It concerns
the number of ways in which a given [convex]
polygon can be decomposed into triangles by
diagonal lines.

Euler then describes the problem (for an n—gon, i.e., (n — 2) triangles) and concludes:

Let me now denote by x this number of ways
[...]. I have then reached the conclusion that
in all generality
2.6.10.14....(4n — 10)
T 23450 1)

[...] Regarding the progression of the numbers
1,2,5, 14,42, 132, and so on, I have also ob-
served the following property: 1 + 2a + 542 +
1403 + 42a* + 1324 + etc, = 1220/ 14a

aa

Thus, as early as 1751, Euler knew the solution as well as the associated generating function.
From his writing, it is however unclear whether he had found complete proofs.

2. In the course of the 1750s, Euler communicated the problem, together with initial elements
of the counting sequence, to Segner, who writes in his publication [146] dated 1758: “The
great Euler has benevolently communicated these numbers to me; the way in which he found
them, and the law of their progression having remained hidden to me” [ “quos numeros mecum
beneuolus communicauit summus Eulerus;, modo, quo eos reperit, atque progressionis ordine,
celatis”’]. Segner develops a recurrence approach to Catalan numbers. By a root decomposition
analogous to ours, on p. 35, he proves (in our notation, for decompositions into » triangles)
n—1
T, = Z Tk Ty—1—k Ty=1,
k=0
a recurrence by which the Catalan numbers can be computed to any desired order. (Segner’s
work was to be reviewed in [197], anonymously, but most probably, by Euler.)

“)

3. During the 1830s, Liouville circulated the problem and wrote to Lamé, who answered the
next day(!) with a proof [399] based on recurrences similar to (4) of the explicit expression:

1 2n
(5) El:m(n)

Interestingly enough, Lamé’s three-page note [399] appeared in the 1838 issue of the Jour-
nal de mathématiques pures et appliquées (“Journal de Liouville”), immediately followed by
a longer study by Catalan [106], who also observed that the 7, intervene in the number of
ways of multiplying n numbers (this book, §1.5.3, p. 73). Catalan would then return to these
problems [107, 108], and the numbers 1, 1,2, 5, 14,42, ... eventually became known as the
Catalan numbers. In [107], Catalan finally proves the validity of Euler’s generating function:
— n _ - m
(6) T(2) = Xn: T = P

4. Nowadays, symbolic methods directly yield the generating function (6), from which both the
recurrence (4) and the explicit form (5) follow easily; see pp. 6 and 35.

Figure I.2. The prehistory of Catalan numbers.
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—  CioHiuNy ~ 7%

CH,

CH,

Figure I.3. A molecule, methylpyrrolidinyl-pyridine (nicotine), is a complex as-
sembly whose description can be reduced to a single formula corresponding here to a
total of 26 atoms.

The OGFs corresponding to our three examples W, P, 7 are then

o0

1
W — 2nn —
@ HX_(:) ¢ -2
5o
(10) P(z) = Y n!"
n=0
o = i Lo(2n\0 1-V1T—4z
n+1\n 2z '

The first expression relative to W(z) is immediate as it is the sum of a geometric
progression. The second generating function P(z) is not clearly related to simple
functions of analysis. (Note that the expression still makes sense within the strict
framework of formal power series.) The third expression relative to 7 (z) is equivalent
to the explicit form of T}, via Newton’s expansion of (1 4 x)!/? (pp. 7 and 35 as well
as Figure 1.2). The OGFs W(z) and T (z) can then be interpreted as standard analytic
objects, upon assigning values in the complex domain C to the formal variable z.
In effect, the series W(z) and T'(z) converge in a neighbourhood of 0 and represent
complex functions that are well defined near the origin, namely when |z| < % for W(z)
and |z] < JT for T(z). The OGF P(z) is a purely formal power series (its radius of
convergence is 0) that can nonetheless be subjected to the usual algebraic operations
of power series. (Permutation enumeration is most conveniently approached by the
exponential generating functions developed in Chapter I1.)

Combinatorial form of generating functions (GFs). The combinatorial form (8)
shows that generating functions are nothing but a reduced representation of the com-
binatorial class, where internal structures are destroyed and elements contributing to
size (atoms) are replaced by the variable z. In a sense, this is analogous to what
chemists do by writing linear reduced (“molecular”) formulae for complex molecules
(Figure 1.3). Great use of this observation was made by Schiitzenberger as early as the
1950s and 1960s. It explains the many formal similarities that are observed between
combinatorial structures and generating functions.
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*—e *—e .—T
H= \o/—o °—eo \o/ l>—<0 ° .—I—C o—eo—o
332 2z 22z 332 Z Yo 32
+2* +22 +7 +2* +z +7* +23
H(z) = 2+ 22 +223 +324

Figure I.4. A finite family of graphs and its eventual reduction to a generating function.

Figure 1.4 provides a combinatorial illustration: start with a (finite) family of
graphs H, with size taken as the number of vertices. Each vertex in each graph is
replaced by the variable z and the graph structure is “forgotten”; then the monomials
corresponding to each graph are formed and the generating function is finally obtained
by gathering all the monomials.

For instance, there are 3 graphs of size 4 in H, in agreement with the fact that
[z*]1H (z) = 3. If size had been instead defined by number of edges, another generating
function would have resulted, namely, with y marking the new size: 1+y+y>+2y3+
y*4y0. If both number of vertices and number of edges are of interest, then a bivariate
generating function is obtained: H(z, y) = 2 +z2y +z3y2 +z3y3 +z4y3 +z4y4 +Z4y6;
such multivariate generating functions are developed systematically in Chapter III.

A path often taken in the literature is to decompose the structures to be enumer-
ated into smaller structures either of the same type or of simpler types, and then extract
from such a decomposition recurrence relations that are satisfied by the {A,}. In this
context, the recurrence relations are either solved directly—whenever they are simple
enough—or by means of ad hoc generating functions, introduced as mere technical
artifices.

By contrast, in the framework of this book, classes of combinatorial structures
are built directly in terms of simpler classes by means of a collection of elementary
combinatorial constructions. This closely resembles the description of formal lan-
guages by means of grammars, as well as the construction of structured data types in
programming languages. The approach developed here has been termed symbolic, as
it relies on a formal specification language for combinatorial structures. Specifically,
it is based on so—called admissible constructions that permit direct translations into
generating functions.

Definition 1.5. Let ® be an m—ary construction that associates to any collection of
classes BV, ... B™ q new class

A=o[BY,. .. B™].

The construction ® is admissible iff the counting sequence (A,) of A only depends on
the counting sequences (B,gl)), e (B,(lm)) ofB(l), ..., Bm™,
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For such an admissible construction, there then exists a well-defined operator W
acting on the corresponding ordinary generating functions:
A) =v[BYV (), ..., B™)],
and it is this basic fact about admissibility that will be used throughout the book.

As an introductory example, take the construction of cartesian product, which is
the usual one enriched with a natural notion of size.

Definition 1.6. The cartesian product construction applied to two classes B and C
forms ordered pairs,

(1D A=BxC iff A={a=@B.y)IBeB, yel},
with the size of a pair o = (B, y) being defined by
(12) lala = 1BlB +lvlc.

By considering all possibilities, it is immediately seen that the counting sequences
corresponding to A, B, C are related by the convolution relation

n
(13) An=Y_ BiCpy,
k=0

which means admissibility. Furthermore, we recognize here the formula for a product
of two power series:

(14) A(z) = B(z) - C(2).

In summary: the cartesian product is admissible and it translates as a product of
OGFs.
Similarly, let A, B, C be combinatorial classes satisfying

(15) A=BUC, with BNC=4,

with size defined in a consistent manner: for w € A,

lwlp ifweB

(16) lwlg =

lwle ifwelC.
One has
a7 Ap = By + Gy,
which, at generating function level, means
(18) A(z) = B(2) + C(2).

Thus, the union of disjoint sets is admissible and it translates as a sum of generating
functions. (A more formal version of this statement is given in the next section.)

The correspondences provided by (11)—(14) and (15)—(18) are summarized by the
strikingly simple dictionary

A=BUC = A(x) =B +C() (provided BNC = 0)
A=BxC =— A(z) =B(2) - C(2),

19)
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to be compared with the plain arithmetic case of (3), p. 18. The merit of such rela-
tions is that they can be stated as general purpose translation rules that only need to
be established once and for all. As soon as the problem of counting elements of a
union of disjoint sets or a cartesian product is recognized, it becomes possible to dis-
pense altogether with the intermediate stages of writing explicitly coefficient relations
or recurrences as in (13) or (17). This is the spirit of the symbolic method for com-
binatorial enumerations. Its interest lies in the fact that several powerful set-theoretic
constructions are amenable to such a treatment, as we see in the next section.

> L1.3. Continuity, Lipschitz and Holder conditions. An admissible construction is said to be
continuous if it is a continuous function on the space of formal power series equipped with its
standard ultrametric distance (Appendix A.5: Formal power series, p. 730). Continuity captures
the desirable property that constructions depend on their arguments in a finitary way. For all
the constructions of this book, there furthermore exists a function ¢ (n), such that (A,) only

depends on the first # (n) elements of the (B{"), ..., (B"™), with #(n) < Kn + L (Holder

condition) or ¥ (n) < n + L (Lipschitz condition). For instance, the functional f(z) — f (z2)

is Holder; the functional f(z) — 9; f () is Lipschitz.

I.2. Admissible constructions and specifications

The main goal of this section is to introduce formally the basic constructions that
constitute the core of a specification language for combinatorial structures. This core
is based on disjoint unions, also known as combinatorial sums, and on cartesian prod-
ucts that we have just discussed. We shall augment it by the constructions of sequence,
cycle, multiset, and powerset. A class is constructible or specifiable if it can be de-
fined from primal elements by means of these constructions. The generating function
of any such class satisfies functional equations that can be transcribed systematically
from a specification; see Theorems I.1 (p. 27) and 1.2 (p. 33), as well as Figure 1.18
(p. 93) at the end of this chapter for a summary.

I.2.1. Basic constructions. First, we assume we are given a class £ called the
neutral class that consists of a single object of size 0; any such object of size O is
called a neutral object and is usually denoted by symbols such as € or 1. The reason
for this terminology becomes clear if one considers the combinatorial isomorphism

AZEX A= AXE.

We also assume as given an atomic class Z comprising a single element of size 1;
any such element is called an atom; an atom may be used to describe a generic node
in a tree or graph, in which case it may be represented by a circle (e or o), but also a
generic letter in a word, in which case it may be instantiated as a, b, c, . ... Distinct
copies of the neutral or atomic class may also be subscripted by indices in various
ways. Thus, for instance, we may use the classes Z, = {a}, Z, = {b} (with a,b
of size 1) to build up binary words over the alphabet {a, b}, or Z, = {e}, Z, = {0}
(with e, o taken to be of size 1) to build trees with nodes of two colours. Similarly,
we may introduce £, &1, & to denote a class comprising the neutral objects O, €1, €2
respectively.

Clearly, the generating functions of a neutral class £ and an atomic class Z are

E(z) =1, Z(z) =2z,
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corresponding to the unit 1, and the variable z, of generating functions.

Combinatorial sum (disjoint union). The intent of combinatorial sum also known
as disjoint union is to capture the idea of a union of disjoint sets, but without any ex-
traneous condition (disjointness) being imposed on the arguments of the construction.
To do so, we formalize the (combinatorial) sum of two classes B and C as the union
(in the standard set-theoretic sense) of two disjoint copies, say I3 DandC <>, of B and
C. A picturesque way to view the construction is as follows: first choose two distinct
colours and repaint the elements of 3 with the first colour and the elements of C with
the second colour. This is made precise by introducing two distinct “markers”, say O
and <, each a neutral object (i.e., of size zero); the disjoint union B+ C of B, C is then
defined as a standard set-theoretic union:

B+C:= ({0} xB) U ({C} x0).

The size of an object in a disjoint union A = B + C is by definition inherited from its
size in its class of origin, as in Equation (16). One good reason behind the definition
adopted here is that the combinatorial sum of two classes is always well defined, no
matter whether or not the classes intersect. Furthermore, disjoint union is equivalent
to a standard union whenever it is applied to disjoint sets.

Because of disjointness of the copies, one has the implication

A=B+C = A,=B,+C, and A(z) = B(z) +C(2),

so that disjoint union is admissible. Note that, in contrast, standard set-theoretic union
is not an admissible construction since

card(B, U C,) = card(B,) + card(C,) — card(B3, N C,),

and information on the internal structure of 5 and C (i.e., the nature of their intersec-
tion) is needed in order to be able to enumerate the elements of their union.

Cartesian product. This construction A = B x C forms all possible ordered pairs
in accordance with Definition 1.6. The size of a pair is obtained additively from the
size of components in accordance with (12).

Next, we introduce a few fundamental constructions that build upon set-theoretic
union and product, and form sequences, sets, and cycles. These powerful construc-
tions suffice to define a broad variety of combinatorial structures.

Sequence construction. If B is a class then the sequence class SEQ(B) is defined
as the infinite sum

SEQB) ={e} + B+ (B xB)+(BxBxB)+---
with € being a neutral structure (of size 0). In other words, we have

A={(Br.....B) | €=0, p; e B},

which matches our intuition as to what sequences should be. (The neutral structure in
this context corresponds to £ = 0; it plays a role similar to that of the “empty” word in
formal language theory.) It is then readily checked that the construction A = SEQ(13)
defines a proper class satisfying the finiteness condition for sizes if and only if B
contains no object of size 0. From the definition of size for sums and products, it
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follows that the size of an object « € A is to be taken as the sum of the sizes of its
components:

a=(p1, ..., B0 = lal =Bl + -+ 1Bel.
Cycle construction. Sequences taken up to a circular shift of their components
define cycles, the notation being Cyc(B). In precise terms, one has®
Cyc(B) := (SEQ(B) \ {€}) /S,
where S is the equivalence relation between sequences defined by

(,Blv 9/3r)s(ﬁivs,3;)
iff there exists some circular shift T of [1..r] such that for all j, ﬂ} = fB¢(j); in other
words, for some d, one has ,3} = B14(j—1+d) mod r- Here is, for instance, a depiction
of the cycles formed from the 8 and 16 sequences of lengths 3 and 4 over two types of
objects (a, b): the number of cycles is 4 (for n = 3) and 6 (for n = 4). Sequences are
grouped into equivalence classes according to the relation S:
aaaa

aaa aaab aaba abaa baaa
20 3 les - aab aba baa 4 les - aabb abba bbaa baab
20) —cycles 1 Y abb bba bab —cycles : abab baba

bbb abbb bb%clz7 [%wb babb

According to the definition, this construction corresponds to the formation of directed
cycles (see also the necklaces of Note 1.1, p. 18). We make only a limited use of it
for unlabelled objects; however, its counterpart plays a rather important role in the
context of labelled structures and exponential generating functions of Chapter II.

Multiset construction. Following common mathematical terminology, multisets
are like finite sets (that is the order between elements does not count), but arbitrary
repetitions of elements are allowed. The notation is A = MSET(3) when A is ob-
tained by forming all finite multisets of elements from B. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being defined by («q, ..., o) R(By, ..., B;) iff
there exists some arbitrary permutation o of [1..r] such that for all j, 8; = oy (j).

Powerset construction. The powerset class (or set class) A = PSET(B) is de-
fined as the class consisting of all finite subsets of class 3, or equivalently, as the class
PSET(B) € MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function is defined when such
constructions are performed: as for products and sequences, the size of a composite
object—set, multiset, or cycle—is defined to be the sum of the sizes of its components.

B> L.4. The semi-ring of combinatorial classes. Under the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebraic properties: combinatorial sums and
cartesian products become commutative and associative operations, e.g.,

A+B)+C=A+ (B+0), Ax(BxC)=AxB)xC,
while distributivity holds, (A + B) x C = (A x C) + (B x C). <

3By convention, there are no “empty” cycles.
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> LS. Natural numbers. Let Z := {e} with e an atom (of size 1). Then Z = SEQ(Z) \
{e} is a way of describing positive integers in unary notation: Z = {e, ee, eee,...}. The

corresponding OGFis I(z) = z/(1 —2) =z + 22+ 25 + - -. b
> L6. Interval coverings. Let Z := {e} be as before. Then A = Z + (£ x Z) is a set of two
elements, o and (e, ®), which we choose to draw as {e, e—e}. Then C = SEQ(A) contains
9, 00 0-0 00-0, 0-00, 0-00-0 0000, ...
With the notion of size adopted, the objects of size n in C = SEQ(Z+ (Z x Z)) are (isomorphic
to) the coverings of [0, n] by intervals (matches) of length either 1 or 2. The OGF
C@=1+z+22 432 +52 4825+ 132042127 +348 4557 ...,
is, as we shall see shortly (p. 42), the OGF of Fibonacci numbers. <

I.2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for the constructions that we have
introduced. The final implication is that any specification of a constructible class
translates directly into generating function equations. The translation of the cycle
construction involves the Euler totient function ¢ (k) defined as the number of integers
in [1, k] that are relatively prime to k (Appendix A.1: Arithmetical functions, p. 7121).

Theorem 1.1 (Basic admissibility, unlabelled universe). The constructions of union,
cartesian product, sequence, powerset, multiset, and cycle are all admissible. The
associated operators are as follows.

Sum: A=B+C = A(@@)=B(@)+C@®)

Cartesian product: A =B x C — A(z) = B(z)-C(2)

Sequence: A = SEQ(B) = A() = T
l_[(l + 2B
Powerset: A=PSET(B) = A(x)={ "=!
X 1)kl
exp (Z %B(Zk))
k=1
[Ta—-z"
Multiset: A=MSET(B) = A(z) = nxl
exp (Z %B(Z")>
k=1
Cycle; A= CYC(B) — A(Z) — Z (Pik) IOg — ;(Zk).
k=1 ’

For the sequence, powerset, multiset, and cycle translations, it is assumed that By = 0.
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The class £ = {€} consisting of the neutral object only, and the class Z consisting of
a single “atomic” object (node, letter) of size 1 have OGFs

E(z) =1 and Z() =z.

Proof. The proof proceeds case by case, building upon what we have just seen regard-
ing unions and products.

Combinatorial sum (disjoint union). Let A = B+C. Since the union is disjoint,
and the size of an A—element coincides with its size in B or C, one has A, = B, + C,,
and A(z) = B(z) + C(z), as discussed earlier. The rule also follows directly from the
combinatorial form of generating functions as expressed by (8), p. 19:

A=) ="+ M = B) + C(2).

acA aeB aeC
Cartesian product. The admissibility result for A = B x C was considered as
an example for Definition 1.6, the convolution equation (13) leading to the relation
A(z) = B(z) - C(z). We can also offer a direct derivation based on the combinatorial
form of generating functions (8), p. 19,

A(z) = Z Zlel = Z By — Zzlﬁl x ZZI)/I = B(z) - C(2),

acA (B,y)e(BxC) BeB yeC
as follows from distributing products over sums. This derivation readily extends to an
arbitrary number of factors.
Sequence construction. Admissibility for A = SEQ(B) (with By = ¢J) follows
from the union and product relations. One has
A={e}+B+BxB)+BxBxB)+---,
so that

= 2 3 e = —
AG) = 14 B + B + B+ = g

where the geometric sum converges in the sense of formal power series since [z°1B(2) =
0, by assumption.

Powerset construction. Let A = PSET([3) and first take B to be finite. Then, the
class A of all the finite subsets of B is isomorphic to a product,

1) PSET(B) = [ | e} + (BD).
BeB
with € a neutral structure of size 0. Indeed, distributing the products in all possible
ways forms all the possible combinations (sets with no repetition allowed) of elements
of B; the reasoning is the same as what leads to an identity such as
I4+a)1+b)A4+c)=14+[a+b+c]l+[ab+ bc+ ac] + abc,

where all combinations of variables appear in monomials. Then, directly from the
combinatorial form of generating functions and the sum and product rules, we find

(22) A() = H(1+Z|ﬁ|) =1—[(1 + 2B,
BeB n
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The exp—log transformation A(z) = exp(log A(z)) then yields

Az) = exp(ZBnlog(l—i—z”))

n=1

0 o an
exp (ZB,, : D—l)"_lf)
n=1 k=1

B(z) B BG)
S\ T )

(23)

where the second line results from expanding the logarithm,

ur

u
log(1 -y
og(l +u) 1 2—1-3

and the third line results from exchanging the order of summations.

The proof finally extends to the case of B being infinite by noting that each A,
depends only on those B; for which j < n, to which the relations given above for the
finite case apply. Precisely, let B = 37" | B; and AS™ = PSET(B(=™). Then,
with O (z™+1) denoting any series that has no term of degree < m, one has

AR) = A (@) +0@E™)  and  B(z) = BE™M(2) + 0" ).

On the other hand, A" (z) and B="(z) are connected by the fundamental expo-
nential relation (23) , since BEM s finite. Letting m tend to infinity, there follows in
the limit

B(z) B B
A(Z)=exp( iz)_ (22) (32)_”.>'

(See Appendix A.5: Formal power series, p. 730 for the notion of formal conver-
gence.)

Multiset construction. First for finite B (with By = ), the multiset class A =
MSET(B) is definable by

24) MSET(B) = [ [ SEQ({B)).
BeB

In words, any multiset can be sorted, in which case it can be viewed as formed of a
sequence of repeated elements S, followed by a sequence of repeated elements S,
where B, B2, ... is a canonical listing of the elements of B. The relation translates
into generating functions by the product and sequence rules,

AR = [la-=" =TJa-z"™
BeB n=1

(25) = exp(Z B, log(1 — z")_1>

n=1

B B(z%) B(®
= exp( (Z)+ (Z)—i- (Z)+--->,

1 2 3
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where the exponential form results from the exp—log transformation. The case of an

infinite class B follows by a limit argument analogous the one used for powersets.
Cycle construction. The translation of the cycle relation 4 = Cyc(B) turns out

to be

1

1 — B(zk)’

ok
A(z) = Z @E{ ) log
k=1

where ¢(k) is the Euler totient function. The first terms, with Li(z) := log(l —
B(z")~" are

1 1 2 2 4 2
A(Z) = TL](Z) + ELQ(Z) + §L3(Z) + ZL4(Z) + gLS(Z) + 6L6(Z) + -

We reserve the proof to Appendix A.4: Cycle construction, p. 729, since it relies in
part on multivariate generating functions to be officially introduced in Chapter I1I. W

The results for sets, multisets, and cycles are particular cases of the well-known
Polya theory that deals more generally with the enumeration of objects under group
symmetry actions; for Pélya’s original and its edited version, see [488, 491]. This
theory is described in many textbooks, for instance, those of Comtet [129] and Harary
and Palmer [129, 319]; Notes [.58-1.60, pp. 85-86, distil its most basic aspects. The
approach adopted here amounts to considering simultaneously all possible values of
the number of components by means of bivariate generating functions. Powerful gen-
eralizations within Joyal’s elegant theory of species [359] are presented in the book
by Bergeron, Labelle, and Leroux [50].
> L7. Vallée’s identity. Let M = MSET(C), P = PSET(C). One has combinatorially:

M) = PQM(Z).

(Hint: a multiset contains elements of either odd or even multiplicity.) Accordingly, one can
deduce the translation of powersets from the formula for multisets. Iterating the relation above
yields M(z) = P(z)P(zz)P(z4)P(18) -+ -1 this is closely related to the binary representation
of numbers and to Euler’s identity (p. 49). It is used for instance in Note 1.66 p. 91. <

Restricted constructions. In order to increase the descriptive power of the frame-
work of constructions, we ought to be able to allow restrictions on the number of
components in sequences, sets, multisets, and cycles. Let K be a metasymbol rep-
resenting any of SEQ, CYC, MSET, PSET and let 2 be a predicate over the integers;
then R (A) will represent the class of objects constructed by K, with a number of
components constrained to satisfy 2. For instance, the notation

(26) SEQ—y (or simply SEQt), SEQsk, SEQi. &
refers to sequences whose number of components are exactly &, larger than k, or in
the interval 1. . k respectively. In particular,
k times
k j ~ k
SEQx(B) ;=B x --- x B = B, SEQ=(B) = Y B/ = B' x SEQ(B).

izk
MSET;(B) := SEQi(B)/R.

Similarly, SEQodq, SEQeven Will denote sequences with an odd or even number of com-
ponents, and so on.
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Translations for such restricted constructions are available, as shown generally
in Subsection 1. 6.1, p. 83. Suffice it to note for the moment that the construction
A = SEQi(B) is really an abbreviation for a k-fold product, hence it admits the
translation into OGFs

(27) A = SEQ,(B) — A(z) = B(2)*.

I.2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (specifications) of a broad variety of
combinatorial classes. Since we restrict attention to admissible constructions, we can
immediately derive OGFs for these classes. Put differently, the task of enumerating a
combinatorial class is reduced to programming a specification for it in the language of
admissible constructions. In this subsection, we first discuss the expressive power of
the language of constructions, then summarize the symbolic method (for unlabelled
classes and OGFs) by Theorem 1.2.

First, in the framework just introduced, the class of all binary words is described

by
W = SEQ(A), where A={a,b}=Z+ Z,

the ground alphabet, comprises two elements (letters) of size 1. The size of a binary
word then coincides with its length (the number of letters it contains). In other terms,
we start from basic atomic elements and build up words by forming freely all the ob-
jects determined by the sequence construction. Such a combinatorial description of a
class that only involves a composition of basic constructions applied to initial classes
&, Z is said to be an iterative (or non-recursive) specification. Other examples al-
ready encountered include binary necklaces (Note I.1, p. 18) and the positive integers
(Note L.5, p. 27) respectively defined by

N =CYc(Z+ 2) and 7 = SEQ>((2).
From this, one can construct ever more complicated objects. For instance,
P = MSET(Z) = MSET(SEQ>(Z))

means the class of multisets of positive integers, which is isomorphic to the class of
integer partitions (see Section I. 3 below for a detailed discussion). As such examples
demonstrate, a specification that is iterative can be represented as a single term built on
&, Z and the constructions +, x, SEQ, CYC, MSET, PSET. An iterative specification
can be equivalently listed by naming some of the subterms (for instance, partitions in
terms of natural integers 7, themselves defined as sequences of atoms 2).

Semantics of recursion. We next turn our attention to recursive specifications,
starting with trees (cf also Appendix A.9: Tree concepts, p. 737, for basic definitions).
In graph theory, a tree is classically defined as an undirected graph that is connected
and acyclic. Additionally, a tree is rooted if a particular vertex is specified (this vertex
is then kown as the root). Computer scientists commonly make use of trees called
plane® that are rooted but also embedded in the plane, so that the ordering of subtrees

4The alternative terminology “planar tree” is also often used, but it is frowned upon by some as
incorrect (all trees are planar graphs). We have thus opted for the expression “plane tree”, which parallels
the phrase “plane curve”.
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attached to any node matters. Here, we will give the name of general plane trees to
such rooted plane trees and call G their class, where size is the number of vertices;
see, e.g., reference [538]. (The term “general” refers to the fact that all nodes degrees
are allowed.) For instance, a general tree of size 16, drawn with the root on top, is:

As a consequence of the definition, if one interchanges, say, the second and third root
subtrees, then a different tree results—the original tree and its variant are not equiva-
lent under a smooth deformation of the plane. (General trees are thus comparable to
graphical renderings of genealogies where children are ordered by age.). Although we
have introduced plane trees as two-dimensional diagrams, it is obvious that any tree
also admits a linear representation: a tree T with root ¢ and root subtrees 71, ..., 7,
(in that order) can be seen as the object ¢ [ 71, ..., T, | where the box encloses similar
representations of subtrees. Typographically, a box [ - | may be reduced to a matching
pair of parentheses, “(-)”, and one gets in this way a linear description that illustrates
the correspondence between trees viewed as plane diagrams and functional terms of
mathematical logic and computer science.

Trees are best described recursively. A plane tree is a root to which is attached
a (possibly empty) sequence of trees. In other words, the class G of general trees is
definable by the recursive equation

(28) G = Z x SEQ(9),

where Z comprises a single atom written “e” that represents a generic node.
Although such recursive definitions are familiar to computer scientists, the speci-
fication (28) may look dangerously circular to some. One way of making good sense
of it is via an adaptation of the numerical technique of iteration. Start with GI% = ¢,
the empty set, and define successively the classes
g[j+]] — Zx SEQ(g[j]).

For instance, Gl = Z x SEQ(#) = {(e, €)} = {o} describes the tree of size 1, and

gl = {o, ofe], ofee] oo e o], }
gl — {o, QE], .E], OE], e,

o[e]|. fo[ee]. o[oe]e .@@}

First, each Gl/1 is well defined since it corresponds to a purely iterative specification.
Next, we have the inclusion GU/1 ¢ Gl/+1I (a simple interpretation of Gl/! is the class
of all trees of height < j). We can therefore regard the complete class G as defined by
the limit of the GU1; that is, G := U; glil,

o , ® , ® , o

D> L.8. Lim-sup of classes. Let (AL} be any increasing sequence of combinatorial classes, in
the sense that A1 ¢ AL/ and the notions of size are compatible. If Alool — U ; Alilig a
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[%l(z) = lim j—o0 AL/l () in the formal topology (Appendix A.5: Formal
power series, p. 7130). <

Definition 1.7. A specification for an r—tuple A= (AD . AD)Y of classes is a
collection of r equations,

AD = @ADL AD)
) _ 1 r

09) A@ = Dy(AD, . AN

AD = @, (AD, . AD)

where each ®; denotes a term built from the A using the constructions of disjoint
union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial
classes &€ (neutral) and Z (atomic).

We also say that the system is a specification of A, A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A®) is defined solely in terms of initial classes Z, &; the definition of AC=D
only involves A" and so on; in that case, by back substitutions, it is apparent that for
an iterative specification, AV can be equivalently described by a single term involv-
ing only the initial classes and the basic constructors. Otherwise, the system is said to
be recursive. In the latter case, the semantics of recursion is identicall to the one intro-
duced in the case of trees: start with the “empty” vector of classes, Al . — @, ...,0),
iterate AU 11 = ®[ A1), and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a
specification of the form (29), we can associate its dependency (di)graph T to it as
follows. The set of vertices of I" is the set of indices {1, ..., r}; for each equation
AD = E,(AD, ..., AD) and for each j such that AY) appears explicitly on the
right-hand side of the equation, place a directed edge (i — j) in I'. It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will
serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p- 482, which enjoy strong asymptotic properties.)

Definition 1.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each
constructible class has by virtue of Theorem I.1 an ordinary generating function for
which functional equations can be produced systematically. (In fact, it is even possible
to use computer algebra systems in order to compute it automatically! See the article
by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem 1.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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are built from
Iz, +.x., Q. Exp, Exp, Log,

where
1 — ¢ (k) 1
Q[f] - T LOg[f] = Z log ,
- ok TI—fEh
o0 k %) k
Exp[f] = exp Zf(]f) , Exp[f] = exp Z(—l)k_l—f(]f)
k=1 k=1

Pélya operators. The operator Q translating sequences (SEQ) is classically known
as the quasi-inverse. The operator Exp (multisets, MSET) is called the Pdlya exponen-
tial® and Exp (powersets, PSET) is the modified Pélya exponential. The operator Log
is the Polya logarithm. They are named after P6lya who first developed the general
enumerative theory of objects under permutation groups (pp. 85-86).

The statement of Theorem 1.2 signifies that iterative classes have explicit gen-
erating functions involving compositions of the basic operators only, while recursive
structures have OGFs that are accessible indirectly via systems of functional equa-
tions. As we shall see at various places in this chapter, the following classes are con-
structible: binary words, binary trees, general trees, integer partitions, integer com-
positions, non-plane trees, polynomials over finite fields, necklaces, and wheels. We
conclude this section with a few simple illustrations of the symbolic method expressed
by Theorem 1.2.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + 2) = W(z) = ;
1-2z
whence the expected result, W, = 2". (Note: in our framework, if a, b are letters,
then Z + Z = {a, b}.)
General trees. The recursive specification of general trees leads to an implicit
definition of their OGF,

G=ZxSEQG) = G@= 1—;%

From this point on, basic algebra®does the rest. First the original equation is equivalent
(in the ring of formal power series) to G — G? — z = 0. Next, the quadratic equation

STt is a notable fact that, although the Pdlya operators look algebraically “difficult” to compute with,
their treatment by complex asymptotic methods, as regards coefficient asymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV-VII (e.g., pp. 252, 475).

6Methodological note: for simplicity, our computation is developed using the usual language of math-
ematics. However, analysis is not needed in this derivation, and operations such as solving quadratic equa-
tions and expanding fractional powers can all be cast within the purely algebraic framework of formal power
series (p. 730).
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is solvable by radicals, and one finds

G = 3(1-V1-4)
= 14+224+227 +54 + 1427 +4225 413227 +42928 + -
1(2n—2)n
= Z— Z .
n\n-—1
n>1

(The conjugate root is to be discarded since it involves a term z~! as well as negative

coefficients.) The expansion then results from Newton’s binomial expansion,

—1
(1+x)a=1+gx+Mx2+...’
1 2!
applied with o = % and x = —4z.
The numbers
1 2n (2n)! . 1—-+1-4z
30 C,=—— = thOGF C(z) = ———
S n+1(n> n+ Dt @ 2z

are known as the Catalan numbers (EIS A000108) in the honour of Eugene Catalan,
the mathematician who first studied their properties in geat depth (pp. 6 and 20). In
summary, general trees are enumerated by Catalan numbers:

1/2n—-2
Gp=Ch1=- .
n\n—1

For this reason the term Catalan tree is often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n + 2 points arranged in anticlockwise order on a circle and
conventionally numbered from O to n + 1 (for instance the (n + 2)th roots of unity).
A triangulation is defined as a (maximal) decomposition of the convex (n + 2)-gon
defined by the points into n triangles (Figure 1.1, p. 17). Triangulations are taken here
as abstract topological configurations defined up to continuous deformations of the
plane. The size of the triangulation is the number of triangles; that is, n. Given a
triangulation, we define its “root” as a triangle chosen in some conventional and un-
ambiguous manner (e.g., at the start, the triangle that contains the two smallest labels).
Then, a triangulation decomposes into its root triangle and two subtriangulations (that
may well be “empty”) appearing on the left and right sides of the root triangle; the
decomposition is illustrated by the following diagram:

Q

The class 7 of all triangulations can be specified recursively as
T = e} + (T xVxT),
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provided that we agree to consider a 2-gon (a segment) as giving rise to an “empty”
triangulation of size 0. (The subtriangulations are topologically and combinatorially
equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently,
the OGF T (z) satisfies the equation

1
G T@=1+:T@%  sothat T()=3 (1-vT=%).
Z
As aresult of (30) and (31), triangulations are enumerated by Catalan numbers:

1 2n
Tn:CnEn—i—l nj)

This particular result goes back to Euler and Segner, a century before Catalan; see
Figure I.1 on p. 17 for first values and p. 73 below for related bijections.

> 1.9. A bijection. Since both general trees and triangulations are enumerated by Catalan
numbers, there must exist a size-preserving bijection between the two classes. Find one such
bijection. [Hint: the construction of triangulations is evocative of binary trees, while binary
trees are themselves in bijective correspondence with general trees (p. 73).] <

B> L.10. A variant specification of triangulations. Consider the class U of “non-empty” triangu-
lations of the n-gon, that is, we exclude the 2-gon and the corresponding “empty” triangulation
of size 0. Then U/ = 7T \ {€} admits the specification

U=V+(VxU)+UXxV)+ U XV xU)

which also leads to the Catalan numbers via U = z(1 + U)z, so that U(z) = (1 — 2z —

V1 —-42)/22) =T(z) — 1.

I.2.4. Exploiting generating functions and counting sequences. In this book
we are going to see altogether more than a hundred applications of the symbolic
method. Before engaging in technical developments, it is worth inserting a few com-
ments on the way generating functions and counting sequences can be put to good use
in order to solve combinatorial problems.

Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that explicit formulae result for their
coefficients. A prime example is the counting of general trees and of triangulations
above, where the quadratic equation satisfied by an OGF is amenable to an explicit
solution—the resulting OGF could then be expanded by means of Newton’s binomial
theorem. Similarly, we derive later in this chapter an explicit form for the number
of integer compositions by means of the symbolic method (the answer turns out to
be simply 2"~!) and obtain in this way, through OGFs, many related enumeration
results. In this book, we assume as known the elementary techniques from basic
calculus by which the Taylor expansion of an explicitly given function can be obtained.
(Elementary references on such aspects are Wilf’s Generatingfunctionology [608],
Graham, Knuth, and Patashnik’s Concrete Mathematics [307], and our book [538].)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense explicit, but their form is such that
their coefficients are not clearly reducible to a closed form. It is then still possible to
obtain initial values of the corresponding counting sequence by means of a symbolic
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manipulation system. Furthermore, from generating functions, it is possible systemat-
ically to derive recurrences that lead to a procedure for computing an arbitrary number
of terms of the counting sequence in a reasonably efficient manner. A typical example
of this situation is the OGF of integer partitions,

1

oo
H 1 —m’
m=1 <

for which recurrences obtained from the OGF and associated to fast algorithms are
given in Note .13 (p. 42) and Note 1.19 (p. 49). An even more spectacular example
is the OGF of non-plane trees, which is proved below (p. 71) to satisfy the infinite
functional equation

H(z) = zexp <H(z)+ %H(zz)—i- %H(z3)+--->,

and for which coefficients are computable in low complexity: see Note 1.43, p. 72.
(The references [255, 264, 456] develop a systematic approach to such problems.)
The corresponding asymptotic analysis constitutes the main theme of Section VIL. 5,
p- 475.

Asymptotic formulae. Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. From a quick glance at the
table of initial values of W,, (words), P, (permutations), 7, (triangulations), as given
in (2), p. 18, it is apparent that W,, grows more slowly than 7},, which itself grows more
slowly than P,. The classification of growth rates of counting sequences belongs prop-
erly to the asymptotic theory of combinatorial structures which neatly relates to the
symbolic method via complex analysis. A thorough treatment of this part of the the-
ory is presented in Chapters IV-VIII. Given the methods expounded there, it becomes
possible to estimate asymptotically the coefficients of virtually any generating func-
tion, however complicated, that is provided by the symbolic method; that is, implicit
enumerations in the sense above are well covered by complex asymptotic methods.

Here, we content ourselves with a few remarks based on elementary real analysis.
(The basic notations are described in Appendix A.2: Asymptotic notation, p. 722.)
The sequence W,, = 2" grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequence P, = n! must grow
faster. But how fast? The answer is provided by Stirling’s formula, an important
approximation originally due to James Stirling (Invitation, p. 4):

n 1
(32) n! = (f) V2rn (1 +0 (—)) (n = +00).
e n
(Several proofs are given in this book, based on the method of Laplace, p. 760, Mellin

transforms, p. 766, singularity analysis, p. 407, and the saddle-point method, p 555.)
The ratios of the exact values to Stirling’s approximations

n 1 2 5 10 100 1000

T
" 1.084437 1.042207 1.016783 1.008365 1.000833 1.000083
ne "\/2mn
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Figure 1.5. The growth
regimes of three sequences
f(n) = 2" T,,n! (from
bottom to top) rendered by a
plot of logq f(n) versus n.

show an excellent quality of the asymptotic estimate: the error is only 8% forn = 1,
less than 1% for n = 10, and less than 1 per thousand for any n greater than 100.

Stirling’s formula provides in turn the asymptotic form of the Catalan numbers,
by means of a simple calculation:

1 @2n)!  1@2n)%¥"e 2 /4xn
n+1mNH2 n n2ne227p

C, =

which simplifies to
qn

mn

(33) Cp ~

3

Thus, the growth of Catalan numbers is roughly comparable to an exponential, 4",
modulated by a subexponential factor, here 1/v/7n3. A surprising consequence of
this asymptotic estimate in the area of boolean function complexity appears in Exam-
ple 1.17 below (p. 77).

Altogether, the asymptotic number of general trees and triangulations is well sum-
marized by a simple formula. Approximations become more and more accurate as n
becomes large. Figure 1.5 illustrates the different growth regimes of our three ref-
erence sequences while Figure 1.6 exemplifies the quality of the approximation with
subtler phenomena also apparent on the figures and well explained by asymptotic the-
ory. Such asymptotic formulae then make comparison between the growth rates of
sequences easy.

The interplay between combinatorial structure and asymptotic structure is indeed
the principal theme of this book. We shall see in Part B that the generating func-
tions provided by the symbolic method typically admit similarly simple asymptotic
coefficient estimates.

B> L.11. The complexity of coding. A company specializing in computer-aided design has sold
to you a scheme that (they claim) can encode any triangulation of size n > 100 using at most
1.5n bits of storage. After reading these pages, what do you do? [Hint: sue them!] See also
Note 1.24 (p. 53) for related coding arguments. <
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n Cn cx CY/Cy
1 2.25 2.25675 8334191025 1477923178
10 16796 18707.89 1.11383 05127 5244589437 89064
100 0.89651 - 1057 0.90661 - 1057 1.01126 32841 24540 52257 13957
1000 0.20461 - 10798 0.20484 - 10798 1.00112 51328 15424 16470 12827

10000 0.22453 - 109015 0.22456 . 106015 1.00011 25013 2812792913 51406
100000 0.17805 - 1090199 0.17805 - 1090199 1,00001 12500 1328125292 96322
1000000  0.55303 - 10902051 (55303 - 10992051 1 00000 11250 00132 8125029296

Figure 1.6. The Catalan numbers Cj,, their Stirling approximation C;; = 4" /v/ n3,
and the ratio C;;/Cy,.

> 1.12. Experimental asymptotics. From the data of Figure 1.6, guess the values’ of C f07 /Cio7
and of C;_loG/CS_loﬁ to 25D. (See, Figure VL3, p. 384, as well as, e.g., [385] for related
asymptotic expansions and [80] for similar properties.) <

I. 3. Integer compositions and partitions

This section and the next few provide examples of counting via specifications in
classical areas of combinatorial theory. They illustrate the benefits of the symbolic
method: generating functions are obtained with hardly any computation, and at the
same time, many counting refinements follow from a basic combinatorial construc-
tion. The most direct applications described here relate to the additive decomposition
of integers into summands with the classical combinatorial-arithmetic structures of
partitions and compositions. The specifications are iterative and simply combine two
levels of constructions of type SEQ, MSET, CyC, PSET.

I.3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.
Definition 1.9. A composition of an integer n is a sequence (x1, x2, . . ., xx) of integers
(for some k) such that

n=xy+x+-+x, xj =1
A partition of an integer n is a sequence (x1, X2, ..., X) of integers (for some k) such
that
n=x1+x2+- --+x and X] > xp > > x> 1.

In both cases, the x; are called the summands or the parts and the quantity n is called
the size.

By representing summands in unary using small discs (“‘e”), we can render graph-
ically a composition by drawing bars between some of the balls; if we arrange sum-
mands vertically, compositions appear as ragged landscapes. In contrast, partitions
appear as staircases, also known as Ferrers diagrams [129, p. 100]; see Figure 1.7. We

7In this book, we abbreviate a phrase such as “25 decimal places” by “25D”.



“book” — 2008/10/3 — 16:05 — page 40 — #54

40 1. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

Figure 1.7. Graphical representations of compositions and partitions: (left) the com-
position 1 +3 +1+4 42+ 3 = 14 with its “ragged landscape” and “balls-and-bars”
models; (right) the partition 8 + 8 + 6 +5+4+4+4+2+ 1+ 1 = 43 with its
staircase (Ferrers diagram) model.

let C and P denote the class of all compositions and all partitions, respectively. Since
a set can always be presented in sorted order, the difference between compositions and
partitions lies in the fact that the order of summands does or does not matter. This is
reflected by the use of a sequence construction (for C) against a multiset construction
(for P). From this perspective, it proves convenient to regard 0 as obtained by the
empty sequence of summands (k = 0), and we shall do so from now on.

Integers, as a combinatorial class. Let Z = {1, 2, ...} denote the combinatorial
class of all integers at least 1 (the summands), and let the size of each integer be its
value. Then, the OGF of 7 is

z
(34) o)=Y "=

1_ b
n>1 <

since I, = 1 for n > 1, corresponding to the fact that there is exactly one object in 7
for each size n > 1. If integers are represented in unary, say by small balls, one has

(35) ZT={1,2,3 ...]={e, 00, 000, ...} =SEQs{e},
which constitutes a direct way to visualize the equality 7 (z) = z/(1 — 2).

Compositions. First, the specification of compositions as sequences admits, by
Theorem 1.1, a direct translation into OGF:

(36) Q@) ©=1"76
The collection of equations (34), (36) thus fully determines C(z):
1 11—z
C(Z) = =
1— 1ZTz 1—-2z

= 1424224423 +822+162° +3220+-- ..

From here, the counting problem for compositions is solved by a straightforward ex-
pansion of the OGF: one has

Cy= Y 2" | - D 2mmt ],

n>0 n>0
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0 1 1

10 1024 42

20 1048576 627

30 1073741824 5604

40 10995116277 37338

50 1125899906842624 204226

60 115292150460684697 966

70 118059162071741130. 4087968

80 1208925819614629174706176 15796476

90 1237940039285380274899124224 56634173
100 1267650600228229401496703205376 190569292
110 1298074214633706907132624082305024 607163746
120 1329227995784915872903807060280344576 1844349560
130 1361129467683753853853498429727072845824 5371315400
140 1393796574908163946345982392040522594123776 15065878135
150 1427247692705959881058285969449495136382746624 40853235313
160 1461501637330902918203684832716283019655932542976 107438159466
170 1496577676626844588240573268701473812127674924007424 274768617130
180 1532495540865888858358347027150309183618739122183602176 684957390936
190 1569275433846670190958947355801916604025588861116008628224 1667727404093
200 1606938044258990275541962092341162602522202993782792835301376 3972999029388
210 1645504557321206042154969182557350504982735865633579863348609024 9275102575355
220 168499666669691498716668844293872691710232152640878578006 1248279009367
230 172543658669764094685868896556925636311277724304259663879063 498 826239745920
240  1766847064778384329583297500742918515827483896875618958121606201292619776 105882246722733
250 1809251394333065553493296640760748560207343510400633813116524750123642650624  230793554364681

Figure I.8. Forn = 0, 10, 20, ..., 250 (left), the number of compositions C,, (mid-
dle) and the number of partitions P, (right). The figure illustrates the difference in

growth between Cp, = 2= and P, = OWn),

implying Co = 1 and C, = 2" —2"~! forn > 1; that is,
(37 Cp=2""" n>1.
This agrees with basic combinatorics since a composition of n can be viewed as the
placement of separation bars at a subset of the n — 1 existing places in between n
aligned balls (the “balls-and-bars” model of Figure 1.7), of which there are clearly
2"~ possibilities.

Partitions. For partitions specified as multisets, the general translation mechan-
ism of Theorem I.1, p. 27, provides

(38) P =MSETNI) — P(Z)zexp(l(z)+%I(Z2)+%I(z3)+~--),

together with the product form corresponding to (25), p. 29,
o
1

) Ser

m=1
=(l4+z4+22+)(1+2+ 4+ )1+ +0+-)
1+z24222 4322+ 524 +72% + 1120 + 1527 + 2228 + - -

P(2)

(39)

(the counting sequence is EIS A000041). Contrary to compositions that are counted
by the explicit formula 2"~!, no simple form exists for P,. Asymptotic analysis of
the OGF (38) based on the saddle-point method (Chapter VIII, p. 574) shows that
P, = 4" In fact an extremely famous theorem of Hardy and Ramanujan later
improved by Rademacher (see Andrews’ book [14] and Chapter VIII) provides a full
expansion of which the asymptotically dominant term is

2n

1
40 ~ =
(40) P, 2 exp | 3

nv3
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There are consequently appreciably fewer partitions than compositions (Figure 1.8).
B> I.13. A recurrence for the partition numbers. Logarithmic differentiation gives
n

Plz) X n"
‘P~ > T—n implying nPy = 2 oDPaj,

n=1 j=1

where o (n) is the sum of the divisors of n (e.g., 0(6) = 1 +2+ 3 + 6 = 12). Conse-

quently, Py, ..., Py can be computed in O(N 2 integer-arithmetic operations. (The technique
is generally applicable to powersets and multisets; see Note 1.43 (p. 72) for another application.

Note I.19 (p. 49) further lowers the bound to O (N V/N), in the case of partitions.) <

By varying (36) and (38), we can use the symbolic method to derive a number of
counting results in a straightforward manner. First, we state the following proposition.

Proposition I.1. Let 7 C 7 be a subset of the positive integers. The OGFs of the
classes CT := SEQ(SEQ7(2)) and PT .= MSET(SEQ7(2)) of compositions and
partitions having summands restricted to T C Zs1 are given by

1 1 1
@)= = , PT(z) = )

Proof. A direct consequence of the specifications and Theorem I.1, p. 27. |
This proposition permits us to enumerate compositions and partitions with re-
stricted summands, as well as with a fixed number of parts.

Example 1.4. Compositions with restricted summands. In order to enumerate the class C {1.2}

of compositions of n whose parts are only allowed to be taken from the set {1, 2}, simply write
¢ — spozth2y  with 72 = (1,2).

Thus, in terms of generating functions, one has

1
cllyy=— with 71102 (g) =z + 2.
@ = =g @
This formula implies
1
C{l’z}(z)=72 =1+4z+4+22 433 +54 +85 + 138+,

l1—-z—-z

and the number of compositions of » in this class is expressed by a Fibonacci number,

n n
12 L | (1+V5 1—+/5
c,ﬁ J =F,4+1 where F, = ﬁ |:( 5 ) —( 5 s

of daisy-artichoke-rabbit fame In particular, the rate of growth is of the exponential type ¢”",

1 5
where ¢ := is the golden ratio.

Similarly, compositions all of whose summands lie in the set {1, 2, ..., r} have generating
function

1 1 11—z
41 cllrlz) = = = i
1 () l—z—z7z2_...z" I_leizz’ 1 =274 71
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and the corresponding counts are generalized Fibonacci numbers. A double combinatorial sum
expresses these counts

Lo 2(1=2)Y/ AN\(n-rk-1

2) il =1y <7 = =Dt , ‘

- (1-2) - k j—1

J J-k
This result is perhaps not too useful for grasping the rate of growth of the sequence when n gets
large, so that asymptotic analysis is called for. Asymptotically, for any fixed r > 2, there is a
unique root p, of the denominator 1 — 2z + 7" +lin (%, 1), this root dominates all the other
roots and is simple. Methods amply developed in Chapter IV and Example V.4 (p. 308) imply
that, for some constant ¢, > 0,

(43) C,{l1 """ R crpy ™ forfixed r as n — oo.
The quantity p, plays a role similar to that of the golden ratio whenr =2. ............... ]

> 1.14. Compositions into primes. The additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether every even number is the sum
of two primes (Goldbach’s conjecture). However, the number of compositions of » into prime
summands (any number of summands is permitted) is B, = [z"]B(z) where

—1
—1
1- Z z? = (1—22—23—15—27—2”—-~-)
p prime
= 142423+ 43242204627 +628+1022 +16710 4.

(EIS A023360), and complex asymptotic methods make it easy to determine the asymptotic
form B, ~ 0.30365 - 1.47622"; see Example V.2, p. 297.

B(2)

Example 1.5. Partitions with restricted summands (denumerants). Whenever summands are
restricted to a finite set, the special partitions that result are called denumerants. A denumerant
problem popularized by Pdlya [493, §3] consists in finding the number of ways of giving change
of 99 cents using coins that are pennies (1 cent), nickels (5 cents), dimes (10 cents) and quarters
(25 cents). (The order in which the coins are taken does not matter and repetitions are allowed.)
For the case of a finite 7, we predict from Proposition 1.1 that PT(z) is always a rational
function with poles that are at roots of unity; also the PnT satisfy a linear recurrence related to
the structure of 7. The solution to the original coin change problem is found to be

99 ! =213,
(1 -2 =221 — 191 - %)

In the same vein, one proves that

2 2
pli2) _ [ n+3J pl123) _ ’7(n+3) J;

[z

4 12

here [x| = [x + %J denotes the integer closest to the real number x. Such results are typically
obtained by the two-step process: (i) decompose the rational generating function into simple
fractions; (ii) compute the coefficients of each simple fraction and combine them to get the
final result [129, p. 108].

The general argument also gives the generating function of partitions whose summands lie
intheset {1,2,...,r}as

r
1
{1,...r} () —
(44) P MO 1_[1 1—zn
m=
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In other words, we are enumerating partitions according to the value of the largest summand.
One then finds by looking at the poles (Theorem IV.9, p. 256):

1

1. — .
(45) P e it e = e

A similar argument provides the asymptotic form of P,;T when 7 is an arbitrary finite set:

1 r—1

T _1n i —
P, . "D with 7 := 1_[ n, r:=card(7).
ne7l
This last estimate, originally due to Schur, is proved in Proposition IV.2, p. 258. .......... |

We next examine compositions and partitions with a fixed number of summands.

Example 1.6.  Compositions with a fixed number of parts.  Let C®) denote the class of
compositions made of k summands, k a fixed integer > 1. One has

C® = SEQq(I) =T xT x - x I,

where the number of terms in the cartesian product is k. From here, the corresponding generat-
ing function is found to be

. z
P =(1@)"  with I1@)= =
The number of compositions of n having k parts is thus
k
*) _ny_ % n—1
c\W) — S ,
n [z ](I—Z)k (k—l)
a result which constitutes a combinatorial refinement of C,, = o=l (Note that the formula

C,(,k) = (Z:i) also results easily from the balls-and-bars model of compositions (Figure 1.7)).

In such a case, the asymptotic estimate C,(,k) ~ nk=1/(k — 1)! results immediately from the
polynomial form of the binomial coefficient (2':1). .................................... [ |

Example 17.  Partitions with a fixed number of parts.  Let PR be the class of integer
partitions with at most k summands. With our notation for restricted constructions (p. 30), this
class is specified as

PER = MSET4(2).

It would be possible to appeal to the admissibility of such restricted compositions as developed
in Subsection 1. 6.1 below, but the following direct argument suffices in the case at hand. Geo-
metrically, partitions, are represented as collections of points: this is the staircase model of
Figure 1.7, p. 40. A symmetry around the main diagonal (also known in the specialized literature
as conjugation) exchanges number of summands and value of largest summand; one then has
(with earlier notations)

so that, by (44),
k

1
(46) PERN @) = plb-H = TT —
—Z

m=
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As a consequence, the OGF of partitions with exactly k summands, P(k)(z) = pEh (z) —
P(Ek=D (2) evaluates to

K

1= =2 (1 =25
Given the equivalence between number of parts and largest part in partitions, the asymptotic
estimate (45) applies verbatim here. ........... ... |

P®(g) =

> 1.15. Compositions with summands bounded in number and size. The number of composi-
tions of size n with k summands each at most r is expressible as

n I_Zrk
[z]<z1_z> ;

which reduces to a simple binomial convolution (the calculation is similar to (42), p. 43). <

B> 1.16. Fartitions with summands bounded in number and size. The number of partitions of
size n with at most k summands each at most ¢ is

(-1 =2H) (1=
(=20 =) (1=25) - (A= =22)--- (1 =2H)’
(Verifying this by recurrence is easy.) The GF reduces to the binomial coefficient (k?(—l) as
z — 1; it is known as a Gaussian binomial coefficient, denoted (k',,tz)z, or a “g—analogue” of
the binomial coefficient [14, 129]. <

The last example of this section illustrates the close interplay between combi-
natorial decompositions and special function identities, which constitutes a recurrent
theme of classical combinatorial analysis.

("]

Example 1.8. The Durfee square of partitions and stack polyominoes. The diagram of any
partition contains a uniquely determined square (known as the Durfee square) that is maximal,
as exemplified by the following diagram:

Ed

This decomposition is expressed in terms of partition GFs as

P U (th x PEM P{]""’h}),
h>0
It gives automatically, via (44) and (46), a non-trivial identity, which is nothing but a formal
rewriting of the geometric decomposition:

o0 1 z
[Mi=—-=2 2
R ()
(h is the size of the Durfee square, known to manic bibliometricians as the “H-index”).
Stack polyominoes. Here is a similar case illustrating the direct correspondence between
geometric diagrams and generating functions, as afforded by the symbolic method. A stack
polyomino is the diagram of a composition such that for some j, £, one has 1 < x| < xp <

h2
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CSXj 2 X > > x> 1 (see [552, §2.5] for further properties). The diagram
representation of stack polyominoes

RN P{l,...,kfl} x 2k« pll....k}

translates immediately into the OGF

S(Z):Z <

k>1 1=zt ((1 -1 =21 -— Zk—l))z’

k 1

once use is made of the partition GFs pilk} (z) of (44). This last relation provides a bona fide
algorithm for computing the initial values of the number of stack polyominoes (EIS A001523):

S@) =z+4272 4423 +824 +1529+2704+477 +798 +.. .

The book of van Rensburg [592] describes many such constructions and their relation to models
of statistical physics, especially polyominoes. For instance, related “g—Bessel” functions appear
in the enumeration of parallelogram polyominoes (Example IX.14, p. 660). .............. |

B> L.17. Systems of linear diophantine inequalities. Consider the class F of compositions of
integers into four summands (x1, X3, X3, X4) such that

X1 = 0, Xy = 2)(1, X3 = 2)C2, X4 = ZX3,
where the x; are in Z>(. The OGF is

1
(1= =21 =N =215
Generalize to r > 4 summands (in Zx() and a similar system of inequalities. (Related GFs

appear on p. 200.) Work out elementarily the OGFs corresponding to the following systems of
inequalities:

F(z) =

xi+x2 =x3), {1 +x 23}, v +x=x3+xa) {6 < xp,x0 > X3, 03 < x4l
More generally, the OGF of compositions into a fixed number of summands (in Zx), con-

strained to satisfy a linear system of equations and inequalities with coefficients in Z, is ration-

al; its denominator is a product of factors of the form (1 — z/). (Caution: this generalization is
non-trivial: see Stanley’s treatment in [552, §4.6].) <

Figure 1.9 summarizes what has been learned regarding compositions and parti-
tions. The way several combinatorial problems are solved effortlessly by the symbolic
method is worth noting.

I.3.2. Related constructions. Itis also natural to consider the two constructions
of cycle and powerset when these are applied to the set of integers Z.
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Specification OGF coefficients
Compositions:
1—
all SEQ(SEQ~1(Z)) 1 2Z o=l (p. 40)
- — 42
1—z —n
parts < r SEQ(SEQq . ,(Z)) W ~ Crpkr 1 (pp- 42, 308)
Z /
k parts SEQ.(SE zZ ~ .44
p USEQ21(Z) T = (p- 44)
2
cyclic CYC(SEQ>(2)) Eq. (48) ~ — (p. 48)
— n
Partitions:
_ ENED
all MSET(SEQ>1(Z 1—z7" ~ ——¢ V3 .41,574
(SEQ=1(2)) H( )~ e (pp )
nr—l
-
parts <r  MSET(SEQ; ,(£)) ]_[ 1-zm"1 = (pp. 43, 258)
k . k=1
jad L ~ —_—
<kparts = MSET(SEQ; (Z)) ”[[1(1 ) Q=D (pp. 44, 258)
00 33/4
distinct parts PSET(SEQ~(Z)) [Ta+a  ~ V3 (pp. 48, 579)
= 1 12n3/4
m=

Figure 1.9. Partitions and compositions: specifications, generating functions, and
coefficients (in exact or asymptotic form).

Cyclic compositions (wheels). The class D = CyC(Z) comprises compositions
defined up to circular shift of the summands; so, for instance 2 +3 + 1 + 2 + 5,
341424542, etc, are identified. Alternatively, we may view elements of D as
“wheels” composed of circular arrangements of rows of balls (taken up to rotation):

a “wheel” (cyclic composition) 0000 00000

By the translation of the cycle construction, the OGF is

e’} k —1
(ﬂ Z
D R
(47) @ Z k ( 1—z* )
_l’_

2724323 4+52% 4725 +132041977 +358 +--+.
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The coefficients are thus (EIS A008965)

1 1 2"
(48) Dy==% ¢®Q" =1 =—1+-3 o®)2"" ~ =,
nk\n nkln n

where the condition “k | n” indicates a sum over the integers k dividing n. Notice that
D,, is of the same asymptotic order as %C,,, which is suggested by circular symmetry
of wheels, but there is a factor: D, ~ 2C,/n.

Partitions into distinct summands. The class @ = PSET(Z) is the subclass
of P = MSET(Z) corresponding to partitions determined as in Definition 1.9, but
with the strict inequalities x; > --- > x1, so that the OGF is

49) Q@ =[]0+ =1+z+2+223+ 22" +3° +4° + 57 + -,
n>1

The coefficients (EIS A000009) are not expressible in closed form. However, the
saddle-point method (Section VIIL. 6, p. 574) yields the approximation:

3

which has a shape similar to that of P, in (40), p. 41.

> 1.18. Odd versus distinct summands. The partitions of n into odd summands (Oj,) and the
ones into distinct summands (Qj;) are equinumerous. Indeed, one has

33/4 n
(50) Qn ~ Wexp <7‘L’ —) s

0@ =[]a+zm, o@=][a-H*tHL
m=1 j=0

Equality results from substituting (1 +a) = (1 — az)/(l —a) witha = 7",

1-221-241-261-281-410 1 1 1
0(2) = 5 - S <= : <
l—z1-z21-221-2%1—¢ l—z1-2°1-—¢
and simplification of the numerators with half of the denominators (in boldface). <

Partitions into powers. Let IP°V = {1,2,4,8, ...} be the set of powers of 2. The
corresponding P and Q partitions have OGFs

PY) = ] 1

_ 2
j:Ol Z

= l+z+222+223 4424 +425 + 6254627 + 1028 + -+

o) = JJa+)
=0

= l4+z+22+2++22+-.

The first sequence 1, 1, 2, 2, ... is the “binary partition sequence” (ELS A018819); the
difficult asymptotic analysis was performed by de Bruijn [141] who obtained an esti-
mate that involves subtle fluctuations and is of the global form 0002 M) The function
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OP%(7) reduces to (1 —z)~! since every number has a unique additive decomposition
into powers of 2. Accordingly, the identity

1 ad ] 0
T—:" 1_[( +2z7),
j=0

first observed by Euler is sometimes nicknamed the “computer scientist’s identity” as
it reflects the property that every number admits a unique binary representation.

There exists a rich set of identities satisfied by partition generating functions—
this fact is down to deep connections with elliptic functions, modular forms, and
g—analogues of special functions on the one hand, basic combinatorics and number
theory on the other hand. See [14, 129] for introductions to this fascinating subject.
> 1.19. Euler’s pentagonal number theorem. This famous identity expresses 1/ P (z) as

n>1 keZ

It is proved formally and combinatorially in Comtet’s reference [129, p. 105] and it serves to
illustrate “proofs from THE BOOK?” in the splendid exposition of Aigner and Ziegler [7, §29].

Consequently, the numbers {P;} ;V:O can be determined in O (N+/N) integer operations. <

> L.20. A digital surprise. Define the constant
9 99 999 9999

"= 10100 1000 10000
Is it a surprise that it evaluates numerically to

¢ = 0.8900100999989990000001000099999999899999000000000010 - - - ,

that is, its decimal representation involves only the digits 0, 1, 8, 9? [This is suggested by a note
of S. Ramanujan, “Some definite integrals”, Messenger of Math. XLIV, 1915, pp. 10-18.] <

D> 1.21. Lattice points. The number of lattice points with integer coordinates that belong to the
closed ball of radius » in d-dimensional Euclidean space is

o0
[z”z]i(@(z))d where  ©@) =1+2) 2"
n=1

Estimates may be obtained via the saddle-point method (Note VIIL.35, p. 589). <

1.4. Words and regular languages

Fix a finite alphabet A whose elements are called letters. Each letter is taken to
have size 1;i.e., it is an atom. A wordS is any finite sequence of letters, usually written
without separators. So, for us, with the choice of the Latin alphabet (A = {a,...,z}),
sequences such as ygololihp, philology, zgrmblglps are words. We denote
the set of all words (often written as A* in formal linguistics) by W. Following a
well-established tradition in theoretical computer science and formal linguistics, any
subset of W is called a language (or formal language, when the distinction with natural
languages has to be made).

8An alternative to the term “word” sometimes preferred by computer scientists is “string”; biologists
often refer to words as “sequences”.



“book” — 2008/10/3 — 16:05 — page 50 — #64

50 1. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS
OGF coefficients
1
Words: m" (p. 50)
1—mz
k -2 o (pp. 51, 308)
a-runs < ~c .51,
1 —mz+ (m — 1)zk+! kPk pp
exclude subseq. p  Eq. (55) ~ (m— DMalPl=L (p.54)
cp(2) —n
exclude factor ~c (pp. 61, 271)
P ZIPl (1 = mz)cp(z) PPp PP
circular Eq. (64) ~m"/n (p. 64)
regular language  [rational] ~ C - Ak (pp- 56, 302, 342)
context-free lang.  [algebraic] ~ C - AMnPl1 (pp- 80, 501)

Figure 1.10. Words over an m—ary alphabet: generating functions and coefficients.

From the definition of the set of words WV, one has

(51) W = SEQ(A) = W(z) = )
1 —mz

where m is the cardinality of the alphabet, i.e., the number of letters. The generating
function gives us the counting result

W, =m".

This result is elementary, but, as is usual with symbolic methods, many enumerative
consequences result from a given construction. It is precisely the purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each have great expressive
power for describing languages. The first one is iterative (i.e., non-recursive) and
it bases itself on “regular specifications” that only involve the constructions of sum,
product, and sequence; the other one, which is recursive (but of a very simple form),
is best conceived of in terms of finite automata and is equivalent to linear systems of
equations. Both frameworks turn out to be logically equivalent in the sense that they
determine the same family of languages, the regular languages, though the equiva-
lence is non-trivial (Appendix A.7: Regular languages, p. 733), and each particular
problem usually admits a preferred representation. The resulting OGFs are invariably
rational functions, a fact to be systematically exploited from an asymptotic standpoint
in Chapter V. Figure 1.10 recapitulates some of the major word problems studied in
this chapter, together with corresponding approximations®.

9In this book, we reserve “~” for the technical sense of “asymptotically equivalent” defined in Ap-
pendix A.2: Asymptotic notations, p. 722; we reserve the symbol “~” to mean “approximately equal” in
a vaguer sense, where formulae have been simplified by omitting constant factors or terms of secondary
importance (in context).
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I.4.1. Regular specifications. Consider words (or strings) over the binary al-
phabet A = {a, b}. There is an alternative way to construct binary strings. It is based
on the observation that, with a minor adjustment at the beginning, a string decomposes
into a succession of “blocks” each formed with a single b followed by an arbitrary
(possibly empty) sequence of as. For instance aaabaababaabbabbaaa decomposes
as

laaa] baa | ba | baa | b | ba | b | baaa.

t!19 symbols, we have the alternative decomposition:

Omitting redundan

1
1—z1—zﬁ;

(52) W = SEQ(a) x SEQ(b SEQ(a)) =— W() =

This last expression reduces to (1 — 2z)~ ! as it should.

Longest runs. The interest of the construction just seen is to take into account
various meaningful properties, for example longest runs. Abbreviate by a<F :=
SEQ_g(a) the collection of all words formed with the letter @ only and whose length is
between 0 and k — 1; the corresponding OGFis 1 +z+- -+ +5 1 =(1-25/(1-2).
The collection W) of words which do not have k consecutive as is described by an
amended form of (52):

k

z 1 1—zK

1—
W(k) — <k SE b <k :> W<k> — . — .
a Q(a ) (Z) 1—Z 1_Z% 1—22+Zk+1

The OGF is in principle amenable to expansion, but the resulting coefficients expres-
sions are complicated and, in such a case, asymptotic estimates tend to be more usable.
From the analysis developed in Example V.4 (p. 308), it can indeed be deduced that
the longest run of a’s in a random binary string of length n is on average asymptotic
to log, n.

> 1.22. Runs in arbitrary alphabets. For an alphabet of cardinality m, the quantity

11—k
1 —mz+ (m— 1)zk+1
is the OGF of words without k consecutive occurrences of a designated letter. <

The case of longest runs exemplifies the utility of nested constructions involving
sequences. We set:

Definition 1.10. An iterative specification that only involves atoms (e.g., letters of a
finite alphabet A) together with combinatorial sums, cartesian products, and sequence
constructions is said to be a regular specification.

A language L is said to be S—regular ( “specification—regular”) if there exists a
class M described by a regular specification such that L and M are combinatorially
isomorphic: L= M.

An equivalent way of expressing the definition is as follows: a language is S—
regular if it can be described unambiguously by a regular expression (Appendix A.7:

10When dealing with words, especially, we freely omit redundant braces “{, }”” and cartesian products
“x”, for readability. For instance, SEQ(a + b) and a b are shorthand for SEQ({a} + {b}) and {a} x {b}.
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Regular languages, p. 733). The definition of a regular specification and the basic
admissibility theorem (p. 27) imply immediately:

Proposition 1.2. Any S—regular language has an OGF that is a rational function.
This OGF is obtained from a regular specification of the language by translating each
letter into the variable z, disjoint unions into sums, cartesian products into products,
and sequences into quasi-inverses, (1 — )71,

This result is technically shallow but its importance derives from the fact that
regular languages have great expressive power devolving from their rich closure prop-
erties (Appendix A.7: Regular languages, p. 733) as well as their relation to finite
automata discussed in the next subsection. Examples 1.9 and 1.10 below make use of
Proposition 1.2 and treat two problems closely related to longest runs.

Example 1.9. Combinations and spacings. A regular specification describes the set £ of words
that contain exactly k occurrences of the letter b, from which the OGF automatically follows:

(53) £ = SEQ(a) (b SEQ(a))¥ = L(z) = z/(1 — k1.

Hence the number of words in the language satisfies L, = (2) This is otherwise combinat-
orially evident, since each word of length # is characterized by the positions of its letters b; that
is, the choice of k positions among n possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let (Z) d be the number of combinations of k elements among [1, n] with constrained
spacings: no element can be at distance d or more from its successor. The refinement of (53)

_ n " Zk(] _ Zd)k_l
£l = SEQ(a) (b SEQ¢(@)* ! (b SEQ() = ZO (k)qf = T
nz

leads to a binomial convolution expression,

(L, =2 (5)(07)

(This problem is analogous to compositions with bounded summands in (42), p. 43.) What we
have just analysed is the largest spacing (constrained to be at most d) in subsets. A parallel
analysis yields information regarding the smallest spacing. ...............c.c.coiiio... |

Example 1.10. Double run statistics. By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W = SEQ(b) SEQ(a SEQ(a) b SEQ(b)) SEQ(a).

Let W%} be the class of all words that have at most o consecutive as and B consecutive bs.
The specification of W induces a specification of wieh), upon replacing SEQ(a), SEQ(b) by
SEQ<q(a), SEQ<g(b) internally, and by SEQ<y(a), SEQ<g(D) externally. In particular, the
OGF of binary words that never have more than r consecutive identical letters is found to be
(seta=B=r)

(54) wir) o 1= ke e
1-2z4z+ l—z—- =2
after simplification. (This result can be extended to an arbitrary alphabet by means of “Smirnov
words”, Example 111.24, p. 204.)
Révész in [508] tells the following amusing story attributed to T. Varga: “A class of high
school children is divided into two sections. In one of the sections, each child is given a coin
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which he throws two hundred times, recording the resulting head and tail sequence on a piece
of paper. In the other section, the children do not receive coins, but are told instead that they
should try to write down a ‘random’ head and tail sequence of length two hundred. Collecting
these slips of paper, [a statistician] then tries to subdivide them into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the maximum length
of runs of consecutive letters in a random binary word of length n (here n = 200). The prob-
ability that this parameter equals k is

1 k.k k—1,k—1

ar (W =)

and is fully determined by (54). The probabilities are then easily computed using any symbolic
package: for n = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12

P(k) [ 6.5410~8 7.0710™* 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226

Thus, in a randomly produced sequence of length 200, there are usually runs of length 6 or
more: the probability of the event turns out to be close to 97% (and there is still a probability of
about 8% to have a run of length 11 or more). On the other hand most children (and adults) are
usually afraid of writing down runs longer than 4 or 5 as this is felt as strongly “non-random”.
The statistician simply selects the slips that contain runs of length 6 or more as the true random
ones. VOIla! ... ... e |

> L1.23. Alice, Bob, and coding bounds. Alice wants to communicate n bits of information to
Bob over a channel (a wire, an optic fibre) that transmits 0, 1-bits but is such that any occurrence
of 11 terminates the transmission. Thus, she can only send on the channel an encoded version
of her message (where the code is of some length ¢ > n) that does not contain the pattern 11.

Here is a first coding scheme: given the message m = mymy - --my, where m; € {0, 1},
apply the substitution: O — 00 and 1 +— 10; terminate the transmission by sending 11. This
scheme has £ = 2n + O(1), and we say that its rate is 2. Can one design codes with better
rates? with rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of length n, a code of length L =

L(n) is achievable only if there exists a one-to-one mapping from {0, 1}" into UJL':o Cj,ie.,
2N < Z,L’zo Cj. Working out the OGF of C, one finds that necessarily

1 5
= 1.440420, ¢ = + [
logy ¢ 2
Thus no code can achieve a rate better than 1.44; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [427, Ch. 17].)

> 1.24. Coding without long runs. Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than four consecutive Os or more than
four consecutive 1s. We seek a coding scheme that transforms an arbitrary binary string into a
string obeying this constraint.

From the OGF, one finds [z“]W<4'4> (z) = 1546 > 210 — 1024. Consequently, a substi-
tution can be built that translates an original 10-bit word into an 11-bit block that does not have
five consecutive equal letters. When 11-bit blocks are concatenated, this may however give rise
to forbidden sequences of identical consecutive letters at the junction of two blocks. It then

suffices to use “separators” and replace a substituted block of the form « - X - B8 by the longer

block @ - X - BB, where 0 = 1 and 1 = 0. The resulting code has rate %

Extensions of this method show that the rate 1.057 is achievable (theoretically). On the
other hand, by the principles of the previous note, any acceptable code must use asymptotically

L(n) > in+0(1), A=
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at least 1.056n bits to encode strings of  bits. (Hint: let o be the root near % of 1 —2a+a° =0,
which is a pole of w4 One has 1/1ogy(1/a) = 1.05621.) <

Patterns. There are many situations in the sciences where it is of interest to de-
termine whether the appearance of a certain pattern in long sequences of observations
is significant. In a genomic sequence of length 100 000 (the alphabetis A, G, C, T), is
it or is it not meaningful to detect three occurrences of the pattern TAGATAA, where
the letters appear consecutively and in the prescribed order? In computer network
security, certain attacks can be detected by some well-defined alarming sequences of
events, although these events may be separated by perfectly legitimate actions. On
another register, data mining aims at broadly categorizing electronic documents in an
automatic way, and in this context the observation of well-chosen patterns can provide
highly discriminating criteria. These various applications require determining which
patterns are, with high probability, bound to occur (these are not significant) and which
are very unlikely to arise, so that actually observing them carries useful information.
Quantifying the corresponding probabilistic phenomena reduces to an enumerative
problem—the case of double runs in Example 1.10 (p. 52) is in this respect typical.

The notion of pattern can be formalized in several ways. In this book, we shall
principally consider two of them.

(a) Subsequence pattern: such a pattern is defined by the fact that its letters
must appear in the right order, but not necessarily contiguously [263]. Sub-
sequence patterns are also known as “hidden patterns”.

(b) Factor pattern: such a pattern is defined by the fact that its letter must appear
in the right order and contiguously [312, 564]. Factor patterns are also called
“block patterns” or simply “patterns” when the context is clear.

For a given notion of pattern, there are then two related categories of problems. First,
one may aim at determining the probability that a random word contains (or dually,
excludes) a pattern; this problem is equivalently formulated as an existence problem—
enumerate all words in which the pattern exists (i.e., occurs) independently of the
number of occurrences. Second, one may aim at determining the expectation (or even
the distribution) of the number of occurrences of a pattern in a random text; this prob-
lem involves enumerating enriched words, each with one occurrence of the pattern
distinguished.

Such questions are amenable to methods of analytic combinatorics and in partic-
ular to the theory of regular specifications and automata: see Example I.11 below for
a first attempt at analysing hidden patterns (to be continued in Chapter V, p. 315) and
Example 1.12 for an analysis of factor patterns (to be further extended in Chapters III,
p- 211, IV, p. 271, and IX, p. 659).

Example 1.11.  Subsequence (hidden) patterns in a text. A sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to be a “hidden pattern”.
For instance the pattern “combinatorics” is to be found hidden in Shakespeare’s Hamlet (Act I,

Scene 1)
Dared to the at; which our v@lian' Hamlet—
SO ths side of our known world esteem’d him—

Did slay this Fortinbras; who by a seal’d ompact,
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Well ratified by law and heraldry,
Did forfeit, with hi life, all those his lands [...]

Take a fixed finite alphabet A comprising m letters (im = 26 for English). First, let
us examine the language £ of all words, also called “texts”, that contain a given word p =
p1Dp2 - pi of length k as a subsequence. These words can be described unambiguously as
starting with a sequence of letters not containing p; followed by the letter p; followed by a
sequence not containing p,, and so on:

L = SEQ(A\ p1)p1 SEQ(A\ p2)p2 - - - SEQ(A\ pk) p SEQ(A).
This is in a sense equivalent to parsing words unambiguously according to the left-most occur-
rence of p as a subsequence. The OGF is accordingly
Zk 1
(1—=(m—-Dk1—mz

An easy analysis of the dominant simple pole at z = 1/m shows that

(55) L(z) =

n

L(z) ~ s sothat L, ~ m".
n—oo

z—1/m 1 —mz

Thus, a proportion tending to 1 of all the words of length n do contain a fixed pattern p as a
subsequence. (Note 1.25 below refines this estimate.)

Mean number of occurrences. A census (Note 1.26, p. 56) shows that there are in fact
1.63 - 103 occurrences of “combinatorics” as a subsequence hidden somewhere in the
text of Hamlet, whose length is 120 057 (this is the number of letters that constitute the text). Is
this the sign of a secret encouragement passed to us by the author of Hamlet?

To answer this somewhat frivolous question, here is an analysis of the expected number
of occurrences of a hidden pattern. It is based on enumerating enriched words, where an en-
riched word is a word together with a distinguished occurrence of the pattern as a subsequence.
Consider the regular specification

O = SEQ(A) p1 SEQ(A) py SEQ(A) - - SEQ(A) px—1 SEQ(A) pr SEQ(A).

An element of O is a (2k 4 1)—tuple whose first component is an arbitrary word, whose second
component is the letter p, and so on, with letters of the pattern and free blocks alternating. In
other terms, any w € O represents precisely one possible occurrence of the hidden pattern p in
a text built over the alphabet .A. The associated OGF is simply

Zk
0@Q)= ———.
(@) (1= o+
The ratio between the number of occurrences and the number of words of length n then equals
"0
(56) Q, = 0@ _ (™),
m" k

and this quantity represents the expectation of the number of occurrences of p in a random word
of length n, assuming all such words to be equally likely. For the parameters corresponding to
the text of Hamlet (n = 120057) and the pattern “combinatorics” (k = 13), the quantity
2, evaluates to 6.96 - 1037. The number of hidden occurrences observed is thus 23 times
higher than what the uniform model predicts! However, similar methods make it possible to
take into account non-uniform letter probabilities (Subsection III. 6.1, p. 189): based on the
frequencies of letters in the English text itself, the expected number of occurrences is found to
be 1.71 - 1037 —this is now only within 5% of what is observed. Thus, Shakespeare did not
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(probably) conceal any message relative to combinatorics—see Example V.7, p. 315, for more
ON LhiS TOPIC. ..ottt e e e e |

D> L1.25. A refined analysis. Further consideration of the subdominant pole at z = 1/(m — 1)
yields, by the methods of Theorem IV.9 (p. 256), the refined estimate:

L 1\"
1——”:0(nk_l<l——> )
m" m
Thus, the probability of not containing a given subsequence pattern is exponentially small. <]

> 1.26. Dynamic programming. The number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right and maintaining a running
count of the number of occurrences of the pattern as well as all its prefixes.

I.4.2. Finite automata. We begin with a simple device, the finite automaton,
that is widely used in the study of models of computation [189] and has wide descrip-
tive power with regard to structural properties of words. (A systematic treatment of
automata and paths in graphs, combining both algebraic and asymptotic aspects, is
given in Part B, Section V.5, p. 336.)

Definition I.11. A finite automaton is a directed multigraph whose edges are labelled
by letters of the alphabet A. It is customary to refer to vertices as states and to denote
by Q the set of states. One designates an initial state qo € Q and a set of final states
0co.

The automaton is said to be deterministic if for each pair (g, o) with g € Q and
a € A there exists at most one edge (one also says a transition) starting from q, which
is labelled by the letter a.

A finite automaton (Figure 1.11) is able to process words, as we now explain.
A word w = wy...w, is accepted by the automaton if there exists a path in the
multigraph connecting the initial state go to one of the final states of Q and whose
sequence of edge labels is precisely wy, ..., w,. For a deterministic finite automaton,
it suffices to start from the initial state g, scan the letters of the word from left to right,
and follow at each stage the only transition permitted; the word is accepted if the state
reached in this way after scanning the last letter of w is a final state. Schematically:

Lalealelo]d]

i

A finite automaton thus keeps only a finite memory of the past (hence its name) and
is in a sense a combinatorial counterpart of the notion of Markov chain in probability
theory. In this book, we shall only consider deterministic automata.

As an illustration, consider the class £ of all words w that contain the pattern
abb as a factor (the letters of the pattern should appear contiguously). Such words are
recognized by a finite automaton with four states, qo, g1, g2, g3. The construction is
classical: state g; is interpreted as meaning “the first j characters of the pattern have
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b a a, b
a b b
050
1)

Figure I.11. Words that contain the pattern abb are recognized by a four-state au-
tomaton with initial state gg and final state g3.

just been scanned”’, and the corresponding automaton appears in Figure I.11. The
initial state is go, and there is a unique final state g3.

Definition 1.12. A language is said to be A—regular (automaton regular) if it coincides
with the set of words accepted by a deterministic finite automaton. A class M is A—
regular if for some regular language L, one has M = L.

> 1.27. Congruence languages. The language of binary representations of numbers that are
congruent to 2 modulo 7 is A-regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions.

> 1.28. Binary representation of primes. The language of binary representations of prime num-
bers is neither A-regular nor S—regular. [Hint: use the Prime Number Theorem and asymptotic
methods of Chapter IV.]

The following equivalence theorem is briefly discussed in Appendix A.7: Regular
languages, p. 733.

Equivalence theorem (Kleene—Rabin-Scott). A language is S—regular (specifica-
tion regular) if and only if it is A—regular (automaton regular).

These two equivalent notions also coincide with the notion of regularity in for-
mal language theory, where the latter is defined by means of (possibly ambiguous)
regular expressions and (possibly non-deterministic) finite automata [6, 189]. As al-
ready pointed out, the equivalences are non-trivial: they are given by algorithms that
transform one formalism into the other, but do not transparently preserve combina-
torial structure (in some cases, an exponential blow-up in the size of descriptions is
involved). For this reason, we have opted to develop independently the notions of
S—regularity and A-regularity.

We next examine the way generating functions can be obtained from a determin-

istic automaton. The process was first discovered in the late 1950s by Chomsky and
Schiitzenberger [119].
Proposition 1.3. Suppose that G is a deterministic finite automaton with state set
0 = {qo, ....qs)}, initial state qo, and set of final states Q = iy - qi;} The
generating function of the language L of all words accepted by the automaton is a
rational function that is determined under matrix form as

L(z) =u( —zT) " 'v.
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Here the transition matrix T is defined by
Tjx = card {a € A such that an edge (q;, qi) is labelled by a} ;

the row vector u is the vector (1,0, 0, . .., 0) and the column vector v = (vy, ..., vg)"
is such that'! v; =[g; € Q1.

In particular, by Cramer’s rule, the OGF of a regular language is the quotient of two
(sparse) determinants whose structure directly reflects the automaton transitions.

Proof. The proof we present is based on a “first-letter decomposition”, which is
conceptually analogous to the Kolmogorov backward-equations of Markov chain the-
ory [93, p. 153]. (Note 1.29 provides an alternative approach.) For j € {0, ..., s}, in-
troduce the class (language) £; of all words w such that the automaton, when started
in state g, terminates in one of the final states of @, after having read w. The follow-
ing relation holds for any j:

(57) Ej = Aj + <Z{a}£(qjoa)> )

acA

there A; is the class {¢} formed of the word of length 0 if ¢; is final and the empty
set () otherwise; the notation (g; o ) designates the state reached in one step from
state ¢; upon reading letter . The justification is simple: a language £; contains the
word of length 0 only if the corresponding state ¢; is final; a word of length > 1 that
is accepted starting from state ¢ ; has a first letter o followed by a word that must lead
to an accepting state, when starting from state g o a.

The translation of (57) is then immediate:

(58) Li(x)=1lgj € Ol +2 Y, Ligjom ()

acA
The collection of all the equations as j varies forms a linear system: with L(z) the
column vector (Lo(z), ..., Ls(z)), one has

L(z) = v+ zT L(2),

where v and T are as described in the statement. The result follows by matrix inversion
upon observing that the OGF of the language L is Lo(z). |
B> 1.29. The forward equations. Let M, be the set of words, which lead to state g, when the
automaton is started in state . By a “last-letter decomposition”, the M, satisfy a system that
is a transposed version of (58).

The pattern abb. Consider the automaton recognizing the pattern abb as given
in Figure I.11. The languages £; (where £; is the set of accepted words when starting
from state ¢ ;) are connected by the system of equations

Lo = aly +bLy
L1 = aly +bLy
Ly = aly +bL3
L3 = als +bL; +e,

Hyg proves convenient at this stage to introduce Iverson’s bracket notation: for a predicate P, the
quantity [ P has value 1 if P is true and O otherwise.
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which directly reflects the graph structure of the automaton. This gives rise to a set of
equations for the associated OGFs

Lo = zLy +zlo
Ly = zL1 +1zL>
L, = zLiy +zL3
Ly = zLz +zLz +1.

Solving the system, we find the OGF of all words containing the pattern abb: it is
Lo(z) since the initial state of the automaton is gg, and

Z3

(1-2)(1-22)1—z—2%)
The partial fraction decomposition

1 24z n 1
1-2z 1—z—-22 1-—¢

(59) Lo(z) =

Lo(z) =

b

then yields
LO,n =2"— Fni3 +1,

with F,, a Fibonacci number (p. 42). In particular the number of words of length » that
do not contain abb is F,, 13 —1, a quantity that grows at an exponential rate of ¢", with
@ = (1 ++/5)/2 the golden ratio. Thus, all but an exponentially vanishing proportion
of the strings of length n contain the given pattern abb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, from Note 1.32, p. 61, a random
word contains a large number, about ~ n/8, of occurrences of the pattern abb.)

> 1.30. Regular specification for pattern abb. The pattern abb is simple enough that one can
come up with an equivalent regular expression describing L, whose existence is otherwise
granted by the Kleene—Rabin—Scott Theorem. An accepting path in the automaton of Fig-
ure I.11 loops around state 0 with a sequence of b, then reads an a, loops around state 1 with
a sequence of a’s and moves to state 2 upon reading a b; then there should be letters making
the automaton passs through states 1-2-1-2-----1-2 and finally a b followed by an arbitrary
sequence of as and bs at state 3. This corresponds to the specification (with X* abbreviating
SEQ(X))

73

(1= 220 - £)(1 - 22)

which gives back a form equivalent to (59). <

Lo = b) a@*b(a@*p)*bla+b* = Lok =

Example 1.12. Words containing or excluding a pattern. Fix an arbitrary pattern p =
p1p2 - pr and let £ be the language of words containing at least one occurrence of p as
a factor. Automata theory implies that the set of words containing a pattern as a factor is A—
regular, hence admits a rational generating function. Indeed, the construction given for p = abb
generalizes in an easy manner: there exists a deterministic finite automaton with k + 1 states
that recognizes L, the states memorizing the largest prefix of the pattern p just seen. As a con-
sequence: the OGF of the language of words containing a given factor pattern of length k is a
rational function of degree at most k + 1. (The corresponding automaton is in fact known as a
Knuth—Morris—Pratt automaton [382].) The automaton construction however provides the OGF
L(z) in determinantal form, so that the relation between this rational form and the structure of
the pattern is not transparent.
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Autocorrelations. An explicit construction due to Guibas and Odlyzko [313] nicely cir-
cumvents this problem. It is based on an “equational” specification that yields an alternative
linear system. The fundamental notion is that of an autocorrelation vector. For a given p, this
vector of bits ¢ = (cq, . .., cx_1) is most conveniently defined in terms of Iverson’s bracket as

¢i =piv1ipit2- P =pP1P2" " Pk—il.

In other words, the bit ¢; is determined by shifting p right by i positions and putting a 1 if
the remaining letters match the original p. Graphically, ¢; = 1 if the two framed factors of p
coincide in

=
i

P1 - Pi |Pi+1 " Pk
Pl Pk—i | Pk—i+1 " Pk =P.

For instance, with p = aabbaa, one has

aabbaa
aabbaa 1
aabbaa 0
aabbaa 0
aabbaa 0
aabbaa 1
aabbaa 1.
The autocorrelation is then ¢ = (1, 0, 0, 0, 1, 1). The autocorrelation polynomial is defined as

k—1
c(z) == Z cjz’.
j=0

For the example pattern, this gives c¢(z) = 1 + 2+

Let S be the language of words with no occurrence of p and 7 the language of words that
end with p but have no other occurrence of p. First, by appending a letter to a word of S, one
finds a non-empty word either in S or 7, so that

(60) S+T ={e}+S x A

Next, appending a copy of the word p to a word in S may only give words that contain p at or
“near” the end. In precise terms, the decomposition based on the left-most occurrence of p in
Spis
(61) Sx{pd =T x ) Apk—is1Pk—i42"* Pk},

Ci 750

corresponding to the configurations

| S [/111111%111111]
] A e
T

The translation of the system (60), (61) into OGFs then gives a system of two equations in the
two unknowns S, T,

S+ T =1+mzS, S-F=Te),

which is then readily solved.
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Proposition 1.4. The OGF of words not containing the pattern p as a factor is

c(z)
(62) S@)=—F—"7"—""—""—,
Z*+ (1 —m2)e(2)
where m is the alphabet cardinality, k = |p| the pattern length, and c(z) the autocorrelation
polynomial of p.

A bivariate generating function based on the autocorrelation polynomial is derived in
Chapter III, p. 212, from which is deduced, in Proposition IX.10, p. 660, the existence of a
limiting Gaussian law for the number of occurrences of any pattern. ..................... |

> 1.31. At least once. The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

* *

, T)= — o,
(1 —mz)(Z* + (1 — mz)c(2)) K+ (1 = m2)e(z)
respectively. <

L(z) =

> L.32. Expected number of occurrences of a pattern. For the mean number of occurrences
of a factor pattern, calculations similar to those employed for the number of occurrences of
a subsequence (even simpler) can be based on regular specifications.  All the occurrences
(contexts) of p = pyp> - - - pi as a factor are described by

k
~ ~ z
O =SEQ(A) (p1p2-+-pk) SEQA), = 0@)=—3.
(1 —mz)
Consequently, the expected number of such contiguous occurrences satisfies
(63) Qn=mFn—k+ 1~
m

Thus, the mean number of occurrences is proportional to 7. <

> 1.33. Waiting times in strings. Let L C SEQ{a, b} be a language and S = {a, b}*° be the set
of infinite strings with the product probability induced by P(a) = P(b) = % The probability
that a random string w € S starts with a word of L is Z(l /2), where z(z) is the OGF of the
“prefix language” of L, that is, the set of words w € L that have no strict prefix belonging to L.
The GF Z(z) serves to express the expected time at which a word in L is first encountered: this
is %Z/ (%). For a regular language, this quantity must be a rational number. <

> 1.34. A probabilistic paradox on strings. In a random infinite sequence, a pattern p of length k
first occurs on average at time 21 /2), where c¢(z) is the autocorrelation polynomial. For
instance, the pattern p = abb tends to occur “sooner” (at average position 8) than p’ = aaa (at
average position 14). See [313] for a thorough discussion. Here are for instance the epochs at
which p and p are first found in a sample of 20 runs:

p: 3,4,5,5,6,6,7,8,8,8,8,9,9,10, 11, 14, 15, 15, 16, 21
p 3,4,8,8,9,10,11, 11, 11, 12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expected number of occurrences,
which is puzzling. Is analytic combinatorics contradictory? (Hint. The catch is that, due to
overlaps of p” with itself, occurrences of p’ tend to occur in clusters, but, then, clusters tend to
be separated by wider gaps than for p; eventually, there is no contradiction.)

> 1.35. Borges’s Theorem. Take any fixed finite set IT of patterns. A random text of length n
contains all the patterns of the set IT (as factors) with probability tending to 1 exponentially
fast as n — oo. Reason: the rational functions S(z/2) with S(z) as in (62) have no pole
in |z] < 1; see also Chapters III (p. 213), IV(p. 271), V(p. 308). This property is sometimes
called “Borges’s Theorem” as a tribute to the famous Argentinian writer Jorge Luis Borges
(1899-1986) who, in his essay “The Library of Babel”, describes a library so huge as to contain:
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“Everything: the minutely detailed history of the future, the archangels’ autobiogra-
phies, the faithful catalogues of the Library, thousands and thousands of false cat-
alogues, the demonstration of the fallacy of those catalogues, the demonstration of
the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary
on that gospel, the commentary on the commentary on that gospel, the true story of
your death, the translation of every book in all languages, the interpolations of every
book in all books.”

Strong versions of Borges’s Theorem, including the existence of limit Gaussian laws, hold for
many random combinatorial structures, including trees, permutations, and planar maps (see
Chapter IX, p. 659 and pp. 680-684).

D> 1.36. Variable length codes. A finite set F C W, where W = SEQ(A) is called a code if any
word of W decomposes in at most one manner into factors that belong to F (with repetitions
allowed). For instance F = {a, ab, bb} is a code and aaabbb = alalab|bb has a unique
decomposition; ' = {a, aa, b} is not a code since aaa = alaa = aala = alala. The OGF of
the set S of all words that admit a decomposition into factors all in F is a computable rational
function, irrespective of whether F is a code. (Hint: use an “Aho—Corasick” automaton [5].) A

finite set F is a code iff Sx(z) = (1 — F(z))_l. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by Berstel and Perrin [55]
develops systematically the theory of such variable-length codes. <

In general, automata are useful in establishing a priori the rational character of
generating functions. They are also surrounded by interesting analytic properties (e.g.,
Perron—Frobenius theory, Section V.5, p. 336, that characterizes the dominant poles)
and by asymptotic probability distributions of associated parameters that are normally
Gaussian. They are most conveniently used for proving existence theorems, then sup-
plemented when possible by regular specifications, which are likely to lead to more
tractable expressions.

I.4.3. Related constructions. Words can, at least in principle, encode any com-
binatorial structure. We detail here one situation that demonstrates the utility of such
encodings: it is relative to set partitions and Stirling numbers. The point to be made is
that some amount of “combinatorial preprocessing” is sometimes necessary in order
to bring combinatorial structures into the orbit of symbolic methods.

Set partitions and Stirling partition numbers. A set partition is a partition of a
finite domain into a certain number of non-empty sets, also called blocks. For instance,
if the domain is D = {«, B, y, &}, there are 15 ways to partition it (Figure 1.12). Let
S,ﬁ” denote the collection of all partitions of the set [1..n] into r non-empty blocks
and S,(,r) = card(S,gr)) the corresponding cardinality. The basic object under consid-
eration here is a set partition (not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions in S,(,r) of an n-set into r blocks by
words over a r letter alphabet, B = {by, by, ..., b, } as follows. Consider a set partition
w that is formed of r blocks. Identify each block by its smallest element called the
block leader; then sort the block leaders into increasing order. Define the index of
a block as the rank of its leader among all the r leaders, with ranks conventionally
starting at 1. Scan the elements 1 to » in order and produce sequentially » letters from
the alphabet B: for an element belonging to the block of index j, produce the letter b;.
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Figure 1.12. The 15 ways of partitioning a four-element domain into blocks corres-
pondto SV =1, s =7, sV =6 sP=1.

For instance for n = 6, r = 3, the set partition w = {{6, 4}, {5, 1, 2}, {3, 7, 8}},
is reorganized by putting leaders in first position of the blocks and sorting them,

by by b3

————
o ={{1,2,5},{3,7, 8}, {4, 6}},

so that the encoding is
1 2345678
(bl by by bz by b3 by bz)'

In this way, a partition is encoded as a word of length n over B with the additional
properties that: (i) all r letters occur; (ii) the first occurrence of by precedes the first
occurrence of by, which itself precedes the first occurrence of b3, etc. Graphically,
this correspondence can be rendered by an “irregular staircase” representation, such
as

- - 7 8
1 2 5 - — -

where the staircase has length n and height r, each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

4 - 6 - —
3 —

From the foregoing discussion, S,(,r) is mapped into words of length # in the lan-
guage
b1 SEQ(by) -by SEQ(b1 +b2) bz SEQ(b1 +by+b3) -+ by SEQ(b1+by+---+b;).
The language specification immediately gives the OGF

r

z
(1-200 =291 =32)---(1=rz)

The partial fraction expansion of S (z) is then readily computed,

1 < —1y—J 1 « i
SO () = 5 Z <r>L’ sothat S = ] Z(—l)r_J (;)J"
b

. j) 1—jz

S(") (z) =
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In particular, one has

1 1
s =1, S,ﬁ”:i(zn—z), 5,33)=§(3”—3~2"+3).

These numbers are known as the Stirling numbers of the second kind, or better, as
the Stirling partition numbers, and the S,i” are nowadays usually denoted by {'rl},
see Appendix A.8: Stirling numbers, p. 735.

The counting of set partitions could eventually be done successfully thanks to an
encoding into words, and the corresponding language forms a constructible class of
combinatorial structures (indeed, a regular language). In the next chapter, we shall
examine a flexible approach to the counting of set partitions that is based on labelled
structures and exponential generating functions (Subsection II. 3.1, p. 106).

Circular words (necklaces). Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The class of circular words or necklaces (Note 1.1,
p. 18, and Equation (20), p. 26) is defined by a CYC composition:
1
1 —2z¢

(64) N = Cyc(A) = N@) =Y @ log
k=1

The series starts as (EIS A000031)
N(z) =2z + 32> + 42> 4+ 62* + 82° + 1425 + 2077 4 3628 + 602° + - - -,
and the OGF can be expanded:

(65) No= Y o'/
" kln

It turns out that N,, = D,, 4+ 1 where D,, is the wheel count, p. 47. [The connection is
easily explained combinatorially: start from a wheel and repaint in white all the nodes
that are not on the basic circle; then fold them onto the circle.] The same argument
proves that the number of necklaces over an m—ary alphabet is obtained by replacing 2
by m in (65).

B> 1.37. Finite languages. Viewed as a combinatorial object, a finite language A is a set of

distinct words, with size being the total number of letters of all words in A. For a binary alphabet,
the class of all finite languages is thus

FL = PSET(SEQ=((A) —  FL(2) =ex Zﬂi
= Q>1 zZ) = exp Z X e

The series is (EIS A102866) 1 + 2z + 5z% + 1673 + 42z% + 11622 + 31020 + - - - . <

I.5. Tree structures

This section is concerned with basic tree enumerations. Trees are, as we saw
already, the prototypical recursive structure. The corresponding specifications nor-
mally lead to nonlinear equations (and systems of such) over generating functions, the
Lagrange inversion theorem being exactly suited to solving the simplest category of
problems. The functional equations furnished by the symbolic method can then con-
veniently be exploited by the asymptotic theory of Chapter VII (pp. 452—482). As we
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Specification OGF coefficient
Trees:
1 1(2n -2 4=l
1 1 = Z x SE —-(1—-+1-4 - ~
plane general G x SEQ(G) 2( 7) . ( w1 ) NEws
. 1 1 2n 4n
— binary B=1+ZxBxB —(1—-+1—-4z) —_— ~
2z n+1\n 3

—simple T =ZxSEQq(T) T@=z26(T() ~cp "n3/?
non-plane gen. H = Z x MSET(H) H(z) = zExp(H(z)) ~ X - /3”/n3/2
— binary U = Z +MSET,(U) Eq.(76),p. 72 ~ 2y By /n3?
— simple VY = ZMSETQ(V)  Eq.(73),p.71 ~ép 32

Figure 1.13. Rooted trees of type either plane or non-plane and asymptotic forms.
There, A = 0.43992, B = 2.95576; Ao = 0.31877, By = 2.48325. References for
asymptotics are pp. 452—-482 of Chapter VII.

shall see there, a certain type of analytic behaviour appears to be “universal” in trees,
namely the occurrence of a +/ -singularity; accordingly, most tree families arising in
the combinatorial world have counting sequences obeying a universal asymptotic form
C A"n=3/2, which widely extends what we obtained elementarily for Catalan numbers
on p. 38. A synopsis of what awaits us in this section is given in Figure I.13.

I.5.1. Plane trees. Trees are commonly defined as undirected acyclic connected
graphs. In addition, the trees considered in this book are, unless otherwise specified,
rooted (Appendix A.9: Tree concepts, p. 737 and [377, §2.3]). In this subsection, we
focus attention on plane trees, also sometimes called ordered trees, where subtrees
dangling from a node are ordered between themselves. Alternatively, these trees may
be viewed as abstract graph structures accompanied by an embedding into the plane.
They are precisely described in terms of a sequence construction.

First, consider the class G of general plane trees where all node degrees are al-
lowed (this repeats material on p. 35): we have

Z
66 = Z x SE - Giz) = ———,
(66) G Q9) @=1=G6m
1 —+/1—4z

and, accordingly, G(z) = fz’ so that the number of general trees of size n
is a shifted Catalan number:

1/2n—-2
(67) Gy =Cy1= - .

n\n—1

Many classes of trees defined by all sorts of constraints on properties of nodes
appear to be of interest in combinatorics and in related areas such as formal logic and
computer science. Let 2 be a subset of the integers that contains 0. Define the class
T of Q-restricted trees as formed of trees such that the outdegrees of nodes are
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constrained to lie in 2. In what follows, an essential rdle is played by a characteristic
function that encapsulates €2,
Gu) =Y u®.

we
Thus, Q = {0, 2} determines binary trees, where each node has either 0 or 2 descen-
dants, so that ¢ (u) = 1 4 u?; the choices Q = {0, 1,2} and Q = {0, 3} determine,
respectively, unary—binary trees (¢ (u) = 1+u+u2) and ternary trees (¢ (u) = 1+u3);
the case of general trees corresponds to 2 = Zxo and ¢ (u) = (1 — u)~ L
Proposition L.5. The ordinary generating function T (z) of the class TS of Q-
restricted trees is determined implicitly by the equation

T%(2) = 2¢(T(2)),

where ¢ is the characteristic of Q, namely ¢ (u) = Y ) u®. The tree counts are
given by

1
(68) It = [T = — " )"

A class of trees whose generating function satisfies an equation of the form y =
z¢(y(2)) is also called a simple variety of trees. The study of such families (in the
unlabelled and labelled cases alike) is one of the recurrent themes of this book.

Proof. Clearly, for Q-restricted sequences, we have
A = SEQq(B) = A(z) = ¢(B(2)),
SO
T9=2ZxSEQ(TY =  T%2) =z20(TQ).
This shows that T = T is related to z by functional inversion:
T
o(T)
The Lagrange Inversion Theorem precisely provides expressions for such a case (see Ap-

pendix A.6: Lagrange Inversion, p. 732 for an analytic proof and Note 1.47, p. 75, for
combinatorial aspects):

Z

Lagrange Inversion Theorem. The coefficients of an inverse function and of all its
powers are determined by coefficients of powers of the direct function: if z = T /¢ (T),
then one has (with any k € Z>):

n 1 n—1 n n k k n—k n
(69) [z"1T(2) = ;[w Jp(w)", [2"1T (2)" = ;[w 1o (w)".
The theorem immediately implies (68). |

The form relative to powers T* in (69) is known as “Biirmannn’s form” of La-
grange inversion; it yields the counting of (ordered) k—forests, which are k—sequences
of trees. Furthermore, the statement of Proposition 1.5 extends trivially to the case
where €2 is a multiset; that is, a set of integers with repetitions allowed. For instance,
Q = {0, 1, 1, 3} corresponds to unary—ternary trees with two types of unary nodes,
say, having one of two colours; in this case, the characteristic is ¢ (1) = u®+2ul +u3.
The theorem gives back the enumeration of general trees, where ¢ (1) = (1 — w)~ L by
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e

Figure I.14. A general tree of Gs; (left) and a binary tree of T 2 = Bys (right)
drawn umformly at random among the Cs5q and C»5 possible trees respectlvely, with

Cp = n_lH ( "), the nth Catalan number.

way of the binomial theorem applied to (1 — u)™". In general, it implies that, when-
ever 2 comprises r elements, Q@ = {wy, ..., »;}, the tree counts are expressed as an
(r — 1)-fold summation of binomial coefficients (use the multinomial expansion). An
important special case detailed in the next two examples below is when €2 has only
two elements.

Example 1.13. Binary trees and Catalan numbers. A binary tree is a rooted plane tree, in
which every node has either 0 or 2 successors (Figure 1.14). In this case, it is customary to
consider size to be the number of internal “branching” nodes, and we shall do so in most of the
analyses to come. (By elementary combinatorics, if such a tree has v internal nodes, it has v+ 1
external nodes, hence it comprises 2v + 1 nodes in total.) The specification and OGF of the
class B of binary trees are then

B=14+(ZxBxB) = B =1+zB()?

(observe the structural analogy with triangulations in (31), p. 36), so that

1—-+v1—-4 1 2,
B(z) = S s o and B, = < n>7

2z n+1
again a Catalan number (with a shift of index when compared to (67)). In summary:

The number By of plane binary trees having n internal nodes, i.e., (n 4+ 1) external nodes

and (2n + 1) nodes in total, is the Catalan number B, = C,, = ﬁ (2nn)

If one considers all nodes, internal and external alike, as contributing to size, the corres-
ponding specification and OGF become

B=2z+((ZxBxB :>§(z)=z(1+1’§(z)2),

and the Lagrangean form is recovered (as well as §2n+ 1 = By), withepu) = (1+ u?).

Alternatively, consider the class BB of pruned binary trees, which are binary trees stripped
of their external nodes (Appendix A.9: Tree concepts, p. 737), where only trees in B \ By are
taken. The corresponding class B satisfies (upon distinguishing left- and right-branching unary
nodes of the pruned tree)

B=2+ExB+ExB+ExBxB) = B@=:(1+B®)

which is now Lagrangean with ¢ (1) = (1 + u)2. These calculations, all with a strongly similar
flavour, are explained by natural bijections in Subsection .53, p. 73. .................... ]
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B> 1.38. Forests. Consider ordered k—forests of trees defined by F = SEQg (7). The general
form of Lagrange inversion implies

["1F(2) = ["T (2)F = S[u”*k] ).

In particular, one has for forests of general trees (¢ (1) = (1 — u)71 ):
k
a1 —~1—4z k(2n—k—1
M —5—) == ;
2 n n—1

the coefficients are also known as “ballot numbers”. <

Example 1.14. “Regular” (t—ary) trees. A tree is said to be r—regular or t—ary if Q2 consists
only of the elements {0, ¢} (the case t = 2 gives back binary trees). In other words, all internal
nodes have degree ¢ exactly. Let A := 7 {0.7} In this case, the characteristic is ¢ (u) = 1 + u’
and the binomial theorem combined with the Lagrange inversion formula gives

Ap

l [MVL—I] (1 + uf)ﬂ
n

1
= f(nr_ll) provided n = 1 mod ¢.
n
7
As the formula shows, only trees of total size of the form n = tv + 1 exist (a well-known fact

otherwise easily checked by induction), and

1 tv+1 1 tv
70 A = = .
0) vt tv—l—l( v ) (t—l)v+l<v)

As in the binary case, there is a variant of the determination of (70) that avoids congruence
restrictions. Define the class A of “pruned” trees as trees of A \ Ag deprived of all their
external nodes. The trees in .A now have nodes that are of degree at most . In order to make
A bijectively equivalent to A , it suffices to regard trees of A as having (;) possible types of

nodes of degree j, for any j € [0, ¢]: each node type in A plainly encodes  which of the original
t — j subtrees have been pruned. With Q now being a multiset, we find ¢(u) = (1 + u)’ and
A(z) = z¢(A(2)), so that, by Lagrange inversion,

— 1/ tv 1 ty
Ay = - = N s
viv—1 t—DHv+1\v
yet another form of (70), SINCE Ay = Ajpyi 1. «eeeeennnnniiiiitt et aaeieeaannn |

B> 1.39. Unary-binary trees and Motzkin numbers. Let M be the class of unary—binary trees:
1—z—v1—-2z-3z%
2z '

Onehas M(z2) = 24+ 22 +22°3 +4z* +925 + 2170+ 5177 + - - -. The coefficients M,, =
[z 1M (z), known as Motzkin numbers (EIS A001006), are given by

=22 ()6

as a consequence of the Lagrange Inversion Theorem. <

M = Z x SEQ<2(M) = M(z) =

> 1.40. Yet another variant of t—ary trees. Let A be the class of t—ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

A= Z + SEQ,(A).
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The binomial form of A, follows from Lagrange inversion, since A=z /(1 — A'=1) Can this
last relation be interpreted combinatorially? <

Example 1.15. Hipparchus of Rhodes and Schroder. In 1870, the German mathematician Ernst
Schroder (1841-1902) published a paper entitled Vier combinatorische Probleme. The paper
had to do with the number of terms that can be built out of n variables using non-associative
operations. In particular, the second of his four problems asks for the number of ways a string
of n identical letters, say x, can be “bracketed”. The rule is best stated recursively: x itself is a
bracketing and if o1, 07, ..., o} with k > 2 are bracketed expressions, then the k—ary product
(o107 - - - 0%) is a bracketing. For instance: (((x x)x(x xx))((x x)(x x)x)).

Let S denote the class of all bracketings, where size is taken to be the number of variable
instances. Then, the recursive definition is readily translated into the formal specification (with
Z representing x) and the OGF equation:

5()?
1-S@)
Indeed, to each bracketing of size n is associated a tree whose external nodes contain the vari-
able x (and determine size), with internal nodes corresponding to bracketings and having degree
at least 2 (while not contributing to size).

The functional equation satisfied by the OGF is not a priori of the type correspond-
ing to Proposition 1.5, because not all nodes contribute to size in this particular application.
Note 1.41 provides a reduction to Lagrangean form; however, in a simple case like this, the
quadratic equation induced by (71) is readily solved, giving

! 2
Z<1 +2-V1-62+22)
2+ 22 4323 + 11z* + 452 + 19720 + 90377 + 427928 +207932°

+ 103049710 + 518859711 + ... |

(71) S =Z 4+ SEQ>2(S) = Si)=z+

S(2)

where the coefficients are EIS A001003. (These numbers also count series—parallel networks of
a specified type (e.g., serial in Figure I.15, bottom), where placement in the plane matters.)

In an instructive paper, Stanley [553] discusses a page of Plutarch’s Moralia where there
appears the following statement:

“Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this
by showing that on the affirmative side there are 103 049 compound statements, and
on the negative side 310952.)”

It is notable that the tenth number of Hipparchus of Rhodes'? (c. 190-120Bc) is precisely
S10 = 103 049. This is, for instance, the number of logical formulae that can be formed from
ten boolean variables xp, .. ., x10 (used once each and in this order) using and—or connectives in
alternation (no “negation”), upon starting from the top in some conventional fashion!3, e. g, with

12This was first observed by David Hough in 1994; see [553]. In [315], Habsieger et al. further note
that %(S 10+ S11) = 310954, and suggest a related interpretation (based on negated variables) for the other
count given by Hipparchus.

13Any functional term admits a unique tree representation. Here, as soon as the root type has been
fixed (e.g., an A connective), the others are determined by level parity. The constraint of node degrees > 2
in the tree means that no superfluous connectives are used. Finally, any monotone boolean expression can
be represented by a series—parallel network: the x; are viewed as switches with the frue and false values
being associated with closed and open circuits, respectively.
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(x1) A (x2 V (x3 A xq A X5) V X6) A (X7 A X8) V (X9 A X10))

A\
x1// V\\/ \/\
R /‘\ X6 A A
/N /N /N
X3 X4 X5 X7 Xy X9 X0
(2] (7 {7
N {*3 f— %4 |— %5 ] —
(%6 | % 0]

Figure I.15. An and-or positive proposition of the conjunctive type (top), its associ-
ated tree (middle), and an equivalent planar series—parallel network of the serial type
(bottom).

an and-clause; see Figure I1.15. Hipparchus was naturally not cognizant of generating functions,
but with the technology of the time (and a rather remarkable mind!), he would still be able to
discover a recurrence equivalent to (71),

(72) Sp=1ln=>2] >SSy Swy | =11,
ni+--+ng=n

where the sum has only 42 essentially different terms for n = 10 (see [553] for a discussion),
and finally determine Syg. .. ....o.vinniin it e |

B> 1.41. The Lagrangean form of Schroder’s GF. The generating function S(z) admits the form

-y
$(z) =z2¢(8(z)) where ¢(y) =
1 -2y
is the OGF of compositions. Consequently, one has
1 1—u\"
S e — n—1
no= (1 - 2u>
n—2

_(=pr! e ntk—1\y 1 m—k—2\(n—2
- n Xk:(_z) <k+1)( k ) - nkgg)( n—1 )( k )

Is there a direct combinatorial relation to compositions? <

B> 1.42. Faster determination of Schroder numbers. By forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n+DSp42 =320+ DSy + (1= DS =0,  n=1,

that entails a fast determination, in linear time, of the S,. (This technique, which originates
with Euler [199], is applicable to any algebraic function; see Appendix B.4: Holonomic func-
tions, p. 748.) In contrast, Hipparchus’s recurrence (72) implies an algorithm of complexity
exp(0(4/n)) in the number of arithmetic operations involved. <
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I.5.2. Non-plane trees. An unordered tree, also called non-plane tree, is just
a tree in the general graph-theoretic sense, so that there is no order between subtrees
emanating from a common node. The unordered trees considered here are furthermore
rooted, meaning that one of the nodes is distinguished as the root. Accordingly, in the
language of constructions, a rooted unordered tree is a root node linked to a multiset
of trees. Thus, the class H of all unordered trees, admits the recursive specification:

H@ =z [[a—-zm
(73) H=2Zx MSET(H) = m=1

:zexp<H(z)+%H(Z2)+...>.

The first form of the OGF was given by Cayley in 1857 [67, p. 43]; it does not admit
a closed form solution, although the equation permits one to determine all the H,
recursively (EIS A000081):

H(z) = 2+ 22 +22° +42* + 92° + 2028 + 4827 + 11528 +2862° + - - - .
The enumeration of the class of trees defined by an arbitrary set Q2 of node degrees

immediately results from the translation of sets of fixed cardinality.

Proposition 1.6. Let 2 C N be a finite set of integers containing 0. The OGF U (z) of
non-plane trees with degrees constrained to lie in Q satisfies a functional equation of
the form

(74) U(z) = z0U(2), U(Z?), U, ...),

for some computable polynomial ®.

Proof. The class of trees satisfies the combinatorial equation,

U = Z x MSETq(U) <MSETQ(U) = Z MSETw(U)) ,

we

where the multiset construction reflects non-planarity, since subtrees stemming from
a node can be freely rearranged between themselves and may appear repeated. An-
ticipating on what we shall see later, we note that Theorem 1.3 (p. 84) provides the
translation of MSET; (UA):

2
PU(), UG UE@),..)= Z [u”] exp (%U(z) + %U(zz) 4. ) )

we
The statement then follows immediately. |

In the area of non-plane tree enumerations, there are no explicit formulae but only
functional equations implicitly determining the generating functions. However, as we
shall see in Section VIL. 5 (p. 475), the equations may be used to analyse the dominant
singularity of U(z). We shall find that a “universal” law governs the singularities of
simple tree generating functions, either plane or non-plane (Figure 1.13): the singu-
larities are of the general type /1 — z/p, which, by singularity analysis, translates
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into
n
Q (,BQ)
(75) U, Ao

Nk

Many of these questions have their origin in enumerative combinatorial chemistry, a
subject started by Cayley in the nineteenth century [67, Ch. 4]. Pélya re-examined
these questions, and, in his important paper [488] published in 1937, he developed
at the same time a general theory of combinatorial enumerations under group actions
and systematic methods giving rise to estimates such as (75). See the book by Harary
and Palmer [319] for more on this topic or Read’s edition of Pélya’s paper [491].

> 1.43. Fast determination of the Cayley—Polya numbers. Logarithmic differentiation of H (z)

provides for the H;, a recurrence by which one computes Hj, in time polynomial in n. (Note: a
similar technique applies to the partition numbers Py ; see p. 42.) <

> 1.44. Binary non-plane trees. Unordered binary trees ), with size measured by the number
of external nodes, are described by the equation V = Z 4+ MSET, (V). The functional equation
determining V (z) is

1 2, L, - 2,3 4 5
(76) V(Z)=Z+§V(Z) +§V(Z ), V@=z4+z"4+z27+27"+3z27+---.

The asymptotic analysis of the coefficients (EIS A001190) was carried out by Otter [466] who
established an estimate of type (75). The quantity Vj, is also the number of structurally distinct
products of n elements under a commutative non-associative binary operation. <

> 1.45. Hierarchies. Define the class /C of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. We have (Cayley 1857, see [67, p.43])

2
from which the first values are found (EIS A000669)

K =Z+MSET>(K) = K(z)=%Z—l—l|:exp<K(z)+%K(zz)+-~>—1],

K(z) =z+2% +22° + 52 +122° + 3320 49077 + 26128 + 7662° + 2312710 + . ..

These numbers also enumerate hierarchies in statistical classification theory [585]. They are the
non-planar analogues of the Hipparchus—Schréder numbers on p. 69.

> 1.46. Non-plane series—parallel networks. Consider the class SP of series—parallel networks
as previously considered in relation to the Hipparchus example, p. 69, but ignoring planar em-

beddings: all parallel arrangements of the (serial) networks s, ..., s; are considered equiva-
lent, while the linear arrangement in each serial network matters. For instance, forn = 2, 3:

oo 1) oo [o] 991 of3) [Fer
Thus, SP, =2 and SP3 = 5. This is modelled by the grammar:
S = Z + SEQ=2(P), P = Z + MSET>2(S),
and, avoiding to count networks of one element twice,

SP(2) = S(z) + P(2) — z = 2 +22% + 52> + 15z* + 4827 +1672° + 60227 + 225628 + - - -,
(EIS A003430). These objects are usually described as networks of electric resistors. <



“book” — 2008/10/3 — 16:05 — page 73 — #87

I.5. TREE STRUCTURES 73

I.5.3. Related constructions. Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalan numbers, C, = ¢ (2:) count
general trees (G) of size n + 1, binary trees (B3) of size n (if size is defined as the
number of internal nodes), as well as triangulations (7)) comprised of n triangles.
The combinatorialist John Riordan even coined the name Catalan domain for the area
within combinatorics that deals with objects enumerated by Catalan numbers, and
Stanley’s book contains an exercise [554, Ex. 6.19] whose statement alone spans ten
full pages, with a list of 66 types of object(!) belonging to the Catalan domain. We
shall illustrate the importance of Catalan numbers by describing a few fundamental
correspondences (combinatorial isomorphisms, bijections) that explain the occurrence
of Catalan numbers in several areas of combinatorics.

Rotation of trees. The combinatorial isomorphism relating G and B (albeit with
a shift in size) coincides with a classical technique of computer science [377, §2.3.2].
To wit, a general tree can be represented in such a way that every node has two types
of links, one pointing to the left-most child, the other to the next sibling in left-to-right
order. Under this representation, if the root of the general tree is put aside, then every
node is linked to two other (possibly empty) subtrees. In other words, general trees
with n nodes are equinumerous with pruned binary trees with n — 1 nodes:

gn = Bn—l .
Graphically, this is illustrated as follows:

The right-most tree is a binary tree drawn in a conventional manner, following a 45°
tilt. This justifies the name of “rotation correspondence” often given to this transfor-
mation.

Tree decomposition of triangulations. The relation between binary trees B and
triangulations 7 is equally simple: draw a triangulation; define the root triangle as
the one that contains the edge connecting two designated vertices (for instance, the
vertices numbered O and 1); associate to the root triangle the root of a binary tree;
next, associate recursively to the subtriangulation on the left of the root triangle a left
subtree; do similarly for the right subtriangulation giving rise to a right subtree.
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Under this correspondence, tree nodes correspond to triangle faces, while edges con-
nect adjacent triangles. What this correspondence proves is the combinatorial isomor-
phism
T, = B,.
We turn next to another type of objects that are in correspondence with trees.

These can be interpreted as words encoding tree traversals and, geometrically, as paths
in the discrete plane Z x Z.

Tree codes and Lukasiewicz words. Any plane tree can be traversed starting from
the root, proceeding depth-first and left-to-right, and backtracking upwards once a
subtree has been completely traversed. For instance, in the tree

(77) T =

the first visits to nodes take place in the following order
as b k] dv h ’ ev f kl C» g ’ i’ .] *

(Note: the tags a, b, . . ., added for convenience in order to distinguish between nodes,
have no special meaning; only the abstract tree shape matters here.) This order is
known as preorder or prefix order since a node is preferentially visited before its
children.

Given a tree, the listing of the outdegrees of nodes in prefix order is called the
preorder degree sequence. For the tree of (77), this is

o =(2,3,1,00,0,1,2,0,0).

It is a fact that the degree sequence determines the tree unambiguously. Indeed, given
the degree sequence, the tree is reconstructed step by step, adding nodes one after the
other at the left-most available place. For o, the first steps are then

Next, if one represents degree j by a “symbol” f;, then the degree sequence becomes
a word over the infinite alphabet F = { foy, f1, ...}, for instance,

o ~ f2 f3f1 fofoSfof1/20fo

This can be interpreted in the language of logic as a denotation for a functional term
built out of symbols from JF, where f; represents a function of degree (or “arity”)
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Jj- The correspondence even becomes obvious if superfluous parentheses are added at
appropriate places to delimit scope:

o~ [(f3(f1(fo), fo, f0). [1(f2(fo, f0))).

Such codes are known as F.ukasiewicz codes!?, in recognition of the work of the Polish
logician with that name. Jan Lukasiewicz (1878-1956) introduced them in order to
completely specify the syntax of terms in various logical calculi; they prove nowadays
basic in the development of parsers and compilers in computer science.

Finally, a tree code can be rendered as a walk over the discrete lattice Z x Z.
Associate to any f; (i.e., any node of outdegree j) the displacement (1, j—1) € Zx Z,
and plot the sequence of moves starting from the origin. In our example we find:

i o o o St 2 fo Sfo
1 2 0 -1 -1 -1 0 1 -1 —1.

There, the last line represents the vertical displacements. The resulting paths are
known as Lukasiewicz paths. Such a walk is then characterized by two conditions:
the vertical displacements are in the set {—1, 0, 1, 2, .. .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Lukasiewicz paths with n steps is the

. 1 212
shifted Catalan number, - (7"7)).

> 1.47. Conjugacy principle and cycle lemma. Let L be the class of all Lukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at level —1 but is otherwise allowed
to include arbitrary negative points; let M be the corresponding class. Then, each relaxed path
can be cut-and-pasted uniquely after its left-most minimum as described here:

This associates to every relaxed path of length v a unique standard path. A bit of combinatorial
reasoning shows that correspondence is 1-to-v (each element of £ has exactly v preimages.)
One thus has M, = vL,. This correspondence preserves the number of steps of each type
(f0, f1, - - ), so that the number of Lukasiewicz paths with v; steps of type f; is

1 v 1
f[x_lugoull)l~~~]<x_1u0+u1+xu2+x2u3+~~~) =7< Y ),
v v \vg, V1, ...

144 Jess dignified name is “Polish prefix notation”. The “reverse Polish notation” is a variant based
on postorder that has been used in some calculators since the 1970s.
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under the necessary condition (—1)vg + Ovy + 1vy + 2v3 + - - - = —1. This combinatorial way
of obtaining refined Catalan statistics is known as the conjugacy principle [503] or the cycle
lemma [129, 155, 184]. It is logically equivalent to the Lagrange Inversion Theorem, as shown
by Raney [503]. Dvoretzky & Motzkin [184] have employed this technique to solve a number
of counting problems related to circular arrangements. <

Example 1.16.  Binary tree codes and Dyck paths. Walks associated with binary trees have
a very special form since the vertical displacements can only be +1 or —1. The paths result-
ing from the Lukasiewicz correspondence are then equivalently characterized as sequences of
numbers x = (xg, X1, ..., X2, X2,+1) satisfying the conditions

(78) x0=0; xj >0 forl<j<2nm |xjr1 —xj| =1 Xopy = —1.
These coincide with “gambler ruin sequences”, a familiar object from probability theory: a
player plays head and tails. He starts with no capital (xo = 0) at time 0; his total gain is x; at
time j; he is allowed no credit (x; > 0) and loses at the very end of the game x, 1 = —1; his
gains are +1 depending on the outcome of the coin tosses (}xj_H —Xx j| =1).

It is customary to drop the final step and consider “excursions’ that take place in the upper
half-plane. The resulting objects defined as sequences (xg = 0, x(,...,x2,-1, %2, = 0)
satisfying the first three conditions of (78) are known in combinatorics as Dyck paths'3. By
construction, Dyck paths of length 2n correspond bijectively to binary trees with n internal
nodes and are consequently enumerated by Catalan numbers. Let D be the combinatorial class
of Dyck paths, with size defined as length. This property can also be checked directly: the
quadratic decomposition

(79
D = {et + (D) xD
= D@ = I + (zD(2)z) D(2).
From this OGF, the Catalan numbers are found (as expected): Dj, = ﬁ (211”) The decom-

position (79) is known as the “first passage” decomposition as it is based on the first time the
accumulated gain in the coin-tossing game passes through the value zero.

Dyck paths also arise in connection will well-parenthesized expressions. These are recog-
nized by keeping a counter that records at each stage the excess of the number of opening
brackets “(” over closing brackets “)”. Finally, one of the origins of the Dyck path is the famous
ballot problem, which goes back to the nineteenth century [423]: there are two candidates A
and B that stand for election, 2n voters, and the election eventually results in a tie; what is the
probability that A is always ahead of or tied with B when the ballots are counted? The answer is

Dy 1
(2;') T n+41

since there are (2;’) possibilities in total, of which the number of favourable cases is D5,,, a Cata-
lan number. The central r6le of Dyck paths and Catalan numbers in problems coming from such
diverse areas is quite remarkable. Section V. 4, p. 318 presents refined counting results regarding
lattice paths (e.g., the analysis of height) and Subsection VII. 8.1, p. 506 introduces exact and as-
ymptotic results in the harder case of an arbitrary finite collection of step types (not just +=1). W

15Dyck paths are closely associated with free groups on one generator and are named after the German
mathematician Walther (von) Dyck (1856—-1934) who introduced free groups around 1880.
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> 1.48. Dyck paths, parenthesis systems, and general trees. The class of Dyck paths admits an
alternative sequence decomposition

v 200 aafa LA

D = SEQZxDx2),

which again leads to the Catalan GF. The decomposition (80) is known as the “arch decom-
position” (see Subsection V. 4.1, p. 319, for more). It can also be directly related to traversal
sequences of general trees, but with the directions of edge traversals being recorded (instead of
traversals based on node degrees): for a general tree 7, define its encoding « (7) over the binary
alphabet { 7, \} recursively by the rules:

K@ =€ k(o) =/ k(1) k(1) N

This is the classical representation of trees by a parenthesis system (interpret 7 and “\;” as
“(” and “)”, respectively), which associates to a tree of n nodes a path of length 2n — 2. <

> 1.49. Random generation of Dyck paths. Dyck paths of length 2n can be generated uniformly
at random in time linear in n. (Hint: By Note .47, it suffices to generate uniformly a sequence
of n as and (n + 1) bs, then reorganize it according to the conjugacy principle.)

> 1.50. Excursions, bridges, and meanders. Adapting a terminology from probability theory,
one sets the following definitions: (i) a meander (M) is a word over {—1, +1}, such that the
sum of the values of any of its prefixes is always a non-negative integer; (ii) a bridge (B) is a
word whose values of letters sum to 0. Thus a meander represents a walk that wanders in the
first quadrant; a bridge, regarded as a walk, may wander above and below the horizontal line,
but its final altitude is constrained to be 0; an excursion is both a meander and a bridge. Simple
decompositions provide

7T 1-2D()’ C1-22D(@)]
implying My, = (|,})) [EIS A001405] and By, = (%) [EIS A000984]. <

> L.51. Motzkin paths and unary-binary trees. Motzkin paths are defined by changing the
third condition of (78) defining Dyck paths into |x jHl— X j| < 1. They appear as codes for
unary-binary trees and are enumerated by the Motzkin numbers of Note 1.39, p. 68. <

Example 1.17.  The complexity of boolean functions. ~ Complexity theory provides many
surprising applications of enumerative combinatorics and asymptotic estimates. In general,
one starts with a finite set of abstract mathematical objects 2 and a combinatorial class D
of concrete descriptions. By assumption, to every element of § € D is associated an object
() € €, its “meaning”; conversely any object of 2 admits at least one description in D
(that is, the function w is surjective). It is then of interest to quantify properties of the shortest
description function defined for w € Q as

o(w) :==min{|8|p | n®) =},

and called the complexity of the element w € 2 (with respect to D).

We take here Q2 to be the class of all boolean functions on m variables. Their number is
1] = 22" As descriptions, we adopt the class of logical expressions involving the logical
connectives Vv, A and pure or negated variables. Equivalently, D is the class of binary trees,
where internal nodes are tagged by a logical disjunction (“v”’) or a conjunction (“A”), and each
external node is tagged by either a boolean variable of {x{, ..., x;;} or a negated variable of
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{=x1, ..., —x;}. Define the size of a tree description as the number of internal nodes; that is,
the number of logical operators. Then, one has
1 2n
1) D, = 22" 2m)"
n+1\n

as seen by counting tree shapes and possibilities for internal as well as external node tags.
The crux of the matter is that if the inequality

vV
(82) > Dj <l
j=0

holds, then there are not enough descriptions of size < v to exhaust 2. (This is analogous to the
coding argument of Note 1.23, p. 53.) In other terms, there must exist at least one object in
whose complexity exceeds v. If the left side of (82) is much smaller than the right side, then it
must even be the case that “most” Q2—objects have a complexity that exceeds v.

In the case of boolean functions and tree descriptions, the asymptotic form (33) is available.
From (81) it can be seen that, for n, v getting large, one has

%
Dy = 0(16"m"n=3/2), ZD/ = 0(16"m"v=3/2.
j=0

Choose v such that the second expression is o(||€2]|), which is ensured for instance by taking for
v the value

2m

vim) = ——.
4 4 logy m

With this choice, one has the following suggestive statement:

A fraction tending to 1 (as m — 00) of boolean functions in m variables have tree complexity

at least 2™ /(4 + log, m).

Regarding upper bounds on boolean function complexity, a function always has a tree
complexity that is at most 2m+1 _ 3 To see this, note that for m = 1, the four functions are

OE(xlA—'xl), 1 E(xl \/—'xl), X1, TX1.

Next, a function of m variables is representable by a technique known as the binary decision
tree (BDT),

FX1y s X1, Xm) = (—-xm Af(xl,...,xm,l,O)) V(xm ANFX], e X1, 1)),

which provides the basis of the induction as it reduces the representation of an m—ary func-
tion to the representation of two (m — 1)—ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boolean functions have a
tree-complexity (2" /logm) that is fairly close to the maximum possible, namely, O(2"). A
similar result has been established by Shannon for the measure called circuit complexity: cir-
cuits are more powerful than trees, but Shannon’s result states that almost all boolean functions
of m variables have circuit complexity O (2™ /m). See the chapter by Li and Vitdnyi in [591]
and Gardy’s survey [283] on random boolean expressions for a discussion of such counting
techniques within the framework of complexity theory and logic. We resume this thread in Ex-
ample VII.17, p. 487, where we quantify the probability that a large random boolean expression
computes a fixed fUNCLION. .. ... ... .ot s |
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I.5.4. Context-free specifications and languages. Many of the combinatorial
examples encountered so far in this section can be organized into a common frame-
work, which is fundamental in formal linguistics and theoretical computer science.

Definition I.13. A class C is said to be context-free if it coincides with the first com-
ponent (T = S1) of a system of equations

S = 512, S81,....8)
(83)
Sr = Sr(Z,Slw--,Sr),

where each § j is a constructor that only involves the operations of combinatorial sum
(+) and cartesian product (X ), as well as the neutral class, £ = {€}.

A language L is said to be an unambiguous context-free language if it is combi-
natorially isomorphic to a context-free class of trees: C = 7T.

The classes of general trees (G) and binary trees (B3) are context-free, since they
are specifiable as

g ZxF
F = {e}+(@G xF), B=2Z+(BxDB);

here F designates ordered forests of general trees. Context-free specifications may
be used to describe all sorts of combinatorial objects. For instance, the class U =
T \ 7oy of non-empty triangulations of convex polygons (Note 10, p. 36) is specified
symbolically by

(84) U=VH+ VXU +UXV)+UXV xU),

where V = Z represents a generic triangle. The Lukasiewicz language and the set of
Dyck paths are context-free classes since they are bijectively equivalent to G and .

The term “context-free” comes from linguistics: it stresses the fact that objects
can be “freely” generated by the rules of (83), this without any constraints imposed
by an outside context'®. There, one classically defines a context-free language as
the language formed with words that are obtained as sequences of leaf tags (read in
left-to-right order) of a context-free variety of trees. In formal linguistics, the one-to-
one mapping between trees and words is not generally imposed; when it is satisfied,
the context-free language is said to be unambiguous; in such cases, words and trees
determine each other uniquely, cf Note 1.54 below.

An immediate consequence of the admissibility theorems is the following propo-
sition first encountered by Chomsky and Schiitzenberger [119] in the course of their
research relating formal languages and formal power series.

16Formal language theory also defines context-sensitive grammars where each rule (called a produc-
tion) is applied only if it is enabled by some external context. Context-sensitive grammars have greater
expressive power than context-free ones, but they depart significantly from decomposability and are sur-
rounded by strong undecidability properties. Accordingly, context-sensitive grammars cannot be associated
with any global generating function formalism.
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SR Wy

Figure I.16. A directed animal, its tilted version, (after a 4+ /4 rotation), and three
of its equivalent representations as a heap of dimers.

Proposition 1.7. A combinatorial class C that is context-free admits an OGF that is
an algebraic function. In other words, there exists a (non-null) bivariate polynomial
P(z,y) € Clz, y] such that

P(z,C(2)) =0.

Proof. By the basic sum and product rules, the context-free system (83) translates into
a system of OGF equations,

Si(m) = @1z 8512, ..., 85(2)

S = Pz, 851(2), ..., 5 (2),

where the ®; are the polynomials translating the constructions ;.

It is then well known that algebraic elimination is possible in polynomial sys-
tems. Here, it is possible to eliminate the auxiliary variables S», ..., S, one by one,
preserving the polynomial character of the system at each stage. The end result is
then a single polynomial equation satisfied by C(z) = Si(z). (Methods for effec-
tively performing polynomial elimination include a repeated use of resultants as well
as Grobner basis algorithms; see Appendix B.1: Algebraic elimination, p. 739 for a
brief discussion and references.) |

Proposition 1.7 is a counterpart of Proposition 1.3 (p. 57) according to which ratio-
nal generating functions arise from finite state devices, and it justifies the importance
of algebraic functions in enumeration theory. We shall encounter applications of such
algebraic generating functions to planar non-crossing configurations (p. 485) walks
(p- 506) and planar maps (p. 513), when we develop a general asymptotic theory of
their coefficients in Chapter VII, based on singularity theory. The example below
shows the way certain lattice configurations can be modelled by a context-free speci-
fication.

Example 1.18. Directed animals. Consider the square lattice 72. A directed animal with a
compact source of size k is a finite set of points « of the lattice such that: (i) for 0 <i < k, the
points (—i, i), called source points, belong to «; (ii) all other points in « can be reached from
one of the source points by a path made of North and East steps and having all its vertices in «.
(The animal in Figure 1.16 has one source.) Such lattice configurations have been introduced
by statistical physicists Dhar er al. [162], since they provide a tractable model of 2-dimensional
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percolation. Our discussion follows Bousquet-Mélou’s insightful presentation in [84], itself
based on Viennot’s elegant theory of heaps of pieces [597].

The best way to visualize an animal is as follows (Figure 1.16): rotate the lattice by +m /4
and associate to each vertex of the animal a horizontal piece, also called a dimer. The length of
a piece is taken to be slightly less than the diagonal of a mesh of the original lattice. Pieces are
allowed to slide vertically (up or down) in their column, but not to jump over each other. One
can then think of an animal as being a heap of pieces, where pieces take their places naturally,
under the effect of gravity, and each one stops as soon as it is blocked by a piece immediately
below. (The heap associated to an animal satisfies the additional property that no two pieces in
a column can be immediately adjacent to one another.)

Define a pyramid to be a one-source animal and a half-pyramid to be a pyramid that has
no vertex strictly to the left of its source point, in the tilted representation. Let P and H be
respectively the class of pyramids and half-pyramids, viewed as heaps. By a corner decomposi-
tion (Note 1.52), pyramids and half-pyramids can be constructed as suggested by the following

o = [+ 1/
=/
- e W W

(85)

The pictorial description (85) is equivalent to a context-free specification:

P = H+PxH . P=H+PH
H = Z4+ZxHELZxHXP H=z+zH+zH?,

in which the second equation, a quadratic, is readily solved to provide H, which in turn gives
P, by the first equation. One finds:

1 [T
P@ = 2<V1j3zz_]>

2 +222+583+1324+355+...

(86)
l-z—/0+2)(1-3
H(z) = : (22 . 2 =z+22 423 +424 495+,

corresponding respectively to EIS A005773 and EIS A001006 (Motzkin numbers, cf Notes 1.39,
p- 68 and .51, p. 77). See Example VI.3 and Note VIL.11, p. 396, for relevant asymptotics.

Similar constructions permit us to decompose compact-source directed animals, whose
class we denote by .A. For instance:

g -\

Compact-source animals with k sources are then specified by P x SEQj_ (H), and we have

~ Pz
87) ASPxSRM) = A =T =5
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where the last form results from basic algebraic simplifications. A consequence of (87) is the
surpringly simple (but non-trivial) result that there are 3n-l compact-source animals of size n.
The papers [61, 87] develop further aspects of the rich counting theory of animals. ........ |

B> 1.52. Understanding animals. In the first equation of (85), a pyramid m that is not a half-
pyramid has a unique dimer which is of lowest altitude and immediately to the left of the source.
Take that dimer and push it upwards, in the direction of imaginary infinity; it will then carry with
it a group of dimers that constitute, by construction, a pyramid w. What remains has no dimer
to the left of its source, and hence forms a half-pyramid x. The following diagram illustrates
the decomposition, with the dimers of w equipped with an upward-pointing arrow:

Conversely, given a pair (w, x) € P x 'H, attach first x to the base; then, let w fall down from
imaginary infinity. The dimers of w will take their place above the dimers of x, blocked in
various manners on their way down, the whole set eventually forming a pyramid. A moment
of reflection convinces one that the original pyramid 7 is recovered in this way; that is, the
transformation & — (w, x) is bijective.

B> 1.53.“Tree-like” structures. A context-free specification can always be regarded as defining
a class of trees. Indeed, if the jth term in the construction §; of (83) is “coloured” with the
pair (7, j), it is seen that a context-free system yields a class of trees whose nodes are tagged by
pairs (i, j) in a way consistent with the system’s rules. However, despite this correspondence,
it is often convenient to preserve the possibility of operating directly with objects when the tree
aspect may be unnatural. (Some authors have developed a parallel notion of “object grammars”;
see for instance [183], itself inspired by techniques of polyomino surgery in [150].) By a termi-
nology borrowed from the theory of syntax analysis in computer science, such trees are referred
to as “parse trees” or “syntax trees”. <

D> L.54. Context-free languages. Let A be a fixed finite alphabet whose elements are called
letters. A grammar G is a collection of equations

L‘,l = Sl(a,ﬁl,...,ﬁm)
(88) G . .

Lm = Sm@Ly,...,Lm),

where each § ; involves only the operations of union (U) and concatenation product ( - ) with a
the vector of letters in A. For instance,
S1@, Ly, Ly, L3)=ayp-Lo-L3Uaz ULz -ap- L.
A solution to (88) is an m—tuple of languages over the alphabet A that satisfies the system. By
convention, one declares that the grammar G defines the first component, L.
To each grammar (88), one can associate a context-free specification (60) by transforming
unions into disjoint union, “U +— +”, and catenation into cartesian products, “ - +— x”. Let

G be the specification associated in this way to the grammar G. The objects described by G
appear in this perspective to be trees (see the discussion above regarding parse trees). Let i
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be the transformation from trees of G to languages of G that lists letters in infix (i.e., left-to-
right) order: we call such an 4 the erasing transformation since it “forgets™ all the structural
information contained in the parse tree and only preserves the succession of letters. Clearly,

application of 4 to the combinatorial specifications determined by G yields languages that obey
the grammar G. For a grammar G and a word w € A*, the number of parse trees t € G such
that h(¢) = w is called the ambiguity coefficient of w with respect to the grammar G.

A grammar G is unambiguous if all the corresponding ambiguity coefficients are either 0
or 1. This means that there is a bijection between parse trees of G and words of the language
described by G: each word generated is uniquely “parsable” according to the grammar. One has,
from Proposition 1.7: The OGF of an unambiguous context-free language satisfies a polynomial
system of the form (61), and is consequently an algebraic function.

> L.55. Extended context-free specifications. 1If A, B are context-free specifications then:
(i) the sequence class C = SEQ(.A) is context-free; (ii) the substitution class D = A[b > B],
formally defined in the next section, is also context-free.

1. 6. Additional constructions

This section is devoted to the constructions of sequences, sets, and cycles in the
presence of restrictions on the number of components as well as to mechanisms that
enrich the framework of core constructions; namely, pointing, substitution, and the
use of implicit combinatorial definitions.

L. 6.1. Restricted constructions. An immediate formula for OGFs is that of the
diagonal A of a cartesian product B x B defined as

A=ABxB):={(,B)|B € B}.
Then, one has the relation A(z) = B(z2), as shown by the combinatorial derivation
Az) = Z 2P = B(zY),
B.8)

or by the equally obvious observation that Ay, = B,,.

The diagonal construction permits us to access the class of all unordered pairs of
(distinct) elements of B, which is A = PSET,(B). A direct argument then runs as
follows: the unordered pair {«, B} is associated to the two ordered pairs («, 8) and
(B, «) except when o = B, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET2(B) + PSET2(B) + A(B x B) = B x B,

meaning that
2A(z) + B(z*) = B(2)™.

This gives the translation of PSET,, and, by a similar argument for MSET, and CYC,
(observe also that CYCy = MSET>), one has:

A = PSET2(B) = AR) = $B(2)* — 1 B(Z?)
A = MSET,(B) = A(x) = 3B()* + 3 B(z?)
A= CYCa(B) = A(2) = 3B(R)* + 3 B(2%).
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This type of direct reasoning could in principle be extended to treat triples, and so
on, but the computations easily grow out of control. The classical treatment of these
questions relies on what is known as Pdlya theory, of which we offer a glimpse in
Notes 1.58-1.60. We follow instead here an easier global approach, based on multi-
variate generating functions, that suffices to generate simultaneously all cardinality-
restricted constructions of our standard collection.

Theorem 1.3 (Component-restricted constructions). The OGF of sequences with k
components A = SEQy(B) satisfies

Az) = B(2)*.
The OGF of sets, A = PSET(B), is a polynomial in the quantities B(z), ..., B(z),

k u u’ 2 w 3
A(z) = [u"]exp TB(Z)—?B(Z )+?B(z y—--- .
The OGF of multisets, A = MSETy(B), is
k u u’ 2 u? 3
A(z) = [u"]exp TB(Z)-F?B(Z )—l—?B(z )+ ).

The OGF of cycles, A = CYC(B), is, with ¢ the Euler totient function (p. 721)

e¢]

£ 1
=1

The explicit forms for small values of k are summarized in Figure .18, p. 93.

Proof. The result for sequences is obvious since SEQ;(53) means B x --- x B (k
times). For the other constructions, the proof makes use of the techniques of Theo-
rem L.1, p. 27, but it is best based on bivariate generating functions that are otherwise
developed fully in Chapter III to which we refer for details (p. 171). The idea consists
in describing all composite objects and introducing a supplementary marking variable
to keep track of the number of components.

Take R to be a construction among SEQ, CYC, MSET, PSET. Consider the rela-
tion A = R(B), and let x (@) for @ € A be the parameter “number of 5—~components”.
Define the multivariate quantities

Ank = card{e e A | o] =n, x(a) =k}
A(Z, u) = ZAn,kuan — Z Zl(ﬂux((x)'
n,k acA
For instance, a direct calculation shows that, for sequences,
1
A(z, = kB(z)k _
(z,u) Zu () I~ uB()

k>0

For multisets and powersets, a simple adaptation of the already seen argument gives
A(z,u) as

A uy =[]0 —uznP  AGuw) =] +uz")b,
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respectively. The result follows from here by the exp-log transformation upon ex-
tracting [u¥]A(z, u). The case of cycles results from the bivariate generating function
derived in Appendix A.4: Cycle construction, p. 729 (alternatively use Note 1.60). W
> L.56. Aperiodic words. An aperiodic word is a primitive sequence of letters (in the sense
of Appendix A.4: Cycle construction, p. 729); that is, the word w is aperiodic provided it is

not obtained by repetition of a proper factor: w # u ---u. The number of aperiodic words of
length n over an m—ary alphabet is (with (k) the Mobius function, p. 721)

Pw" = 3" u@ym.
d|n
For m = 2, the sequence starts as 2, 2, 6, 12, 30, 54, 126, 240, 504, 990 (EIS A027375). <

D> 1.57. Around the cycle construction. A calculation with arithmetical functions (APPENDIX A,
p- 721) yields the OGFs of multisets of cycles and multisets of aperiodic cycles as

1 1
Ii—m ™ e
ko1 1T (") — Az
respectively [144]. (The latter fact corresponds to the combinatorial property that any word can
be written as a decreasing product of Lyndon words; notably, it serves to construct bases of free
Lie algebras [413, Ch. 5].) <

> L.58. Pdlya theory I: the cycle indicator. Consider a finite set M of cardinality m and a
group G of permutations of M. Whenever convenient, the set M can be identified with the
interval [1..m]. The cycle indicator (“Zyklenzeiger”) of G is, by definition, the multivariate
polynomial

1 108) L im(®)
Z(G)=Z(G; xq, ..., = JUE) [ Iml8)
(©)=Z(Gixt.oom) = s > x xin
geG
where ji(g) is the number of cycles of length k in the permutation g. For instance, if J,;, =
{Id} is the group reduced to the identity permutation, G, is the group of all permutations of
size m, and Ry, is the group consisting of the identity permutation and the “mirror-reflection”

permutation (in "), then
J1 Jm
~ X ce Xy
ZOm)=x1 ZGm) = )
- 0]1,111...Jm.m]m

(89) jl ----- Jm=
Iy 4 Lyav if m = 2v is even
272 271 - i
Z(Rm) = ——
%xlxé’ + %xlwr if m =2v + 1is odd.
(For the case of G;;, see Equation (40), Chapter III, p. 188.) <

> L.59. Polya theory II: the fundamental theorem. Let B be a combinatorial class and M a
finite set on which the group G acts. Consider the set BM of all mappings from M into B.
Two mappings @1, ¢ € BM are declared to be equivalent if there exists a g € G such that
¢1 08 = ¢, and we let (BM /G) be the set of equivalence classes. The problem is to enumer-

ate (BM/G), given the data B, M, and the “symmetry group” G.
Let w be a weight function that assigns to any 8 € B a weight w(); the weight is extended

multiplicatively to any ¢ € BM  hence to (BM /G), by w(¢) := [Tge pq w (¢ (k)). The Pélya—
Redfield Theorem expresses the identity

(90) Yoo w@=2Z(G Y wp).... > wP)"
pe(BM/G) BeB BeB
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In particular, we can choose w(B) = /Pl with z a formal parameter; the Pélya—Redfield
Theorem (90) then provides the OGF of objects of BM up to symmetries by G:

1) > =2(GiB@)..... BE™).
$e(BM/G)

(There are many excellent presentations of this classic theory, starting with P6lya himself [488,
491]; see for instance Comtet [129, §6.6], De Bruijn [142], and Harary—Palmer [319, Ch. 2].
The proof relies on orbit counting and Burnside’s lemma.) <

> 1.60. Pdlya theory III: basic constructions. Say we want to obtain the OGF of A =

MSET3(B). We view A as the set of triples BM, with M = [1..3], taken up to &3, the
set of all permutations of three elements. The cycle indicator is given by (89), from which
the translation of MSET3 results (see Figure 1.18, p. 93, for the outcome); the calculation ex-
tends to all MSET,;, providing an alternative approach to Theorem I.3. The translation of the
CYCyy, construction can be obtained in this way via the cycle index of the group &, of all cyclic
permutations; namely,
1 n/d
2@ =— ) oy,
d|m

where ¢ (k) is the Euler totient function. The use of the groups QR gives rise to the undirected
sequence construction,

1 1 1 1+ B(z)
A = USEQ(B = AQR) = 3 = )
(8) @ 21—-B(z) 21— B(z2)
where a sequence and its mirror image are identified. Similar principles give rise to the undi-
rected cycle construction UCYC, generated by cyclic permutations and mirror reflection. (The
approach taken in the text can be seen, in the perspective of Pdlya theory, as a direct deter-
mination of Zmzo Z(®B,,), for an entire family of symmetry groups {G,,}, where G, =

CnsGm, ..l <

D> L.61. Sets with distinct component sizes. Let A be the class of the finite sets of elements from
B, with the additional constraint that no two elements in a set have the same size. One has

o
A@@) =[]0+ Ba2").
n=1
Similar identities serve in the analysis of polynomial factorization algorithms [236]. <

B> 1.62. Sequences without repeated components. The generating function is formally

o0 o
/ exp | Y (=)' —B@)) | e du.
0 J

jzl

(This representation is based on the Eulerian integral: k! = fooo e "uk du.) <

I. 6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating functions. Combinatorial structures
are viewed as always as formed of atoms (letters, nodes, etc), which determine their
sizes. Pointing means “pointing at a distinguished atom”; substitution, written B o C
or B[C], means “substitute elements of C for atoms of 3”.

Definition I.14. Let {€1, €2, ...} be a fixed collection of distinct neutral objects of
size 0. The pointing of a class B, denoted A = OB, is formally defined as

OB ::ZBH x {€1,..., €}

n>0
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The substitution of C into B (also known as composition of I8 and C), noted B o C
or B[C), is formally defined as

BoC=B[Cl:=)_ B x SEQ(C).
k>0

With B,, the number of B structures of size n, the quantity n B, can be interpreted
as counting pointed structures where one of the n atoms composing a B—structure has
been distinguished (here by a special “pointer” of size 0 attached to it). Elements of
B o C may also be viewed as obtained by selecting in all possible ways an element
B € B and replacing each of its atoms by an arbitrary element of C, while preserving
the underlying structure of 8.

The interpretations above rely (silently) on the fact that atoms in an object can
be eventually distinguished from each other. This can be obtained by “canonicaliz-
ing”!” the representations of objects: first define inductively the lexicographic order-
ing for products and sequences; next represent powersets and multisets as increasing
sequences with the induced lexicographic ordering (more complicated rules can also
canonicalize cycles). In this way, any constructible object admits a unique “rigid”
representation in which each particular atom is determined by its place. Such a canon-
icalization thus reconciles the abstract definitions of Definition 1.14 with the intuitive
interpretation of pointing and substitution.

Theorem 1.4 (Pointing and substitution). The constructions of pointing and substitu-
tion are admissible'8:

A=0B — A(z) =20;B(z) 09;:=—
A=BoC = A(z) =B(C(2))

Proof. By the definition of pointing, one has
A, =n- By, so that A(z) = 20;B(2).

The definition of substitution implies, by the sum and product rules,

AQR) =) B (C@) = B(C(@)).

k=0

and the proof is completed. |

17Such canonicalization techniques also serve to develop fast algorithms for the exhaustive listing
of objects of a given size as well as for the range of problems known as “ranking” and “unranking”, with
implications in fast random generation. See, for instance, [430, 456, 607] for the general theory as well
as [500, 623] for particular cases such as necklaces and trees.

1811 this book, we borrow from differential algebra the convenient notation 9; := j—z to represent

derivatives.
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Permutations as pointed objects. As an example of pointing, consider the class P
of all permutations written as words over integers starting from 1. One can go from a
permutation of size n — 1 to a permutation of size n by selecting a “gap” and inserting
the value n. When this is done in all possible ways, it gives rise to the combinatorial
relation

P=E+O(ZxP), & = {e}, e P(z) = 1+Z5—Z(ZP(Z)).

The OGF satisfies an ordinary differential equation whose formal solution is P(z) =
> usonlZ", since it is equivalent to the recurrence P, = nP,_1.

Unary-binary trees as substituted objects. As an example of substitution, con-
sider the class B of (plane—rooted) binary trees, where all nodes contribute to size. If
at each node a linear chain of nodes (linked by edges placed on top of the node) is
substituted, one forms an element of the class M of unary-binary trees; in symbols:

M=BoSEQs(2) = M(z):B(liZ>.

Thus from the known OGF, B(z) = (1 — +/1 — 4z2)/(2z), one derives
1—1—-422(1—2)"2 1—z—+1—-27—372

M(z) = = )
@ 2z(1 — )71 27
which matches the direct derivation on p. 68 (Motzkin numbers).

B> 1.63. Combinatorics of derivatives. The combinatorial operation D of “erasing—pointing”
points to an atom in an object and replaces it by a neutral object, otherwise preserving the
overall structure of the object. The translation of D on OGFs is then simply 0 := 9;. Classical
identities of analysis then receive transparent combinatorial interpretations: for instance,

3(Ax B) = (A x dB) + (0A x B)
as well as Leibniz’s identity, 3™ (f - g) = Zj ('}?)(ij) - (3M—J g), also follow from basic

logic. Similarly, for the “chain rule” a(f o g) = ((3f) o g) - dg. (Example VIL25, p. 529,
illustrates the use of these methods for analytically solving many urn processes.) <

> 1.64. The combinatorics of Newton—Raphson iteration. Given a real function f, the iter-
ation scheme of Newton—Raphson finds (conditionally) a root of the equation f(y) = 0 by
repeated use of the transformation «* = o — f(a)/f’ (), starting for instance from o = 0.
(For sufficiently smooth functions, this scheme is quadratically convergent.) The application of
Newton—Raphson iteration to the equation y = z¢ (y) associated with a simple variety of trees
in the sense of Proposition L.5, p. 66, leads to the scheme:

z¢(om) — om .
1 —z¢'(am) '
It can be seen, analytically and combinatorially, that «;, has a contact of order at least 2™ — 1
with y(z). The interesting combinatorics is due to Décoste, Labelle, and Leroux [147]; it in-

volves a notion of “heavy” trees (such that at least one of the root subtrees is large enough, in a
suitable sense); see [50, §3.3] and [485] for further developments.

Q41 = 0t + ag = 0.

L. 6.3. Implicit structures. There are many cases where a combinatorial class X
is determined by a relation A4 = B+ X, where A and 5 are known. (An instance of this
is the equational technique of Subsection I.4.2, p. 56 for enumerating words that do
contain a given pattern p.) Less trivial examples involve inverting cartesian products
as well as sequences and multisets (examples below).
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Theorem 1.5 (Implicit specifications). The generating functions associated to the im-
plicit equations with unknown X

A=B+ X, A=Bx X, A = SEQ(X),
are, respectively,

A(z) .1
%, X =1

Az)’
For the implicit construction A = MSET(X), one has

x@0 =3 " iogach,

k>1

X(z) = A(z) — B(2), X(z) =

where (k) is the Mébius function'®.

Proof. The first two cases result from kindergarten algebra, since in terms of OGFs
one has A = B + X and A = BX, respectively. For sequences, the relation A(z) =
(1 — X(z))~ ! is readily inverted as stated. For multisets, start from the fundamental
relation of Theorem I.1 (p. 27) and take logarithms:

o]

1
log(A(z) =Y  —X(Z5).
0g(A@) =) X (@)
k=1
Let L =logA and L, = [z"]L(z). One has
nL, =Y (dXy),
d |n
to which it suffices to apply Mdbius inversion (p. 721). |

Example 1.19. Indecomposable permutations. A permutation o = o - - - o (written here as a
word of distinct letters) is said to be decomposable if, for some k < n, o1 - - - 0} is a permutation
of {1,...,k}; i.e., a strict prefix of the permutation (in word form) is itself a permutation.
Any permutation decomposes uniquely as a concatenation of indecomposable permutations, as
shown in Figure [.17.

As a consequence of our definitions, the class P of all permutations and the class Z of
indecomposable ones are related by

P = SEQ(Z).

This determines I (z) implicitly, and Theorem 1.5 gives

I(z)=1- % where  P(z) =n2>;)n!z",

This example illustrates the utility of implicit constructions, and at the same time the pos-
sibility of bona fide algebraic calculations with power series even in cases where they are diver-
gent (Appendix A.5: Formal power series, p. 730). One finds

1) =2+ 224383 +132% 4715 14610 +344777 + ...,

19The Mébius function w(n) is u(n) = (—1)" if n is the product of r distinct primes and u(n) = 0
otherwise (Appendix A.1: Arithmetical functions, p. 721).
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—_
(=]

—_— N WA O 0O

[ ]
123456728910

o=[25413][6][81079]

Figure 1.17. The decomposition of a permutation (o).

where the coefficients (EIS A003319) are
y=n'— Y (mmH+ > (nlmylnzh)—---.

ny+ny=n ny+np+n3=n

ny,np>1 ny,np,n3>1
From this, simple majorizations of the terms imply that I,, ~ n!, so that almost all permutations
are indecomposable [129, p. 262]. ... ... |

B> L1.65. Two-dimensional wanderings. A drunkard starts from the origin in the Z x Z plane and,
at each second, he makes a step in either one of the four directions, NW, NE, SW, SE. The steps
are thus N\, /7, //, \\. Consider the class £ of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. The GF of L is (EIS A002894)
1
0o [2m?2 2
n=>0 (n) =
(Hint: a walk is determined by its projections on the horizontal and vertical axes; one-dimensional

walks that return to the origin in 2n steps are enumerated by (211”).) In particular [22"1L(z/4) is
the probability that the random walk first returns to the origin in 2n steps.

Such problems largely originate with Pélya and implicit constructions were well-mastered
by him [490]; see also [85] for certain multidimensional extensions. The first-return problem
is analysed asymptotically in Chapter VI, p. 425, based on singularity theory and Hadamard
closure properties. <

Liz)=1— 47242074 +17620 + 187678 + ... .

Example 1.20. Irreducible polynomials over finite fields. Objects not obviously of a combina-
torial nature can sometimes be enumerated by symbolic methods. Here is an indirect construc-
tion relative to polynomials over finite fields. We fix a prime number p and consider the base
field F of integers taken modulo p. The polynomial ring F,[X] is the ring of polynomials
in X with coefficients in F,.

For all practical purposes, one may restrict attention to polynomials that are monic; that
is, ones whose leading coefficient is 1. We regard the set 7P of monic polynomials in [F,[X]
as a combinatorial class, with the size of a polynomial being identified to its degree. Since a
polynomial is specified by the sequence of its coefficients, one has, with A the “alphabet” of
coefficients, A = IF, treated as a collection of atomic objects,

92) P = SEQ(A) == P(z) =

l—pz’
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in agreement with the fact that there are p" monic polynomials of degree n.

Polynomials are a unique factorization domain, since they can be subjected to Euclidean
division. A polynomial that has no proper non-constant divisor is termed irreducible—irreducibles
are thus the analogues of the primes in the integer realm. For instance, over 3, one has

X0 x¥ 1=+ D2 +22x8 +2x2 + 1.

Let 7 be the set of monic irreducible polynomials. The unique factorization property implies
that the collection of all polynomials is combinatorially isomorphic to the multiset class (there
may be repeated factors) of the collection of irreducibles:

1 1
(93)  PEMSETID) = P(Z)=exp(1(z)+51(zz)+51(23)+-~->.

The irreducibles are thus determined implicitly from the class of all polynomials whose
OGEF is known by (92). Theorem L.5 then implies the identity

w(k) 1 1 n/k
4 1(z) = § Ay I, = — § : )
94) () 2% 08 7 — and = klnu(k)p

In particular, I,; is asymptotic to p"/n. This estimate constitutes the density theorem for irre-
ducible polynomials, a result already known to Gauss (see the scholarly notes of von zur Gathen
and Gerhard in [599, p. 396]):

The fraction of irreducible polynomials among all polynomials of degree n over the finite field
Fp, is asymptotic to ;.

This property is analogous to the Prime Number Theorem (which however lies much deeper,
see [22, 138]), according to which the proportion of prime numbers in the interval [1, n] is
asymptotic to 1/logn. Indeed, a polynomial of degree n appears to be roughly comparable to
a number written in base p having n digits. (On the basis of such properties, Knopfmacher
has further developed in [370] an abstract theory of statistical properties of arithmetical semi-
groups.) We pursue this thread further in the book: we shall prove that the number of factors
in a random polynomial of degree n is on average ~ logn (Example VIL4, p. 449) and that the
corresponding distribution is asymptotically Gaussian (Example IX.21, p. 672). .......... |

B> 1.66. Square-free polynomials. Let Q be the class of monic square-free polynomials (i.e.,
polynomials not divisible by the square of a polynomial). One has by “Vallée’s identity” (p. 30)

0@@) = P(Z)/P(Zz), hence
1— pzz
I—p
Berlekamp’s book [51] discusses such facts together with relations to error correcting codes. <]

0(z) = and  Qp=p"—p"' (n=2).

> 1.67. Balanced trees. The class £ of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that all leaves are at the same distance from
the root. Only leaves contribute to size. Such trees, which are particular cases of B—trees, are a
useful data structure for implementing dynamic dictionaries [378, 537]. Balanced trees satisfy
an implicit equation based on combinatorial substitution:
E=Z+4+E0[(Zx2)+(ZxZx2)] =  E@=z1+EG+7).

The expansion starts as (EIS A014535)
E@Q=z+22+2+*+20 +28 437 +48 457 4810+,

Odlyzko [459] has determined the growth of E,, to be roughly as ¢" /n, where ¢ = (1++/5)/2
is the golden ratio. See Subsection IV. 7.2, p. 280 for an analysis. <
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I.7. Perspective

This chapter and the next amount to a survey of elementary combinatorial enu-
merations, organized in a coherent manner and summarized in Figure 1.18, in the case
of the unlabelled universe that is considered here. We refer to the process of specify-
ing combinatorial classes using these constructions and then automatically having ac-
cess to the corresponding generating functions as the symbolic method. The symbolic
method is the “combinatorics” in analytic combinatorics: it allows us to structure clas-
sical results in combinatorics with a unifying overall approach, to derive new results
that generalize and extend classical problems, and to address new classes of problems
that are arising in computer science, computational biology, statistical physics, and
other scientific disciplines.

More importantly, the symbolic method leaves us with generating functions that
we can handle with the “analytic” part of analytic combinatorics. A full treatment of
this feature of the approach is premature, but a brief discussion may help place the rest
of the book in context.

For a given family of problems, the symbolic method typically leads to a natural
class of functions in which the corresponding generating functions lie. Even though
the symbolic method is completely formal, we can often successfully proceed by using
classical techniques from complex and asymptotic analysis. For example, denumer-
ants with a finite set of coin denominations always lead to rational generating functions
with poles on the unit circle. Such an observation is useful as a common strategy for
coefficient extraction can then be applied (partial fraction expansion, in the case of
denumerants with fixed coin denominations). In the same vein, run statistics consti-
tute a particular case of the general theorem of Chomsky and Schiitzenberger to the
effect that the generating function of a regular language is necessarily a rational func-
tion. Similarly, context-free structures are attached to generating functions that are
invariably algebraic. Theorems of this sort establish a bridge between combinatorial
analysis and special functions.

Not all applications of the symbolic method are automatic (although that is cer-
tainly one goal underlying the approach). The example of counting set partitions
shows that application of the symbolic method may require finding an adequate pre-
sentation of the combinatorial structures to be counted. In this way, bijective combi-
natorics enters the game in a non-trivial fashion.

Our introductory examples of compositions and partitions correspond to classes
of combinatorial structures with explicit “iterative” definitions, a fact leading in turn
to explicit generating function expressions. The tree examples then introduce recur-
sively defined structures. In that case, the recursive definition translates into a func-
tional equation that only determines the generating function implicitly. In simpler
situations (such as binary or general trees), the generating function equations can be
solved and explicit counting results often follow. In other cases (such as non-plane
trees) one can usually conduct an analysis of singularities directly from the functional
equations and obtain very precise asymptotic estimates: Chapters IV-VIII of Part B
offer an abundance of illustrations of this paradigm. The further development on a
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1. The main constructions of disjoint union (combinatorial sum), product, sequence, powerset,
multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF

Union A=B+C A(z) = B(z) + C(2)
Product A=BxC A(z) = B(z) - C(2)

1
Sequence A = SEQ(B) A(z) = 1_73(2)

Powerset A =PSET(B) | A(z) =exp (B(z) - %B(zz) +-- )

Multiset A = MSET(B) | A(z) = exp (B(Z) + %3(22) +-- >

1

Cycle A =Cyc(B) A(z) = log 1—73(z) + 3

10 7_}_
S1-B@)

2. The translation for sequences, powersets, multisets, and cycles constrained by the number of
components (Theorem 1.3, p. 84).

SEQr(B) :  B(2)k

PSETy(B) : BQ: _ B&)

2 2
2 2

MSETy(B) :  B&- 4 B&)
2 2

Cyey(B) : BE- 4 B&D

3 2 3
PSET3(B) : B<6z) _ B(z)zB(z ) 4 B(SZ)
3 2 3
MSET3(B) :  BGr 4 BQBEGD 4 B

3
3 3
Cycy(B) : BE- 4 2BE)

4 25,2 3 22 4
PSET4(B) : B;a) _ BQ®@ 43(2 ) 4 B(Z):;B(Z ) 4 B(g) _ B(f )

4 2p0,2 3 212 4
MSET,(B) : Béi) + B(2) 4B(z ) + B(z)f(z ) + B(%) + B(j )

4 2,2 4
CycyB) : BG4 BEX | B&)

3. The additional constructions of pointing and substitution (Section I. 6).

Construction OGF

Pointing A =08 A(z) = Zdiz B(z2)
Substitution A =BoC | A(z) = B(C(z))

Figure L.18. A dictionary of constructions applicable to unlabelled structures, to-
gether with their translation into ordinary generating functions (OGFs). (The labelled
counterpart of this table appears in Figure I1.18, p. 148.)
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suitable perturbative theory will then lead us to systematic ways of quantifying pa-
rameters (not just counting sequences) of large combinatorial structures—this is the
subject of Chapter IX, in Part C of this book.

Bibliographic notes. Modern presentations of combinatorial analysis appear in the books of
Comtet [129] (a beautiful book largely example-driven), Stanley [552, 554] (a rich set with an
algebraic orientation), Wilf [608] (generating functions oriented), and Lando [400] (a neat mod-
ern introduction). An elementary but insightful presentation of the basic techniques appears in
Graham, Knuth, and Patashnik’s classic [307], a popular book with a highly original design. An
encyclopaedic reference is the book of Goulden & Jackson [303] whose descriptive approach
very much parallels ours.

The sources of the modern approaches to combinatorial analysis are hard to trace since
they are usually based on earlier traditions and informally stated mechanisms that were well-
mastered by practicing combinatorial analysts. (See for instance MacMahon’s book [428] Com-
binatory Analysis first published in 1917, the introduction of denumerant generating functions
by Pélya as presented in [489, 493], or the “domino theory” in [307, Sec. 7.1].) One source in re-
cent times is the Chomsky—Schiitzenberger theory of formal languages and enumerations [119].
Rota [518] and Stanley [550, 554] developed an approach which is largely based on partially
ordered sets. Bender and Goldman developed a theory of “prefabs” [42] whose purposes are
similar to the theory developed here. Joyal [359] proposed an especially elegant framework, the
“theory of species”, that addresses foundational issues in combinatorial theory and constitutes
the starting point of the superb exposition by Bergeron, Labelle, and Leroux [50]. Parallel (but
largely independent) developments by the “Russian School” are nicely synthesized in the books
by Sachkov [525, 526].

One of the reasons for the revival of interest in combinatorial enumerations and proper-
ties of random structures is the analysis of algorithms (a subject founded in modern times by
Knuth [381]), in which the goal is to model the performance of computer algorithms and pro-
grams. The symbolic ideas expounded here have been applied to the analysis of algorithms
in surveys [221, 598], with elements presented in our book [538]. Further implications of
the symbolic method in the area of the random generation of combinatorial structures appear
in [177, 228, 264, 456].

[...] une propriété qui se traduit par une égalité |A| = | B| est mieux explicitée lorsque I’on
construit une bijection entre deux ensembles A et B, plutét qu’en calculant les coefficients
d’un polynéme dont les variables n’ont pas de significations particuliéres. La méthode des
fonctions génératrices, qui a exercé ses ravages pendant un siecle, est tombée en désuétude

pour cette raison.

(“[... ] a property, which is translated by an equality |A| = | B|, is understood better, when one constructs
a bijection between the two sets A and B, than when one calculates the coefficients of a polynomial whose
variables have no particular meaning. The method of generating functions, which has had devastating
effects for a century, has fallen into obsolescence, for this reason.”)

—CLAUDE BERGE [48, p. 10]
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Labelled Structures and Exponential
Generating Functions

Cette approche évacue pratiquement tous les calculs!.

— DOMINIQUE FOATA &
MARCO SCHUTZENBERGER [267]

IL. 1. Labelled classes 96
1L. 2. Admissible labelled constructions 100
11. 3. Surjections, set partitions, and words 106
11. 4. Alignments, permutations, and related structures 119
IL. 5. Labelled trees, mappings, and graphs 125
II.6.  Additional constructions 136
1L.7. Perspective 147

Many objects of classical combinatorics present themselves naturally as labelled struc-
tures, where atoms of an object (typically nodes in a graph or a tree) are distinguish-
able from one another by the fact that they bear distinct labels. Without loss of gen-
erality, we may take the set from which labels are drawn to be the set of integers. For
instance, a permutation can be viewed as a linear arrangement of distinct integers, and
the classical cycle decomposition represents it as an unordered collection of circular
digraphs, whose vertices are themselves integers.

Operations on labelled structures are based on a special product: the labelled
product that distributes labels between components. This operation is a natural ana-
logue of the cartesian product for plain unlabelled objects. The labelled product in
turn leads to labelled analogues of the sequence, set, and cycle constructions.

Labelled constructions translate over exponential generating functions—the trans-
lation schemes turn out to be even simpler than in the unlabelled case. At the same
time, these constructions enable us to take into account structures that are in some
ways combinatorially richer than their unlabelled counterparts of Chapter I, in par-
ticular with regard to order properties. Labelled constructions constitute the second
pillar of the symbolic method for combinatorial enumeration.

In this chapter, we examine some of the most important classes of labelled objects,
including surjections, set partitions, permutations, as well as labelled graphs, trees,
and mappings from a finite set into itself. Certain aspects of words can also be treated

Lerpis approach eliminates virtually all calculations.” Foata and Schiitzenberger refer here to a “geo-
metric” approach to combinatorics, much akin to ours, that permits one to relate combinatorial properties
and special function identities.

95
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by this theory, a fact which has important consequences not only in combinatorics
itself but also in probability and statistics. In particular, labelled constructions of
words provide an elegant solution to two classical problems, the birthday problem and
the coupon collector problem, as well as several of their variants that have numerous
applications in other fields, including the analysis of hashing algorithms in computer
science.

II. 1. Labelled classes

Throughout this chapter, we consider combinatorial classes in the sense of Def-
inition .1, p. 16: we deal exclusively with finite objects; a combinatorial class A is
a set of objects, with a notion of size attached, so that the number of objects of each
size in A is finite. To these basic concepts, we now add that the objects are labelled,
by which we mean that each atom carries with it a distinctive colour, or equivalently
an integer label, in such a way that all the labels occurring in an object are distinct.
Precisely:

Definition II.1. A weakly labelled object of size n is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that the vertices bear labels, with
the implied condition that labels are distinct integers from Z. An object of size n is
said to be well-labelled, or, simply, labelled, if it is weakly labelled and, in addition,
its collection of labels is the complete integer interval [1..n]. A labelled class is a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. In fact, when the need
arises, we shall take “object” in a broad sense to mean any kind of discrete structure
enriched by integer labels. Virtually all labelled classes considered in this book can
eventually be encoded as graphs of sorts, so that this extended use of the notion of
a labelled class is a harmless convenience. (See Section II.7, p. 147 for a brief dis-
cussion of alternative but logically equivalent frameworks for the notion of a labelled
class.)

Example I1.1. Labelled graphs. By definition, a labelled graph is an undirected graph such that
distinct integer labels forming an interval of the form {1, 2, ..., n} are supported by vertices. A
particular labelled graph of size 4 is for instance
1—3
= |
4—2
which represents a graph whose vertices bear the labels {1, 2, 3, 4} and whose set of edges is
{{1,3}, {2,3}, {2,4}, {1,4}}.
Only the graph structure (as defined by its adjacency structure, i.e., its set of edges) counts, so
that this is the same abstract graph as in the alternative physical representations
1—4 3—2
= 111
3—2 1—4
However, this graph is different from either of
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I_. 410 4 1) 3 1, 4 2 4 2 3 2| 4m3 [ 4m3 °
O (=2 (2mi1) (am2) (1m2) (2m3) (3m2) |1 4) (1 3 &
| ] | ] | ] | ] | ] | ] l\ l\
403004 3. 13 3 4 1 4 1 4| 2m=m3 [4m2

1.3 102 1.3 1,2 1020 (201 201 301 I [ ]
n n n n n n n n n 1 ]
II 20 4) 030 4)|l2 4 (3 4 (4 3.4, 04 3. 14 2 [
[ N J 1 2 102 1 =3 1 =2 1 =2 2= 1 2= 1 3m1
" i\ AN AN I\ i\ AN
e 0 4 3 4.3 4 -2 4m3 3 -4 4 m3 3=y 2 =4

There are altogether G4 = 64 = 20 labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 105 for details): G, = 21 =1/2  The labelled
graphs can be grouped into equivalence classes up to arbitrary permutation of the labels, which
determines the 64 = 11 unlabelled graphs of size 4. Each unlabelled graph corresponds to a
variable number of labelled graphs: for instance, the totally disconnected graph (bottom, left)
and the complete graph (top right) correspond to 1 labelling only, while the line graph (top left)
admits % 4! = 12 possible labellings.

Figure I1.1. Labelled versus unlabelled graphs for size n = 4.

4—1 3—1
G U S
3—2 4—2
since, for instance, 1 and 2 are adjacent in 4 and j, but not in g. Altogether, there are 3
different labelled graphs (namely, g, 4, j), that have the same “shape”, corresponding to the
single unlabelled quadrangle graph
e~ o
Q=1 |
e~ o
Figure II.1 lists all the 64 labelled graphs of size 4 as well as their 11 unlabelled counterparts
viewed as equivalence classes of labelled graphs when labels are ignored. ................ |

In order to count labelled objects, we appeal to exponential generating functions.

Definition IL.2. The exponential generating function (EGF) of a sequence (A,) is the
formal power series

Zn
(1) A(z) = ZAnm.

n>0
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The exponential generating function (EGF) of a class A is the exponential generating
function of the numbers A, = card(A,). Equivalently, the EGF of class A is

n |
Z Z
A(z) = Z A= = i
n! loe] !
n>0 acA
1t is also said that the variable 7 marks size in the generating function.

With the standard notation for coefficients of series, the coefficient A, in an exponen-
tial generating function is then recovered by>

Ay, =n! -[Z"1A®),

since [z"]A(z) = A, /n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Equation (9), p. 19, in Chapter 1.

Note that, as in the previous chapter, we adhere to a systematic naming convention
for generating functions of combinatorial structures. A labelled class A, its counting
sequence (A,) (or (a,)), and its exponential generating function A(z) (or a(z)) are all
denoted by the same group of letters. As usual, combinatorially isomorphic classes
(Definition 1.3, p. 19) are freely identified.

Neutral and atomic classes. As in the unlabelled universe (p. 24), it proves useful
to introduce a neutral (empty, null) object € that has size 0 and bears no label at all, and
consider it as a special labelled object; a neutral class £ is then by definition £ = {¢}
and is also denoted by boldface 1. The (labelled) atomic class Z = {@)} is formed of a
unique object of size 1 that, being well-labelled, bears the integer label @). The EGFs
of the neutral class and the atomic class are, respectively,

E(z) =1, Z(z) =z.

Permutations, urns, and circular graphs. These structures, described in Exam-
ples I1.2-11.4, are undoubtedly the most fundamental ones for labelled enumeration.

Example 11.2. Permutations. The class ‘P of all permutations is prototypical of labelled classes.
Under the linear representation of permutations, where

. 1 2 .- n
is represented as the sequence (o1, 07, ..., o), the class P is schematically

O-@0-®
@-®-O®

@O-0-®
sothat Py = 1, Py = 1, P) = 2, P3 = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that the class P can be equivalently viewed as
the class of all labelled linear digraphs (with an implicit direction, from left to right, say, in the
representation). Accordingly, the class P of permutations has the counting sequence P, = n!

2Some authors prefer the notation [%]A(z) to n![z"]A(z), which we avoid in this book. Indeed,
Knuth [376] argues convincingly that the variant notation is not consistent with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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(argument: there are n choices of where to place the element 1, then (n — 1) possible positions
for 2, and so on). Thus the EGF of P is

n 1
P(z):Zn!%:Zznz =7

n>0 n>0

Permutations, as they contain information relative to the ordering of their elements are essential
in many applications related to order StatiSticS. . ...........oueittitii i |

Example 11.3. Urns. The class U of totally disconnected graphs starts as

DO |l o®||l 0O
U=1¢e, D),
D, |® @ . > ® @@@

The ordering between the labelled atoms does not matter, so that for each n, there is only one
possible arrangement and U, = 1. The class U can be regarded as the class of urns, where
an urn of size n contains n distinguishable balls in an unspecified (and irrelevant) order. The
corresponding EGF is

n
b4
U(z) = Z 1 — =exp(z) = €°.
n!
n>0

(The fact that the EGF of the constant sequence (1),,>( is the exponential function explains the
term “exponential generating function”.) It also proves convenient, in several applications, to
represent elements of an urn in a sorted sequence, which leads to an equivalent representation
of urns as increasing linear graphs; for instance,

O-@0-0-@-
may be equivalently used to represent the urn of size 5. Though urns look trivial at first glance,

they are of particular importance as building blocks of complex labelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. ......... .. ... .. i i i ||

Example 11.4. Circular graphs.  Finally, the class of circular graphs, in which cycles are
oriented in some conventional manner (say, positively here) is

e-fo OO 3 ST

Circular graphs correspond bijectively to cyclic permutations. One has C, = (n — 1)! (argu-
ment: a directed cycle is determined by the succession of elements that “follow” 1, hence by a
permutation of n — 1 elements). Thus, one has

" " 1
CR=) (n=Dls=3 —=log—.

n>1 n>1

As we shall see in the next section, the logarithm is characteristic of circular arrangements of
Labelled ODJECES. ...ttt et et e e e |

D> IL.1. Labelled trees. Let U, now be the number of labelled graphs with n vertices that are
connected and acyclic; equivalently, Uy, is the number of labelled unrooted non-plane trees. Let
T, be the number of labelled rooted non-plane trees. The identity 7;, = nU, is elementary,
since all vertices in a labelled tree are distinguished by their labels and a root can be chosen in n

ways. In Section II. 5, p. 125, we shall prove that U, = n"~2 and T,, = n" L. <
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I1. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it possible to build complex
labelled classes from simpler ones. Combinatorial sum, also known as disjoint union
is taken in the sense of Chapter I, p. 25: it is the union of disjoint copies. Next, in
order to define a product adapted to labelled structures, we cannot rely on the carte-
sian product, since a pair of two labelled objects is not well-labelled (for instance the
label 1 would invariably appear repeated twice). Instead, we define a new operation,
the labelled product, which translates naturally into exponential generating functions.
From here, simple translation rules follow for labelled sequences, sets, and cycles.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGFs. Let a(z), b(z), c(z) be
EGFs, with a(z) = ), a,z"/n!, and so on. The binomial convolution formula is:

@ if a(z) =b(z)-c(z), then a,= ; (Z)bkcn—k,

where (Z) = n!/(k! (n—k)!) represents, as usual, a binomial coefficient. This formula

results from the usual product of formal power series,

n
an br Cn—k n n!
- = —=. and =—
n! k!' (n—k)! k k!'(n —k)!
k=0
In the same vein, if a(z) = bV (2) b (2) - - - b7 (2), then

n
® a- ¥ | L Jpe
) r

ny,ny,...
ninyfetn,=n N 1120

In Equation (3) there occurs the multinomial coefficient

< n ) n!
= 9
ny,na,...,Ny nilno!---n,!

which counts the number of ways of splitting n elements into r distinguishable classes
of cardinalities ny, ..., n,. This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II. 2.1. Labelled constructions. A labelled object may be relabelled. We only
consider consistent relabellings defined by the fact that they preserve the order rela-
tions among labels. Then two dual modes of relabellings prove important:

— Reduction: For a weakly labelled structure of size n, this operation reduces
its labels to the standard interval [1 .. n] while preserving the relative order
of labels. For instance, the sequence (7, 3,9, 2) reduces to (3,2,4, 1). We
use p(«) to denote this canonical reduction of the structure .

— Expansion: This operation is defined relative to a relabelling function e :
[1..n] +— Z that is assumed to be strictly increasing. To a well-labelled
object « of size n, it associates a weakly labelled object &, in which label j
of « is replaced by labelled e(j). For instance, (3, 2,4, 1) may expand as
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¥ e

D XD D e

Figure IL.2. The 10 = (g) elements in the labelled product of a triangle and a segment.

(33,22,44,11), (7, 3,9, 2), and so on. We use e(«) to denote the result of
relabelling « by e.

These notions enable us to devise a product well suited to labelled objects, which was
originally formalized under the name of “partitional product” by Foata [265]. The
idea is simply to relabel objects, so as to avoid duplicate labels.

Given two labelled objects B € B and y € C, their labelled product, or simply
product, denoted by Sy, is a set comprised of the collection of well-labelled ordered
pairs (8, y') that reduce to (B, y):

@ By :={B.y) | (B.y)iswell-labelled, p(B) =B, p(y') =y }.

An equivalent form, via expansion of labels, is

(5) Bry = {(e(B), f(y) | Im(e)NIm(f) = @, Im(e)UIm(f) =[1..|8]+ ly|]1},

where e, f are relabelling functions with ranges Im(e), Im( f), respectively.

Note that elements of a labelled product are, by construction, well-labelled. The
labelled product (8 + y) of two elements B, y of respective sizes n1, ny is a set whose
cardinality is, with n = nj + ny, expressed as

ny+n\ _(n

ni,ny ) \ni)’
since this quantity is the number of legal relabellings by expansion of the pair (8, y).
(Figure I1.2 displays the (g) = 10 elements of the labelled product of a particular

object of size 3 with another object of size 2.) The labelled product of classes is then
defined by the natural extension of operations to sets.

Definition I1.3. The labelled product of B and C, denoted BxC, is obtained by forming
ordered pairs from B x C and performing all possible order-consistent relabellings.
In symbols:

(6) BxC = U Bxry).
BeB, yeC
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Equipped with this notion, we can build sequences, sets, and cycles, in a way
much similar to the unlabelled case. We proceed to do so and, at the same time,
establish admissibility’ of the constructions.

Labelled product. When A = B x C, the corresponding counting sequences sat-
isfy the relation,

1Bl + 1y
i N A

[Bl+]y|=n ni+ny=n

The product B,, Cp,, keeps track of all the possibilities for the 3 and C components
and the binomial coefficient accounts for the number of possible relabellings, in accor-
dance with our earlier discussion. The binomial convolution property (7) then implies
admissibility

A=Bx*C = A(z) = B(z) - C(2),
with the labelled product simply translating into the product operation on EGFs.

> IL2. Multiple labelled products. The (binary) labelled product satisfies the associativity

property,
Bx(CxD)=(B*xC)*D,

which serves to define B x C « D. The corresponding EGF is the product B(z) - C(z) - D(z).
This rule generalizes to r factors with coefficients given by a multinomial convolution (3). <]

k—sequences and sequences. The kth (labelled) power of B is defined as (B
B - - - B), with k factors equal to 5. It is denoted SEQ, (B3) as it corresponds to forming

k—sequences and performing all consistent relabellings. The (labelled) sequence class
of B is denoted by SEQ(B) and is defined by

SEQ(B) = {e} + B+ (B B) + B+ B+ B) + -+ = | SEQ(B).
k>0
The product relation for EGFs extends to arbitrary products (Note I1.2 above), so that

A=SEq(B) = A(2) = B@)

o0 1
_ _ k_ =~
A=SEQ(B) = A@R) = ,}ZO B(2)" = =B

where the last equation requires By = ¢.

k—sets and sets. We denote by SETy (B) the class of k—sets formed from B. The
set class is defined formally, as in the case of the unlabelled multiset: it is the quotient
SET; (B) := SEQx(B)/R, where the equivalence relation R identifies two sequences
when the components of one are a permutation of the components of the other (p. 26).
A “set” is like a sequence, but the order between components is immaterial. The
(labelled) set construction applied to B, denoted SET(B), is then defined by

SET(B) :={e} + B+ SET2(B) +--- = U SET (B).
k>0

3We recall that a construction is admissible (Definition L5, p. 22) if the counting sequence of the result
only depends on the counting sequences of the operands. An admissible construction therefore induces a
well-defined transformation over exponential generating functions.
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A labelled k—set is associated with exactly k! different sequences, since all its compo-
nents are distinguishable by their labels. Precisely, one may choose to identify each
component in a labelled set or sequence by its “leader”; that is, the value of its small-
est label. There is then a uniform k!-to—one correspondence between k—sequences
and k—sets, as illustrated in a particular case (k = 3) by the diagram below:

. [C8%) ©us
~- (609 (6%
06| W60

In figurative terms: the contents of a bag containing k different items can be laid on a
table in k! ways. Thus in terms of EGFs, one has, assuming By = ¢,

4©
® )

A=SETi(B) = A(z) = %B(Z)k

1
A=SETB) = AQ@R) =) FB(z)" = exp(B(2)).
k=0 "
In the unlabelled case, formulae are more complex, since components in multisets
are not necessarily different. Note also that the distinction between multisets and
powersets, which is meaningful for unlabelled structures is here immaterial, and we

have the unlabelled-to-labelled analogy: MSET, PSET ~» SET.

k—cycles and cycles. We also introduce the class of k—cycles, CYCg(B) and the
cycle class. The cycle class is defined formally, as in the unlabelled case, to be the
quotient CYCi(B) := SEQi(B)/S, where the equivalence relation S identifies two
sequences when the components of one are a cyclic permutation of the components
of the other (p. 26). A cycle is like a sequence whose components can be cyclically
shifted, so that there is now a uniform k—to—one correspondence between k—sequences
and k—cycles. In terms of EGFs, we have (assuming By = ¥ and k > 1)

1
A=CYaB) = AR = BE!
1
A=Cyc(B = A(x) = -B@)*=1o S E——
(B) ) ;k @ =log 7—p =
since each cycle admits exactly k representations as a sequence. In summary:

Theorem II.1 (Basic admissibility, labelled universe). The constructions of combina-
torial sum, labelled product, sequence, set, and cycle are all admissible. Associated
operators on EGFs are:

Sum.: A=B+C = A(2) = B(2) + C(2),
Product: A=Bx*C = A(z) = B(2) - C(2),
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S N A - SE B :> A =
equence Q(B) (2) — B
— k components: A= SEQ(B) = (B)* = A(z) = B(2)¥,
Set: A = SET(B) — A(z) = exp(B(2)),
1
— k components: A = SET(BB) = A(x) = FB(z)k,
Cycle: A=Cyc(B = A(z) =log——,
vele ) (2) = log =5
1
— k components: A = CYCy(B) — A(z) = %B(z)k .

Constructible classes. As in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in terms of sums (disjoint unions),
the labelled constructions of product, sequence, set, cycle, and the initial classes de-
fined by the neutral structure of size 0 and the atomic class Z = {@}. Regarding the
elementary classes discussed in Section II. 1, it is immediately recognized that

P =SEQ(Z), U =SET(Z), C=CYC(2),

specify permutations, urns, and circular graphs, respectively. These classes are basic
building blocks out of which more complex objects can be constructed. In particular,
as we shall explain shortly (Section II. 3 and Section II. 4), set partitions (S), surjec-
tions (R), permutations under their cycle decomposition (P), and alignments (O) are
constructible classes corresponding to

Surjections: R = SEQ(SET>1(Z)) (sequences-of-sets);
Set partitions: S = SET(SET>1(Z)) (sets-of-sets);
Alignments: O = SEQ(CYC(2)) (sequences-of-cycles);
Permutations: P = SET(CYC(Z2)), (sets-of-cycles).

An immediate consequence of Theorem II.1 is the fact that a functional equation
for the EGF of a constructible labelled class can be computed automatically.

Theorem I1.2 (Symbolic method, labelled universe). The exponential generating func-
tion of a constructible class of labelled objects is a component of a system of generat-
ing function equations whose terms are built from 1 and z using the operators

1 1
oo 0N = E(f)=e' L(f) =log y—.

When we further allow restrictions in composite constructions, the operators f* (for
SEQi), f*¥/k! (for SET), and f*/k (for CYCy) are to be added to the list.

I1. 2.2. Labelled versus unlabelled enumeration. Any labelled class .4 has an
unlabelled counterpart A: objects in A are obtained from objects of A by ignoring
the labels. This idea is formalized by identifying two labelled objects if there is an
arbitrary relabelling (not just an order-consistent one, as has been used so far) that
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transforms one into the other. For an object of size n, each equivalence class contains
a priori between 1 and n! elements. Thus:

Proposition IL.1. The counts of a labelled class A and its unlabelled counterpart A
are related by
(8) Zn <A, <n! ;\\n or equivalently 1 < ATn <n!.

n
Example 11.5. Labelled and unlabelled graphs. This phenomenon has been already encoun-
tered in our discussion of graphs (Figure IL.1, p. 97). Let in general G, and G, be the number
of graphs of size n in the labelled and unlabelled case, respectively. One finds forn = 1..15:

5,1 (unlabelled) G, (labelled)
1 1

2 2

4 8

11 64

34 1024

156 32768

1044 2097152

12346 268435456

274668 68719476736
12005168 35184372088832
1018997864 36028797018963968
165091172592 | 73786976294838206464

The sequence (6 n) constitutes EIS A000088, which can be obtained by an extension of methods
of Chapter I, p. 85, specifically by Pdlya theory [319, Ch. 4]. The sequence (G,) is determined
directly by the fact that a graph of n vertices can have each of the (g) possible edges either

present or not, so that
Gﬂ — 2(3) — 2)’!(’!*1)/2

The sequence of labelled counts obviously grows much faster than its unlabelled counterpart.
We may then verify the inequality (8) in this particular case. The normalized ratios,

Pn = Gn/anv Op 1= Gn/(n!an),

are observed to be

n | pn=Gn/Gn on = Gn/(n!Gn)
1 1.000000000 1.0000000000
2 1.000000000 0.5000000000
3 2.000000000 0.3333333333
4 5.818181818 0.2424242424
6 | 210.0512821 0.2917378918
8 21742.70663 0.5392536367
12 | 446946830.2 0.9330800361
16 | 0.2076885783 - 1014 | 0.9926428522

From these data, it is natural to conjecture that o, tends rapidly to 1 as n tends to infinity. This is
indeed a non-trivial fact originally established by Pdlya (see Chapter 9 of Harary and Palmer’s
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book [319] dedicated to asymptotics of graph enumerations):

Gn ~ iz(z) _
I’l’

In other words, “almost all” graphs of size n should admit a number of labellings close to n!.
(Combinatorially, this corresponds to the fact that in a random unlabelled graph, with high
probability, all of the nodes can be distinguished via the adjacency structure of the graph; in
such a case, the graph has no non-trivial automorphism and the number of distinct labellings is
T EXACHLY. ) ottt e |

In contrast with the case of all graphs, where G, ~ G, /n!, urns (totally discon-
nected graphs) illustrate the other extreme situation where

U,=U, =1.

These examples indicate that, beyond the general bounds of Proposition II.1, there
is no automatic way to translate between labelled and unlabelled enumerations. But
at least, if the class A is constructible, its unlabelled counterpart .;l\ can be obtained
by interpreting all the intervening constructions as unlabelled ones in the sense of
Chapter I (with SET — MSET); both generating functions are computable, and their
coefficients can then be compared.

D> IL.3. Permutations and their unlabelled counterparts. The labelled class of permutations can
be specified by P = SEQ(Z); the unlabelled counterpart is the set P ofi integers in unary nota-
tion, and P,, = 1, sothat P, = n'Pn exactly. The specification P’ = SET(CYC(Z)) describes
sets of cycles and, in the labelled universe, one has P’ = P; however, the unlabelled counter-

part of P’ is the class P’ # P of integer partitions examined in Chapter I. [In the unlabelled
universe, there are special combinatorial isomorphisms such as SEQ>(Z) = MSET>(Z) =
CYC(Z2). In the labelled universe, the identity SET o CYC = SEQ holds.]

I1. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be termed level-two non-
recursive structures defined by the fact that they combine two constructions. In this
section, we discuss surjections and set partitions (Subsection II. 3.1), which constitute
labelled analogues of integer compositions and integer partitions in the unlabelled
universe. The symbolic method then extends naturally to words over a finite alpha-
bet, where it opens access to an analysis of the frequencies of letters composing words.
This in turn has useful consequences for the study of classical random allocation prob-
lems, of which the birthday paradox and the coupon collector problem stand out (Sub-
section II. 3.2). Figure II.3 summarizes some of the main enumeration results derived
in this section.

I1.3.1. Surjections and set partitions. We examine classes
R = SEQ(SET>(Z)) and S = SET(SET>1(2)),

corresponding to sequences-of-sets (R) and sets-of-sets (S), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract specifications model basic objects
of discrete mathematics, namely surjections (R) and set partitions (S)
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Specification EGF coefficient
1 n!
Surjections: R = SEQ(SET~(Z ~—_— . 109, 259
urjections Q(SET>1(2)) Ty 2(log 2yt (pp )
— rimages R = SEQ,(SET>{(Z)) (¢ — 1) r!{”} (p. 107)
- r
. !
Set partitions: S = SET(SET={(Z))  ¢¢ ! ~ " (pp. 109, 560)
= (log )"
1
—rblocks 8" = SET,(SET>(Z)) =@ =1 {"} (p. 108)
- r! r

—blocks <b S =SET(SET; ,(Z)) ?@~1 ~pt1=1/b) oo 111, 568
Words: W = SEQ,(SET(Z)) et rh (p. 112)

Figure I1.3. Major enumeration results relative to surjections, set partitions, and words.

Surjections with r images. In elementary mathematics, a surjection from a set A
to a set B is a function from A to B that assumes each value at least once (an onto
mapping). Fix some integer » > 1 and let Ry) denote the class of all surjections from
the set [1..n] onto [1..r] whose elements are also called r—surjections. A particular
object ¢ € Rés) is depicted in Figure I1.4.

We set R = U, Rf,r) and proceed to compute the corresponding EGF, R (z).
First, let us observe that an r—surjection ¢ € R,(f) is determined by the ordered r—
tuple formed with the collection of all preimage sets, (q‘)_l ), 1), ..., ¢_1(r)),
themselves disjoint non-empty sets of integers that cover the interval [1..n]. In the
case of the surjection ¢ of Figure I1.4, this alternative representation is

¢ - ({2}, {1,3}, {4,6,8}, {9}, {5.7}].
One has the combinatorial specification and EGF relation:
@ RY=SEQ,(V), V=SETz1(2) = R"”@=(-1"

Here V = U \ {€} designates the class of urns (/) that are non-empty, with EGF
V(z) = e*—1. In words: “a surjection is a sequence of non-empty sets”. (Figure 11.4).
Expression (9) does solve the counting problem for surjections. For small r, one

finds
RP () = €% — 265 + 1, R¥(z) = €3 — 36 + 3¢ — 1,
whence, by expanding,
RP=2"-2, RY=3"-3.2"43.
The general formula follows similarly from expanding the rth power in (9) by the
binomial theorem, and then extracting coefficients:

(10 RV =nl["1)] (’.)<_1>fe<r—f>z -y C.)(—l)f r =
; J
j=0

j=0
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1 2 3 4 5 6 7 8 9
1 2 3 4 5
1 2 3 4 5 6 7 8 9
2 1 2 3 5 3 5 3 4

LK

@ dd 06 @

[ {2} {1, 3}, {4, 6, 8}, {9}, 5.7 1

Figure I1.4. The decomposition of surjections as sequences-of-sets: a surjection ¢
given by its graph (top), its table (second line), and its sequence of preimages (bottom
lines).

B> IL.4. A direct derivation of the surjection EGF. One can verify the result provided by the
symbolic method by returning to first principles. The preimage of value j by a surjection is a
non-empty set of some cardinality n; > 1, so that

(r) n
11 R, = s
an " Z (nl,ng,...,nr)

(n1,n2,....nr)

the sum being over nj> 1, n1 +ny +--- 4+ ny = n. Introduce the numbers V,, := [[n > 1],
where [ P] is Iverson’s bracket (p. 58). The formula (11) then assumes the simple form

(12) R = Y ( " )v,,, Viy -+ Vi,
Ny, N2, ..., N
ny,N2,... Ny
where the summation now extends to all tuples (11, n, ..., n,). The EGF of the V,; is V (z) =
> Vpz"/n! = e* — 1. Thus the convolution relation (12) leads again to (9). <

Set partitions into r blocks. Let S, ") denote the number of ways of partitioning
the set [1 .. n] into r disjoint and non-empty equivalence classes also known as blocks.
We set SU) = U, S,(,r); the corresponding objects are called set partitions (the latter
not to be confused with integer partitions examined in Section I. 3). The enumeration
problem for set partitions is closely related to that of surjections. Symbolically, a
partition is determined as a labelled set of classes (blocks), each of which is a non-
empty urn. Thus, one has

(13) 8V =SET,(V), V=SET>1(2) = S7@)= (e —-1)".

The basic formula connecting the two counting sequences R( " and S(r)

lR(r)

Siglr) = r! n >
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in accordance with (9) and (13). This can also be interpreted directly: an r—partition is
associated with a group of exactly r! distinct —surjections, two surjections belonging
to the same group iff one is obtained from the other by permuting the range values,
[1..r].

The numbers S,Y) = n![z"18")(z) are known as the Stirling numbers of the sec-
ond kind, or better, the Stirling partition numbers. They were already encountered in
connection with encodings by words (Chapter I, p. 62). Knuth, following Karamata,
advocated for the S,(,r) the notation {'r’} From (10), an explicit form also exists:

1 ¢ :
(14) S = {'Z} == (;.)(—1)’0 -
| =~

The books by Graham, Knuth, and Patashnik [307] and Comtet [129] contain a thor-
ough discussion of these numbers; see also Appendix A.8: Stirling numbers, p. 735.

All surjections and set partitions. Define now the collection of all surjections

and all set partitions by
R=JR". s=Js".
r r

Thus R, is the class of all surjections of [1..n] onto any initial segment of the inte-
gers, and S, is the class of all partitions of the set [1..n] into any number of blocks
(Figure I1.5). Symbolically, one has

R = SEQ(SET>1(Z)) = R(z) =
(15) 2 —e€*

S =SET(SET>1(2)) = S(2) = el

The numbers R, = n! [z"]R(z) are called surjection numbers (also, “preferential
arrangements”, EIS A000670). The numbers S,, are the Bell numbers (EIS A000110).
These numbers are easily determined by expanding the EGFs:

2 Z3 4 5 6 7

R(z) = 1+z+3—+13?+75—+5415'+4683a+47293—
5 6 7
Sz) = 1+z+2%+5— 152—+52§+203a+877—+-~-

Explicit expressions as finite double sums result from summing Stirling numbers,

Ry=Y 1! {’:} and S, = Z{:}

r>0 r=0

where each Stirling number is itself a sum given by (14). Alternatively, single (though
infinite) sums arise from the expansions
I 1 1 1
R(z) = 21 1. Siz) = ¢ = zee
2 o
© , and 1 1,
— Z = — — s
= ) 2r1¢ e 2 o

=0 £=0
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Figure II.5. A complete listing of all set partitions for sizes n = 1,2, 3,4. The
corresponding sequence 1, 1,2, 5, 15, ... is formed of Bell numbers, EIS A000110.

aQxam ap a o
axmo

from which coefficient extraction yields
oo o

o 1 o
2o wmd S o= 2y

The formula for Bell numbers was found by Dobinski in 1877.

The asymptotic analysis of the surjection numbers (R;) will be performed in Ex-
ample IV.7 (p. 259), as one of the very first illustrations of complex asymptotic meth-
ods (the meromorphic case); that of Bell’s partition numbers is best done by means of
the saddle-point method (Example VIIL.6, p. 560). The asymptotic forms found are

R, =

N =

n! 1 e? 1

~—_ and S, ~n! ,
2 (log2)"+! " m2ar(r + e

where r = r(n) is the positive root of the equation re¢’ = n + 1. One has r(n) ~
logn — loglogn, so that

(16) Ry

log S, = n (logn —loglogn — 1 4+ o(1)) .

Elementary derivations (i.e., based solely on real analysis) of these asymptotic forms
are also possible, a fact discussed briefly in Appendix B.6: Laplace’s method, p. 755.

The line of reasoning adopted for enumerating surjections viewed as sequences-
of-sets and partitions viewed as sets-of-sets yields a general result that is applicable to
a wide variety of constrained objects.

Proposition IL.2. The class R“AB) of surjections, where the cardinalities of the
preimages lie in A C Z>1 and the cardinality of the range belongs to B, has EGF

RAB () = B(a(z))  where  alz) = Z Z_’ Bx) = Zzb'

|
acA beB
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The class S4B of set partitions with block sizes in A C 7= and with a number
of blocks that belongs to B has EGF

a b
SAB) () = B(a(z)) where  a(z) = Z %v B2) = Z %

acA beB

Proof. One has R“4-B) = SEQp(SETA(Z)) and S8) = SETE(SETA(Z)), where,
in accordance with our general convention of p. 30, the notation Kq specifies a con-
struction K with a number of components restricted to set 2. |

Example 11.6. Smallest and largest blocks in set partitions. Let ep(z) denote the truncated
exponential function,

NN 2 e
ep(z) = +ﬁ+5+'”+ﬁ'
The EGFs $'=2)(2) = exp(ep(z) — 1) and S?) (2) = exp(e? — ¢, (2)) correspond to partitions
with all blocks of size < b and all blocks of size > b, respectively. ...................... [ |

> IL.5. No singletons. The EGF of partitions without singleton parts is ¢¢" =172 The EGF of
“double surjections” (each preimage contains at least two elements) is (2 + z — eZ)_l. <

Example 11.7. Comtet’s square. An exercise in Comtet’s book [129, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic method. The question is to enumerate set
partitions such that a parity constraint is satisfied by the number of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as follows:

Set partitions: | Any # of blocks  Odd # of blocks ~ Even # of blocks
any block sizes e 1 sinh(e®* — 1) cosh(e® — 1)
odd block sizes | e$"Z sinh(sinh z) cosh(sinh z)
even block sizes | ¢°Sh<~1 sinh(coshz — 1) cosh(coshz — 1)

The proof is a direct application of Proposition II.2, upon noting that e, sinh z, cosh z are the
characteristic EGFs of Z~(, 2Z>¢ + 1, and 2Z respectively. The sought EGFs are then
obtained by forming the compositions

exp —1+exp
sinh } o sinh s
cosh —1 4 cosh
in accordance with general prinCiples. ............ oot |

I1.3.2. Applications to words and random allocations. Numerous enumera-
tion problems present themselves when analysing statistics on letters in words. They
find applications in the study of random allocations [388] and the design of hashing
algorithms in computer science [378, 538]. Fix an alphabet

Xz{ala(ZZ’""ar}

of cardinality r, and let ¥ be the class of all words over the alphabet X', the size of
a word being its length. A word w € W, of length n can be viewed as a function
from [1..n] to [1..r], namely the function associating to each position the value of
the corresponding letter (canonically numbered from 1 to r) in the word. For instance,
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let ¥ = {a,b,c,d,p,q,r} and take the letters of X’ canonically numbered as a; =
a,...,a7 = r; for the word w = “abracadabra”, the table giving the position-to-
letter mapping is

a b r acadab r a
1 2 3 4 5 6 7 8 9 10 11 |,
127 1 3 1 4 1 2 7 1
which is itself determined by its sequence of preimages:
a=aj b=a> C=a3 d=ay p=as J=ae r=ay

— — —~ = —~ = —~ = —~ = ——
{1,4,6,8,11}, {2,9}, {5}, {7}, {}, ({}, {3,10}.
This decomposition is the same as the one used for surjections; only, it is no longer
imposed that all preimages should be non-empty.
The decomposition based on preimages then gives, with I/ the class of all urns

(17) WU =SEQU) = W(z) = (&9) = e€'?,

which yields back W,, = r", as was to be expected. In summary: words over an r—ary
alphabet are equivalent to functions into a set of cardinality r and are described by an
r-fold labelled product.

For the situation where restrictions are imposed on the number of occurrences of
letters, the decomposition (17) generalizes as follows.

Proposition IL3. Let W) denote the family of words over an alphabet of cardinal-
ity r, such that the number of occurrences of each letter lies in a set A. Then

(18) WA () = alz)" where a(z) = Z %.

acA

The proof is a one-liner: W4 = SEQ, (SET4(Z)). Although this result is tech-
nically a shallow consequence of the symbolic method, it has several important appli-
cations in discrete probability, as we see next.

Example 11.8. Restricted words. The EGF of words containing each letter at most b times, and
that of words containing each letter more than b times are

(19) WEP () =", W) = (¢ — ()",

respectively. (Observe the analogy with Example I1.6, p. 111.) Taking b = 1 in the first formula
gives the number of n-arrangements of r elements (i.e., of ordered combinations of n elements
among r possibilities),
20) n![z"](l—i—z)r:n!(r)=r(r—l)---(r—n—|—1),

n
as anticipated; taking b = 0, but now in the second formula, gives back the number of r—

surjections. For general b, the generating functions of (19) contain valuable information on the
least frequent and most frequent letter in random words. ......... ... ... .. .o |
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Example 11.9. Random allocations (balls-in-bins model). Throw at random n distinguishable
balls into m distinguishable bins. A particular realization is described by a word of length n
(balls are distinguishable, say, as numbers from 1 to n) over an alphabet of cardinality m (rep-
resenting the bins chosen). Let Min and Max represent the size of the least filled and most filled
bins, respectively. Then?,

z\m
PMax <b} = n![z"]ep (7)

2D m Z\\ M
P(Min > b} = n![Z"] (ez/m . (7)) .

m
The justification of this formula relies on the easy identity
Lo ) z
22) — M@ =" ().

and on the fact that a probability is determined as the ratio between the number of favorable
cases (given by (19)) and the total number of cases (™). The formulae of (21) lend themselves
to evaluation using symbolic manipulations systems; for instance, with m = 100 and n = 200,
one finds, for P(Max = k):

k 2 4 5 6 7 8 9 12 15 20
P(Max = k)[1075 1.4-1073 0.17 0.46 0.26 0.07 0.01 9-10~> 2-10~7 4.10~10
The values k = 5, 6, 7, 8 concentrate about 99% of the probability mass.
An especially interesting case is when m and n are asymptotically proportional, that is,

n/m = o and « lies in a compact subinterval of (0, +00). In that case, with probability tending
to 1 as n tends to infinity, one has

Min = 0, Max ~ ]Oi.
loglogn

In other words, there are, almost surely, empty urns (in fact many of them, see Example III.10,
p. 177) and the most filled urn grows logarithmically in size (Example VIII.14, p. 598). Such
probabilistic properties are best established by complex analytic methods, whose starting point
is exact generating function representations such as (19) and (21). They form the core of the
reference book [388] by Kolchin, Sevastyanov, and Chistyakov. The resulting estimates are in
turn invaluable in the analysis of hashing algorithms [301, 378, 538] to which the balls-in-bins
model has been recognized to apply with great accuracy [425]. ..., |

> 11.6. Number of different letters in words. The probability that a random word of length n
over an alphabet of cardinality r contains k different letters is (with { Z} a Stirling number)

" . 1 /r\[n
k= (e

(Choose k letters among r, then split the n positions into k distinguished non-empty classes.)

The quantity p;r,)c is also the probability that a random mapping from [1..n] to [1..r] has an

image of cardinality k. <

> IL.7. Arrangements. An arrangement of size n is an ordered combination of (some) elements

of [1..n]. Let A be the class of all arrangements. Grouping together into an urn all the elements

not present in the arrangement shows that a specification and its companion EGF are [129, p. 75]
eZ

AZU*xP, U=SET(Z), P =SEQZ) = Az) = =

4We let P(E) represent the probability of an event E and E(X) the expectation of the random vari-
able X; cf Appendix A.3: Combinatorial probability, p. 727 and Appendix C.2: Random variables, p. 771.



“book” — 2008/10/3 — 16:05 — page 114 — #128

114 II. LABELLED STRUCTURES AND EGFS

The counting sequence A, = ZZ:O Z—,’ starts as 1,2, 5, 16, 65, 326, 1957 (EIS A000522). <]

Birthday paradox and coupon collector problem. The next two examples show
applications of EGFs to two classical problems of probability theory, the birthday
paradox and the coupon collector problem. They constitute a neat illustration of the
fact that the symbolic method may be used to analyse discrete probabilistic models—
this theme is explored systematically in Chapter III, as regards exact results, and Chap-
ter IX, which is dedicated to asymptotic laws.

Assume that there is a very long line of persons ready to enter a very large room
one by one. Each person is let in and declares her birthday upon entering the room.
How many people must enter in order to find two that have the same birthday? The
birthday paradox is the counterintuitive fact that on average a birthday collision is
likely to take place as early as at time n = 24. Dually, the coupon collector problem
asks for the average number of persons that must enter in order to exhaust all the
possible days in the year as birthdates. In this case, the average is the rather large
number n’ = 2364. (The term “coupon collection” refers to the situation where images
or coupons of various sorts are inserted in sales items and some premium is given to
those who succeed in gathering a complete collection.) The birthday problem and
the coupon collector problem are relative to a potentially infinite sequence of events;
however, the fact that the first birthday collision or the first complete collection occurs
at any fixed time » only involves finite events. The following diagram illustrates the
events of interest:

n=20 B (1st collision) C (complete collection)

I * T, * » 11— +00.
INJECTIVE SURJECTIVE

In other words, we seek the time at which injectivity ceases to hold (the first birthday
collision, B) and the time at which surjectivity begins to be satisfied (a complete col-
lection, C). In what follows, we consider a year with r days (readers from Earth may
take r = 365) and let X’ represent an alphabet with r letters (the days in the year).

Example 11.10. Birthday paradox. Let B be the time of the first collision, which is a random
variable ranging between 2 and r + 1 (where the upper bound is derived from the pigeonhole

principle). A collision has not yet occurred at time 7, if the sequence of birthdates 81, ..., B
has no repetition. In other words, the function 8 from [1..n] to X must be injective; equiva-
lently, By, ..., Bx is an n-arrangement of r objects. Thus, we have the fundamental relation
D) (r — 1
P{B>n) = Do mndlD
rn
!

(23) = TR0+

rl’l

- (i)

where the second line repeats (20) and the third results from the series transformation (22).
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The expectation of the random variable B is elementarily

oo
(24) E(B) =Y P{(B>n},
n=0
this by virtue of a general formula valid for all discrete random variables (Appendix C.2: Ran-

dom variables, p. 771). From (23), line 1, this gives us a sum expressing the expectation:
namely,

)---(r—n+1)

rh

(25) EB) =1+ rer -1

n=1

For instance, with » = 365, one finds that the expectation is the rational number,

E(B) 12681 - - - 06674 461658
T 5151---0625 77 ’

where the denominator comprises as much as 864 digits.

An alternative form of the expectation is derived from the generating function involved
in (23), line 3. Let f(z) = ), fuz" be an entire function with non-negative coefficients. Then
the formula

00 00
26) S fun! = / ! f () dr,
0
n=0

a particular case of the Laplace transform, is valid provided either the sum or the integral on
the right converges. The proof is a direct consequence of the usual Eulerian representation of

factorials,
o
n! :/ e 1" ds.
0

Applying this principle to (24) with the probabilities given by (23) [third line], one finds

o0 t r
27 E(B):/ e ! <1+—) dt.
0 r

Asymptotic analysis can take up from here. The Laplace method’ can be applied either
in its version for discrete sums to (25) or in its version for integrals to (27); see Appendix B.6:
Laplace’s method, p. 755. Either way provides the estimate

28) BB = |74 210071,

as r tends to infinity. In particular, the approximation provided by the first two terms of (28),
for r = 365, is 24.61119, which only represents a relative error of 2 - 1074, See also a sample
realization in Figure I1.6, corresponding to r = 20. The quantity E(B) is related to Ramanujan’s
Q-function (see Equation (50), p. 130) by E(B) = 1 + Q(r), and we shall examine a global
way to deal with an entire class of related sums in Example VI.13, p. 416.

The interest of such integral representations based on generating functions is that they
are robust: they adjust naturally to many kinds of combinatorial conditions. For instance, the
same calculations applied to (21) prove the following: the expected time necessary for the

SKnuth [377, Sec. 1.2.11.3] uses this calculation as a pilot example for (real) asymptotic analysis.
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(time of arrival)
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Figure I1.6. A sample realization of the “birthday paradox” and “coupon collection”
with an alphabet of r = 20 letters. The first collision occurs at time B = 6 and the
collection becomes complete at time C = 87.

first occurrence of the event “b persons have the same birthday” has expectation given by the
integral

9] t r
(29) 1(r,b) :=/ e lep_y (7) dr.
0 r

(The basic birthday paradox corresponds to b = 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their paper [366] shows in addition that

1(r,b) ~ VBT <1 + 1) p1=1/b,
r—>00 b
once more a consequence of Laplace’s method. The asymptotic form evaluates to 82.87, for
r = 365 and b = 3, and the exact value of the expectation is 88.73891. Thus three-way
collisions also tend to occur much sooner than one might think, after about 89 persons on
average. Globally, such developments illustrate the versatility of the symbolic approach and its
applicability to many basic probabilistic problems (see also Subsection III. 6.1, p. 189). ... B

B> IL.8. The probability distribution of time till a birthday collision. Elementary approximations
show that, for large r, and in the “central” regime n = t./r, one has

BB > 1) ~ =12, B(B = 1/7) ~ —1e=12.
\/;

The continuous probability distribution with density te="*12 is called a Rayleigh distribution.
Saddle-point methods (Chapter VIII) may be used to show that for the first occurrence of a

b-fold birthday collision: P(B > tr1=1/b) ~ ¢=1"/b!, 4

Example 11.11. Coupon collector problem. This problem is dual to the birthday paradox. We
ask for the first time C when By, ..., B¢ contains all the elements of X': that is, all the possible
birthdates have been “collected”. In other words, the event {C < n} means the equality between
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sets, {B1, ..., Bn} = X. Thus, the probabilities satisfy
RY oy
n

P{C <n}

rh r

30 n! : r
( ) — ﬁ[zn] (eZ_])
,
= nl["] (ez/r - 1) ,
by our earlier enumeration of surjections. The complementary probabilities are then
P(C>n)=1-P(C=n) =nll"] (5 = (/7 —1)').

An application of the Eulerian integral trick of (27) then provides a representation of the expec-
tation of the time needed for a full collection as

G1) E(C) = /oo (1 —a- e—’/r)r) dr.
0

A simple calculation (expand by the binomial theorem and integrate termwise) shows that
r i—1
r\ =1/
EC) =r < ) —
20
j =
which constitutes a first answer to the coupon collector problem in the form of an alternating

sum. Alternatively, in (31), perform the change of variables v = 1 — e/ /T then expand and
integrate termwise; this process provides the more tractable form

(32) E(C) = r Hy,
where H; is the harmonic number:
1 1 1
(33) Ho=l+-+-+ - +-.
2 3 r

Formula (32) is by the way easy to interpret directly6: one needs on average 1 = r/r trials to
get the first day, then r/(r — 1) to get a different day, etc.

Regarding (32), one has available the well-known formula (by comparing sums with inte-
grals or by Euler—-Maclaurin summation),

1
Hr=logr+y+ -+ 0(r™2), y =0.5772156649,
r
where y is known as Euler’s constant. Thus, the expected time for a full collection satisfies
1
(34) E(C):rlogr+yr—|—§+0(r_l).

Here the “surprise” lies in the nonlinear growth of the expected time for a full collection. For a
year on Earth, r = 365, the exact expected value is = 2364.64602 whereas the approximation
provided by the first three terms of (34) yields 2364.64625, representing a relative error of only
one in ten million.

As usual, the symbolic treatment adapts to a variety of situations, for instance, to multiple
collections. One finds: the expected time till each item (birthday or coupon) is obtained b times

is
J(rb) = /OOO (1 — (1 _ eb_l(t/r)e_t/r)r) dr.

6Such elementary derivations are very much problem specific: contrary to the symbolic method, they
do not usually generalize to more complex situations.



“book” — 2008/10/3 — 16:05 — page 118 — #132

118 II. LABELLED STRUCTURES AND EGFS

This expression vastly generalizes the standard case (31), which corresponds to b = 1. From it,
one finds [454]

J(@r,b) =r (logr + (b — 1)loglogr +y —log(b — 1)! +0(1)),
so that only a few more trials are needed in order to obtain additional collections. ......... |
> 1L.9. The little sister. The coupon collector has a little sister to whom he gives his duplicates.

Foata, Lass, and Han [266] show that the little sister misses on average H, coupons when her
big brother first obtains a complete collection. <

B> IL1.10. The probability distribution of time till a complete collection. The saddle-point method
(Chapter VIII) may be used to prove that, in the regime n = r logr + tr, we have

lim P(C <rlogr +1tr) = e
t—00

This continuous probability distribution is known as a double exponential distribution. For the
time C® till a collection of multiplicity b, one has

lim P(C® <rlogr + (b — Drloglogr + tr) = exp(—e ' /(b — 1)),

1—>00

a property known as the Erd6s—Rényi law, which finds application in the study of random
graphs [195]. <

Words as both labelled and unlabelled objects. What distinguishes a labelled
structure from an unlabelled one? There is nothing intrinsic there, and everything is in
the eye of the beholder—or rather in the type of construction adopted when modelling
a specific problem. Take the class of words WV over an alphabet of cardinality r. The
two generating functions (an OGF and an EGF respectively),

1
1—rz

~ 7"
W(z) = Z W,7" = and W) = Z Wnﬁ =¢'?,
n n
leading in both cases to W,, = r”, correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, the other as a labelled power of

letter positions. A similar situation arises for r—partitions, for which we find as OGF
and EGF,

N r zZ __ 1 r

§V(2) = : and  SV(z) = -
1-20-22)---(1—=rz) r!

by viewing these either as unlabelled structures (an encoding via words of a regular

language in Section L. 4.3, p. 62) or directly as labelled structures (this chapter, p. 108).

’

> IL.11. Balls switching chambers: the Ehrenfest2 model. Consider a system of two cham-
bers A and B (also classically called “urns”). There are N distinguishable balls, and, initially,

chamber A contains them all. At any instant %, %, ..., one ball is allowed to change from one

chamber to the other. Let E,[,Z] be the number of possible evolutions that lead to chamber A
containing ¢ balls at instant n and E [1(z) the corresponding EGF. Then

Ef () = (Z)(cosh 2)fsinh )V ¢, EWl(7) = (coshz)Y = 27N (% + )N,

[Hint: the EGF EIV! enumerates mappings where each preimage has an even cardinality.] In
particular the probability that urn A is again full at time 27 is

1 YN

2n
R <)(N—2k) .
2NN =\ i
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This famous model was introduced by Paul and Tatiana Ehrenfest [188] in 1907, as a simplified
model of heat transfer. It helped resolve the apparent contradiction between irreversibility in
thermodynamics (the case N — oo) and recurrence of systems undergoing ergodic transforma-
tions (the case N < 00). See especially Mark Kac’s discussion [361]. The analysis can also
be carried out by combinatorial methods akin to those of weighted lattice paths: see Note V.25,
p. 336 and [304]. <

I1.4. Alignments, permutations, and related structures

In this section, we start by considering specifications built by piling up two con-
structions, sequences-of-cycles and sets-of-cycles respectively. They define a new
class of objects, alignments, while serving to specify permutations in a novel way.
(These specifications otherwise parallel surjections and set partitions.) In this context,
permutations are examined under their cycle decomposition, the corresponding enu-
meration results being the most important ones combinatorially (Subsection II. 4.1 and
Figure I1.8, p. 123). In Subsection II. 4.2, we recapitulate the meaning of classes that
can be defined iteratively by a combination of any two nested labelled constructions.

I1.4.1. Alignments and permutations. The two specifications under consider-
ation now are

(35 O = SEQ(CYC(2)), and P = SET(CYC(Z)),
specifying new objects called alignments (O) as well as an important decomposition
of permutations (P).

Alignments. An alignment is a well-labelled sequence of cycles. Let O be the
class of all alignments. Schematically, one can visualize an alignment as a collection
of directed cycles arranged in a linear order, somewhat like slices of a sausage fastened
on a skewer:

The symbolic method provides,

1
0= SEQ(CYC(2)) — O(x) = m,
and the expansion starts as
Z2 '3 Z4 Z5
O(z) = 1+Z+35+14§+885+694§+'” )

but the coefficients (see EIS A007840: “ordered factorizations of permutations into
cycles”) appear to admit no simple form.
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0060

A permutation may be viewed as a set of cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

(1 2 3 4 5 6 7 8910 11 12 13 14 15 16 17
C=\1112131710151493 4 6 2 7 8 1 5 16)"

(Cycles here read clockwise and i is connected to o; by an edge in the graph.)

Figure I1.7. The cycle decomposition of permutations.

Permutations and cycles. From elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. Let o be a permutation. Start
with any element, say 1, and draw a directed edge from 1 to o (1), then continue con-
necting to o2(1), o3(1), and so on; a cycle containing 1 is obtained after at most n
steps. If one repeats the construction, taking at each stage an element not yet con-
nected to earlier ones, the cycle decomposition of the permutation o is obtained; see
Figure I1.7. This argument shows that the class of sets-of-cycles (corresponding to P
in (35)) is isomorphic to the class of permutations as defined in Example 1.2, p. 98:

(36) P = SET(CYC(2)) = SEQ(Z).

This combinatorial isomorphism is reflected by the obvious series identity

1 1
P(z) =exp | log = .
11—z 1—-z

The property that exp and log are inverse of one another is nothing but an analytic
reflex of the combinatorial fact that permutations uniquely decompose into cycles!

As regards combinatorial applications, what is especially fruitful is the variety of
special results derived from the decomposition of permutations into cycles. By a use
of restricted construction that entirely parallels Proposition I1.2, p. 110, we obtain the
following statement.

Proposition IL4. The class P8 of permutations with cycle lengths in A € Z~q
and with cycle number that belongs to B C Z>o has EGF

a b
PAB) () = B(a(z)) where a(z) = Z %’ B2) = Z %

acA beB
B> I1.12. What about alignments? With similar notations, one has for alignments
a
0AB) () = Y =32
@ =B@)  where @)=Y p@) =)
acA beB
corresponding to O@A.B) — SEQp(CYC4(2)). <
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Example 11.12. Stirling cycle numbers. The class PO of permutations that decompose into
cycles, satisfies

0 ® : LY
37) P =SET,(CYC(2) = P(@) = — (log 5 '
! —Z

l r
1—z> ’

These numbers are fundamental quantities of combinatorial analysis. They are known as the
Stirling numbers of the first kind, or better, according to a proposal of Knuth, the Stirling cycle
numbers. Together with the Stirling partition numbers, the properties of the Stirling cycle num-
bers are explored in the book by Graham, Knuth, and Patashnik [307] where they are denoted
by ['r‘] See Appendix A.8: Stirling numbers, p. 735. (Note that the number of alignments
formed with r cycles is r![’;].) As we shall see shortly (p. 140) Stirling numbers also surface in
the enumeration of permutations by their number of records.

It is also of interest to determine what happens regarding cycles in a random permutation of
size n. Clearly, when the uniform distribution is placed over all elements of P, each particular
permutation has probability exactly 1/n!. Since the probability of an event is the quotient of
the number of favorable cases over the total number of cases, the quantity

._1 n
Prok= 20k

is the probability that a random element of P, has k cycles. This probabilities can be effectively
determined for moderate values of n from (38) by means of a computer algebra system. Here
are for instance selected values for n = 100:

k 1 2 3 4 5 6 7 8 9 10
Dk 0.01 0.05 0.12 0.19 021 0.17 0.11 0.06 0.03 0.01

The number of such permutations of size n is then

|
(38) P\ = % ("] <log

For this value n = 100, we expect in a vast majority of cases the number of cycles to be in the
interval [1, 10]. (The residual probability is only about 0.005.) Under this probabilistic model,
the mean is found to be about 5.18. Thus: A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles.

Such procedures demonstrate a direct exploitation of symbolic methods. They do not
however tell us how the number of cycles could depend on n, as n increases unboundedly. Such
questions are to be investigated systematically in Chapters III and IX. Here, we shall content
ourselves with a brief sketch. First, form the bivariate generating function,

o0
Pz.u):=Y PO’
r=0
and observe that

v (e LY oo ) = —u
P(z,u)_zr—! ogﬁ = exp uog]_Z ={1-2".

r=0

Newton’s binomial theorem then provides

[")(1—2) ™" = (—1)" (_n”)
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In other words, a simple formula
1 n
k
39 = 1 2)... -1
39) Z[k]u uw+Dw+2)---(u+n-1)
k=0
encodes precisely all the Stirling cycle numbers corresponding to a fixed value of n. From here,
the expected number of cycles, p, := Y kpp i is easily found to be expressed in terms of
harmonic numbers (use logarithmic differentiation of (39)):

1 1
pn=Hp=1+=+-+—.
2 n

In particular, one has p1gg = Higp = 5.18738. In general: The mean number of cycles in a
random permutation of size n grows logarithmically withn, p, ~logn. ................. |

Example 11.13.  Involutions and permutations without long cycles. A permutation o is an
involution if o2 = 1d, with Id the identity permutation. Clearly, an involution can have only
cycles of sizes 1 and 2. The class Z of all involutions thus satisfies

2
(40) T = SET(CYC12(2)) N 1(z) = exp (z + Z2> )
The explicit form of the EGF lends itself to expansion,
ln/2] '
n.
I, = _
" kgo (n — 2k) 12Kk

which solves the counting problem explicitly. A pairing is an involution without a fixed point.
In other words, only cycles of length 2 are allowed, so that

J = SET(CYCy(Z)) — J@) =2, Iy =1-3-5-.-Qn—1).

(The formula for J,;, hence that of 7,,, can be checked by a direct reasoning.)
Generally, the EGF of permutations, all of whose cycles (in particular the largest one) have
length at most equal to r, satisfies

N
J
BO@ =exp Y =
=17
The numbers b,(f) =[z"1B")(2) satisfy the recurrence

n+ Db = @m+ 1) —p"

n+1 = n—r>
by which they can be computed quickly, while they can be analysed asymptotically by means of

the saddle-point method (Chapter VIII, p. 568). This gives access to the statistics of the longest
cycle in @ PermuUtation. ... ... ...ttt ettt e e e e |

Example 11.14. Derangements and permutations without short cycles. Classically, a derange-
ment is defined as a permutation without fixed points, i.e., o; # i for all i. Given an integer
r, an r—derangement is a permutation all of whose cycles (in particular the shortest one) have
length larger than r. Let D) be the class of all r—derangements. A specification is

1) D) = SET(CYC~,(2)),
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Specification EGF coefficient
1
Permutations: SEQ(Z) n! (p- 104)
1 1\ n
r cycles SET,(CYC(Z)) log —— (p- 121)
r! 1—z r
involutions SET(CYC] 5(Z2)) /2 ~n"?  (pp. 122,558)

.
allcycles < SET(CYC| ,(Z)) exp G T i) ~ a1 (pp. 122, 568)
r

-z
derangements SET(CYC.1(Z2)) ]e ~nle”! (pp- 122, 261)
-z
exp (_% ..... Z
allcycles > r  SET(CYCs,(2)) ~nle” Hr (pp- 123, 261)

Figure IL.8. A summary of permutation enumerations.

the corresponding EGF then being

, J
i _ exp(— 23:1 27)

(42) DY) =exp| Y. ; -

j>r

For instance, when r = 1, a direct expansion yields

a truncation of the series expansion of exp(—1) that converges rapidly to e~ L. Phrased differ-
ently, this becomes a famous combinatorial problem with a pleasantly quaint nineteenth-century
formulation [129]: “A number n of people go to the opera, leave their hats on hooks in the cloak-
room and grab them at random when leaving; the probability that nobody gets back his own hat
is asymptotic to 1/e, which is nearly 37%.” The usual proof uses inclusion—exclusion; see Sec-
tion III. 7, p. 198 for both the classical and symbolic arguments. (It is a sign of changing times
that Motwani and Raghavan [451, p. 11] describe the problem as one of sailors that return to
their ship in a state of inebriation and choose random cabins to sleep in.)

For the generalized derangement problem, we have, for any fixed r (with H, a harmonic
number, p. 117),

b’
(43) ~e T,
n!
which is proved easily by complex asymptotic methods (Chapter IV, p. 261). ............. |

Similar to several other structures that we have been considering previously, per-
mutation allow for transparent connections between structural constraints and the
forms of generating functions. The major counting results encountered in this sec-
tion are summarized in Figure I1.8.
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> IL13. Permutations such that o/ = 1d. Such permutations are “roots of unity” in the
symmetric group. Their EGF is
d
Z
ex —1,
Pl
dlf

where the sum extends to all divisors d of f. <

B> 11.14. FParity constraints in permutations. The EGFs of permutations having only even-size
cycles or odd-size cycles (O(z)) are, respectively,

1 1 1 1 I+z [1+2z
E(z):exp(ilogl_zz) = m, 0(z):exp(§logl_z> =i,

One finds Ep, =(1-3-5---(2n — 1))2 and Oy, = Ep,, O2pq1 = 2n+ 1)Ey,.
The EGFs of permutations having an even number of cycles (E*(z)) and an odd number
of cycles (O*(z)) are, respectively,

11 +1—z 0*(2) = sinh(1 1 11 +z—1
= - , = sinh(lo == ,
21—z 2 ¢ $1-2) 21" 2
so that parity of the number of cycles is evenly distributed among permutations of size n as soon
as n > 2. The generating functions obtained in this way are analogous to the ones appearing in

the discussion of “Comtet’s square”, p. 111.

E*(z)=cosh<log ! )
11—z

> I1I.15. A hundred prisoners 1. This puzzle originates with a paper of Gal and Miltersen [275,
612]. A hundred prisoners, each uniquely identified by a number between 1 and 100, have
been sentenced to death. The director of the prison gives them a last chance. He has a cabinet
with 100 drawers (numbered 1 to 100). In each, he’ll place at random a card with a prisoner’s
number (all numbers different). Prisoners will be allowed to enter the room one after the other
and open, then close again, 50 drawers of their own choosing, but will not in any way be allowed
to communicate with one another afterwards. The goal of each prisoner is to locate the drawer
that contains his own number. If all prisoners succeed, then they will all be spared; if at least
one fails, they will all be executed.

There are two mathematicians among the prisoners. The first one, a pessimist, declares

that their overall chances of success are only of the order of 1/ 2100 = . 1073!. The second
one, a combinatorialist, claims he has a strategy for the prisoners, which has a greater than 30%
chance of success. Who is right? [Note II1.10, p. 176 provides a solution, but our gentle reader
is advised to reflect on the problem for a few moments, before she jumps there.] <

I1.4.2. Second-level structures. Consider the three basic constructors of labelled
sequences (SEQ), sets (SET), and cycles (CYC). We can play the formal game of ex-
amining what the various combinations produce as combinatorial objects. Restricting
attention to superpositions of two constructors (an external one applied to an internal
one) gives nine possibilities summarized by the table of Figure II.9.

The classes of surjections, alignments, set partitions, and permutations appear
naturally as SEQ o SET, SEQo CYC, SET o SET, and SETo CYC (top right corner).
The others represent essentially non-classical objects. The case of the class £ =
SEQ(SEQx>1(2)) describes objects that are (ordered) sequences of linear graphs; this
can be interpreted as permutations with separators inserted, e.g, 53|264|1, or alterna-
tively as integer compositions with a labelling superimposed, so that L, = n!2"~1,
The class 7 = SET(SEQx>1(Z)) corresponds to unordered collections of permuta-
tions; in other words, “fragments” are obtained by breaking a permutation into pieces
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ext.\int. SEQ>1 SET> Cyc
Labelled compositions (£)  Surjections (R) Alignments (O)
SEQ SEQ o SEQ SEQo SET SEQo CYC
1-z 1 1
1-2z 2—et 1 —log(l —z)~!
Fragmented permutations (F) Set partitions (S) Permutations (P)
SET SET 0 SEQ SET o SET SETo CYC
2/(1-2) o1 1
-z
Supernecklaces (S7) Supernecklaces (S11) Supernecklaces (S'!1)
Cyc CYCo SEQ CYCoSET CycoCyYC
11—z 1
1 —e¥)~! log ——mM8M8M——
12 log2 —¢7) £ 1 togl — o)

Figure I1.9. The nine second-level structures.

(pieces must be non-empty for definiteness). The interesting EGF is
2 3 4
— /-2 _ SIS LA ¥ A
F(z)=e —1+z+32!+133!+734!+ )

(EIS A000262: “sets of lists”). The corresponding asymptotic analysis serves to illus-
trate an important aspect of the saddle-point method in Chapter VIII (p. 562). What we
termed “supernecklaces” in the last row represents cyclic arrangements of composite
objects existing in three brands.

All sorts of refinements, of which Figures I1.8 and I1.9 may give an idea, are
clearly possible. We leave to the reader’s imagination the task of determining which
among the level 3 structures may be of combinatorial interest. . .

D> I1.16. A meta-exercise: Counting specifications of level n. The algebra of constructions sat-
isfies the combinatorial isomorphism SET(CYC(&X')) = SEQ(X) for all X. How many different
terms involving n constructions can be built from three symbols CYC, SET, SEQ satisfying a

« 9

semi-group law (“o”) together with the relation SET o CYC = SEQ? This determines the num-
ber of specifications of level n. [Hint: the OGF is rational as normal forms correspond to words
with an excluded pattern.] <

II. 5. Labelled trees, mappings, and graphs

In this section, we consider labelled trees as well as other important structures that
are naturally associated with them. As in the unlabelled case considered in Section I. 6,
p. 83, the corresponding combinatorial classes are inherently recursive, since a tree is
obtained by appending a root to a collection (set or sequence) of subtrees. From here,
it is possible to build the “functional graphs” associated to mappings from a finite set
to itself—these decompose as sets of connected components that are cycles of trees.
Variations of these construction finally open up the way to the enumeration of graphs
having a fixed excess of the number of edges over the number of vertices.
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>— & (3,2,5.1,7,4,6)

Figure IL.10. A labelled plane tree is determined by an unlabelled tree (the “shape”)
and a permutation of the labels 1, ..., n.

IL.5.1. Trees. The trees to be studied here are labelled, meaning that nodes bear
distinct integer labels. Unless otherwise specified, they are rooted, meaning as usual
that one node is distinguished as the root. Labelled trees, like their unlabelled coun-
terparts, exist in two varieties: (i) plane trees where an embedding in the plane is
understood (or, equivalently, subtrees dangling from a node are ordered, say, from
left to right); (ii) non-plane trees where no such embedding is imposed (such trees
are then nothing but connected undirected acyclic graphs with a distinguished root).
Trees may be further restricted by the additional constraint that the nodes’ outdegrees
should belong to a fixed set Q2 € Zxo where Q2 5 0.

Plane labelled trees. We first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constrained by €2. This family is

A = Z x SEQq(A),

where Z represents the atomic class consisting of a single labelled node: Z = {1}.
The sequence construction appearing here reflects the planar embedding of trees, as
subtrees stemming from a common root are ordered between themselves. Accord-
ingly, the EGF A(z) satisfies

A@) =2p(AR)  where )= u”.
we
This is exactly the same equation as the one satisfied by the ordinary GF of Q-
restricted unlabelled plane trees (see Proposition 1.5, p. 66). Thus, %An is the number
of unlabelled trees. In other words: in the plane rooted case, the number of labelled
trees equals n! times the corresponding number of unlabelled trees. As illustrated by
Figure II.10, this is easily understood combinatorially: each labelled tree can be de-
fined by its “shape” that is an unlabelled tree and by the sequence of node labels where
nodes are traversed in some fixed order (preorder, say). In a way similar to Proposi-
tion 1.5, p. 66, one has, by Lagrange inversion (Appendix A.6: Lagrange Inversion,
p- 732):
An = nll2"]A@) = (n = D" P )"
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Figure IL.11. Thereare 77 = 1,7, =2, T3 =9, and in general 7, = n1 Cayley
trees of size n.

This simple analytic—combinatorial relation enables us to transpose all of the enumer-
ation results of Subsection 1. 5.1, p. 65, to plane labelled trees, upon multiplying the
evaluations by n!, of course. In particular, the total number of “general” plane labelled
trees (with no degree restriction imposed, i.e., 2 = Zxg) is

'xl 2n —2 _(2n—2)!_2n71(1 3. @n—3)
n! o U _—(n—l)!_ .3...(2n )

The corresponding sequence starts as 1, 2, 12, 120, 1680 and is E1S A001813.

Non-plane labelled trees. We next turn to non-plane labelled trees (Figure I11.11)
to which the rest of this section will be devoted. The class 7 of all such trees is
definable by a symbolic equation, which provides an implicit equation satisfied by the
EGF:

(44) T = Z « SET(T) = T(z) = ze' 9.

There the set construction translates the fact that subtrees stemming from the root are
not ordered between themselves. From the specification (44), the EGF T (z) is defined
implicitly by the “functional equation”

(45) T(z) =ze'@.

The first few values are easily found, for instance by the method of indeterminate

coefficients:
2 3 4 5

z z z z
T(Z)=Z+25+9§+64Z+625§+~~.

As suggested by the first few coefficients(9 = 32,64 = 43,625 = 5%), the general
formula is

(46) T, =n""!

which is established (as in the case of plane unlabelled trees) by Lagrange inversion:

(47 T, = n![Z"]T (z) = n! (%[u"_l](e“)") =n""".
The enumeration result 7,, = n"~! is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821-1895) who had keen interest in com-
binatorial mathematics and published altogether over 900 papers and notes. Con-
sequently, formula (46) given by Cayley in 1889 is often referred to as “Cayley’s
formula” and unrestricted non-plane labelled trees are often called “Cayley trees”.
See [67, p. 51] for a historical discussion. The function 7T (z) is also known as the
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(Cayley) “tree function”; it is a close relative of the W-function [131] defined implic-
itly by We" = z, which was introduced by the Swiss mathematician Johann Lambert
(1728-1777) otherwise famous for first proving the irrationality of the number 7.

A similar process gives the number of (non-plane rooted) trees where all out-
degrees of nodes are restricted to lie in a set 2. This corresponds to the specification

_ u®

T® = 2xSE10(T?) = TP@=200P@), ¢w =) —.
wea @

What the last formula involves is the “exponential characteristic” of the degree se-
quence (as opposed to the ordinary characteristic, in the planar case). It is once more
amenable to Lagrange inversion. In summary:

Proposition IL5. The number of rooted non-plane trees, where all nodes have outde-
gree in Q, is

L = (= D" N@w)"  where )= Z)—a:

we

In particular, when all node degrees are allowed, i.e., when Q = Zxo, the number of
trees is T, = n"~ and its EGF is the Cayley tree function satisfying T (z) = zeT@.

As in the unlabelled case (p. 66), we refer to a class of labelled trees defined by
degree restrictions as a simple variety of trees: its EGF satisfies an equation of the

form y = z¢p ().

B> I1.17. Priifer’s bijective proofs of Cayley’s formula. The simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is due to Priifer (in 1918). It establishes
as follows a bijective correspondence between unrooted Cayley trees whose number is n"=2 for
size n and sequences (ay, . ..,a,—2) with I < a; < n for each j. Given an unrooted tree t,
remove the endnode (and its incident edge) with the smallest label; let a; denote the label of
the node that was joined to the removed node. Continue with the pruned tree 7’ to get a; in a
similar way. Repeat the construction of the sequence until the tree obtained only consists of a
single edge. For instance:

3 2
1o 41 8
S —  (4,8,4,8,8,4).
7 6
It can be checked that the correspondence is bijective; see [67, p. 53] or [445, p. 5]. <

> I1.18. Forests. The number of unordered k—forests (i.e., k—sets of trees) is
k
T(z) _ (n— 1)![u”7k](e“)” _ (" 1 k.
k! (k—1)! k—1
as follows from Biirmann’s form of Lagrange inversion, relative to powers (p. 66). <

D> I1.19. Labelled hierarchies. The class L of labelled hierarchies is formed of trees whose
internal nodes are unlabelled and are constrained to have outdegree larger than 1, while their
leaves have labels attached to them. As for other labelled structures, size is the number of labels
(internal nodes do not contribute). Hierarchies satisfy the specification (compare with p. 72)

R = nii)

L =Z+ SETs(L), = L=z+el—1-1L.
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Figure I1.12. A functional graph of size n = 26 associated to the mapping ¢ such
that (1) = 16, ¢(2) = ¢(3) = 11, ¢(4) = 23, and so on.

This happens to be solvable in terms of the Cayley function: L(z) = T(%ez/ 2-l/2y 4 % —

%. The first few values are 0, 1, 4, 26, 236, 2752 (EIS A000311): these numbers count phylo-
genetic trees, used to describe the evolution of a genetically-related group of organisms, and
they correspond to Schroder’s “fourth problem” [129, p. 224]. The asymptotic analysis is done
in Example VIIL.12, p. 472.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z 4+ SETp(M) e M(iZ)=1—+1-2z and M, =1-3---2n—-3),
where the counting numbers are now, surprisingly perhaps, the odd factorials. <

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1..n] to itself. A mapping f € [1..n] — [l..n] can be repre-
sented by a directed graph over the set of vertices [1..n] with an edge connecting x
to f(x), for all x € [1..n]. The graphs so obtained are called functional graphs and
they have the characteristic property that the outdegree of each vertex is exactly equal
to 1.

Mappings and associated graphs. Given a mapping (or function) f, upon start-
ing from any point xp, the succession of (directed) edges in the graph traverses the
vertices corresponding to iterated values of the mapping,

x0, fxo), f(f(x0)),s....

Since the domain is finite, each such sequence must eventually loop back on itself.
When the operation is repeated, starting each time from an element not previously hit,
the vertices group themselves into (weakly connected) components. This leads to a
valuable characterization of functional graphs (Figure 11.12): a functional graph is a
set of connected functional graphs; a connected functional graph is a collection of
rooted trees arranged in a cycle. (This decomposition is seen to extend the decom-
position of permutations into cycles, p. 120.)
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Thus, with 7 being as before the class of all Cayley trees, and with C the class of
all connected functional graphs, we have the specification:

F = SET(K) F(z) = X®
1
(48) K = Cyc(T) - K(z) = log 1-7T@)
T = ZxSET(7) T(z) = zeT®@.

What is especially interesting here is a specification binding three types of related
structures. From (48), the EGF F(z) is found to satisfy F = (1 — T)~!. It can be
checked from this, by Lagrange inversion once again (p. 733), that we have

(49) Fy=n",

as was to be expected (!) from the origin of the problem. More interestingly, Lagrange
inversion also gives the number of connected functional graphs (expand log(1 — 7))~
and recover coefficients by Biirmann’s form, p. 66):

50) Ky =n""'Q(n) mWeme=Hﬁ21+m_DY_”+”_

n

The quantity Q(n) that appears in (50) is a famous one that surfaces in many prob-
lems of discrete mathematics (including the birthday paradox, Equation (27), p. 115).
Knuth has proposed naming it “Ramanujan’s Q-function” as it already appears in the
first letter of Ramanujan to Hardy in 1913. The asymptotic analysis is elementary
and involves developing a continuous approximation of the general term and approx-
imating the resulting Riemann sum by an integral: this is an instance of the Laplace
method for sums briefly explained in Appendix B.6: Laplace’s method, p. 755 (see
also [377, Sec. 1.2.11.3] and [538, Sec. 4.7]). In fact, very precise estimates come
out naturally from an analysis of the singularities of the EGF K (z), as we shall see in
Chapters VI (p. 416) and VII (p. 449). The net result is

7
2n’

so that a fraction about 1/,/n of all the graphs consist of a single component.

K, ~n"

Constrained mappings. As is customary with the symbolic method, basic con-
structions open the way to a large number of related counting results (Figure II.13).
First, by an adaptation of (48), the mappings without fixed points, (Vx : f(x) # x) and
those without 1, 2—cycles, (additionally, Vx : f(f(x)) # x), have EGFs, respectively,

e T e~ T@-T()/2
1-T(@)’ 1-T(2)

The first term is consistent with what a direct count yields, namely (n — 1)", which is
asymptotic to e~ 'n", so that the fraction of mappings without fixed point is asymptotic
to e~ 1. The second one lends itself easily to complex asymptotic methods that give

—-T-T2%)2
e
n![z”]—l — e 32",
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EGF coefficient
I
Mappings: -7 n"t (p. 130)
ed  log — n [ (pp. 130, 449)
connecte o ~n" | — . 130,
ST wm PP
€_T
no fixed-point =7 ~ e It (p. 130)
= n
idempotent ewe ~ ! (pp. 131, 571)
(logn)"
eT
partial 7 ~en" (p. 132)

Figure I1.13. A summary of various counting results relative to mappings, with 7' =
T (z) the Cayley tree function. (Bijections, surjections, involutions, and injections are
covered by previous constructions.)

and the proportion is asymptotic to e~3/2. These two particular estimates are of

the same form as that found for permutations (the generalized derangements, Equa-
tion (43)). Such facts are not quite obvious by elementary probabilistic arguments, but
they are neatly explained by the singular theory of combinatorial schemas developed
in Part B of this book.

Next, idempotent mappings, i.e., ones satisfying f(f(x)) = f(x) for all x, cor-
respond to Z = SET(Z x SET(Z)), so that

n
1) =  and I, = (”)k"—" .
(The specification translates the fact that idempotent mappings can have only cycles
of length 1 on which are grafted sets of direct antecedents.) The latter sequence
is EIS A000248, which starts as 1,1,3,10,41,196,1057. An asymptotic estimate can
be derived either from the Laplace method or, better, from the saddle-point method
expounded in Chapter VIII (p. 571).

Several analyses of this type are of relevance to cryptography and the study of
random number generators. For instance, the fact that a random mapping over [1 .. n]
tends to reach a cycle in O(4/n) steps (Subsection VII. 3.3, p. 462) led Pollard to
design a surprising Monte Carlo integer factorization algorithm; see [378, p. 371]
and [538, Sec 8.8], as well as our discussion in Example VIL.11, p. 465. This al-
gorithm, once suitably optimized, first led to the factorization of the Fermat number
Fs = 22° 4 1 obtained by Brent in 1980.

> IL.20. Binary mappings. The class BF of binary mappings, where each point has either 0
or 2 preimages, is specified by

BF =SET(K), K=CYC(P), P=ZxB, B=2ZxSETy2(B)
(planted trees P and binary trees 53 are needed), so that

1 BF :((Zn)!)2
Ji—22 SR TICTIEN

BF(z) =
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The class BF is an approximate model of the behaviour of (modular) quadratic functions under
iteration. See [18, 247] for a general enumerative theory of random mappings including degree-
restricted ones.

B> I1.21. Partial mappings. A partial mapping may be undefined at some points, and at those
we consider it takes a special value, L. The iterated preimages of L form a forest, while
the remaining values organize themselves into a standard mapping. The class PF of partial
mappings is thus specified by PF = SET(7) » F, so that

T ()
PF(Z)zle—iT(z) and  PF,=(n+1)".

This construction lends itself to all sorts of variations. For instance, the class P F'I of injective

partial maps is described as sets of chains of linear and circular graphs, P F'I = SET(CYC(Z)+
SEQ>1(2)), so that

1 ! 2
PFI(z) = —e/0=9 pr, =Y i(") .
-z i
i=0
(This is a symbolic rewriting of part of the paper [78]; see Example VIII.13, p. 596, for asymp-
totics.) <

I1.5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structures [76, 355]. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are very nearly trees. (Such graphs
for instance play an essential rOle in the analysis of early stages of the evolution of a
random graph, when edges are successively added, as shown in [241, 354].)

Unrooted trees and acyclic graphs. The simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, but contrary to the case of Cayley
trees, no root is specified. Let U be the class of all unrooted trees. Since a rooted tree
(rooted trees are, as we know, counted by 7,, = n"~1) is an unrooted tree combined
with a choice of a distinguished node (there are n such possible choices for trees of
size n), one has

T, =nU, implying U, =n""2.
At generating function level, this combinatorial equality translates into

< dw
U@ = [ Tw) —,
0 w
which integrates to give (take T as the independent variable)

1 2
UQR)=T() — §T(z) .

Since U (z) is the EGF of acyclic connected graphs, the quantity
Az) = V@ = (T@-T@?/2

is the EGF of all acyclic graphs. (Equivalently, these are unordered forests of unrooted
trees; the sequence is EIS A001858: 1, 1,2, 7, 38, 291, ...) Singularity analysis meth-
ods (Note VI.14, p. 406) imply the estimate A, ~ e'/2n"~2. Surprisingly, perhaps,
there are barely more acyclic graphs than unrooted trees—such phenomena are easily
explained by singularity analysis.
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Unicyclic graphs. The excess of a graph is defined as the difference between the
number of edges and the number of vertices. For a connected graph, this quantity must
be at least —1, this minimal value being precisely attained by unrooted trees. The class
W is the class of connected graphs of excess equal to k; in particular i/ = W_1. The
successive classes W_1, Wp, Wi, ..., may be viewed as describing connected graphs
of increasing complexity.

The class Wy comprises all connected graphs with the number of edges equal to
the number of vertices. Equivalently, a graph in W) is a connected graph with exactly
one cycle (a sort of “eye”), and for that reason, elements of W, are sometimes re-
ferred to as “unicyclic components” or “unicycles”. In a way, such a graph looks very
much like an undirected version of a connected functional graph. In precise terms, a
graph of W) consists of a cycle of length at least 3 (by definition, graphs have neither
loops nor multiple edges) that is undirected (the orientation present in the usual cycle
construction is killed by identifying cycles isomorphic up to reflection) and on which
are grafted trees (these are implicitly rooted by the point at which they are attached
to the cycle). With UCYC representing the (new) undirected cycle construction, one
thus has

Wy = UCYC23(T).

We claim that this construction is reflected by the EGF equation

1T lT 2
= (Z)_Z ().

1
(51) Wo(z) = Elog 1-T@ 2

Indeed one has the isomorphism
Wo + Wo = Cycs3(7),

since we may regard the two disjoint copies on the left as instantiating two possible
orientations of the undirected cycle. The result of (51) then follows from the usual
translation of the cycle construction—it is originally due to the Hungarian probabilist
Rényi in 1959. Asymptotically, one finds (using methods of Chapter VI, p. 406):

1
(52) n![Z* 1Wp ~ Zx/Znn”_l/z.

(The sequence starts as 0, 0, 1, 15, 222, 3660, 68295 and is EIS A057500.)

Finally, the number of graphs made only of trees and unicyclic components has
EGF
eT/2—3T2 /4

VI=T

which asymptotically yields n![z"]e"V-1tWo ~ T'(3/4)(2¢)~ /47 =1/2pn=1/4 Such
graphs stand just next to acyclic graphs in order of structural complexity. They are the
undirected counterparts of functional graphs encountered in the previous subsection.

> 11.22. 2—Regular graphs. This is based on Comtet’s account [129, Sec. 7.3]. A 2-regular
graph is an undirected graph in which each vertex has degree exactly 2. Connected 2-regular
graphs are thus undirected cycles of length n > 3, so that their class R satisfies

o—2/2—22/4

JT=z7

eV-1@+Wo)

(53) R = SET(UCYC>3(Z2)) == R(z) =
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EGF coefficient
Graphs: nn=1/2
acyclic, connected U=W_,=T-T2%)2 nh=2
acyclic (forest) A= eT7T2/2 ~ el/2yn=2
1 1 T T2
unicycle Wy = > log T7 5 1 ~ %«/27m”7]/2
eT/2731°/4 @)V i
set of trees & unicycles B = ————— ~TI@3/4 n""
y = (3/4)
P (T P (1)v/2
connected, excess k Wi = A ~ Mﬂn+(3k_l)/2
(1 —T)3k 23k/21 (3k/2)

Figure I1.14. A summary of major enumeration results relative to labelled graphs.
The asymptotic estimates result from singularity analysis (Note VI.14, p. 406).

Given n straight lines in general position in the plane, a cloud is defined to be a set of n inter-
section points, no three being collinear. Clouds and 2—regular graphs are equinumerous. [Hint:
Use duality.] The asymptotic analysis will serve as a prime example of the singularity analysis
process (Examples VI.1, p. 379 and VI.2, p. 395).

The general enumeration of r—regular graphs becomes somewhat more difficult as soon
as r > 2. Algebraic aspects are discussed in [289, 303] while Bender and Canfield [39] have
determined the asymptotic formula (for rn even)

2
(54) RY) ~ ﬁevz—l)/éxinrn@
e"/2r
for the number of r-regular graphs of size n. (See also Example VIIL.9, p. 583, for regular
multigraphs.) <

Graphs of fixed excess. The previous discussion suggests considering more gen-
erally the enumeration of connected graphs according to excess. E. M. Wright made
important contributions in this area [620, 621, 622] that are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, Luczak, and Pittel [354].
Wright’s result are summarized by the following proposition.

Proposition I1.6. The EGF Wi (z) of connected graphs with excess (of edges over

vertices) equal to k is, for k > 1, of the form
P(T)

(1 —T)3*’

where Py, is a polynomial of degree 3k + 2. For any fixed k, as n — o0, one has

(35) Wi(2) = I'=T(),

Pr(1)A/2m _ _
ST _ TNV a3k 1)/2( 172 )
(56) Wi, = n![Z"1Wi(2) 23’</2F(3k/2)n 1+0(n"%)).
The combinatorial part of the proof (see Note I1.23 below) is an interesting ex-
ercise in graph surgery and symbolic methods. The analytic part of the statement
follows straightforwardly from singularity analysis. The polynomials P(7T) and the
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constants Py (1) are determined by an explicit nonlinear recurrence; one finds for in-
stance:

1 TH6-T) 1 T*2+28T7 — 2372 497° - T%)
T2 a-1)3" 2748 (1-T)° '

> I1.23. Wright’s surgery. The full proof of Proposition II.6 by symbolic methods requires
the notion of pointing in conjunction with multivariate generating function techniques of Chap-

ter III. It is convenient to define wy (z, y) := yk Wy (zy), which is a bivariate generating function
with y marking the number of edges. Pick up an edge in a connected graph of excess k + 1,
then remove it. This results either in a connected graph of excess k with two pointed vertices
(and no edge in between) or in two connected components of respective excess i and k — h,
each with a pointed vertex. Graphically (with connected components in grey):

+ ‘
k+1

20ywiy1 = (228§wk - 2y8ywk) + Z (z0;wp,) - (Zazwk—h) ,
h=—1

1

This translates into the differential recurrence on the wy (dx = %),

and similarly for Wi (z) = wy(z, 1). From here, it can be verified by induction that each Wy
is a rational function of T = W_j. (See Wright’s original papers [620, 621, 622] or [354] for
details; constants related to the Py (1) occur in Subsection VII. 10.1, p. 532.) <

As explained in the giant paper [354], such results combined with complex ana-
lytic techniques provide, with great detail, information about a random graph I"(n, m)
with n nodes and m edges. In the sparse case where m is of the order of n, one finds the
following properties to hold “with high probability” (w.h.p.)’; that is, with probability
tendingto 1 asn — 00

e Form = un, with © < %, the random graph I'"(m, n) has w.h.p. only tree
and unicycle components; the largest component is w.h.p. of size O (logn).

e Form = %n + O(n*?), wh.p. there appear one or several semi-giant
components that have size 0 (n?3).

e Form = pun, with u > %, there is w.h.p. a unique giant component of size
proportional to n.

In each case, refined estimates follow from a detailed analysis of corresponding gen-
erating functions, which is a main theme of [241] and especially [354]. Raw forms
of these results were first obtained by Erd6s and Rényi who launched the subject in a
famous series of papers dating from 1959-60; see the books [76, 355] for a probabilis-
tic context and the paper [40] for the finest counting estimates available. In contrast,
the enumeration of all connected graphs (irrespective of the number of edges, that is,
without excess being taken into account) is a relatively easy problem treated in the

7Synonymous expressions are “asymptotically almost surely” (a.a.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itself to confusion with properties of continuous
measures.
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next section. Many other classical aspects of the enumerative theory of graphs are
covered in the book Graphical Enumeration by Harary and Palmer [319].

B> I1.24. Graphs are not specifiable. The class of all graphs does not admit a specification that
starts from single atoms and involves only sums, products, sets and cycles. Indeed, the growth
of G, is such that the EGF G(z) has radius of convergence 0, whereas EGFs of constructible
classes must have a non-zero radius of convergence. (Section IV. 4, p. 249, provides a detailed
proof of this fact for iterative structures; for recursively specified classes, this is a consequence
of the analysis of inverse functions, p. 402, and systems, p. 489, with suitable adaptations based
on the technique of majorant series. p. 250.) <

II. 6. Additional constructions

As in the unlabelled case, pointing and substitution are available in the world of
labelled structures (Subsection II. 6.1), and implicit definitions enlarge the scope of
the symbolic method (Subsection II. 6.2). The inversion process needed to enumer-
ate implicit structures is even simpler, since in the labelled universe sets and cycles
have more concise translations as operators over EGF. Finally, and this departs sig-
nificantly from Chapter I, the fact that integer labels are naturally ordered makes it
possible to take into account certain order properties of combinatorial structures (Sub-
section II. 6.3).

I1. 6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinguishing one atom among all the
ones that compose an object of size n. The definition of composition for labelled struc-
tures is however a bit more subtle as it requires singling out “leaders” in components.

Pointing. The pointing of a class B is defined by
A=08B iff A, =1[1..n] x B,.
In other words, in order to generate an element of A4, select one of the n labels and
point at it. Clearly

d
Ay =n-B, = A(z) = ZEB(Z).

Substitution (composition). Composition or substitution can be introduced so
that it corresponds a priori to composition of generating functions. It is formally
defined as

o
BoC=Y B x SET(C),
k=0
so that its EGF is

k!

A combinatorial way of realizing this definition and forming an arbitrary object of
B o, is as follows. First select an element of 8 € BB called the “base” and let k = | 8|
be its size; then pick up a k—set of elements of C; the elements of the k—set are naturally
ordered by the value of their “leader” (the leader of an object being by convention the
value of its smallest label); the element with leader of rank r is then substituted to the
node labelled by value r of 8. Gathering the above, we obtain:

S 559 pcey.
k=0
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Theorem I1.3. The combinatorial constructions of pointing and substitution are ad-

missible
d

A=08 — A(z) = z0;B(2), 0, = 7
A=BoC = A(zx) =B(C(2)).
For instance, the EGF of (relabelled) pairings of elements drawn from C is

eC(z)z/Z’

. . . . . . 2
since the EGF of involutions without fixed points is % /2.

> 11.25. Standard constructions based on substitutions. The sequence class of A may be de-
fined by composition as P o A where P is the set of all permutations. The set class of A may be
defined as U o A where U is the class of all urns. Similarly, cycles are obtained by substitution
into circular graphs. Thus,

SEQ(A) =Po A, SET(A) =U o A, Cyc(AH) ECo A

In this way, permutation, urns and circle graphs appear as archetypal classes in a development
of combinatorial analysis based on composition. (Joyal’s “theory of species” [359] and the
book by Bergeron, Labelle, and Leroux [50] show that a far-reaching theory of combinatorial
enumeration can be based on the concept of substitution.) <

> 11.26. Distinct component sizes. The EGFs of permutations with cycles of distinct lengths
and of set partitions with parts of distinct sizes are

o0 z" o Zn
n]_[=l<1+n), E(H’“)'

The probability that a permutation of P, has distinct cycle sizes tends to e~7; see [309,
Sec. 4.1.6] for a Tauberian argument and [495] for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven-author paper [368]. <

I1. 6.2. Implicit structures. Let X be a labelled class implicitly characterized
by either of the combinatorial equations

A=B+ X, A=BxX.
Then, solving the corresponding EGF equations leads to
Az)
m»
respectively. For the composite labelled constructions SEQ, SET, CYC, the algebra is
equally easy.

X(z) = A(z) — B(2), X(z) =

Theorem II1.4 (Implicit specifications). The generating functions associated with the
implicit equations in X

A = SEQ(&X), A = SET(X), A =Cyc(X),

are, respectively,

_._ _ AR
X(z)=1 A0 X (z) =log A(2), X(z)=1—e .
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Example 11.15.  Connected graphs. In the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formula relating a class G of graphs and the
subclass IC C G of its connected graphs:

G = SET(K) - G(z) = K@,

This basic formula is known in graph theory [319] as the exponential formula.
Consider the class G of all (undirected) labelled graphs, the size of a graph being the
number of its nodes. Since a graph is determined by the choice of its set of edges, there are ('é)

potential edges each of which may be taken in or out, so that G, = 2('21). Let L C G be the
subclass of all connected graphs. The exponential formula determines K (z) implicitly:

KGz) = 1og<1+22('§)%!)

(57) n=>1
22 Z3 Z4 ZS
= Z+E+4§+38I+728§+'“,

where the sequence is EIS A001187. The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal series (Appendix A.5: Formal power
series, p. 730). Expanding by means of log(1 +u) = u — w2+, yields a complicated
convolution expression for Kj,:

_, 1 no\,(h+(2) 1 n CH+(D+(3) _ .
Kn=2% 2Z<n1,n2)2 T +3Z(ﬂ17n2,n3>2 T ’

(The kth term is a sum over ny + - - + ng = n, with 0 < n; < n.) Given the very fast increase
of G, with n, for instance

2(";1) =" 2(3 ,
a detailed analysis of the various terms of the expression of K, shows predominance of the first

sum, and, in that sum itself, the extreme terms corresponding tony = n —lorny =n — 1
predominate, so that

(58) K =2 (1-2027" 4 027")).

Thus: almost all labelled graphs of size n are connected. In addition, the error term decreases
very quickly: for instance, for n = 18, an exact computation based on the generating function
formula reveals that a proportion only 0.0001373291074 of all the graphs are not connected—
this is extremely close to the value 0.00013732910/6 predicted by the main terms in the asymp-
totic formula (58). Notice that good use could be made here of a purely divergent generating
function for asymptotic enUMEration PUIPOSES. . ... .cuventennenneeneeneeeennennennn. |

B> 11.27. Bipartite graphs. A plane bipartite graph is a pair (G, w) where G is a labelled graph,
w = (ww, wg) is a bipartition of the nodes (into West and East categories), and the edges are
such that they only connect nodes from wyy to nodes of wg. A direct count shows that the EGF
of plane bipartite graphs is

[ n _
I'z) = Z Vn; with y,, = Z (k)zk(n k).
n :

k

The EGF of plane bipartite graphs that are connected is log I'(z).
A bipartite graph is a labelled graph whose nodes can be partitioned into two groups so
that edges only connect nodes of different groups. The EGF of bipartite graphs is

exp (% log F(z)) =T ).
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[Hint. The EGF of a connected bipartite graph is % log I'(z), since a factor of % kills the East—
West orientation present in a connected plane bipartite graph. See Wilf’s book [608, p. 78] for
details.] <

> 11.28. Do two permutations generate the symmetric group? To two permutations o, T of the
same size, associate a graph I'; ¢ whose set verticesis V = [1..n], if n = |o| = |7|, and set of
edges is formed of all the pairs (x, o (x)), (x, T(x)), for x € V. The probability that a random
Iy, ¢ is connected is

1
T = m[z"]log Zn!z”
n>0
This represents the probability that two permutations generate a transitive group (that is for all
x,y € [0..n], there exists a composition of o, cr*l, T, 77! that maps x to y). One has
1 1 4 23 171 1542
(59) mel-—— - - - —= = — =

Surprisingly, the coefficients 1, 1, 4, 23, ... (EIS A084357) in the asymptotic formula (59) enu-
merate a “third-level” structure (Subsection II.4.2, p. 124 and Note VIII.15, p. 571), namely:
SET(SET>](SEQ>1(Z))). In addition, one has n!zrrn = (n — 1)1y, where I,, ;1 is the number
of indecomposable permutations (Example 1.19, p. 89).

Let 7, be the probability that two random permutations generate the whole symmetric
group. Then, by a result of Babai based on the classification of groups, the quantity 7, — 7)) is
exponentially small, so that (59) also applies to 7}; see Dixon [167].

I1. 6.3. Order constraints. A construction well-suited to dealing with many of
the order properties of combinatorial structures is the modified labelled product:

A= (B"x0).

This denotes the subset of the product BxC formed with elements such that the smallest
label is constrained to lie in the B component. (To make this definition consistent, it
must be assumed that By = 0.) We call this binary operation on structures the boxed
product.

Theorem IL.5. The boxed product is admissible:
z
(60) A=B"%x0) = A@®)= / (0;B(t)) - C(1) dt, 0= —.
0

Proof. The definition of boxed products implies the coefficient relation

L /n—1
Ay = k;‘ <k ~ 1>BkCn_k.
The binomial coefficient that appears in the standard convolution, Equation (2), p. 100,
is to be modified since only n — 1 labels need to be distributed between the two compo-
nents: k — 1 go to the 5 component (that is already constrained to contain the label 1)
and n — k to the C component. From the equivalent form

1 n
Av==3" (Z) (kBi) ot

k=0
the result follows by taking EGFs, via A(z) = (9;B(2)) - C(2). |



“book” — 2008/10/3 — 16:05 — page 140 — #154

140 II. LABELLED STRUCTURES AND EGFS

T

ﬁ,ﬂ' i |
il

| ‘\‘ f‘\ '

ML
‘HWH‘“‘JN
|

|
|
IRy
\WMH AT
N N
‘ Vw\

\“1\\‘, I
| L

0 20 40 60 80 100

Figure II.15. A numerical sequence of size 100 with records marked by circles:
there are 7 records that occur at times 1, 3, 5, 11, 60, 86, 88.

A useful special case is the min-rooting operation,
A= (2"%C),
for which a variant definition goes as follows: take in all possible ways elements
y € C, prepend an atom with a label, for instance 0, smaller than the labels of y, and

relabel in the canonical way over [1 .. (n+1)] by shifting all label values by 1. Clearly
Ap41 = C,, which yields

AG) = / c@yar,
0

a result which is also consistent with the general formula (60) of boxed products.
For some applications, it is convenient to impose constraints on the maximal label
rather than the minimum. The max-boxed product written

= B%0),

is then defined by the fact the maximum is constrained to lie in the B—component of
the labelled product. Naturally, translation by an integral in (60) remains valid for this
trivially modified boxed product.

B> I1.29. Combinatorics of integration. In the perspective of this book, integration by parts has
an immediate interpretation. Indeed, the equality

z z
/ A'(t) - B(t)dr + / A@) - B'(t)dt = A(z) - B(2)
0 0
reads: “The smallest label in an ordered pair appears either on the left or on the right.” <

Example 11.16. Records in permutations. Given a sequence of numbers x = (xq, ..., X),
assumed all distinct, a record is defined to be an element x ; such that x; < x; forallk < j. (A
record is an element “better” than its predecessors!) Figure II.15 displays a numerical sequence
of length n = 100 that has 7 records. Confronted by such data, a statistician will typically
want to determine whether the data obey purely random fluctuations or if there could be some
indications of a “trend” or of a “bias” [139, Ch. 10]. (Think of the data as reflecting share prices
or athletic records, say.) In particular, if the x; are independently drawn from a continuous
distribution, then the number of records obeys the same laws as in a random permutation of
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[1..n]. This statistical preamble then invites the question: How many permutations of n have k
records?

First, we start with a special brand of permutations, the ones that have their maximum at
the beginning. Such permutations are defined as (“Il” indicates the boxed product based on the
maximum label)

o=ZBp),

where P is the class of all permutations. Observe that this gives the EGF

0() fz LA DU S P
= — . —_ = 10 ,
9= ) &) 1= 81

implying the obvious result @, = (n — 1)! for all n > 1. These are exactly the permutations
with one record. Next, consider the class

ph) = SET;(Q).

The elements of P®) are unordered sets of cardinality & with elements of type Q. Define
the max—leader (“el lider mdximo”) of any component of P®) as the value of its maximal
element. Then, if we place the components in sequence, ordered by increasing values of their
leaders, then read off the whole sequence, we obtain a permutation with exactly k records. The
correspondence8 is clearly revertible. Here is an illustration, with leaders underlined:
{@.2,6,1), @43), 9,85} = [@3), (7,2,61), (98,5)]

= 43,7,261,938,5.

Thus, the number of permutations with k records is determined by

k
1 1 n
K)oy — — (k) _
PO = <10g1_z>, P, —u,

where we recognize Stirling cycle numbers from Example I1.12, p. 121. In other words:

The number of permutations of size n having k records is counted by the
Stirling “cycle” number [Z]

Returning to our statistical problem, the treatment of Example I1.12 p. 121 (to be revisited
in Chapter III, p. 189) shows that the expected number of records in a random permutation of
size n equals H;;, the harmonic number. One has Hjgg = 5.18, so that for 100 data items, a little
more than 5 records are expected on average. The probability of observing 7 records or more
is still about 23%, an altogether not especially rare event. In contrast, observing twice as many
records as we did, namely 14, would be a fairly strong indication of a bias—on random data,
the event has probability very close to 1074, Altogether, the present discussion is consistent
with the hypothesis for the data of Figure II.15 to have been generated independently at random
(and indeed they WEeTE). .. ...ttt e |

8This correspondence can also be viewed as a transformation on permutations that maps the number
of records to the number of cycles—it is known as Foata’s fundamental correspondence [413, Sec. 10.2].
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It is possible to base a fair part of the theory of labelled constructions on sums and
products in conjunction with the boxed product. In effect, consider the three relations

1
F =SEQG) = f(Z)=1_—g(Z)7 f=14+gf

F=SET(G) = f(2)=2e59, f=1 +/g’f
F=Crc(@ = [ :log;, f= /8/;-
1-g(2) l—g

The last column is easily checked, by standard calculus, to provide an alternative form
of the standard operator corresponding to sequences, sets, and cycles. Each case can
in fact be deduced directly from Theorem I1.5 and the labelled product rule as follows.

(i) Sequences: they obey the recursive definition

F = SEQ(G) = F={e)+ (G F).
(ii) Sets: we have

F=SETNG = FZle+@GM«p)

which means that, in a set, one can always single out the component with
the largest label, the rest of the components forming a set. In other words,
when this construction is repeated, the elements of a set can be canonically
arranged according to increasing values of their largest labels, the “leaders”.
(We recognize here a generalization of the construction used for records in
permutations.)

(iii) Cycles: The element of a cycle that contains the largest label can be taken
canonically as the cycle “starter”, which is then followed by an arbitrary
sequence of elements upon traversing the cycle in cyclic order. Thus

F =Cyc(G) SN F = (G"™* SEQ(G)).

Greene [308] has developed a complete framework of labelled grammars based
on standard and boxed labelled products. In its basic form, its expressive power is
essentially equivalent to ours, because of the above relations. More complicated order
constraints, dealing simultaneously with a collection of larger and smaller elements,
can be furthermore taken into account within this framework.
> 11.30. Higher order constraints, after Greene. Let the symbols [, [-1, B represent smallest,
second smallest, and largest labels, respectively. One has the correspondences (with 9, = d%)

A= (B7+cW) 82A(2) = (3:B(2)) - (3:C(2))
A=(B"M.c) 024() = (02B(2) - C(2)
A= (BD «CH D.) B A@R) = (0:B(2)) - (3;C(2)) - (9;D(2)) ,

and so on. These can be transformed into (iterated) integral representations. (See [308] for
more.)

The next three examples demonstrate the utility of min/max-rooting used in con-
junction with recursion. Examples II.17 and II.18 introduce two important classes of
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Figure I1.16. A permutation of size 7 and its increasing binary tree lifting.

trees that are tightly linked to permutations. Example II.19 provides a simple symbolic
solution to a famous parking problem, on which many analyses can be built.

Example 11.17. Increasing binary trees and alternating permutations. To each permutation,
one can associate bijectively a binary tree of a special type called an increasing binary tree
and sometimes a heap-ordered tree or a tournament tree. This is a plane rooted binary tree in
which internal nodes bear labels in the usual way, but with the additional constraint that node
labels increase along any branch stemming from the root. Such trees are closely related to many
classical data structures of computer science, such as heaps and binomial queues.

The correspondence (Figure I1.16) is as follows: Given a permutation written as a word,
0 = 0107 ...0y, factor it into the form o = o, - min(o) - o, with min(o) the smallest label
value in the permutation, and o7, og the factors left and right of min(o). Then the binary tree
B(o) is defined recursively in the format (root, left, right) by

B(o) = (min(o), B(or), B(OR)), Ble) = e.

The empty tree (consisting of a unique external node of size 0) goes with the empty permutation
€. Conversely, reading the labels of the tree in symmetric (infix) order gives back the original
permutation. (The correspondence is described for instance in Stanley’s book [552, p. 23-25]
who says that “it has been primarily developed by the French”, pointing at [267].)

Thus, the family Z of binary increasing trees satisfies the recursive definition

61 I={e}+ (27 xTx1),

which implies the nonlinear integral equation for the EGF
C N2
1(2) = l+/ 1(t)* dr.
0

This equation reduces to I'(z) = I (2)? and, under the initial condition I (0) = 1, it admits the
solution 7(z) = (1 — z)~!. Thus I, = n!, which is consistent with the fact that there are as
many increasing binary trees as there are permutations.

The construction of increasing trees is instrumental in deriving EGFs relative to various
local order patterns in permutations. We illustrate its use here by counting the number of
up-and-down (or zig-zag) permutations, also known as alternating permutations. The result,
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already mentioned in our Invitation chapter (p. 2) was first derived by Désiré André in 1881 by
means of a direct recurrence argument.
A permutation ¢ = 0107 - - - 05 is an alternating permutation if

(62) O] >0 <03>04<-:+,

so that pairs of consecutive elements form a succession of ups and downs; for instance,

6 7\ P
A

{6231745}

Consider first the case of an alternating permutation of odd size. It can be checked that the
corresponding increasing trees have no one-way branching nodes, so that they consist solely of
binary nodes and leaves. Thus, the corresponding specification is

T=Z2+(2xT*J).
so that

Z
J(z)=z+/ VO and iJ(Z)=1‘|'J(Z)2-
0 dz

The equation admits separation of variables, which implies, since J(0) = 0, that arctan(J (z)) =

z, hence:

3 ZS 7

J(z) = tan(z) =z+2%+16§+272%+~- .
The coefficients Jo,41 are known as the tangent numbers or the Euler numbers of odd index
(EIS A000182).
Alternating permutations of even size defined by the constraint (62) and denoted by /C can

be determined from
K={e)+ (27 x»T*K),

since now all internal nodes of the tree representation are binary, except for the right-most one
that only branches on the left. Thus, K’(z) = tan(z) K (z), and the EGF is

2 24 76 8

1 z , 4 b4
K@) = cos@) 1+12! +54! +616! +13858! +ee
where the coefficients K,,, are the secant numbers also known as Euler numbers of even index
(EIS A000364).

Use will be made later in this book (Chapter III, p. 202) of this important tree represen-
tation of permutations as it opens access to parameters such as the number of descents, runs,
and (once more!) records in permutations. Analyses of increasing trees also inform us of cru-
cial performance issues regarding binary search trees, quicksort, and heap-like priority queue
structures [429, 538, 598, 600]. . ...t |

D> IL.31. Combinatorics of trigonometrics. Interpret tan %Z tantan z, tan(e® — 1) as EGFs of
combinatorial classes. <
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Figure I1.17. An increasing Cayley tree (left) and its associated regressive mapping (right).

Example 11.18.  Increasing Cayley trees and regressive mappings. An increasing Cayley
tree is a Cayley tree (i.e., it is labelled, non-plane, and rooted) whose labels along any branch
stemming from the root form an increasing sequence. In particular, the minimum must occur
at the root, and no plane embedding is implied. Let £ be the class of such trees. The recursive
specification is now

L= (2" +SET(L)).

The generating function thus satisfies the functional relations
z
L(z) = / LOar, L'z =@,
0

with L(0) = 0. Integration of L’ e~ L =1 shows that e =L = 1 — z, hence

L(z) =log and L,=mn-—1\

-z

Thus the number of increasing Cayley trees is (n—1)!, which is also the number of permutations
of size n — 1. These trees have been studied by Meir and Moon [435] under the name of
“recursive trees”, a terminology that we do not, however, retain here.

The simplicity of the formula L, = (n — 1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determined by its child—parent relationship
(Figure I1.17). In other words, to each increasing Cayley tree 7, we associate a partial map
¢ = ¢r such that ¢ (i) = j iff the label of the parent of i is j. Since the root of tree is an
orphan, the value of ¢ (1) is undefined, ¢ (1) =_L; since the tree is increasing, one has ¢ (i) < i
for all i > 2. A function satisfying these last two conditions is called a regressive mapping. The
correspondence between trees and regressive mappings is then easily seen to be bijective.

Thus regressive mappings on the domain [1..n] and increasing Cayley trees are equi-
numerous, so that we may as well use £ to denote the class of regressive mappings. Now, a
regressive mapping of size n is evidently determined by a single choice for ¢ (2) (since ¢ (2) =
1), two possible choices for ¢ (3) (either of 1, 2), and so on. Hence the formula

L, =1x2x3x---xmn-1)
receives a natural INterPretation. .. ... ........eout oottt et ai e, |

D> 11.32. Regressive mappings and permutations. Regressive mappings can be related directly
to permutations. The construction that associates a regressive mapping to a permutation is
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called the “inversion table” construction; see [378, 538]. Given a permutation ¢ = o7, ..., 0y,
associate to it a function ¥ = 5 from [1..n] to [0..n — 1] by the rule

Y(j)=card{k < j | ox >0;}.
The function ¥ is a trivial variant of a regressive mapping. <

B> I1.33. Rotations and increasing trees. An increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right according to their label values. The
rotation correspondence (p. 73) then gives rise to a binary increasing tree. Hence, increasing
Cayley trees and increasing binary trees are also directly related. Summarizing this note and
the previous one, we have a quadruple combinatorial connection,

~

Increasing Cayley trees = Regressive mappings = Permutations = Increasing binary trees,

which opens the way to yet more permutation enumerations. <

Example 11.19. A parking problem. Here is Knuth’s introduction to the problem, dating
back from 1973 (see [378, p. 545]), which nowadays might be regarded by some as politically
incorrect:

“A certain one-way street has m parking spaces in a row numbered 1 to m. A man and his
dozing wife drive by, and suddenly, she wakes up and orders him to park immediately. He
dutifully parks at the first available space [...].”

Consider n = m — 1 cars and condition by the fact that everybody eventually finds a parking
space and the last space remains empty. There are m" = (n + 1) possible sequences of
“wishes”, among which only a certain number F;, satisfy the condition—this number is to be
determined. (An important motivation for this problem is the analysis of hashing algorithms
examined in Note III.11, p. 178, under the “linear probing” strategy.)

A sequence satisfying the condition called an almost-full allocation, its size n being the
number of cars involved. Let F represent the class of almost-full allocations. We claim the
decomposition:

63) F= [(@]—'—l—}')*z.*}"].

Indeed, consider the car that arrived last, before it will eventually land in some position k + 1
from the left. Then, there are two islands, which are themselves almost-full allocations (of
respective sizes k and n — k — 1). This last car’s intended parking wish must have been either
one of the first k& occupied cells on the left (the factor ®F in (63)) or the last empty cell of the
first island (the term F in the left factor); the right island is not affected (the factor F on the
right). Finally, the last car is inserted into the street (the factor Z .). Pictorially, we have a sort
of binary tree decomposition of almost-full allocations:

ooﬁoooo.

Analytically, the translation of (63) into EGF is

z

(64) F@ = [ @F @)+ Fu)Fw) du,
0

which, through differentiation gives

(65) F'(2) = (zF (2)) - F(2).
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Simple manipulations do the rest: we have F’/F = (zF)’, which by integration gives log F =
(zF) and F = e*F . Thus F (z) satisfies a functional equation strangely similar to that of the
Cayley tree function 7 (z); indeed, it is not hard to see that one has

(66) F(z) = 1T(z) and  Fp =@+ 1)"L
Z

which solves the original counting problem. The derivation above is based on articles by Fla-
jolet, Poblete, Viola, and Knuth [249, 380], who show that probabilistic properties of parking
allocations can be precisely analysed (for instance, total displacement, examined in Note VII.54,
p- 534, is found to be governed by an Airy distribution). .......... ... .. o i |

I1.7. Perspective

Together with the previous chapter and Figure 1.18, this chapter and Figure I1.18
provide the basis for the symbolic method that is at the core of analytic combinatorics.
The translations of the basic constructions for labelled classes to EGFs could hardly
be simpler, but, as we have seen, they are sufficiently powerful to embrace numerous
classical results in combinatorics, ranging from the birthday and coupon collector
problems to tree and graph enumeration.

The examples that we have considered for second-level structures, trees, map-
pings, and graphs lead to EGFs that are simple to express and natural to generalize.
(Often, the simple form is misleading—direct derivations of many of these EGFs that
do not appeal to the symbolic method can be rather intricate.) Indeed, the symbolic
method provides a framework that allows us to understand the nature of many of these
combinatorial classes. From here, numerous seemingly scattered counting problems
can be organized into broad structural categories and solved in an almost mechanical
manner.

Again, the symbolic method is only half of the story (the “combinatorics” in an-
alytic combinatorics), leading to EGFs for the counting sequences of numerous inter-
esting combinatorial classes. While some of these EGFs lead immediately to explicit
counting results, others require classical techniques in complex analysis and asymp-
totic analysis that are covered in Part B (the “analytic” part of analytic combinatorics)
to deliver asymptotic estimates. Together with these techniques, the basic construc-
tions, translations, and applications that we have discussed in this chapter reinforce
the overall message that the symbolic method is a systematic approach that is success-
ful for addressing classical and new problems in combinatorics, generalizations, and
applications.

We have been focusing on enumeration problems—counting the number of ob-
jects of a given size in a combinatorial class. In the next chapter, we shall consider
how to extend the symbolic method to help analyse other properties of combinatorial
classes.

Bibliographic notes. The labelled set construction and the exponential formula were recog-
nized early by researchers working in the area of graphical enumerations [319]. Foata [265]
proposed a detailed formalization in 1974 of labelled constructions, especially sequences and
sets, under the names of partitional complex; a brief account is also given by Stanley in his
survey [550]. This is parallel to the concept of “prefab” due to Bender and Goldman [42]. The
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1. The main constructions of union, and product, sequence, set, and cycle for labelled structures
together with their translation into exponential generating functions.

Construction EGF

Union A=B+C A(z) = B(z) + C(2)
Product A=Bx*C A(z) = B(z) - C(2)
Sequence A=SEQB) | A(zx) = T-B0
Set A =SET(B) | A(z) = exp(B(z))
Cycle A=Cyc(B) | A(z) =log 1_713@

2. Sets, multisets, and cycles of fixed cardinality.

Construction EGF

Sequence A=SEQ(B) | A(z) = B(2)F

Set A=SET(B) | Az) = %B(Z)k

Cycle A=Cyc(B) | AQx) = %B(z)k

3. The additional constructions of pointing and substitution.

Construction EGF
Pointing A=06B8B A(z) = Zd% B(2)
Substitution A =BoC | A(z) = B(C(2))

4. The “boxed” product.

A=MB"+x0) = A(®) =/z (%B(r)) .C(t)dt.
0

FigureII.18. A “dictionary” of labelled constructions together with their translation
into exponential generating functions (EGFs). The first constructions are counterparts
of the unlabelled constructions of the previous chapter (the multiset construction is
not meaningful here). Translation for composite constructions of bounded cardinality
appears to be simple. Finally, the boxed product is specific to labelled structures.
(Compare with the unlabelled counterpart, Figure 1.18, p. 18.)

books by Comtet [129], Wilf [608], Stanley [552], or Goulden and Jackson [303] have many
examples of the use of labelled constructions in combinatorial analysis.

Greene [308] has introduced in his 1983 dissertation a general framework of “labelled
grammars” largely based on the boxed product with implications for the random generation of
combinatorial structures. Joyal’s theory of species dating from 1981 (see [359] for the original
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article and the book by Bergeron, Labelle, and Leroux [50] for a rich exposition) is based on
category theorys; it presents the advantage of uniting in a common framework the unlabelled and
the labelled worlds.

Flajolet, Salvy, and Zimmermann have developed a specification language closely related
to the system expounded here. They show in [255] how to compile automatically specifica-
tions into generating functions; this is complemented by a calculus that produces fast random
generation algorithms [264].

I can see looming ahead one of those terrible exercises in probability where six men have
white hats and six men have black hats and you have to work it out by mathematics how likely
it is that the hats will get mixed up and in what proportion. If you start thinking about things
like that, you would go round the bend. Let me assure you of that!

—AGATHA CHRISTIE
(The Mirror Crack’d. Toronto, Bantam Books, 1962.)
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Generating functions find averages, etc.
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Many scientific endeavours demand precise quantitative information on probabilis-
tic properties of parameters of combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of interest to determine the typi-
cal disorder of data obeying a given model of randomness, and to do so in the mean,
or even in distribution, either exactly or asymptotically. Similar situations arise in
a broad variety of fields, including probability theory and statistics, computer sci-
ence, information theory, statistical physics, and computational biology. The exact
problem is then a refined counting problem with two parameters, namely, size and
an additional characteristic: this is the subject addressed in this chapter and treated
by a natural extension of the generating function framework. The asymptotic prob-
lem can be viewed as one of characterizing in the limit a family of probability laws
indexed by the values of the possible sizes: this is a topic to be discussed in Chap-
ter IX. As demonstrated here, the symbolic methods initially developed for counting
combinatorial objects adapt gracefully to the analysis of various sorts of parameters
of constructible classes, unlabelled and labelled alike.

Multivariate generating functions (MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatorial objects. From the
knowledge of such generating functions, there result either explicit probability dis-
tributions or, at least, mean and variance evaluations. For inherited parameters, all the
combinatorial classes discussed so far are amenable to such a treatment. Technically,
the translation schemes that relate combinatorial constructions and multivariate gen-
erating functions present no major difficulty—they appear to be natural (notational,
even) refinements of the paradigm developed in Chapters I and II for the univariate
case. Typical applications from classical combinatorics are the number of summands

151
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in a composition, the number of blocks in a set partition, the number of cycles in a
permutation, the root degree or path length of a tree, the number of fixed points in a
permutation, the number of singleton blocks in a set partition, the number of leaves in
trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methods, this chapter also
serves as a first encounter with the general area of random combinatorial structures.
The general question is: What does a random object of large size look like? Multi-
variate generating functions first provide an easy access to moments of combinatorial
parameters—typically the mean and variance. In addition, when combined with basic
probabilistic inequalities, moment estimates often lead to precise characterizations of
properties of large random structures that hold with high probability. For instance,
a large integer partition conforms with high probability to a deterministic profile, a
large random permutation almost surely has at least one long cycle and a few short
ones, and so on. Such a highly constrained behaviour of large objects may in turn
serve to design dedicated algorithms and optimize data structures; or it may serve to
build statistical tests—when does one depart from randomness and detect a “signal”
in large sets of observed data? Randomness forms a recurrent theme of the book: it
will be developed much further in Chapter IX, where the complex asymptotic meth-
ods of Part B are grafted on the exact modelling by multivariate generating functions
presented in this chapter.

This chapter is organized as follows. First a few pragmatic developments related
to bivariate generating functions are presented in Section III. 1. Next, Section III. 2
presents the notion of bivariate enumeration and its relation to discrete probabilistic
models, including the determination of moments, since the language of elementary
probability theory does indeed provide an intuitively appealing way to conceive of bi-
variate counting data. The symbolic method per se, declined in its general multivariate
version, is centrally developed in Sections III. 3 and III. 4: with suitable multi-index
notations, the extension of the symbolic method to the multivariate case is almost im-
mediate. Recursive parameters that often arise in particular from tree statistics form
the subject of Section III. 5, while complete generating functions and associated com-
binatorial models are discussed in Section III. 6. Additional constructions such as
pointing, substitution, and order constraints lead to interesting developments, in par-
ticular, an original treatment of the inclusion—exclusion principle in Section III. 7. The
chapter concludes, in Section III. 8, with a brief abstract discussion of extremal param-
eters like height in trees or smallest and largest components in composite structures—
such parameters are best treated via families of univariate generating functions.

IILI. 1. An introduction to bivariate generating functions (BGFs)

We have seen in Chapters I and II that a number sequence (f;;) can be encoded
by means of a generating function in one variable, either ordinary or exponential:
Z faz"  (ordinary GF)

(fn) > f(Z) = " 7"
Z fn; (exponential GF).
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Joo —  fo(u)
fio S —  fi(w)

o f 2 —  f2(u)

I ¢ I
% M e

Figure III.1. An array of numbers and its associated horizontal and vertical GFs.

This encoding is powerful, since many combinatorial constructions admit a translation
as operations over such generating functions. In this way, one gains access to many
useful counting formulae.

Similarly, consider a sequence of numbers ( f, x) depending on two integer-valued
indices, n and k. Usually, in this book, ( f;; k) will be an array of numbers (often a trian-
gular array), where f;, x is the number of objects ¢ in some class F, such that |p| = n
and some parameter x (¢) is equal to k. We can encode this sequence by means of
a bivariate generating function (BGF) involving two variables: a primary variable z
attached to n and a secondary u attached to k.

Definition III.1. The bivariate generating functions (BGFs), either ordinary or ex-
ponential, of an array ( f, x) are the formal power series in two variables defined by

Z fuxZ"u*  (ordinary BGF)
n,k

f(z,u) = e

Z Ik —'uk (exponential BGF).
n!

n.k

(The “double exponential” GF corresponding to fl—", Z—]: is not used in the book.)

As we shall see shortly, parameters of constructible classes become accessible
through such BGFs. According to the point of view adopted for the moment, one
starts with an array of numbers and forms a BGF by a double summation process. We
present here two examples related to binomial coefficients and Stirling cycle numbers
illustrating how such BGFs can be determined, then manipulated. In what follows it
is convenient to refer to the horizontal and vertical generating functions (Figure II1.1)
that are each a one-parameter family of GFs in a single variable defined by

horizontal GF:  f,(u) := ), Foxu®;
vertical GF: f<k)(z) = Y, faxZz" (ordinary case)

R = X fn,k% (exponential case).
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Figure II1.2. The set VW5 of the 32 binary words over the alphabet {{J, B} enumer-
ated according to the number of occurrences of the letter ‘W’ gives rise to the bivariate
counting sequence {Ws ;} = 1,5, 10, 10,5, 1.

The terminology is transparently explained if the elements ( f, x) are arranged as an
infinite matrix, with f, x placed in row n and column k, since the horizontal and
vertical GFs appear as the GFs of the rows and columns respectively. Naturally, one
has

Z fa(w)z"  (ordinary BGF)

faw =) ufPz=1 " n
Xk: Z Jn () Z—' (exponential BGF).
- n!

Example IIL1. The ordinary BGF of binomial coefficients. The binomial coefficient () counts
binary words of length n having k occurrences of a designated letter; see Figure I11.2. In order
to compose the bivariate GF, start from the simplest case of Newton’s binomial theorem and
directly form the horizontal GFs corresponding to a fixed n:

n

(1) Wau) = (Z)uk =+,

k=0
Then a summation over all values of n gives the ordinary BGF

1
) W(z,u) = Z (Z)ukz" = Z(l +uw)'" = T 0t

k,n>0 n>0

Such calculations are typical of BGF manipulations. What we have done amounts to starting
from a sequence of numbers, W, j, determining the horizontal GFs W;, () in (1), then the
bivariate GF W (z, u) in (2), according to the scheme:

Wik ~ Wal) ~ Wz, u).

The BGF in (2) reduces to the OGF (1 — 22)71 of all words, as it should, upon setting u = 1.
In addition, one can deduce from (2) the vertical GFs of the binomial coefficients cor-
responding to a fixed value of &

k

k n Z
whe=2 <k)zn T Uk

n>0
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from an expansion of the BGF with respect to u

k
3) W) = ———— k=
Z,u) = — = U ——,
l—zl—ulTZ =0 (1 — )k+1
and the result naturally matches what a direct calculation would give. .................... |

> IIL.1. The exponential BGF of binomial coefficients. This is

@) W= (")¢S = 0 1w s = 205w
’ k n! n! '
k,n
The vertical GFs are ¢%zX /k!. The horizontal GFs are (1 + )", as in the ordinary case. <

Example I11.2. The exponential BGF of Stirling cycle numbers. As seen Example 11.12, p. 121,
the number P, ; of permutations of size n having k cycles equals the Stirling cycle number [’,:],
a vertical EGF being

n L(z)k 1
PO :=Z[Z]%= ECE S

From this, the exponential BGF is formed as follows (this revisits the calculations on p. 121):
k
u _
) P =2 PREE =3 qyb@t =t = -a.

The simplification is quite remarkable but altogether quite typical, as we shall see shortly, in the
context of a labelled set construction. The starting point is thus a collection of vertical EGFs
and the scheme is now

PR~ PRG ~ PG

The BGF in (5) reduces to the EGF (1 — z)fl of all permutations, upon setting u = 1.
Furthermore, an expansion of the BGF in terms of the variable z provides useful informa-
tion; namely, the horizontal GF is obtained by Newton’s binomial theorem:

PGuw = Y (’”” - 1)2” = Y P,
(6) n>0 n n>0 n
where P,(u) = uw+1)---(u+n-—1).

This last polynomial is called the Stirling cycle polynomial of index n and it describes com-
pletely the distribution of the number of cycles in all permutations of size n. In addition, the
relation

Pu(u) = Pp_1(u)(u + (n — 1)),

is equivalent to the recurrence

AR R

by which Stirling numbers are often defined and easily evaluated numerically; see also Ap-
pendix A.8: Stirling numbers, p. 735. (The recurrence is susceptible to a direct combinatorial
interpretation—add n either to an existing cycle or as a “new” singleton.) ................ |
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Numbers Horizontal GFs Numbers Horizontal GFs
n n
(I +uw) uw+1)--w+n-—1)
k k
Vertical OGFs | Ordinary BGF Vertical EGFs Exponential BGF
* 1 1 k
— |1 1—z7)~*
-k | T-z(+uw k!(ogl—z) (-2

Figure II1.3. The various GFs associated with binomial coefficients (left) and Stir-
ling cycle numbers (right).

Concise expressions for BGFs, like (2), (3), (5), or (18), are summarized in Fig-
ure I11.3; they are invaluable for deriving moments, variance, and even finer character-
istics of distributions, as we see next. The determination of such BGFs can be covered
by a simple extension of the symbolic method, as will be detailed in Sections III. 3
and III. 4.

II1. 2. Bivariate generating functions and probability distributions

Our purpose in this book is to analyse characteristics of a broad range of combi-
natorial types. The eventual goal of multivariate enumeration is the quantification of
properties present with high regularity in large random structures.

We shall be principally interested in enumeration according to size and an auxil-
iary parameter, the corresponding problems being naturally treated by means of BGFs.
In order to avoid redundant definitions, it proves convenient to introduce the sequence
of fundamental factors (w,),>0, defined by

7 wp, =1 for ordinary GFs, wp, =n! for exponential GFs.

Then, the OGF and EGF of a sequence ( f};) are jointly represented as
Zn
FO=Yfr—  and fy =, 1),
n

Definition IIL.2. Given a combinatorial class A, a (scalar) parameter is a function
from A to Zsq that associates to any object o € A an integer value x (). The
sequence

A,,,k:card({aeA | la| = n, X(a):k}),

is called the counting sequence of the pair A, x. The bivariate generating function
(BGF) of A, x is defined as

Zn k
Azu) =Y App—ut,
n,k=0 @n

and is ordinary if w, = 1 and exponential if w, = n!. One says that the variable 7
marks size and the variable u marks the parameter y.
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Naturally A(z, 1) reduces to the usual counting generating function A(z) associ-
ated with A, and the cardinality of .4, is expressible as

Ap = w,[2"1A(z, 1).

II1. 2.1. Distributions and moments. Within this subsection, we examine the
relationship between probabilistic models needed to interpret bivariate counting se-
quences and bivariate generating functions. The elementary notions needed are re-
called in Appendix A.3: Combinatorial probability, p. 727.

Consider a combinatorial class .A. The uniform probability distribution over A,
assigns to any @ € A, a probability equal to 1/A4,,. We shall use the symbol P to
denote probability and occasionally subscript it with an indication of the probabilistic
model used, whenever this model needs to be stressed: we shall then write P4, (or
simply [P, if A is understood) to indicate probability relative to the uniform distribu-
tion over A,,.

Probability generating functions. Consider a parameter x. It determines over
each A, a discrete random variable defined over the discrete probability space A,,:

An,k _ An,k

An Zk An,k '
Given a discrete random variable X, typically, a parameter y taken over a subclass A,,,
we recall that its probability generating function (PGF) is by definition the quantity

©) pw) = P(X = ku*.
k

(8) Py, (x =k =

From (8) and (9), one has immediately:

Proposition III.1 (PGFs from BGFs). Let A(z, u) be the bivariate generating func-
tion of a parameter x defined over a combinatorial class A. The probability generat-
ing function of x over A, is given by

ZPAn(X :k)uk — W
k

© [2"AGz 1)

and is thus a normalized version of a horizontal generating function.

The translation into the language of probability enables us to make use of which-
ever intuition might be available in any particular case, while allowing for a natu-
ral interpretation of data (Figure III.4). Indeed, instead of noting that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the probability of the event, which is
0.00015, i.e., about 1.5 per 10 000. Discrete distributions are conveniently represented
by histograms or “bar charts”, where the height of the bar at abscissa k indicates the
value of P{X = k}. Figure Il1.4 displays two classical combinatorial distributions
in this way. Given the uniform probabilistic model that we have been adopting, such
histograms are eventually nothing but a condensed form of the “stacks” corresponding
to exhaustive listings, like the one displayed in Figure I11.2.
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Figure III.4. Histograms of two combinatorial distributions. Left: the number of
occurrences of a designated letter in a random binary word of length 50 (binomial
distribution). Right: the number of cycles in a random permutation of size 50 (Stirling
cycle distribution).

Moments. Important information is conveyed by moments. Given a discrete ran-
dom variable X, the expectation of f(X) is by definition the linear functional

E(f(X)) =) P{X =k} f(k).
k

The (power) moments are

E(X) =) P{X =k} k.
k

Then the expectation (or average, mean) of X, its variance, and its standard deviation,
respectively, are expressed as

E(X), V(X) = E(X?) — E(X)?, o (X) = /V(X).

The expectation corresponds to what is typically seen when forming the arithmetic
mean value of a large number of observations: this property is the weak law of large
numbers [205, Ch X]. The standard deviation then measures the dispersion of values
observed from the expectation and it does so in a mean-quadratic sense.

The factorial moment defined for order r as

(10) EXX—=1--(X—=r+1)

is also of interest for computational purposes, since it is obtained plainly by differen-
tiation of PGFs (Appendix A.3: Combinatorial probability, p. 727). Power moments
are then easily recovered as linear combinations of factorial moments, see Note I11.9
of Appendix A. In summary:

Proposition II1.2 (Moments from BGFs). The factorial moment of order r of a pa-

rameter x is determined from the BGF A(z, u) by r-fold differentiation followed by

evaluation at 1:

[2"18; Az, u)|
[z"]A(z, 1)

u=1

Egq, X(x =D - (x —r+1) =
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In particular, the first two moments satisfy
["10uA(z, u) =1

E —

A, OO EAG )

B () [2"18; Az )], | [2"10,AG )z
An X ["AG. 1) AG D

the variance and standard deviation being determined by
V() =000 =Ex?) —E0)*

Proof. The PGF p, (1) of x over A, is given by Proposition III.1. On the other hand,
factorial moments are on general grounds obtained by differentiation and evaluation
at u = 1. The result follows. |

u:l)

give, after a simple normalization (by w, - [z"]A(z, 1)), the factorial moments:

In other words, the quantities

Qb = g, - ([z”] KAz, u)

LIN0)
E(x =D —k+1) ="

Most notably, Qfll) is the cumulated value of x over all objects of A,:

Q) =@, [ 0AG W=y = Y x(@) = Ay -Eg, (0.
acA,

Accordingly, the GF (ordinary or exponential) of the Q,(f) is sometimes named the
cumulative generating function. It can be viewed as an unnormalized generating func-
tion of the sequence of expected values. These considerations explain Wilf’s sugges-
tive motto quoted on p. 151: “Generating functions find averages, etc”. (The “etc” can
be interpreted as a token for higher moments and probability distributions.)

> III.2. A combinatorial form of cumulative GFs. One has

7" Zle!
V@) =Y Ea, 04— =) x(l@)—,
n @n acA Pler|
where w;,, = 1 (ordinary case) or w, = n! (exponential case). <

Example 111.3. Moments of the binomial distribution. The binomial distribution of index n can
be defined as the distribution of the number of as in a random word of length n over the binary
alphabet {a, b}. The determination of moments results easily from the ordinary BGF,

1
W(z,u) =

l—z—zu’
By differentiation, one finds
" riz"
T R
Coefficient extraction then gives the form of the factorial moments of orders 1,2,3, ..., 7 as

2’ 4 8 U or

r

n nin—1) nn—1)1n—2) r! (n)
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In particular, the mean and the variance are %n and %n The standard deviation is thus %ﬁ
which is of a smaller order than the mean: this indicates that the distribution is somehow con-
centrated around its mean value, as suggested by Figure IIL.4. ............. ... .. ... ..., |

B> IIL.3. De Moivre’s approximation of the binomial coefficients. The fact that the mean and
the standard deviation of the binomial distribution are respectively %n and % n suggests we

examine what goes on at a distance of x standard deviations from the mean. Consider for
simplicity the case of n = 2v even. From the ratio

2 1 2 k—1
() _a-pa-a-5h
%) a+ha+dH-a+hH
the approximation log(1 + x) = x + 0 (x2) shows that, for any fixed y € R,

r(v,0) :=

, () e
lim T = Y2,
n—00, {=v+y/v/2 (ZVV)

(Alternatively, Stirling’s formula can be employed.) This Gaussian approximation for the bino-
mial distribution was discovered by Abraham de Moivre (1667-1754), a close friend of Newton.
General methods for establishing such approximations are developed in Chapter IX. <

Example 1I1.4. Moments of the Stirling cycle distribution. Let us return to the example of
cycles in permutations which is of interest in connection with certain sorting algorithms like
bubble sort or insertion sort, maximum finding, and in situ rearrangement [374].

We are dealing with labelled objects, hence exponential generating functions. As seen
earlier on p. 155, the BGF of permutations counted according to cycles is

P(z,u)=(1—-27)7".

By differentiating the BGF with respect to u, then setting # = 1, we next get the expected
number of cycles in a random permutation of size n as a Taylor coefficient:

! log ! :1+1+-~~+l,

l1—z 2 n

which is the harmonic number H;,. Thus, on average, a random permutation of size n has about
logn + y cycles, a well-known fact of discrete probability theory, derived on p. 122 by means
of horizontal generating functions.

For the variance, a further differentiation of the bivariate EGF gives

1 1?2
(12) meu—mﬂ=izo% >.

1—
n>0 <

an E,(x) =[]

1—-z2

From this expression and Note II1.4 (or directly from the Stirling cycle polynomials of p. 155),
a calculation shows that

n 2
1 b4 1

2 _ _ N _ —

(13) R DIES I D B TR 6+0<n).
k=1 k=1
Thus, asymptotically,
op ~ +/logn.

The standard deviation is of an order smaller than the mean, and therefore large deviations from
the mean have an asymptotically negligible probability of occurrence (see below the discussion

of moment inequalities). Furthermore, the distribution is asymptotically Gaussian, as we shall
see in Chapter IX, p. 644, ..o |
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> IIL4. Stirling cycle numbers and harmonic numbers. By the “exp-log trick” of Chapter I,
p- 29, the PGF of the Stirling cycle distribution satisfies

! _ v Yo _
;u(u—{—l)-n(u—{—n—l)_exp an—?H,, —|—?Hn +--- ], u=1+v

where H,(f) is the generalized harmonic number Z?:] Jj~". Consequently, any moment of the
distribution is a polynomial in generalized harmonic numbers; compare (11) and (13). Fur-
thermore, the kth moment satisfies Ep ( xk ) ~ (log n)k. (The same technique expresses the

Stirling cycle number [Z] as a polynomial in generalized harmonic numbers HI(Q 1)

Alternatively, start from the expansion of (1 — z)™% and differentiate repeatedly with re-
spect to «; for instance, one has

_ 1 1 1 1 n+o—1
1—z)7%1 = — e ——— "
-2 Ogl—z ’§)<a+a+l+ +n—1+a)< n )Z

which provides (11) upon setting « = 1, while the next differentiation gives (13). <

The situation encountered with cycles in permutations is typical of iterative (non-
recursive) structures. In many other cases, especially when dealing with recursive
structures, the bivariate GF may satisfy complicated functional equations in two vari-
ables (see the example of path length in trees, Section III. 5 below), which means we
do not know them explicitly. However, asymptotic laws can be determined in a large
number of cases (Chapter IX). In all cases, the BGFs are the central tool in obtain-
ing mean and variance estimates, since their derivatives evaluated at # = 1 become
univariate GFs that usually satisfy much simpler relations than the BGFs themselves.

III. 2.2. Moment inequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classified into two categories: (i) distri-
butions that are spread, i.e., the standard deviation is of order at least as large as the
mean (e.g.the uniform distributions over [0 .. n], which have totally flat histograms);
(ii) distributions for which the standard deviation is of an asymptotic order smaller
than the mean (e.g., the Stirling cycle distribution, Figure II1.4, and the binomial distri-
bution, Figure I11.5.) Such informal observations are indeed supported by the Markov—
Chebyshev inequalities, which take advantage of information provided by the first two
moments. (A proof is found in Appendix A.3: Combinatorial probability, p. 727.)

Markov-Chebysheyv inequalities. Let X be a non-negative random variable and Y
an arbitrary real variable. One has for any t > 0:

P{X > tE(X)} < (Markov inequality)

1
'
P{Y —EM)| = to(Y)} 1

IA

5 (Chebyshev inequality).

~

This result informs us that the probability of being much larger than the mean must
decay (Markov) and that an upper bound on the decay is measured in units given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration property of distributions. It ap-
plies to a family of distributions indexed by the integers.
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Figure IILS. Plots of the binomial distributions for n = 5, ..., 50. The horizontal
axis is normalized (by a factor of 1/n) and rescaled to 1, so that the curves display

[P(% =x)],f0rx —o0,1 2

s

Proposition IIL.3 (Concentration of distribution). Consider a family of random vari-
ables X, typically, a scalar parameter x on the subclass A,. Assume that the means
un = E(X,,) and the standard deviations c,, = o (X,) satisfy the condition

. (o
lim — =0.
n—-—+00 Mn

Then the distribution of X, is concentrated in the sense that, for any € > 0, there
holds

X
(14) lim P{l—eg—”51+e}=1.
n—4o00o Un
Proof. The result is a direct consequence of Chebyshev’s inequality. |

The concentration property (14) expresses the fact that values of X, tend to be-
come closer and closer (in relative terms) to the mean w, as n increases. Another
figurative way of describing concentration, much used in random combinatorics, is to
say that “X,, /uu, tends to 1 in probability”; in symbols:

X, P

— — 1.

Mn
When this property is satisfied, the expected value is in a strong sense a typical value—
this fact is an extension of the weak law of large numbers of probability theory.

Concentration properties of the binomial and Stirling cycle distributions. The
binomial distribution is concentrated, since the mean of the distribution is n/2 and
the standard deviation is 4/n/4, a much smaller quantity. Figure IIL5 illustrates con-
centration by displaying the graphs (as polygonal lines) associated to the binomial
distributions for n = 5,...,50. Concentration is also quite perceptible on simula-
tions as n gets large: the table below describes the results of batches of ten (sorted)
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n
simulations from the binomial distribution { % () ] :
k=0

n =100 39,42,43,49, 50, 52, 54, 55,55, 57

n = 1000 487,492,494, 494, 506, 508, 512, 516, 527, 545

n=10000 | 4972, 4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065

n = 100000 | 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such samples are 22% (n = 10?),
9% (n = 10%), 1.3% (n = 10*), and 0.6% (n = 10°). Similarly, the mean and
variance computations of (11) and (13) imply that the number of cycles in a random
permutation of large size is concentrated.

Finer estimates on distributions form the subject of our Chapter IX dedicated to
limit laws. The reader may get a feeling of some of the phenomena at stake when
examining Figure III.5 and Note III.3, p. 160: the visible emergence of a continu-
ous curve (the bell-shaped curve) corresponds to a common asymptotic shape for the
whole family of distributions—the Gaussian law.

IIL 3. Inherited parameters and ordinary MGFs

In this section and the next, we address the question of determining BGFs directly
from combinatorial specifications. The answer is provided by a simple extension of
the symbolic method, which is formulated in terms of multivariate generating func-
tions (MGFs). Such generating functions have the capability of taking into account a
finite collection (equivalently, a vector) of combinatorial parameters. Bivariate gener-
ating functions discussed earlier appear as a special case.

I11. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed finite collection of parameters.

Definition IIL.3. Consider a combinatorial class A. A (multidimensional) parameter
X = (X1, ..., Xa) on the class is a function from A to the set Z‘io of d—tuples of
natural numbers. The counting sequence of A with respect to size and the parameter x
is then defined by

Apgey,okg =card{a | lal=n, xi(@) =ki, ..., xa(e®) = kq} .

We sometimes refer to such a parameter as a “multiparameter” when d > 1, and
a “simple” or “scalar” parameter otherwise. For instance, one may take the class P
of all permutations o, and for x; (j = 1, 2, 3) the number of cycles of length j in 0.
Alternatively, we may consider the class W of all words w over an alphabet with four
letters, {c1, ..., a4} and take for x; (j = 1, ..., 4) the number of occurrences of the
letter j in w, and so on.

The multi-index convention employed in various branches of mathematics greatly

simplifies notations: let x = (xq, ..., xg) be a vector of d formal variables and k =
(k1, ..., kg) be a vector of integers of the same dimension; then, the multipower xK is
defined as the monomial

k._ ki _k ka
(15) XTi= T e xyt

With this notation, we have:
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Definition IIL.4. Let A,k be a multi-index sequence of numbers, where k € N4,
The multivariate generating function (MGF) of the sequence of either ordinary or
exponential type is defined as the formal power series

A(z,u) = Z Anxu¥z"  (ordinary MGF)
(16) nk o
A(z,u) = Z An,kuk; (exponential MGF).
ry n!

Given a class A and a parameter x, the MGF of the pair (A, x) is the MGF of
the corresponding counting sequence. In particular, one has the combinatorial forms:

A(z,u) = Z w @z ordinary MGF; unlabelled case)
(17) acA ol
A(z,u) = Z w @ ol (exponential MGF; labelled case).
al!
acA

One also says that A(z,u) is the MGF of the combinatorial class with the formal
variable u j marking the parameter x ; and z marking size.

From the very definition, with 1 a vector of all 1’s, the quantity A(z, 1) coincides
with the generating function of A, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GF by way of a vector u,
with the property that the multivariate GF reduces to the univariate GF atu = 1. If all
but one of the u; are set to 1, then a BGF results; in this way, the symbolic calculus
that we are going to develop gives full access to BGFs (and, from here, to moments).

B> IILS. Special cases of MGFs. The exponential MGF of permutations with u, u, marking
the number of 1—cycles and 2—cycles respectively is

exp (w1 = Dz + (= DF)

(1) P(z,uy,u) = —
(This will be proved later in this chapter, p. 187.) The formula is checked to be consistent with
three already known special cases derived in Chapter II: (i) setting u; = up = 1 gives back

the counting of all permutations, P(z,1,1) = (1 — z)fl, as it should; (i7) setting 1 = 0 and
upy = 1 gives back the EGF of derangements, namely e /(1 — z); (iii) setting u; = up =
0 gives back the EGF of permutations with cycles all of length greater than 2, P(z,0,0) =

e—=2 /2 /(1 — 7), a generalized derangement GF. In addition, the particular BGF

e—1Dz
P(z,u,1) = .
-z
enumerates permutations according to singleton cycles. This last BGF interpolates between the
EGF of derangements (¢ = 0) and the EGF of all permutations (z = 1). <

II1. 3.2. Inheritance and MGFs. Parameters that are inherited from substruc-
tures (definition below) can be taken into account by a direct extension of the symbolic
method. With a suitable use of the multi-index conventions, it is even the case that the
translation rules previously established in Chapters I and II can be copied verbatim.
This approach provides a large quantity of multivariate enumeration results that follow
automatically by the symbolic method.



“book” — 2008/10/3 — 16:05 — page 165 — #179

I11. 3. INHERITED PARAMETERS AND ORDINARY MGFS 165

Definition IIL5. Ler (A, x), (B, &), (C, ¢) be three combinatorial classes endowed
with parameters of the same dimension d. The parameter x is said to be inherited in
the following cases.

e Disjoint union: when A = B + C, the parameter x is inherited from &, ¢ iff
its value is determined by cases from &, ¢ :

() fowebB
f(w) ifweCl.

x(w) =

e Cartesian product: when A = B x C, the parameter x is inherited from &, ¢
iff its value is obtained additively from the values of €, ¢ :

x(B.y)=§&(B) +¢(y).

e Composite constructions: when A = R{B}, where K is a metasymbol repre-
senting any of SEQ, MSET, PSET, CYC, the parameter x is inherited from &
iff its value is obtained additively from the values of & on components; for
instance, for sequences:

XBr, s Br) =8B +--- +EB).

With a natural extension of the notation used for constructions, we shall write
(A x)=(B.&)+(C.¢), (A x)=(B.§ x(C.¢), (A x)=R{B §)}.

This definition of inheritance is seen to be a natural extension of the axioms that
size itself has to satisfy (Chapter I): size of a disjoint union is defined by cases; size
of a pair, and similarly of a composite construction, is obtained by addition.

Next, we need a bit of formality. Consider a pair (A, x), where A is a combi-
natorial class endowed with its usual size function | - | and ¥ = (x1,..., xq) iS a
d-dimensional (multi)parameter. Write xo for size and zg for the variable marking
size (previously denoted by z). The key point is to define an extended multiparameter
X = (X0, X1, - --» Xd); that is, we treat size and parameters on an equal opportunity
basis. Then the ordinary MGF in (16) assumes an extremely simple and symmetrical
form:

(19) Az) = ZAkzk = Z 2@,

k acA
Here, the indeterminates are the vector z = (zg, 21, ..., Z2d4), the indices are k =
(ko, k1, ..., kq), where ko indexes size (previously denoted by n) and the usual multi-
index convention introduced in (15) is in force:
(20) K= ok gk

but it is now applied to (d + 1)-dimensional vectors. With this convention, we have:

Theorem IIL.1 (Inherited parameters and ordinary MGFs). Let A be a combinatorial
class constructed from B, C, and let x be a parameter inherited from & defined on
B and (as the case may be) from ¢ on C. Then the translation rules of admissible
constructions stated in Theorem 1.1, p. 27, are applicable, provided the multi-index
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convention (19) is used. The associated operators on ordinary MGFs are then (¢(k)
is the Euler totient function, defined on p. 721):

Union: A=B+C = A(z) = B(z) + C(z),
Product: A=BxC A(z) = B(z) - C(z),

=
Sequence: A=SEQB) = A(z)=
=

1-B@’
Powerset: A = PSET(B) A(z) = exp <§: iB(#))
' =1 ¢ .
o _ _ - 1
Multiset: A= MSET(B) = A(z) =exp (; ;B@ )),
o ¢(0) 1
Cycle: A=Cyc(B) = A= ; . log — 5a

Proof. For disjoint unions, one has

A(z) = Z zX(@ — Z 30 + ZZZ(V)’

acA BeB yeC

since inheritance is defined by cases on unions. For cartesian products, one has

Az) = Z ZX@ — Z Zg(ﬂ) x ZZE()/)’

acA BeB yeC

since inheritance corresponds to additivity on products.

The translation of composite constructions in the case of sequences, powersets,
and multisets is then built up from the union and product schemes, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dealt with by the methods of
Appendix A.4: Cycle construction, p. 729. |

The multi-index notation is a crucial ingredient for developing the general theory
of multivariate enumerations. When we work with only a small number of parameters,
typically one or two, we will however often find it convenient to return to vectors of
variables like (z, u) or (z, u, v). In this way, unnecessary subscripts are avoided.

The reader is especially encouraged to study the treatment of integer composi-
tions in Examples III.5 and III.6 below carefully, since it illustrates the power of the
multivariate symbolic method, in its bare bones version.

Example 1ILS. Integer compositions and MGFs 1. The class C of all integer compositions
(Chapter I) is specified by
C = SEQ(2), T =SEQ>1(2),
where 7 is the set of all positive numbers. The corresponding OGFS are
Z
) I(z) = —,
1—-1(2) @ 11—z

sothat C, =2""1 (n > 1). Say we want to enumerate compositions according to the number x
of summands. One way to proceed, in accordance with the formal definition of inheritance, is

Clx) =
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as follows. Let & be the parameter that takes the constant value 1 on all elements of Z. The
parameter x on compositions is inherited from the (almost trivial) parameter £ = 1 defined on
summands. The ordinary MGF of (Z, &) is

u

I(zou)=zu+z22u+2u+ = e

Let C(z, u) be the BGF of (C, x). By Theorem III.1, the schemes translating admissible con-
structions in the univariate case carry over to the multivariate case, so that

1 _ 1 _ 11—z
1—1I(z,u) l—uiss T l—zu+ 1)’

Bt voilal L ]

21 C(z,u) =

Markers. There is an alternative way of arriving at MGFs, as in (21), which is
important and will be of much use thoughout this book. A marker (or mark) in a spec-
ification X is a neutral object (i.e., an object of size 0) attached to a construction or an
atom by a product. Such a marker does not modify size, so that the univariate counting
sequence associated to ¥ remains unaffected. On the other hand, the total number of
markers that an object contains determines by design an inherited parameter, so that
Theorem III.1 is automatically applicable. In this way, one may decorate specifica-
tions so as to keep track of “interesting” substructures and get BGFs automatically.
The insertion of several markers similarly gives MGFs.

For instance, say we are interested in the number of summands in compositions,
as in Example II1.5 above. Then, one has an enriched specification, and its translation
into MGF,

1

(22) C=SEQ(uSEQ:1(2)) =  Cluw= Tt

based on the correspondence: Z +— z, u +— u.

Example 111.6. Integer compositions and MGFs II. Consider the double parameter x =
(X1, x2) where x; is the number of parts equal to 1 and y; the number of parts equal to 2.
One can write down an extended specification, with | a combinatorial mark for summands
equal to 1 and py for summands equal to 2,

C = SEQ (;HZ + 2% + SEQZ3(Z))
(23) 1

B C(z,uy,up) = s
D Wzt w2+ 30 -9

where uj (j = 1, 2) records the number of marks of type ;.
Similarly, let © mark each summand and x| mark summands equal to 1. Then, one has,

1
1— (uuiz +uz2(1—2)~1H’

(24) C=SEQ (umZ + MSEQZZ(Z)> = C(z,uj,u) =

where u keeps track of the total number of summands and u| records the number of summands
equal to 1.
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MGFs obtained in this way via the multivariate extension of the symbolic method can then
provide explicit counts, after suitable series expansions. For instance, the number of composi-
tions of n with k parts is, by (21),

[z"uk] 1-z2 _ (" _ n—1 _ n—1 ,
1—(4+uz k k k—1
a result otherwise obtained in Chapter I by direct combinatorial reasoning (the balls-and-bars

model). The number of compositions of n containing k parts equal to 1 is obtained from the
special case up = 11in (23),

n, k 1 n—k (- Z)k+l
[27u ]712 =z ]m,
1 — Uz — H 4 < )
where the last OGF closely resembles a power of the OGF of Fibonacci numbers.

Following the discussion of Section III. 2, such MGFs also carry complete information
about moments. In particular, the cumulated value of the number of parts in all compositions

of n has OGF 1 )
zZ(I -z
0 C(z, w)ly—1 = ——,
uC( Mu=1 (1— 22)2
since cumulated values are obtained via differentiation of a BGF. Therefore, the expected num-
ber of parts in a random composition of n is exactly (forn > 1)
I, zl—-2) 1
Z =—-(n+1).
i | ](1 —2z)? 2 )
One further differentiation will give rise to the variance. The standard deviation is found to
be %«/n — 1, which is of an order (much) smaller than the mean. Thus, the distribution of the
number of summands in a random composition satisfies the concentration property as n — 00.

In the same vein, the number of parts equal to a fixed number » in compositions is deter-
mined by

—1
b4
C = SEQ <MZ’ + SEQ¢r(Z)) = C(z,u) = <1 — (: + (u— 1)z’>> .
It is then easy to pull out the expected number of r-summands in a random composition of
size n. The differentiated form
Zr(l _ Z)2
0uCz,u)|yo) = ————
u ( )|u 1 (1 _ 22)2
gives, by partial fraction expansion,

2—r—2 o—r=1_ p—r-2
+

(1 —122)2 1-2z

for a polynomial ¢(z) that we do not need to make explicit. Extracting the nth coefficient of

the cumulative GF 9,C(z, 1) and dividing by 2"=1 yields the mean number of r—parts in a

random composition. Another differentiation gives access to the second moment. One obtains
the following proposition.

0, C(z, u)lu:l =

+q(2),

Proposition II1.4 (Summands in integer compositions). The fotal number of summands in a
random composition of size n has mean %(n + 1) and a distribution that is concentrated around
the mean. The number of r summands in a composition of size n has mean

n 1:
or+1 +0);

and a standard deviation of order \/n, which also ensures concentration of distribution.
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Figure II1.6. A random composition of n = 100 represented as a ragged landscape
(top): its associated profile 12021231041517110! defined as the partition obtained by
sorting the summands (bottom).

Results of a simulation illustrating the proposition are displayed in Figure III.6 to which
Note II1.6 below adds further comments. .......... ... ..ottt |

> IIL6. The profile of integer compositions. From the point of view of random structures,
Proposition III.4 shows that random compositions of large size tend to conform to a global
“profile”. With high probability, a composition of size n should have about n/4 parts equal to 1,
n/8 parts equal to 2, and so on. Naturally, there are statistically unavoidable fluctuations, and
for any finite n, the regularity of this law cannot be perfect: it tends to fade away, especially with
regard to largest summands that are log, (n) + O (1) with high probability. (In this region mean
and standard deviation both become of the same order and are O(1), so that concentration no
longer holds.) However, such observations do tell us a great deal about what a typical random
composition must (probably) look like—it should conform to a “geometric profile”,

1n/4 2n/8 311/16 4)1/32 .

Here are for instance the profiles of two compositions of size n = 1024 drawn uniformly at
random:

12502138 370429 515 61074 80 91 and 1253 2136 368 431 513 68 73 81 91 102.
These are to be compared with the “ideal” profile
1256 2128 364 432 516 68 74 82 91'

It is a striking fact that samples of a very few elements or even just one element (this would
be ridiculous by the usual standards of statistics) are often sufficient to illustrate asymptotic
properties of large random structures. The reason is once more to be attributed to concentration
of distributions whose effect is manifest here. Profiles of a similar nature present themselves
among objects defined by the sequence construction, as we shall see throughout this book.
(Establishing such general laws is usually not difficult but it requires the full power of complex
analytic methods developed in Chapters IV-VIIL.) <

> IL7. Largest summands in compositions. For any € > 0, with probability tending to 1
as n — 0o, the largest summand in a random integer composition of size n is in the interval
[(1 —€)logy n, (1 4 €)logy n]. (Hint: use the first and second moment methods. More precise
estimates are obtained by the methods of Example V.4, p. 308.) <
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R BGF (A(z,u)) cumulative GF (2(z2))
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SEQ: 1= uBQ AR PO =02
o0 Mk
exp [ D (=D o-BE o
PSET : o V= A@)- Y (=DBE
l_[(l + I/lZn)B” k=1
n=1
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exp Z ?B(z ) 00
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Cyc: 1; o log — B ;w(k)l TR

Figure II1.7. Ordinary GFs relative to the number of components in A = K(B).

Simplified notation for markers. It proves highly convenient to simplify nota-
tions, much in the spirit of our current practice, where the atom Z is reflected by
the name of the variable z in GFs. The following convention will be systematically
adopted: the same symbol (usually u, v, u1, us...) is freely employed to designate a
combinatorial marker (of size 0) and the corresponding marking variable in MGFs.

For instance, we can write directly, for compositions,

C = SEQ(u SEQ>| 2)), C = SEQ(uu1 Z + u SEQ>; 2)),

where u marks all summands and #; marks summands equal to 1, giving rise to (22)
and (24) above. The symbolic scheme of Theorem III.1 invariably applies to enumer-
ation according to the number of markers.

I11. 3.3. Number of components in abstract unlabelled schemas. Consider a
construction 4 = K(B), where the metasymbol K designates any standard unlabelled
constructor among SEQ, MSET, PSET, Cyc. What is sought is the BGF A(z, u) of
class A, with # marking each component. The specification is then of the form

A= Rub), & = SEQ, MSET, PSET, CYC.

Theorem III.1 applies and yields immediately the BGF A(z, u). In addition, differ-
entiating with respect to u then setting u = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequence of mean values of the
number of components):

0
Q(z) = a—uA(z,u)

u=1
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Figure IIL.8. A random partition of size n = 100 has an aspect rather different from
the profile of a random composition of the same size (Figure I11.6).

In summary:

Proposition II1.5 (Components in unlabelled schemas). Given a construction, A =
R(B), the BGF A(z, u) and the cumulated GF 2(z) associated to the number of com-
ponents are given by the table of Figure II.7.

Mean values are then recovered with the usual formula,
[z"]2(2)
[2"]A(z)

> IIL8. r—Components in abstract unlabelled schemas. Consider unlabelled structures. The
BGF of the number of r—components in A = R{B} is given by

[E 4, (# components) =

_ . \Br
Aw = (1- B@ — (- D), A(z,u):A@.(l Z) ,

1 —uz"

in the case of sequences (R = SEQ) and multisets (R = MSET), respectively. Similar formulae
hold for the other basic constructions and for cumulative GFs. <

> IL.9. Number of distinct components in a multiset. The specification and the BGF are

n Bn
1_[ (1+ u SEQ>1(B)) = 1_[ <1+%> ’

BeB n>1
as follows from first principles. <

As an illustration of Proposition II1.5, we discuss the profile of random partitions
(Figure IIL.8).

Example 111.7.  The profile of partitions. Let P = MSET(Z) be the class of all integer
partitions, where Z = SEQx ] (Z) represents integers in unary notation. The BGF of P with u
marking the number y of parts (or summands) is obtained from the specification

0k k

P = MSET(uI) —— P(z,u) = exp Z uflzik
—Z
k=1
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1007

801

0 100 200 300 400 500

Figure II1.9. The number of parts in random partitions of size 1, ..., 500: exact
values of the mean and simulations (circles, one for each value of n).

Equivalently, from first principles,

1

1 —uz’

oo o
Px[[seuzy = ]

n=1 n=1
The OGF of cumulated values then results from the second form of the BGF by logarithmic
differentiation:

oo Zk
(25) Q@) =Py —-
-z
k=1
Now, the factor on the right in (25) can be expanded as
00 2k o0
_ n
IR, s
k=1 n=1
with d(n) the number of divisors of n. Thus, the mean value of yx is
| NN
(26) a0 = - ; d(j) Py .
The same technique applies to the number of parts equal to r. The form of the BGF is
~ ~ -7
P =SEQuZ) x [ [ SEQZ) = P(zu) = - P(2),
1 —uz"

n#r
which implies that the mean value of the number ¥ of r—parts satisfies
Eq(X) = L[Zn] (P(Z)’ L) = L(P"—V + Pyor + Py—3r +)
P, 1—-z" P,
From these formulae and a decent symbolic manipulation package, the means are calculated
easily up to values of n well into the range of several thousand. ......................... |

The comparison between Figures I11.6 and I11.8 shows that different combinatorial
models may well lead to rather different types of probabilistic behaviours. Figure I11.9
displays the exact value of the mean number of parts in random partitions of size n =
1,...,500, (as calculated from (26)) accompanied with the observed values of one
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Figure IIL.10. Two partitions of Pjggg drawn at random, compared to the limiting
shape W (x) defined by (27).

random sample for each value of n in the range. The mean number of parts is known
to be asymptotic to
J/nlogn

nV2/3’
and the distribution, though it admits a comparatively large standard deviation O (\/n),
is still concentrated, in the technical sense of the term. We shall prove some of these
assertions in Chapter VIII, p. 581.

In recent years, Vershik and his collaborators [152, 595] have shown that most in-
teger partitions tend to conform to a definite profile given (after normalization by /)
by the continuous plane curve y = W(x) defined implicitly by

_ : —ax 4 ey _ -
27 y = W(x) iff e +e 1, o NG
This is illustrated in Figure III.10 by two randomly drawn elements of P1ggp repre-
sented together with the “most likely” limit shape. The theoretical result explains the
huge differences that are manifest on simulations between integer compositions and
integer partitions.

The last example of this section demonstrates the application of BGFs to estimates
regarding the root degree of a tree drawn uniformly at random among the class G, of
general Catalan trees of size n. Tree parameters such as number of leaves and path
length that are more global in nature and need a recursive definition will be discussed
in Section III. 5 below.

Example 111.8. Root degree in general Catalan trees. Consider the parameter x equal to
the degree of the root in a tree, and take the class G of all plane unlabelled trees, i.e., general
Catalan trees. The specification is obtained by first defining trees (G), then defining trees with a
mark for subtrees (G°) dangling from the root:

z
G = Z x SEQ(9) — Gl = 1—G(2)

G° = Z x SEQG) e =T"060
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This set of equations reveals that the probability that the root degree equals r is
1 r 2n—-3—r r
P _ — _ n—1 G(z) = ~ ,
nix =r} Gn[z 1G(2) parl U 1
this by Lagrange inversion and elementary asymptotics. Furthermore, the cumulative GF is
found to be

zG(2)

(1-G@n*
The relation satisfied by G entails a further simplification,

Q) =

Q)=-6G@7"=|--1)G@ -1,
z z

so that the mean root degree admits a closed form,
n—1
n+1

5

1
En(x) = Gf (Gn-',-l - Gn) =3
n

a quantity clearly asymptotic to 3.
A random plane tree is thus usually composed of a small number of root subtrees, at least
one of which should accordingly be fairly large. ............ ... ... i |

I11. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last section applies almost verbatim to
labelled objects. The only difference is that the variable marking size must carry a fac-
torial coefficient dictated by the needs of relabellings. Once more, with a suitable use
of multi-index conventions, the translation mechanisms developed in the univariate
case (Chapter II) remain in force, this in a way that parallels the unlabelled case.

Let us consider a pair (A, x), where A is a labelled combinatorial class endowed
with its size function | - | and x = (x1, ..., X4) 1S a d-dimensional parameter. As
before, the parameter y is extended into ¥ by inserting size as zeroth coordinate and
a vector z = (20, .. ., zg) of d + 1 indeterminates is introduced, with zo marking size
and z; marking x;. Once the multi-index convention of (20) defining z¥ has been
brought into play, the exponential MGF of (A, x) (see Definition II1.4, p. 164) can be
rephrased as

2@

k

Y/
28 A(z) = Ax— = .
(28) (z) Ek Kl QEGA ol

This MGF is exponential in z (alias zo) but ordinary in the other variables; only the
factorial ko! is needed to take into account relabelling induced by labelled products.

We a priori restrict attention to parameters that do not depend on the absolute
values of labels (but may well depend on the relative order of labels): a parameter is
said to be compatible if, for any «, it assumes the same value on any labelled object «
and all the order-consistent relabellings of «. A parameter is said to be inherited if it
is compatible and it is defined by cases on disjoint unions and determined additively
on labelled products—this is Definition IIL.5 (p. 165) with labelled products replacing
cartesian products. In particular, for a compatible parameter, inheritance signifies
additivity on components of labelled sequences, sets, and cycles. We can then cut-
and-paste (with minor adjustments) the statement of Theorem III.1, p. 165:
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Theorem III.2 (Inherited parameters and exponential MGFs). Let A be a labelled
combinatorial class constructed from B, C, and let x be a parameter inherited from
& defined on B and (as the case may be) from ¢ on C. Then the translation rules of
admissible constructions stated in Theorem II.1, p. 103, are applicable, provided the
multi-index convention (28) is used. The associated operators on exponential MGF's
are then:

Union: A=B+C — A(z) = B(z) + C(z)
Product: A =DBxC = A(z) = B(z)-C(z)
Sequence: A =SEQ(B) — A(z)= m
Cycle: A=Cyc(B) — A(z)= log l——B(Z)
Set: A=SET(B) = A(z) =exp(B(2).

Proof. Disjoint unions are treated in a similar manner to the unlabelled multivariate
case. Labelled products result from
zX (@)

Ay =) -y <|ﬂ|+|yl)M
St = N IBL YL B+ Iy D!

and the usual translation of binomial convolutions that reflect labellings by means of
products of exponential generating functions (like in the univariate case detailed in
Chapter II). The translation for composite constructions is then immediate. ]

This theorem can be exploited to determine moments, in a way that entirely par-
allels its unlabelled counterpart.

Example 111.9. The profile of permutations. Let P be the class of all permutations and y the
number of components. Using the concept of marking, the specification and the exponential
BGF are

P = SET (u CYC(2)) = P(z,u) = exp (u log ; iz) =(1-27",

as was already obtained by an ad hoc calculation in (5). We also know (p. 160) that the mean
number of cycles is the harmonic number H;, and that the distribution is concentrated, since the
standard deviation is much smaller than the mean.

Regarding the number  of cycles of length r, the specification and the exponential BGF
are now

P = SET (CYC.-(2) + u CYC=,(2))
(29)

r e(u—l)z’/r
g

1
= P(z,u) =exp <log + (u— l)z—
b4 r 1-z2

The EGF of cumulated values is then

71
(30) Qi) =— .
rl—z

The result is a remarkably simple one: In a random permutation of size n, the mean number
of r—cycles is equal to 1/r for any r < n.

Thus, the profile of a random permutation, where profile is defined as the ordered sequence
of cycle lengths, departs significantly from what has been encountered for integer compositions
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000 @ oo@

o) ()
-ooOOOOQO @OOOQ

Figure II1.11. The profile of permutations: a rendering of the cycle structure of six
random permutations of size 500, where circle areas are drawn in proportion to cycle
lengths. Permutations tend to have a few small cycles (of size O (1)), a few large ones
(of size ®(n)), and altogether have H;, ~ logn cycles on average.

and partitions. Formula (30) also sheds a new light on the harmonic number formula for the
mean number of cycles—each term 1/r in the harmonic number expresses the mean number
of r—cycles.

As formulae are so simple, one can extract more information. By (29) one has

1 n—kr
k!7[Z ] 11—z
where the last factor counts permutations without cycles of length r. From this (and the asymp-
totics of generalized derangement numbers in Note IV.9, p. 261), one proves easily that the
asymptotic law of the number of r—cycles is Poisson! of rate 1 /r; in particular it is not concen-
trated. (This interesting property to be established in later chapters constitutes the starting point
of an important study by Shepp and Lloyd [540].)

Furthermore, the mean number of cycles whose size is between n/2 and n is Hy, — H|,, 2,
a quantity that equals the probability of existence of such a long cycle and is approximately
log2 = 0.69314. In other words, we expect a random permutation of size n to have one or a
few large cycles. (See the article of Shepp and Lloyd [540] for the original discussion of largest
and smallest CYCIES.) .. ..ottt |

ed I

P{x = k) =

)

> IIL.10. A hundred prisoners II. This is the solution to the prisoners problem of Note II.15,
p- 124 The better strategy goes as follows. Each prisoner will first open the drawer which
corresponds to his number. If his number is not there, he’ll use the number he just found to
access another drawer, then find a number there that points him to a third drawer, and so on,
hoping to return to his original drawer in at most 50 trials. (The last opened drawer will then
contain his number.) This strategy globally succeeds provided the initial permutation o defined
by o; (the number contained in drawer i) has all its cycles of length at most 50. The probability
of the event is

. 2 250 100
p=12'9exp R R B > = =0.3118278206.
j:51J

! The Poisson distribution of rate A > 0 has the non-negative integers as support and is determined by

A.k
_ =X
Plk) =7
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Figure III.12. Two random allocations with m = 12, n = 48, corresponding to
A = n/m = 4 (left). The right-most diagrams display the bins sorted by decreasing
order of occupancy.

Do the prisoners stand a chance against a malicious director who would not place the numbers
in drawers at random? For instance, the director might organize the numbers in a cyclic per-
mutation. [Hint: randomize the problem by renumbering the drawers according to a randomly
chosen permutation. ] <

Example 111.10. Allocations, balls-in-bins models, and the Poisson law. Random allocations
and the balls-in-bins model were introduced in Chapter II in connection with the birthday para-
dox and the coupon collector problem. Under this model, there are n balls thrown into m bins
in all possible ways, the total number of allocations being thus m". By the labelled construction
of words, the bivariate EGF with z marking the number of balls and # marking the number ()
of bins that contain s balls (s a fixed parameter) is given by

N m
A= SEQy (SET4(2) + uSET=(2)) = AW (z,u)= <ez + (u— 1)%) .

In particular, the distribution of the number of empty bins ( X(O)) is expressible in terms of
Stirling partition numbers:

Buax© =k = "Lk 1A0 g = P 1 <m>{ : }
’ mh" m' k)m—k

By difterentiating the BGF, we get an exact expression for the mean (any s > 0):

GD lEm,n(X(S))=l(l—l> Ta—D-—s+ 1)
m s!

m mS

Let m and n tend to infinity in such a way that n/m = A is a fixed constant. This regime
is extremely important in many applications, some of which are listed below. The average pro-
portion of bins containing s elements is %Em, n( X(S)), and from (31), one obtains by straight-
forward calculations the asymptotic limit estimate,

1 AS
(32) lim —Epn(x®)y =22,
n/m=x, n—oo m ’ s!
(See Figure III.12 for two simulations corresponding to A = 4.) In other words, a Poisson
formula describes the average proportion of bins of a given size in a large random allocation.
(Equivalently, the occupancy of a random bin in a random allocation satisfies a Poisson law in
the limit.)
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R exponential BGF (A(z, u)) cumulative GF (2(z))
1 > B(2)
SEQ : _ A -B(z) = ——
Q = uBG) (2) (2) (1 B()?
SET:  expuB(2) A(z) - B(z) = B(z)eP@
1 B
Cyc: log ————— i
1—uB(z2) 1—B(2)

Figure IT1.13. Exponential GFs relative to the number of components in A = &(B).

The variance of each x &) (with fixed s) is estimated similarly via a second derivative and
one finds:

25 As—l s )LS—H
Ven o) ~me 2 EQ), EQ) = — 2 (1 -29% = .
’ s! (s—=1D! s! s!

As a consequence, one has the convergence in probability,

1 AS
L@ P
m s!

valid for any fixed s > 0. See Example VIIIL.14, p. 598 for an analysis of the most filled urn. W

B> IIL.11. Hashing and random allocations. Random allocations of balls into bins are central
in the understanding of a class of important algorithms of computer science known as hash-
ing [378, 537, 538, 598]: given a universe U of data, set up a function (called a hashing func-
tion) h : U — [1..m] and arrange for an array of m bins; an element x € U is placed in bin
number /(x). If the hash function scrambles the data in a way that is suitably (pseudo)uniform,
then the process of hashing a file of n records (keys, data items) into m bins is adequately mod-
elled by a random allocation scheme. If A = n/m, representing the “load”, is kept reasonably
bounded (say, A < 10), the previous analysis implies that hashing allows for an almost direct
access to data. (See also Example I1.19, p. 146 for a strategy that folds colliding items into a
table.) <

Number of components in abstract labelled schemas. As in the unlabelled uni-
verse, a general formula gives the distribution of the number of components for the
basic constructions.

Proposition I11.6. Consider labelled structures and the parameter x equal to the
number of components in a construction A = K{3}, where R is one of SEQ, SET CYC.
The exponential BGF A(z, u) and the exponential GF Q2(z) of cumulated values are
given by the table of Figure I1I.13.

Mean values are then easily recovered, and one finds

2 [M90)
B0 = = ae)

by the same formula as in the unlabelled case.
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> IIL.12. r—Components in abstract labelled schemas. The BGF A(z, u) and the cumulative
EGF 2 (z) are given by the following table,

1 1 BrZr
SEQ: Bz’ ad=B2 n
1= (B@ +w-DE) (1-B@)? !
By 7" Bz
SET: exp (B(z) +@w-—-1 r‘z > eB@ . ’7?
r: r!
1 1 B.7"
Cyc: log G T B0 riyz
1—<B(z)+(u—1) 2 ) (1-B@) 7!
in the labelled case. <

Example 111.11. Set partitions. Set partitions S are sets of blocks, themselves non-empty sets
of elements. The enumeration of set partitions according to the number of blocks is then given
by

S =SETWSET=((2)) = S(zu) =" D,

Since set partitions are otherwise known to be enumerated by the Stirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,

n| ok uer-1) n|2" 1 o
Sl e Sl e -
n,

which is consistent with earlier calculations of Chapter II.
The EGF of cumulated values, €2(z) is then almost a derivative of S(z):

Q@) = (¢ = De” 1 = Ls2) — 52).
dz

Thus, the mean number of blocks in a random partition of size n equals

& _ Sn+1 _1
Sn Sn ’

a quantity directly expressible in terms of Bell numbers. A delicate computation based on
the asymptotic expansion of the Bell numbers reveals that the expected value and the standard
deviation are asymptotic to

n Jn
logn’ logn’

respectively (Chapter VIIL, p. 595). Similarly the exponential BGF of the number of blocks of
size k is

& = SET(u SET=¢(Z) + SET0 4 (£)) — S(z,u) = eel_l+(u—1)zk/k!7

out of which mean and variance can alsobe derived. ................................... | |

Example 111.12. Root degree in Cayley trees. Consider the class 7 of Cayley trees (non-plane
labelled trees) and the parameter “root-degree”. The basic specifications are

T Z x SET(T) T(2) = z1@
==
T° = Z*xSET7) T(zou) = ze"T@,
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The set construction reflects the non-planar character of Cayley trees and the specification 7° is
enriched by a mark associated to subtrees dangling from the root. Lagrange inversion provides
the fraction of trees with root degree &,

1 n! (n— n—2-k e !

~ , k>1.
k—=—D!'n—-1-k)! nt—1 k—1)! -

Similarly, the cumulative GF is found tobe Q(z) =T (z)z, so that the mean root degree satisfies

1
E7 (root degree) = 2 (1 _ ,) ~72.
n

Thus the law of root degree is asymptotically a Poisson law of rate 1, shifted by 1. Probabilistic
phenomena qualitatively similar to those encountered in plane trees are observed here, since
the mean root degree is asymptotic to a constant. However a Poisson law eventually reflecting
the non-planarity condition replaces the modified geometric law (known as a negative binomial
law) present in Plane tre@S. ... ...ttt e |

> II.13. Numbers of components in alignments. Alignments (O) are sequences of cycles
(Chapter II, p. 119). The expected number of components in a random alignment of O, is

[z"1log(1 — 2)~ (1 —log(1 — z)~1) 72
[271(1 —log(1 —z)~H)~1 '

Methods of Chapter V imply that the number of components in a random alignment has expec-
tation ~ n/(e — 1) and standard deviation ® (\/n). <

> II1.14. Image cardinality of a random surjection. The expected cardinality of the image of a
random surjection in R, (Chapter I, p. 106) is
[2"]ef(2 — )2
[z"1(2 — ez)—l :
The number of values whose preimages have cardinality k is obtained upon replacing the factor
e* by * /k!. By the methods of Chapters IV (p. 259) and V (p. 296), the image cardinality of a
random surjection has expectation n/(2log 2) and standard deviation © (y/n). <

> IIL1S. Distinct component sizes in set partitions. Take the number of distinct block sizes
and cycle sizes in set partitions and permutations. The bivariate EGFs are

o o
l_[(l—u—{—uezn/"!), n(l—u+uezn/">,

n=1 n=1

as follows from first principles. <

Postscript: Towards a theory of schemas. Let us look back and recapitulate
some of the information gathered in pages 167—180 regarding the number of compo-
nents in composite structures. The classes considered in Figure III.14 are composi-
tions of two constructions, either in the unlabelled or the labelled universe. Each entry
contains the BGF for the number of components (e.g., cycles in permutations, parts
in integer partitions, and so on), and the asymptotic orders of the mean and standard
deviation of the number of components for objects of size n.

Some obvious facts stand out from the data and call for explanation. First the
outer construction appears to play the essential rdle: outer sequence constructs (com-
pare integer compositions, surjections and alignments) tend to dictate a number of
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Unlabelled structures

Integer partitions, MSET o SEQ Integer compositions, SEQ o SEQ

ex u < +£i+... Z -
p 1—2 21_22 (l—ul )

-z
~%, O (/) ~2 oW
Labelled structures
Set partitions, SET o SET Surjections, SEQ o SET
exp (u (5 — 1)) (1—u(e—1)"
n
- lozn - lc:éﬁn - @’ oWm
Permutations, SET o CYC Alignments, SEQo CyC
exp(ulog(l—z)fl) <1 —ulog(l —Z)_l>_1
~logn, ~ ,/logn ~ eiil’ O (v/n)

Figure I11.14. Major properties of the number of components in six level-two struc-
tures. For each class, from top to bottom: (i) specification type; (ii) BGF; (iii) mean
and standard deviation of the number of components.

components that is ® (n) on average, while outer set constructs (compare integer par-
titions, set partitions, and permutations) are associated with a greater variety of asymp-
totic regimes. Eventually, such facts can be organized into broad analytic schemas, as
will be seen in Chapters V-IX.

> II1.16. Singularity and probability. The differences in behaviour are to be assigned to the

rather different types of singularity involved (Chapters IV-VIII): on the one hand sets corre-
sponding algebraically to an exp(-) operator induce an exponential blow-up of singularities; on

the other hand sequences expressed algebraically by quasi-inverses (1 — 3~ are likely to in-
duce polar singularities. Recursive structures such as trees lead to yet other types of phenomena
with a number of components, e.g., the root degree, that is bounded in probability. <

IIL. 5. Recursive parameters

In this section, we adapt the general methodology of previous sections in order to
treat parameters that are defined by recursive rules over structures that are themselves
recursively specified. Typical applications concern trees and tree-like structures.

Regarding the number of leaves, or more generally, the number of nodes of some
fixed degree, in a tree, the method of placing marks applies, as in the non-recursive
case. It suffices to distinguish elements of interest and mark them by an auxiliary
variable. For instance, in order to mark composite objects made of » components,
where r is an integer and K designates any of SEQ, SET (or MSET, PSET), CYC, one
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should split a construction K(C) as follows:
REC) =ui=(C) + 8% (C) = (u — DR(C) + R(C).

This technique gives rise to specifications decorated by marks to which Theorems III.1
and II1.2 apply. For a recursively-defined structure, the outcome is a functional equa-
tion defining the BGF recursively. The situation is illustrated by Examples III.13
and III.14 below in the case of Catalan trees and the parameter number of leaves.

Example 111.13. Leaves in general Catalan trees. How many leaves does a random tree of
some variety have? Can different varieties of trees be somehow distinguished by the proportion
of their leaves? Beyond the botany of combinatorics, such considerations are for instance rele-
vant to the analysis of algorithms since tree leaves, having no descendants, can be stored more
economically; see [377, Sec. 2.3] for an algorithmic motivation for such questions.

Consider once more the class G of plane unlabelled trees, G = Z x SEQ(G), enumerated
2n—2

by the Catalan numbers: G, = %(n—] ) The class G° where each leaf is marked is

2G(z, u)

G° = Zu + Z x SEQ>1(G°) = Gzu) =zu+ ————.
- 1 -Gz, u)

The induced quadratic equation can be solved explicitly

G(Z,u)z%(l—l—(u—l)z—\/l—2(u+1)z+(u_1)2zz)'

It is however simpler to expand using the Lagrange inversion theorem which yields

1 n
[u*] (["1G(z, w) = [u¥] (7[y”—1] (u + L) )
n 1—y

=620
A\ )Y Ta =k T A\ \k—1)

These numbers are known as Narayana numbers, see EIS A001263, and they surface repeatedly
in connection with ballot problems. The mean number of leaves is derived from the cumulative
GF, which is

Gn,k

1 1 z
Q@) =06 Wly=1 =52+ 5 —,
u u=1 2 2 -4z
so that the mean is n/2 exactly for n > 2. The distribution is concentrated since the standard
deviation is easily calculated tobe O (1), «..ovviiii i |

Example 111.14. Leaves and node types in binary trees. The class B of binary plane trees, also
enumerated by Catalan numbers (B, = nl? (znn ) can be specified as

(33) B=Z+BxZ2)+(Zx B+ BxZxB),

which stresses the distinction between four types of nodes: leaves, left branching, right branch-
ing, and binary. Let uq, u1, up be variables that mark nodes of degree 0,1,2, respectively. Then
the root decomposition (33) yields, for the MGF B = B(z, ug, u1, u»), the functional equation

B =zug +2zu B + zusz,

which, by Lagrange inversion, gives

2k1 n
Bukotado = = ko, ki, ko)’
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subject to the natural conditions: kg + k1 + kp = n and kg = kp + 1. Moments can be easily
calculated using this approach [499]. In particular, the mean number of nodes of each type is
asymptotically:

] 1 1-nod n 2-nod. n
eaves: ~ —, —nodaes: ~ —, —noaes: ~ —.
4 2 4

There is an equal asymptotic proportion of leaves, double nodes, left branching, and right
branching nodes. Furthermore, the standard deviation is in each case O(4/n), so that all the
corresponding distributions are concentrated. ............. i ]

> IIL.17. Leaves and node-degree profile in Cayley trees. For Cayley trees, the bivariate EGF
with u marking the number of leaves is the solution to
T(z,u) = uz + z(eT &% — 1),

(By Lagrange inversion, the distribution is expressible in terms of Stirling partition numbers.)

The mean number of leaves in a random Cayley tree is asymptotic to ne™ 1 More generally, the
mean number of nodes of outdegree k in a random Cayley tree of size n is asymptotic to

1 1
n-e  —.
k!
Degrees are thus approximately described by a Poisson law of rate 1. <

> IIL.18. Node-degree profile in simple varieties of trees. For a family of trees generated
by T(z) = z¢(T(z)) with ¢ a power series, the BGF of the number of nodes of degree k
satisfies

Tz )=z (¢(T @ w) + g~ DT w*),

where ¢y = [uk ]¢ (u). The cumulative GF is

AT ) 2 k=1
Q) =z—F =02 T(z T'(2),
() 1= 20/ (T @) ¢z T (2) ()
from which expectations can be determined. <

> IIL.19. Marking in functional graphs. Consider the class F of finite mappings discussed in
Chapter II:

F = SET(K), K =Cyc(7), T = Z % SET(T).
The translation into EGFs is
1
F(z) = K@ K(z) =1 T(z) = zel @,
() =e™, (2) = log -— Q' (2) = ze

Here are the bivariate EGFs for (i) the number of components, (ii) the number of maximal
trees, (iii) the number of leaves:

- uK(z) .
() KO, i)

1

The trivariate EGF F (u1, uj, z) of functional graphs with | marking components and «, mark-
ing trees is

1
(I —uaT ()"

An explicit expression for the coefficients involves the Stirling cycle numbers. <

F(z,uy,u) = exp(uy log(1 —upT(2)~ 1) =



“book” — 2008/10/3 — 16:05 — page 184 — #198

184 11l. PARAMETERS AND MULTIVARIATE GFS

We shall now stop supplying examples that could be multiplied ad libitum, since
such calculations greatly simplify when interpreted in the light of asymptotic analysis,
as developed in Part B. The phenomena observed asymptotically are, for good reasons,
especially close to what the classical theory of branching processes provides (see the
books by Athreya—Ney [21] and Harris [324], as well as our discussion in the context
of “complete” GFs on p. 196).

Linear transformations on parameters and path length in trees. We have so
far been dealing with a parameter defined directly by recursion. Next, we turn to
other parameters such as path length. As a preamble, one needs a simple linear trans-
formation on combinatorial parameters. Let A be a class equipped with two scalar
parameters, x and &, related by

x(@) = la| + &(a).
Then, the combinatorial form of BGFs yields

30 cllygn@ = §7 el el o 37 gyl b

acA acA acA
that is,

(34) Ay (z,u) = Ag(zu, u).
This is clearly a general mechanism:

Linear transformations and MGFs: A linear transformation on parameters induces
a monomial substitution on the corresponding marking variables in MGFss.

We now put this mechanism to use in the recursive analysis of path length in trees.

Example 111.15. Path length in trees. The path length of a tree is defined as the sum of distances
of all nodes to the root of the tree, where distances are measured by the number of edges on
the minimal connecting path of a node to the root. Path length is an important characteristic
of trees. For instance, when a tree is used as a data structure with nodes containing additional
information, path length represents the total cost of accessing all data items when a search
is started from the root. For this reason, path length surfaces, under various models, in the
analysis of algorithms, in particular, in the area of algorithms and data structures for searching
and sorting (e.g., tree-sort, quicksort, radix-sort [377, 538]).
The formal definition of path length of a tree is

(35) AT) = Z dist(v, root(z)),

VET

where the sum is over all nodes of the tree and the distance between two nodes is measured by
the number of connecting edges. The definition implies an inductive rule

(36) Moy =Y (W) + D),
v<T
in which v < 7 indicates a summation over all the root subtrees v of t. (To verify the equiva-
lence of (35) and (36), observe that path length also equals the sum of all subtree sizes.)
From this point on, we focus the discussion on general Catalan trees (see Note I11.20 for
other cases): G = Z x SEQ(G). Introduce momentarily the parameter ;(t) = |t|+A(t). Then,
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one has from the inductive definition (36) and the general transformation rule (34):

37) G,\(z,u)zﬁ and  Gu(z.u) = Gy, (zu, u).
~G.

In other words, G(z, u) = G, (z, u) satisfies a nonlinear functional equation of the difference
type:

z
1 -Gz, u)
(This functional equation will be revisited in connection with area under Dyck paths in Chap-
ter V, p. 330.) The generating function (z) of cumulated values of A is then obtained by
differentiation with respect to u, then setting # = 1. We find in this way that the cumulative GF
Q(z) = 0,G(z,u)|,— satisfies

G(z,u) =

< /
Q)= —— (2G'(0) + (),
(1-G(2))? ( )
which is a linear equation that solves to
G/
Q) =22 ) < <

1-G@)2l—z 20-4 2/i-a&

o zzzn—a_l 2n -2
" 2\n—-1/)

where the sequence starting 1, 5, 22, 93, 386 for n > 2 constitutes EIS A000346. By elementary
asymptotic analysis, we get:

Consequently, one has (n > 1)

The mean path length of a random Catalan tree of size n is asymptotic to % n3;

in short: a branch from the root to a random node in a random Catalan tree of size n
has expected length of the order of \/n.

Random Catalan trees thus tend to be somewhat imbalanced—by comparison, a fully balanced
binary tree has all paths of length at mostlogob n 4+ O(1). ............ ... ... ... ... ... |

The imbalance in random Catalan trees is a general phenomenon—it holds for bi-
nary Catalan and more generally for all simple varieties of trees. Note II1.20 below and
Example VIL9 (p. 461) imply that path length is invariably of order n./n on average
in such cases. Height is of typical order /n as shown by Rényi and Szekeres [507], de
Bruijn, Knuth, and Rice [145], Kolchin [386], as well as Flajolet and Odlyzko [246]:
see Subsection VII. 10.2, p. 535 for the outline of a proof. Figure III.15 borrowed
from [538] illustrates this on a simulation. (The contour of the histogram of nodes by
levels, once normalized, has been proved to converge to the process known as Brow-
nian excursion.)
> IIL20. Path length in simple varieties of trees. The BGF of path length in a variety of trees
generated by T (z) = z¢ (T (z)) satisfies

T(z,u) = z¢(T (zu, u)).
In particular, the cumulative GF is
¢ (T (2))
&(T(2))

from which coefficients can be extracted. <

Q) = 0y (T(z, )y = T (2))%,
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.“P;;i!!!!;;l;!;;iligl;!;”“mﬁinipp-

Figure II1.15. A random pruned binary tree of size 256 and its associated level pro-
file: the histogram on the left displays the number of nodes at each level in the tree.

I11. 6. Complete generating functions and discrete models

By a complete generating function, we mean, loosely speaking, a generating func-
tion in a (possibly large, and even infinite in the limit) number of variables that mark
a homogeneous collection of characteristics of a combinatorial class?. For instance
one might be interested in the joint distribution of all the different letters composing
words, the number of cycles of all lengths in permutations, and so on. A complete
MGEF naturally entails detailed knowledge on the enumerative properties of structures
to which it is relative. Complete generating functions, given their expressive power,
also make weighted models amenable to calculation, a situation that covers in particu-
lar Bernoulli trials (p. 190) and branching processes from classical probability theory
(p. 196).

Complete GFs for words. As a basic example, consider the class of all words

W = SEQ{A} over some finite alphabet A = {aj,...,a;}. Let x = (X1, ---5 Xr),
where x ;(w) is the number of occurrences of the letter a; in word w. The MGF of A
with respect to x is

A=uia +urar + - - ura, — A(z,w) = zuy + zuo + - - - + zu,,
and x on W is clearly inherited from x on .A. Thus, by the sequence rule, one has

1

1=z +ur+---+uy)

which describes all words according to their compositions into letters. In particular,
the number of words with n; occurrences of letter a; and with n = )" n; is in this

(38) W = SEQ(A) - W(z,u) =

2Complete GFs are not new objects. They are simply an avatar of multivariate GFs. Thus the term is
only meant to be suggestive of a particular usage of MGFs, and essentially no new theory is needed in order
to cope with them.
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framework obtained as

ny np n n n n!
Ly uy™ - -up " Ty +up + - Fuy)” = W)=
s Ihr

niy,no, ... nylny!---n,

We are back to the usual multinomial coefficients.

> II1.21. After Bhaskara Acharya (circa 1150AD). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,.. ., with digit 9 used nine times. Such numbers
all have 45 digits. Compute their sum S and discover, much to your amazement that S equals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
tion? This exercise is inspired by the Indian mathematician Bhaskara Acharya who discovered
multinomial coefficients near 1150AD; see [377, pp. 23—24] for a brief historical note. <

Complete GFs for permutations and set partitions. Consider permutations and
the various lengths of their cycles. The MGF where u; marks cycles of length k for

k =1,2,...canbe written as an MGF in infinitely many variables:
2 3
z z Z
39) P(z,u):exp(u1T+u2?+u3?+...).

This MGF expression has the neat feature that, upon restricting all but a finite number
of uj to 1, we derive all the particular cases of interest with respect to any finite
collection of cycles lengths. Observe also that one can calculate in the usual way any
coefficient [z"*] P as it only involves the variables uy, ..., uj,.
> IIL22. The theory of formal power series in infinitely many variables. (This note is for
formalists.) Mathematically, an object like P in (39) is perfectly well defined. Let U =
{ug,up, ...} be an infinite collection of indeterminates. First, the ring of polynomials R =
C[U] is well defined and a given element of R involves only finitely many indeterminates.
Then, from R, one can define the ring of formal power series in z, namely R[z]. (Note that,
if f € Rlz]l, then each [Z""] f involves only finitely many of the variables u;.) The basic op-
erations and the notion of convergence, as described in Appendix A.5: Formal power series,
p- 730, apply in a standard way.

For instance, in the case of (39), the complete GF P(z, u) is obtainable as the formal limit

k k+1
P(z,u) = lim exp u1£+-~-+uk2—+7+---
k—00 1 k k+1

in R[[z]] equipped with the formal topology. (In contrast, the quantity evocative of a generating
function of words over an infinite alphabet

-1

) o
Ll Rt
j=1
cannot be soundly defined as an element of the formal domain R[z].) <

Henceforth, we shall keep in mind that verifications of formal correctness regard-
ing power series in infinitely many indeterminates are always possible by returning to
basic definitions.

Complete generating functions are often surprisingly simple to expand. For in-
stance, the equivalent form of (39)

P(z,u) = ¢13/1. 222 gus/3
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implies immediately that the number of permutations with k; cycles of size 1, kp of
size 2, and so on, is

n!
kilky! -« k! 1k 2ka ..ok’

provided ) jk; = n. This is a result originally due to Cauchy. Similarly, the EGF of
set partitions with u ; marking the number of blocks of size j is

(40)

S(z,u) =exp|u Z+u Z2+u Z3+
<, = eXp 11 22 33 .

A formula analogous to (40) follows: the number of partitions with kj blocks of size
1, kp of size 2, and so on, is
n!
kilko! - k! 11k 2ka o pthn
Several examples of such complete generating functions are presented in Comtet’s
book; see [129], pages 225 and 233.

> I1.23. Complete GF's for compositions and surjections. — The complete GFs of integer
compositions and surjections with u ; marking the number of components of size j are

1 1

_yx J’ it
1= ujal 1- —1“]3'

The associated counts withn =) i k; are given by

ki +ky+--- n! ki +ky+---
ki, ko, ... ’ 11k121k2 ... ki, ko, ... ’
These factored forms follow directly from the multinomial expansion. The symbolic form of
the multinomial expansion of powers of a generating function is sometimes expressed in terms

of Bell polynomials, themselves nothing but a rephrasing of the multinomial expansion; see
Comtet’s book [129, Sec. 3.3] for a fair treatment of such polynomials.

> 1I1.24. Faa di Bruno’s formula. The formulae for the successive derivatives of a functional
composition £(z) = f(g(z2))

h(z) = f(g@)g @), 82h(z) = (g2 @* + f@e" @), ...,

are clearly equivalent to the expansion of a formal power series composition. Indeed, assume
without loss of generality that z = 0 and g(0) = 0; set f;, := 97 f(0), and similarly for g, A.

Then
h(z) = Zhn .=Z (gz—l—%zz—l— )k.

Thus in one direct application of the multinomial expansion, one finds

*_Z Z(el ez,...,e><517lv) (%)Zz ' (i]» ’

where the summation condition C is: 167 + 20y + --- + kb = n, €1 + L€y + -+ L = k.
This shallow identity is known as Faa di Bruno’s formula [129, p. 137]. (Faa di Bruno (1825—
1888) was canonized by the Catholic Church in 1988, presumably for reasons unrelated to his
formula.) <
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> IIL25. Relations between symmetric functions. Symmetric functions may be manipulated
by mechanisms that are often reminiscent of the set and multiset construction. They appear in
many areas of combinatorial enumeration. Let X = {x; }£=1 be a collection of formal variables.
Define the symmetric functions

1 .
U(l+xiz)=2n:anzn, Hl—xizngnzn’ Z%:chz".

i i n

The ay,, by, ¢, called, respectively, elementary, monomial, and power symmetric functions, are
expressible as

,
an = e b, = XX = r
n = XiyXig = Xy n = Xy Xip = Xips Cn = X -

i1<ip<--<iy i1<ip<-<iy i=1
The following relations hold for the OGFs A(z), B(z), C(z) of a,, by, cp:
B(2) L A(z) L
d = R Z = 5
A(—-2) B(—z)
d < dt
C) = z-logB(), Bk = exp| Ct)=—.
dz 0 t

Consequently, each of ay, by, ¢, is polynomially expressible in terms of any of the other quan-
tities. (The connection coefficients, as in Note I11.24, involve multinomials.) <

D> IIL.26. Regular graphs. A graph is r—regular iff each node has degree exactly equal to r. The
number of r—regular graphs of size n is

[x]x5 - xp] 1_[ (1 +x;xj).
I<i<j<n

[Gessel [289] has shown how to extract explicit expressions from such huge symmetric func-
tions; see Appendix B.4: Holonomic functions, p. 748.] <

II1. 6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to generalize many results to the case
of non-uniform letter probabilities, such as the coupon collector problem and the birth-
day paradox considered in Chapter II. Applications are to be found in classical prob-
ability theory and statistics [139] (the so-called Bernoulli trial models), as well as in
computer science [564] and mathematical models of biology [603].

Example 111.16. Words and records. Fix an alphabet A = {ay, ..., a,} and let VW = SEQ{.A}
be the class of all words over A, where A is naturally ordered by a; < a» < --- < ar.
Given a word w = wj - - - wp, a (strict) record is an element w; that is larger than all preceding
elements: w; > w; foralli < j. (Refer to Figure III.15 of Chapter II for a graphical rendering
of records in the case of permutations.)

Consider first the subset of W comprising all words that have the letters a;,, ..., a;, as
successive records, where ij < --- < iy. The symbolic description of this set is in the form of
a product of k terms

(41) (ail SEQ(ay +~-~—|—ail)> (a,'k SEQ(ay +"'+(lik)>.

Consider now MGFs of words where z marks length, v marks the number of records, and each
u j marks the number of occurrences of letter a ;. The MGF associated to the subset described
in (41) is then

(Zvuil(l_z(ul +"'+ui1))_1> (Zvuik(l_z(ul +"’+”ik))_l>-
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Summing over all values of k and of i < - -+ < i} gives
r
2) Wz vw = [T (14 zous (1 = 2+ +ug) ™),
s=1
the rationale being that, for arbitrary quantities ys, one has by distributivity:
r

Z Z yilyiz"'yik:l_[(l+ys)-

k=0 1<ij<---<ix<r s=1

We shall encounter more applications of (42) below. For the time being let us simply
examine the mean number of records in a word of length n over the alphabet .4, when all such
words are taken equally likely. One should set u ; + 1 (the composition into specific letters is
forgotten), so that W assumes the simpler form

W(z,v):l_[(l—l— vz )

PR

Logarithmic differentiation then gives access to the generating function of cumulated values,
r
4 Z 1

= L

0
Q) = £W(z, v)

Thus, by partial fraction expansion, the mean number of records in YW, (whose cardinality is r)
has the exact value
r—1
(43) Eyy, (# records) = Hy, — Z
j=1

G/n"
r—j ’

There appears the harmonic number H;, as in the permutation case, but now with a negative
correction term which, for fixed r, vanishes exponentially withn. ....................... |

Example II1.17. Weighted word models and Bernoulli trials. Let A = {ay,...,a,} be an
alphabet of cardinality r, and let A = {Ay,..., A} be a system of numbers called weights,
where weight A ; is viewed as attached to letter a;. Weights may be extended from letters to
words multiplicatively by defining the weight 7 (w) of word w as

(W) = AjAiy A, it w=uaa;,--q

4 (w)

Xjw

= ] |/\j ,
j=1

where x j (w) is the number of occurrences of letter a; in w. Finally, the weight of a set is by
definition the sum of the weights of its elements.

Combinatorially, weights of sets are immediately obtained once the corresponding gener-
ating function is known. Indeed, let S € W = SEQ{.A} have the complete GF

Sy ty) = Z Z|w\u>1<1(w) -~-uf’(“’),
wesS

n

where x j (w) is the number of occurrences of letter a j in w. Then one has

S@ A h) = Y W (w),

weS
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so that extracting the coefficient of z" gives the total weight of S, = S N W, under the weight
system A. In other words, the GF of a weighted set is obtained by substitution of the numerical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequences of independent draws from a fixed
distribution with finitely many possible values. One may think of the succession of flippings of
a coin or castings of a die. If any trial has r possible outcomes, then the various possibilities can
be described by letters of the r—ary alphabet A. If the probability of the jth outcome is taken to
be A , then the A-weighted models on words becomes the usual probabilistic model of indepen-
dent trials. (In this situation, the A ; are often written as p;.) Observe that, in the probabilistic
situation, one must have Aj +- - -+ A, = 1 with each A ; satisfying 0 < A; < 1. The equiproba-
ble case, where each outcome has probability 1/r can be obtained by setting A ; = 1/r, leaving
us with the usual enumerative model. In terms of GFs, the coefficient [z"]S(z, A1, ..., Ar)
then represents the probability that a random word of W, belongs to S. Multivariate gener-
ating functions and cumulative generating functions then obey properties similar to their usual
(ordinary, exponential) counterparts.

As an illustration, assume one has a biased coin with probability p for heads (H) and g =
1 — p for tails (T'). Consider the event: “in n tosses of the coin, there never appear £ contiguous
heads”. The alphabet is A = {H, T}. The construction describing the events of interest is, as
seen in Subsection I.4.1 (p. 51),

S = SEQ¢{H} SEQ(T SEQ¢{H}}.
Its GF, with # marking heads and v marking tails, is then
1— Lyt AN
W)= — 2 1 - qp— 21
1—zu 1—zu

Thus, the probability of the absence of /—runs among a sequence of n random coin tosses is
obtained after the substitution # — p, v — ¢ in the MGF,

1— plst
1= 24 gptztti’
leading to an expression which is amenable to numerical or asymptotic analysis. For instance,
Feller’s book [206, p. 322-326] offers a classical discussion of the problem. .............. | |

[z"]

Example 111.18.  Records in Bernoulli trials. 'We pursue the discussion of probabilistic
models on words and come back to the analysis of records. Assume now that the alphabet
A = {ay,...,ar} has in all generality the probability p; associated with the letter a;. The
mean number of records is analysed by a process entirely parallel to the derivation of (43): one
finds by logarithmic differentiation of (42)

-
(44) Eyy, (#records) = [2"]Q(z) where Q(z) = 7 < Z P

_Zj:11—Z(P1+"'+Pj71)'

The cumulative GF 2(z) in (44) has simple poles at the points 1, 1/P,_1, 1/P,_5, and so on,
where P; = p1 + - - + ps. For asymptotic purposes, only the dominant pole at z = 1 counts
(see Chapter IV for a systematic discussion), near which

1 ! Dj
Qz) ~ .
>

—11—1z2 iz

Consequently, one has an elegant asymptotic formula, generalizing the case of permutations:
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The mean number of records in a random word of length n with non-uniform letter
probabilities p; satisfies asymptotically (n — +00)
r

Pj
Eyy (#records) ~ .
" ;Pj+1?j+1+-"+pr

This relation and similar ones were obtained by Burge [97]; analogous ideas may serve to ana-
lyse the sorting algorithm Quicksort under equal keys [536] as well as the hybrid data structures
of Bentley and Sedgewick; see [47, 124]. ... i e |

Coupon collector problem and birthday paradox. Similar considerations apply
to weighted EGFs of words, as considered in Chapter II. For instance, the proba-
bility of having a complete coupon collection at time 7 in the case a company issues
coupon j with probability p;, for 1 < j < r, is (coupon collector problem, p. 114)

,
P(C < n) =n![7"] 1_[ (ep-fz — 1) )
j=1
The probability that all coupons are different at time » is (birthday paradox, p. 114)

P(B >n) =nl["I [ (14 pjz).
j=1

which corresponds to the birthday problem in the case of non-uniform mating periods.
Integral representations comparable those of Chapter II are also available:

E(C) = /OO 1— 1‘[(1 —e ity | dr, E(B) = /oo ]_[ (1+ pjt)e"dr.
0 i1 0

j=1
See the study by Flajolet, Gardy, and Thimonier [231] for variations on this theme.

> I1.27. Birthday paradox with leap years. Assume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectation of the first birthday collision. <{

Example 111.19.  Rises in Bernoulli trials: Simon Newcomb’s problem. Simon Newcomb
(1835-1909), otherwise famous for his astronomical work, was reportedly fond of playing the
following patience game: one draws from a deck of 52 playing cards, stacking them in piles in
such a way that one new pile is started each time a card appears whose number is smaller than
its predecessor. What is the probability of obtaining ¢ piles? A solution to this famous problem
is found in MacMahon’s book [428] and a concise account by Andrews appears in [14, §4.4].

Simon Newcomb’s problem can be rephrased in terms of rises. Given a word w =
wy - - - wy over the alphabet A ordered by a; < ap < ---, a weak rise is a position j < n
such that w; < w;11. (The numbers of piles in Newcomb’s problem is the number of cards
minus 1 minus the number of weak rises.) Let W = W (z, v, u) be the MGF of all words where
z marks length, v marks the number of weak rises, and u j marks the number of occurrences of
letter j. Set Zj=2zu;j and let W;=W; (z, v, u) be the MGF relative to those non-empty words
that start with letter a;, so that

W=1+ W +---+ W)
The W; satisfy the set of equations (j = 1, ..., r),
(45) Wj=Zj+Zj(W1+--~+Wj_1)+UZj(Wj+"'+Wr),
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as seen by considering the first letter of each word. The linear system (45) is easily solved upon
setting W; = z; X ;. Indeed, by differencing, one finds that

(46) Xjp1—X;=z;Xj(1—v),  Xjp1=X;(1+2z;(1-v)).

In this way, each X ; can be determined in terms of X. Then transporting the resulting expres-
sions into the relatlon (45) taken with j = 1, and solving for X leads to an expression for X,
hence for all the X ; and finally for W itself:

r
@7) w=—""L " p[Ja+a-wz.
v— P :
j=1
Goulden and Jackson obtain a similar expressions in [303] (pp. 72 and 236).

The result of (47) gives access to moments (e.g., mean and variance) of the number of
rises in a Bernoulli sequence as well as to counting results, once coefficients of the MGF are
extracted. (See also [289, 303] for an approach based on the theory of symmetric functions.)
The OGF (47) can alternatively be derived by an inclusion—exclusion argument: refer to the
particular case of rises in permutations and Eulerian numbers, p. 210. .................... |

> II1.28. The final solution to Simon Newcomb’s problem. Consider a deck of cards with a suits
and r distinct card values. Set N = ra. (The original problem has r = 13,a =4, N = 52.)

One has from (47): W = (v — 1) P/(1 — vP). The expansion of (1 — y)_1 and the collection
of coefficients yields

[ W = (1= ) Y Rl 1P = (1= VY (i) 1

=1 k>1
t+1 g
N+1\/(k
4 at _ t+1—k
Sothat[zl...zrv]W—kZ(:)(_l) <t+1—k><a> . <

III. 6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerning the degree profile and the level
profile of trees, while being tightly coupled with an important class of stochastic pro-
cesses, namely branching processes.

The major classes of trees that we have encountered so far are the unlabelled
plane trees and the labelled non-plane trees, prototypes being general Catalan trees
(Chapter I) and Cayley trees (Chapter II). In both cases, the counting GFs satisfy a
relation of the form

(48) Y(2) = z2¢(Y (2)),

where the GF is either ordinary (plane unlabelled trees) or exponential (non-plane
labelled trees). Corresponding to the two cases, the function ¢ is determined, respec-
tively, by

(49) pw)=Y w’  pw) = Z —

e wESZ
where 2 C N is the set of allowed node degrees. Meir and Moon in an important
paper [435] have described some common properties of tree families that are deter-
mined by the Axiom (48). (For instance mean path length is invariably of order n./n,
see Chapter VII, and height is O(4/n).) Following these authors, we call a simple
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variety of trees any class whose counting GF is defined by an equation of type (48).
For each of the two cases of (49), we write

(50) pw) =) pjuw.
j=0

Degree profile of trees. First we examine the degree profile of trees. Such a
profile is determined by the collection of parameters y ;, where y;(t) is the number of
nodes of outdegree j in 7. The variable u; will be used to mark y;, that is, nodes of
outdegree j. The discussion already conducted regarding recursive parameters shows
that the GF Y (z, u) satisfies the equation

Y(z,u) =z®(Y (z,w)) where  ®(w) = ugdo + u1dpr1w + urpw? + - - - .

Formal Lagrange inversion can then be applied to Y (z, u), to the effect that its coeffi-
cients are given by the coefficients of the powers of ®.

Proposition II1.7 (Degree profile of trees). The number of trees of size n and degree
profile (ng, ny, na, ...) in a simple variety of trees defined by the “generator” (50) is

1 n
Gh Yuing.nina.... = @n - < )¢6’()¢Tl¢;2 .

n\ng,ni,na,...

There, w,, = 1 in the unlabelled case, whereas w, = n! in the labelled case. The
values of the nj are assumed to satisfy the two consistency conditions: y_ jnj=n
andy ; jnj=n—1L

Proof. The consistency conditions translate the fact that the total number of nodes
should be n while the total number of edges should equal n — 1 (each node of degree j
is the originator of j edges). The result follows from Lagrange inversion

1 _
Yn;no,nl,nz,... = Wy [”8014,1””;2 ce] <;[wn 1]¢(w)n> ,

to which a standard multinomial expansion applies, yielding (51).
For instance, for general Catalan trees (¢; = 1) and for Cayley trees (¢; = 1/j!)
these formulae become

1 n (n—1)! n
— and - .
n\ng,ni,no,... ooz ... \ ngy, ny, ny, ...

[ |

The proof above also reveals the logical equivalence between the general tree
counting result of Proposition III.7 and the most general case of Lagrange inversion.
(This equivalence is due to the fact that any fixed series is a special case of ®.) Put
another way, any direct proof of (51) provides a combinatorial proof of the Lagrange
inversion theorem. Such direct derivations have been proposed by Raney [503] and
are based on simple but cunning surgery performed on lattice path representations of
trees (the “conjugation principle” of which a particular case is the “cycle lemma” of
Dvoretzky—Motzkin [184]; see Note 1.47, p. 75).
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Level profile of trees. The next example demonstrates the utility of complete GFs
for investigating the level profile of trees.

Example 111.20. Trees and level profile. Given a rooted tree 7, its level profile is defined as the
vector (ng, n1,n, ...) where n; is the number of nodes present at level j (i.e., at distance j
from the root) in tree 7. Continuing within the framework of a simple variety of trees, we now
define the quantity Y;,., ;. ... to be the number of trees with size n and level profile given by
the nj. The corresponding complete GF Y (z, u) with z marking size and u ; marking nodes at
level j is expressible in terms of the fundamental “generator” ¢:

(52) Y(z,w) = zugp (zu1 ¢ (zuzgp (zuzp(---)))).

We may call this a “continued ¢-form”. For instance, general Catalan trees have generator
¢(w) = (1 — w)fl, so that in this case the complete GF is the continued fraction:

(53) Y(z,u) = fot

U1z
1_

uzz

1—
uszz
LT

(See Section V.4, p. 318, for complementary aspects.) In contrast, Cayley trees are generated
by ¢ (w) = e%, so that

zusze’ ’

Zupe
Y(z,u) = zuge#1¢ ,

which is a “continued exponential’; that is, a tower of exponentials. Expanding such generating

functions with respect to ug, u1, . . ., in order gives the following proposition straightforwardly.

Proposition I11.8 (Level profile of trees). The number of trees of size n, having (ng, ny, ny, ...)
as level profile, in a simple variety of trees with generator ¢ (w) is

Yn;no,nl,nz,.‘. = Wp—1 'd’r(;rlz())d’r(zrzl])(/’r(zgz) cee where \(JM) = [w" g (w)*.
There, the consistency conditions are ny = 1 and Zj nj = n. In particular, the counts for
general Catalan trees and for Cayley trees are, respectively,

nog+ny—1\(ny+ny—1\/ny+n3—1 (n—1)! n ny ni
Cey N ATy
ny ny n3 nolnylng!--- 0

(Note that one must always have ng = 1 for a single tree; the general formula with ng # 1
and wy,_ replaced by w,—p, gives the level profile of forests.) The first of these enumerative
results is due to Flajolet [214] and it places itself within a general combinatorial theory of
continued fractions (Section V.4, p. 318); the second one is due to Rényi and Szekeres [507] ,
who developed such a formula in the course of a deep study relative to the distribution of height
in random Cayley trees (Chapter VIL p. 537). ..o |

D> IIL.29. Continued forms for path length. The BGF of path length is obtained from the level
profile MGF by means of the substitution u ; > g/. For general Catalan trees and Cayley trees,
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this gives
b4 zqze"‘
(54) Gz q)=—"FT—, T(z,q) = ze%¢ ;
g
l-—
zq

1=

where ¢ marks path length. The MGFs are ordinary and exponential. (Combined with differen-
tiation, such MGFs represent an attractive option for mean value analysis.) <

Trees and processes. The next example is an especially important application of
complete GFs, as these GFs provide a bridge between combinatorial models and a
major class of stochastic processes, the branching processes of probability theory.

Example 111.21. Weighted tree models and branching processes. Consider the family G of all
general plane trees. Let A = (Ag, A1, ...) be a system of numeric weights. The weight of a
node of outdegree j is taken to be A; and the weight of a tree is the product of the individual
weights of its nodes:

0
_ xj(©)
(55 7(r) = 1—[ w7
Jj=0
with x j () the number of nodes of degree j in 7. One can view the weighted model of trees as
a model in which a tree receives a probability proportional to 7 (w). Precisely, the probability
of selecting a particular tree T under this model is, for a fixed size n,

7 (t)
YT=n T ()

This defines a probability measure over the set G, and one can consider events and random
variables under this weighted model.

(56) Pg, a(®) =

The weighted model defined by (55) and (56) covers any simple variety of trees: just
replace each A ; by the quantity ¢; given by the “generator’ (50) of the model. For instance,
plane unlabelled unary-binary trees are obtained by A = (1,1, 1,0, 0, .. .), while Cayley trees
correspond to Aj = 1/j!. Two equivalence-preserving transformations are then especially
important in this context:

(i) Let A* be defined by Aj = cAj for some non-zero constant c¢. Then the weight cor-
responding to A™* satisfies 7*(t) = Tl (w). Consequently, the models associated

to A and A* are equivalent as regards (50).
(ii) Let A° be defined by k; = 07 for some non-zero constant . Then the weight
corresponding to A° satisfies 7°(t) = cmfln(w), since Zi Jxj(@) =lt| = 1for
any tree . Thus the models A° and A are again equivalent.

Each transformation has a simple effect on the generator ¢, namely:
(57 p(w) > ¢*(w) =cp(w)  and  P(w) > ¢°(w) = p(Ow).

Once equipped with such equivalence transformations, it becomes possible to describe
probabilistically the process that generates trees according to a weighted model. Assume that
A iz 0 and that the }»j are summable. Then the normalized quantities

)\‘ .
J
pj=
2%
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form a probability distribution over N. By the first equivalence-preserving transformation the
model induced by the weights p; is the same as the original model induced by the A ;. (By
the second equivalence transformation, one can furthermore assume that the generator ¢ is the
probability generating function of the p;.)

Such a model defined by non-negative weights {p;} summing to 1 is nothing but the clas-
sical model of branching processes (also known as Galton—Watson processes); see [21, 324]. In
effect, a realization T of the branching process is classically defined by the two rules: (i) pro-
duce a root node of degree j with probability p;; (ii) if j > 1, attach to the root node a
collection 77, ..., T; of independent realizations of the process. This may be viewed as the
development of a “family” stemming from a common ancestor where any individual has prob-
ability p; of giving birth to j children. Clearly, the probability of obtaining a particular finite
tree T has probability 7 (), where 7 is given by (55) and the weights are A; = p;. The
generator

00 .
pw) =Y pjw
j=0

is then nothing but the probability generating function of (one-generation) offspring, with the
quantity u = ¢’(1) being its mean size.

For the record, we recall that branching processes can be classified into three categories
depending on the values of w.

Subcriticality: when u < 1, the random tree produced is finite with probability 1
and its expected size is also finite.

Criticality: when u = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.

Supercriticality: when > 1, the random tree produced is finite with probability
strictly less than 1.

From the discussion of equivalence transformations (57), it is furthermore true that, regarding
trees of a fixed size n, there is complete equivalence between all branching processes with
generators of the form

po(w) = 200,
¢(©)

Such families of related functions are known as “exponential families” in probability theory. In
this way, one may always regard at will the random tree produced by a weighted model of some
fixed size n as originating from a branching process (of subcritical, critical, or supercritical
type) conditioned upon the size of the total progeny.

Finally, take a set S € G for which the complete generating function of S with respect to
the degree profile is available,

S(z,ug, uy,...) = Z . (u())m(r)u)l“(r) . ) )
teS

Then, for a system of weights A, one has

Sz, Aoy Ap,..) = Zn(r)zlfl.
TeS
Thus, we can find the probability that a weighted tree of size n belongs to S, by extracting
the coefficient of z"*. This applies a fortiori to branching processes as well. In summary, the
analysis of parameters of trees of size n under either weighted models or branching process
models follows from substituting weights or probability values in the corresponding complete
GENETATING fUNCHIONS. . ...\ttt ettt e et e e e ettt et i |



“book” — 2008/10/3 — 16:05 — page 198 — #212

198 11l. PARAMETERS AND MULTIVARIATE GFS

The reduction of combinatorial tree models to branching processes was pursued

early, most notably by the “Russian School”: see especially the books by Kolchin
[386, 387] and references therein. (For asymptotic purposes, the equivalence between
combinatorial models and critical branching processes often turns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may be viewed as a systematic way
of obtaining equations relative to characteristics of branching processes. We do not
elaborate further along these lines as this would take us outside of the scope of the
present book.
B> II1.30. Catalan trees, Cayley trees, and branching processes. Catalan trees of size n are
defined by the weighted model in which A; = 1, but also equivalently by /):j = cb/, for
any ¢ > 0 and 6 < 1. In particular they coincide with the random tree produced by the critical
branching process whose offspring probabilities are geometric: p; =1/ 2J+1

Cayley trees are a priori defined by A; = 1/j!. They can be generated by the critical
branching process with Poisson probabilities, p; = el /j!, and more generally with an arbi-
trary Poisson distribution p; = e A/, <

II1. 7. Additional constructions

We discuss here additional constructions already examined in earlier chapters;
namely pointing and substitution (Section III. 7.1), order constraints (Section III. 7.2),
and implicit structures (Section III. 7.3). Given that basic translation mechanisms can
be directly adapted to the multivariate realm, such extensions involve basically no
new concept, and the methods of Chapters I and II can be easily recycled. In Sec-
tion III. 7.4, we revisit the classical principle of inclusion—exclusion under a generat-
ing function perspective. In this light, the principle appears as a typically multivariate
device well suited to enumerating objects according the number of occurrences of
subconfigurations.

I11.7.1. Pointing and substitution. Let (F, x) be a class—parameter pair, where
x 1s multivariate of dimension r > 1, and let F'(z) be the MGF associated to it in
the notations of (19) and (28). In particular zp = z marks size, and z; marks the
component k of the multiparameter . If z marks size, then, as in the univariate
case, 6, = z0, translates the fact of distinguishing one atom. Generally, pick up a
variable x = z; for some j with 0 < j < r. Then since

X0 (s%Px)y = £ (s%Px ),
the interpretation of the operator 6, = xd, is immediate; it means “pick up in all
possible ways in objects of F a configuration marked by x and point to it”. For
instance, if F(z,u) is the BGF of trees where z marks size and u marks leaves,
then 6, F (z, u) = ua, F (z, u) enumerates trees with one distinguished leaf.

Similarly, the substitution x +— S(z) in a GF F, where S(z) is the MGF of a
class S, means attaching an object of type S to configurations marked by the vari-
able x in F. The process is better understood by practice than by long formal devel-
opments. Justification in each particular case can be easily obtained by returning to

the combinatorial representation of generating functions as images of combinatorial
classes.
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Figure I11.16. The technique of “adding a slice” for constrained compositions.

Example 111.22. Constrained integer compositions and “slicing”. This example illustrates
variations around the substitution scheme. Consider compositions of integers where successive
summands have sizes that are constrained to belong to a fixed set R € N2. For instance, the
relations
Ri={,»[l=x=y}, Ry={(x.y) |1 =y=2x},

correspond to weakly increasing summands in the case of /R | and to summands that can at most
double at each stage in the case of R;. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells aligned in columns along the horizontal
axis, with successive columns obeying the constraint imposed by R.

Let F(z, u) be the BGF of such R-restricted compositions, where z marks total sum and u
marks the value of the last summand; that is, the height of the last column. The function F'(z, u)
satisfies a functional equation of the form

(58) F(z,u) = f(zu) + (LIF @ w)Duszu s

where f(z) is the generating function of the one-column objects and L is a linear operator over
formal series in u given by

(59) L= Y uk.
(j,k)eR

In effect, Equation (58) describes inductively objects as comprising either one column ( f (zu))
or else as being formed by adding a new column to an existing one; see Figure II1.16. The
process of appending a slice of size j to one of size k, with (j, k) € R, is precisely what (59)
expresses; the functional equation (58) is obtained by effecting the final substitution u +— zu,
in order to take into account the k atoms contributed by the new slice. The special case F(z, 1)
gives the enumeration of F—objects irrespective of the size of the last column.

For a rule R that is “simple”, the basic equation (58) will often involve a substitution. Let
us first rederive in this way the enumeration of partitions. We take R = R and assume that
the first column can have any positive size. Compositions into increasing summands are clearly
the same as partitions. Since

L[ujlzuj+uj+1+uj+2+-~-=1 ;
—u

the function F(z, u) satisfies a functional equation involving a substitution,
Zu

1
+ ———F(z, zu).

(60) F(z,u) =
1 —zu 1—zu

This relation iterates: any linear functional equation of the substitution type

) = a(u) + Bu)p(o ()
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is solved formally by
(61) ¢ ) = a() + Ba(o @) + ) Bow@)alc® @) +- -,

where o'/} (u) designates the jth iterate of u.
We can now return to partitions. The turnkey solution (61) gives, upon iterating on the
second argument and treating the first argument as a parameter,

u ZZM Z3M

) Fw) = o s e e s

Equivalence with the alternative form
zu 22M2 Z3M3
+ 7+ 3 3T
-z (I-20-z9 A-290-2z7)1-2°)

is then easily verified from (60) by expanding F (z, u) as a series in # and applying the method of
indeterminate coefficients to the form (1—zu) F(z, u) = zu+ F(z, zu). (The representation (63)
is furthermore consistent with the treatment of partitions given in Chapter I since the quantity
WkF(z, u) clearly represents the OGF of non-empty partitions whose largest summand is k. In
passing, the equality between (62) and (63) is a shallow but curious identity that is quite typical
of the area of g—analogues.)

(63) F(z,u) = 1

This same method has been applied in [250] to compositions satisfying condition Ry
above. In this case, successive summands are allowed to double at most at each stage. The
associated linear operator is
Llull=u+-+u? =u

1—u

For simplicity, it is assumed that the first column has size 1. Thus, F satisfies a functional
equation of the substitution type:

zu
Fw =zt —— (F@ 1) - Fe b)),
1 —zu

This can be solved by means of the general iteration mechanism (61), treating for the moment
F(z, 1) as a known quantity: with a(u) := zu + F(z, 1)/(1 — zu), one has

2,2
u W U
aZ2u?) + —33 261(Z6M4) e
—z%u

F(z,u) = a(u) —
(z,u) = a(u) T rp——

Then, the substitution # = 1 in the solution becomes permissible. Upon solving for F(z, 1),
one eventually gets the somewhat curious GF for compositions satisfying R:

F(z, 1) Yz D220,
Z, = A N
(64) Y is0(-DI T i2/05()
where Q) =(1-2)(1 -z -z (1 -2,

The sequence of coefficients starts as 1,1,2,3,5,9, 16, 28, 50 and is EIS A002572: it rep-
resents, for instance, the number of possible level profiles of binary trees, or equivalently the
number of partitions of 1 into summands of the form 1, %, %, %, ... (this is related to the number
of solutions to Kraft’s inequality). See [250] for details, including precise asymptotic estimates,

and Tangora’s paper [571] for relations to algebraic topology. ..............c.ocvuinne.. |
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The reason for presenting the slicing method® in some detail is that it is very
general. It has been particularly employed to derive a number of original enumerations
of polyominoes by area, a topic of interest in some branches of statistical mechanics:
for instance, the book by Janse van Rensburg [592] discusses many applications of
such lattice models to polymers and vesicles. Bousquet-Mélou’s review paper [82]
offers a methodological perspective. Some of the origins of the method point to Pélya
in the 1930s, see [490], and independently to Temperley [574, pp. 65-67].
> MIL31. Pointing—erasing and the combinatorics of Taylor’s formula. The derivative oper-
ator d, corresponds combinatorially to a “pointing—erasing” operation: select in all possible
ways an atom marked by x and make it transparent to x-marking (e.g., by replacing it by a
neutral object). The operator %8}? f(x), then corresponds to picking up in all possible way a
subset (order does not count) of k£ configurations marked by x. The identity (Taylor’s formula)

1
fatn =3 (gafif(x)) "
k=0 N7

can then receive a simple combinatorial interpretation: Given a population of individuals (F
enumerated by f), form the bicoloured population of individuals enumerated by f(x + y),
where each atom of each object can be repainted either in x-colour or y-colour; the process is
equivalent to deciding a priori for each individual to repaint k of its atoms from x to y, this for
all possible values of k > 0. Conclusion: seen from combinatorics, Taylor’s formula merely
expresses the logical equivalence between two ways of counting. <

> IL32. Carlitz compositions I. Let IC be the class of compositions such that all pairs of

adjacent summands are formed of distinct values. These can be generated by the operator
Llul] = lfiz —ulz/, so that L[ f(u)] = 1Eflzf(1) — f(uz). The BGF K (z,u), with u
marking the value of the last summand, then satisfies a functional equation,

uz uz
K(z,u)= —— + ——K(z, 1) — K(z, zu),
1—uz 1—uz

giving eventually K (z) = K(z, 1) under the form
-1

K(z)

Il
—_

+
—_ o~
R
N
N~
AN I

(65)

l+z2+22+32 +424 + 720 + 148 42377 4398 ...

The sequence of coefficients constitutes EIS A003242. Such compositions were introduced by
Carlitz in 1976; the derivation above is from a paper by Knopfmacher and Prodinger [369]
who provide early references and asymptotic properties. (We resume this thread in Note I11.35,
p- 206, then in Chapter IV, p. 263, with regard to asymptotics.) <

II1.7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been given in Subsection II. 6.3 (p. 139).
We recall that the modified labelled product

A= (B"+0)
only includes the elements of (3 « C) such that the minimal label lies in the A com-

ponent. Once more the univariate rules generalize verbatim for parameters that are

3For other applications, see Examples V.20, p. 365 (horizontally convex polyominoes) and IX.14,
p. 660 (parallelogram polyominoes), as well as Subsection VII. 8.1, p. 506 (walks and the kernel method).
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peak: 0i_1 < 0; > 0;41 | leaf node (uq)
doublerise: 0;_1 < 0; < 0741 | unary right-branching (1)
double fall:  0;_j > 0; > 0;41 | unary left-branching (u’l)

valley: 0j_1 > 0; < 0j41 | binary node (u5)

Figure III.17. Local order patterns in a permutation and the four types of nodes in
the corresponding increasing binary tree.

inherited and the corresponding exponential MGFs are related by

A(z,u) = /Z (0;B(t,n)) - C(t,u) dt.
0

To illustrate this multivariate extension, we shall consider a quadrivariate statistic on
permutations.

Example 111.23.  Local order patterns in permutations. ~ An element o; of a permutation
written 0 = o1, ..., 0y, when compared to its immediate neighbours can be categorized into
one of four types4 summarized in the first two columns of Figure III.17. The correspondence
with binary increasing trees described in Example 11.17 and Figure I1.16 (p. 143) then shows the
following: peaks and valleys correspond to leaves and binary nodes, respectively, while double
rises and double falls are associated with right-branching and left-branching unary nodes. Con-
sider the class Z of non-empty increasing binary trees (so that =1 \ {€} in the notations of
p. 143) and let ug, uy, u’l, u, be markers for the number of nodes of each type, as summarized
in Figure I11.17. Then the exponential MGF of non-empty increasing trees under this statistic is
given by

7= upZ + ul(ZD *f) + u’l(f*ZD) + uz(f* zB *f)
= 1@ =upz+ /O (w7 + uTw)?) dw,
which gives rise to the differential equation:
3%7@, W) = ug + (g + )T w) +ur1(z, w?.
This is solved by separation of variables as
~ ivl + § tan(zd) vy

66 I(z,u) = )
(66) (2w ur § —vrtan(zé) un

where the following abbreviations are used:

1 , )
v1=§(u1+ul), 8 =/uoup —vy.
One finds
2 3
-~ 7\ < 72 <
I:uoz+u0(u1—l—ul)?—i—uo((ul—{—ul) +2u0u2)§+...,
4Here, for |o| = n, we regard o as bordered by (—00, —00), i.e., we set 6y = 0y, 4] = —o0 and let

the index i in Figure III.17 vary in [1 .. n]. Alternative bordering conventions prove occasionally useful.
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qu’ “Epu

Figure IIL.18. The level profile of a random increasing binary tree of size 256.
(Compare with Figure II1.15, p. 186, for binary trees drawn under the uniform Catalan
statistics.)

which agrees with the small cases. This calculation is consistent with what has been found in
Chapter II regarding the EGF of all non-empty permutations and of alternating permutations,

L, tan(z),
1—z

that follow from the substitutions {ug = u1 = u| = up = 1} and {ug = uy = 1,u; = u} =0},
respectively. The substitution {ug = u; = u, “/1 = up = 1} gives a simple variant (without the
empty permutation) of the BGF of Eulerian numbers (75) on p. 209.

From the quadrivariate GF, there results that, in a tree of size n the mean number of nodes
of nullary, unary, or binary type is asymptotic to n/3, with a variance that is O(n), thereby
ensuring concentration of distribution. ........... ... i ]

A similar analysis yields path length. It is found that a random increasing binary
tree of size n has mean path length

2nlogn + O(n).

Contrary to what the uniform combinatorial model gives, such trees tend to be rather
well balanced, and a typical branch is only about 38.6% longer than in a perfect binary
tree (since 2/log2 = 1.386): see Figure III.18 for an illustration. This fact applies
to binary search trees (Note I11.33) and it justifies the fact that the performance of
such trees is quite good, when they are applied to random data [378, 429, 538] or
subjected to randomization [451, 520]. See Subsection VI. 10.3 (p. 427) dedicated
to tree recurrences for a general analysis of additive functionals on such trees and
Example IX.28, p. 684, for a distributional analysis of depth.

> IIL.33. Binary search trees (BSTs).  Given a permutation 7, one defines inductively a tree
BST(7) by

BST(€) = ; BST(7) = (1, BST(T|<7;), BST(T|> 7).
(Here, t|p represents the subword of t consisting of those elements that satisfy predicate P.)
Let IBT(0) be the increasing binary tree canonically associated to o. Then one has the funda-
mental Equivalence Principle,

shape 1
IBT(0) = BST(0 '),
sh:
where A" = B means that A and B have identical tree shapes. (Hint: relate the trees to the
cartesian representation of permutations [538, 600], as in Example I1.17, p. 143.) <

II1. 7.3. Implicit structures. For implicit structures defined by a relation of the
form A = K[X], we note that equations involving sums and products, either labelled
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or not, are easily solved just as in the univariate case. The same remark applies for se-
quence and set constructions: refer to the corresponding sections of Chapters I (p. 88)
and II (p. 137). Again, the process is best understood by examples.

Suppose for instance one wants to enumerate connected labelled graphs by the
number of nodes (marked by z) and the number of edges (marked by u). The class IC
of connected graphs and the class G of all graphs are related by the set construction,

G = SET(K),

meaning that every graph decomposes uniquely into connected components. The cor-
responding exponential BGFs then satisfy

G(z,u) =K@ implying  K(z,u) = log G(z, u),

since the number of edges in a graph is inherited (additively) from the corresponding
numbers in connected components. Now, the number of graphs of size n having k
edges is ("(";1)/2), so that

(67) K (z,u) = log (1 + Z(l + u)"(nl)/2£> .

n!
n=1

This formula, which appears as a refinement of the univariate formula of Chapter 11
(p- 138), then simply reads: connected graphs are obtained as components (the log
operator) of general graphs, where a general graph is determined by the presence or
absence of an edge (corresponding to (1+u)) between any pair of nodes (the exponent
nn—1)/2).

To pull information out of the formula (67) is, however, not obvious due to the
alternation of signs in the expansion of log(1 4+ w) and due to the strongly divergent
character of the involved series. As an aside, we note here that the quantity

I/(\(z,u) = K(i,u)

enumerates connected graphs according to size (marked by z) and excess (marked
by u) of the number of edges over the number of nodes. This means that the results
of Note I1.23 (p. 135), obtained by Wright’s decomposition, can be rephrased as the
expansion (within C(u)[z]):

o n,, —n
_npu 1
log (1 + D (WIS = W () + Wole) +
(68) '

n=1
Y=t} 4 (Liog ! Lr_ 1) g

= — — - —log—m—M — -T — — cee,
» 2 28171 2 T3

with T = T (z). See Temperley’s early works [573, 574] as well as the “giant paper on
the giant component” [354] and the paper [254] for direct derivations that eventually
constitute analytic alternatives to Wright’s combinatorial approach.

Example 111.24. Smirnov words. Following the treatment of Goulden and Jackson [303], we
define a Smirnov word to be any word that has no consecutive equal letters. Let VW = SEQ(A)
be the set of words over the alphabet A = {ay, ..., ar} of cardinality r, and S be the set of
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Smirnov words. Let also v; mark the number of occurrences of the jth letter in a word. One
has?

1
=i+t r)
Start from a Smirnov word and substitute for any letter a; that appears in it an arbitrary non-
empty sequence of letters a;. When this operation is done at all places of a Smirnov word,
it gives rise to an unconstrained word. Conversely, any word can be associated to a unique
Smirnov word by collapsing into single letters maximal groups of contiguous equal letters. In
other terms, arbitrary words are derived from Smirnov words by a simultaneous substitution:

Wy, ...,vr)

W= S[al = SEQ>({a1}, ... ,ar > SEQzl{ar}].
This leads to the relation
4] Uy
(69) Wi, ...,v) =8 s e, .
1 —v; 1—vr
This relation determines the MGF S(vy, ..., v.) implicitly. Now, since the inverse function of

v/(1 —v)is v/(1 4+ v), one finds the solution:

-1
P

5] Uy vj
70 Sy, ..., =W ey =\|1-
(70) @ vr) <1+v1 1+vr) ; I +v;

For instance, if we set v i =2 that is, we “forget” the composition of the words into letters,
we obtain the OGF of Smirnov words counted according to length as

= :1+Zr(r—1)” 7"
l—riz 1-0-1Dz =

This is consistent with elementary combinatorics since a Smirnov word of length 7 is deter-
mined by the choice of its first letter (» possibilities) followed by a sequence of n — 1 choices
constrained to avoid one letter among r (and corresponding to » — 1 possibilities for each po-
sition). The interest of (70) is to apply equally well to the Bernoulli model where letters may
receive unequal probabilities and where a direct combinatorial argument does not appear to be
easy: it suffices to perform the substitution v; > p;z in this case: see Example IV.10, p. 262
and Note V.11, p. 311, for applications to asymptotics.

From these developments, one can next build the GF of words that never contain more
than m consecutive equal letters. It suffices to effect in (70) the substitution v; — v; +
-+- 4+ v". In particular for the univariate problem (or, equivalently, the case where letters are
equiprobable), one finds the OGF

1 1—Zm+l
Cl—rz 4 (r = Dl

1+z1= _Z;n

This extends to an arbitrary alphabet the analysis of single runs and double runs in binary words
that was performed in Subsection I.4.1, p. 51. Naturally, the present approach applies equally
well to non-uniform letter probabilities and to a collection of run-length upper-bounds and
lower-bounds dependent on each particular letter. This topic is in particular pursued by different
methods in several works of Karlin and coauthors (see, e.g., [446]), themselves motivated by
applications to life SCIENCES. . ... ...o.uinu it e |

SThe variable z marking length, being redundant, is best omitted in this calculation.
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> II1.34. Enumeration in free groups. Consider the composite alphabet B = 4 U A, where
A ={ay,...,a;} and A = {ay,...,a}. A word over alphabet B is said to be reduced if it
arises from a word over B by a maximal application of the reductions aja; +— € andaja; > €
(with € the empty word). A reduced word thus has no factor of the form a;ja; oraja;. Such a
reduced word serves as a canonical representation of an element in the free group F, generated

by A, upon identifying @; = aj_l. The GF of the class R of reduced words, with u; and u;
marking the number of occurrences of letter a; and aj, respectively, is
Ui uy Ur ur
+ e + =,
1—up 1—uy 1—u, l—ur>

R(ul,...,ur,ﬂ,...,ﬁz.S’(

where S is the GF of Smirnov words, as in (70). In particular this gives the OGF of reduced
words with z marking length as R(z) = (1+2z)/(1 — (2r — 1)z); this implies R, = 2r(2r — )",
which matches the result given by elementary combinatorics.

The Abelian image A(w) of an element w of the free group Fy, is obtained by letting all

letters commute and applying the reductions a; - a}l

a’lm .. ~a;"’, with each m j in Z, so that it can be identified with an element of Z". Let x =
(X1, ..., Xr) be a vector of indeterminates and define x*) to be the monomial x'f” cextr

Of interest in certain group-theoretic investigations is the MGF of reduced words

—1 _1
X X X X
Q(Z;X):zzzlwlxk(w)zs( 1 + 1 CL s L r 1>’

el L—zxp 1 —zxf L—zxr 1 —zxy

which is found to simplify to

= 1. It can then be put under the form

1—22

I—ZZ;:I(XJ' +xfl)+(2r — 122

This last form appears in a paper of Rivin [514], where it is obtained by matrix techniques.
Methods developed in Chapter IX can then be used to establish central and local limit laws
for the asymptotic distribution of A(w) over R, providing an alternative to the methods of
Rivin [514] and Sharp [539]. (This note is based on an unpublished memo of Flajolet, Noy, and
Ventura, 2006.) <

> IIL3S. Carlitz compositions II. Here is an alternative derivation of the OGF of Carlitz
compositions (Note I11.32, p. 201). Carlitz compositions with largest summand < r are obtained

from the OGF of Smirnov words by the substitution v; > z/:

0(z;x) =

-1
r

2
(1) K@ =[1-) ——
=

The OGEF of all Carlitz compositions then results from letting » — o0o:

-1
00

7/
72 Kiz)=|1- -
72 © Z 1 +z/
j=1
The asymptotic form of the coefficients is derived in Chapter IV, p. 263. <

I11. 7.4. Inclusion-exclusion. Inclusion—exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, in order to count exactly, consists
in grossly overcounting, then performing a simple correction of the overcounting, then
correcting the correction, and so on. Characteristically, enumerative results provided
by inclusion exclusion involve an alternating sum. We revisit this process here in the
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perspective of multivariate generating functions, where it essentially reduces to a com-
bined use of substitution and implicit definitions. Our approach follows Goulden and
Jackson’s encyclopaedic treatise [303].

Let &€ be a set endowed with a real- or complex-valued measure | - | in such a way
that, for A, B C &, there holds

|AU B| = |A| + |B| whenever ANB=40.

Thus, | - | is an additive measure, typically taken as set cardinality (i.e., |e] = 1 for
e € E) or a discrete probability measure on £ (i.e., |e| = p, for e € E). The general
formula

|[AUB| = |A|+ |B| — |AB| where AB:= ANB,

follows immediately from basic set-theoretic principles:

Do del =) lal+ Y 16l = Y il
ceAUB acA beB icANB

What is called the inclusion—exclusion principle or sieve formula is the following mul-
tivariate generalization, for an arbitrary family Ay, ..., A, C &:

|A1U"'UAr|E|g\(ZlZ2"'Zr)|
(73) = D lAl= D AjApl+ -+ (=D T A A A,

1<i<r 1<i|<ip<r

where A := £ \ A denotes complement. (The easy proof by induction results from el-
ementary properties of the boolean algebra formed by the subsets of &; see, e.g., [129,
Ch. IV].) An alternative formulation results from setting B; = Aj, B; = A;:

(74) |B\By-+-B,| = |€|— Y [Bil+ »_ [BiyBij|—+-+(=1)'|BiBa---B,|.
I<i<r I<iy<ia<r

In terms of measure, this equality quantifies the set of objects satisfying exactly a

collection of simultaneous conditions (all the B;) in terms of those that violate at

least some of the conditions (the B ).

Derangements. Here is a textbook example of an inclusion—exclusion argument,
namely, the enumeration of derangements. Recall that a derangement (p. 122) is a
permutation o such that o; # i, for all i. Fix £ as the set of all permutations of [1, n],
take the measure | - | to be set cardinality, and let B; be the subset of permutations in £
associated to the property o; # i. (There are consequently r = n conditions.) Thus,
B; means having no fixed point at i, while B; means having a fixed point at the distin-
guished value i. Then, the left-hand side of (74) gives the number of permutations that
are derangements; that is, D,,. As regards the right-hand side, the kth sum comprises
itself (Z) terms counting possibilities attached to the choices of indices i| < - -+ < ix;
each such choice is associated to a factor B;, - - - B;, that describes all permutations
with fixed points at the distinguished points iy, ..., ik (i.e., 0 (i1) = i1, ..., 0, =i).
Clearly, | B;, - -- Bi,| = (n — k). Therefore one has

Dy =n!— (”)(n — D+ (”)(n ) et (—1)”(”)0!,
1 2 n
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which rewrites into the more familiar form

D, 1 1 1 (=D"

nl 121 T a
This gives an elementary derivation of the derangement numbers already encountered
in Chapter II and obtained there by means of the labelled set and cycle constructions.

Symbolic inclusion—exclusion. The derivation above is perfectly fine but com-
plex examples may represent somewhat of a challenge. In contrast, as we now explain,
there exists a symbolic alternative based on multivariate generating functions, which
is technically easy and has great versatility.

Let us now re-examine derangements in a generating function perspective. Con-
sider the set P of all permutations and build a superset Q as follows. The set Q
is comprised of permutations in which an arbitrary number of fixed points—some,
possibly none, possibly all—have been distinguished. (This corresponds to arbitrary
products of the B ;j in the argument above.) For instance Q contains elements like

13,2, 1,3,2, 1,23, 1,23, 123 123,

where distinguished fixed points are underlined. Clearly, if one removes the distin-
guished elements of a y € Q, what is left constitutes an arbitrary permutation of the
remaining elements. One has

Q=UxTP,
where U denotes the class of urns that are sets of atoms. In particular, the EGF of Q
is Q(z) = €*/(1 — z). (What we have just done is to enumerate the quantities that
appear in (74), but with the signs “wrong”, i.e., all pluses.)

Introduce now the variable v to mark the distinguished fixed points in objects
of Q. The exponential BGF is then, by the general principles of this chapter,

0(z,v) = €™

1—-z
Let now P(z,u) be the BGF of permutations where u# marks the number of fixed

points. Permutations with some fixed points distinguished are generated by the substi-
tution u +> 1 + v inside P (z, u). In other words one has the fundamental relation

Q(z,v) = P(z, 1 +v).
This is then immediately solved to give
P(z,u) = Q(z,u — 1),

so that knowledge of (the easy) Q gives (the harder) P. For the case at hand, this
yields

e(u—l)z e %
) P(z,0) = D(z) = ,
1—1z 1—z2
and, in particular, the EGF of derangements has been retrieved. Note that the de-
sired quantity P(z, 0) comes out as Q(z, —1), so that signs corresponding to the sieve

formula (74) have now been put “right”, i.e., alternating.

P(z,u) =
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The process employed for derangements is clearly very general: counting objects
that contain an exact number of “patterns” is reduced to counting objects that con-
tain the pattern at distinguished places—the latter is usually a simpler problem. The
generating function analogue of inclusion—exclusion is then simply the substitution
v — u — 1, if a bivariate GF is sought, or v > —1 in the univariate case, when
patterns are altogether to be excluded.

Rises in permutations and patterns in words. The book by Goulden and Jack-
son [303, pp. 45—48] describes a useful formalization of the inclusion process operat-
ing on MGFs. Conceptually, it combines substitution and implicit definitions, just as
in the case of derangements above. Again, the modus operandi is best grasped through
examples, two of which are detailed now.

Example 111.25. Rises and ascending runs in permutations. A rise (also called an ascent)
in a permutation 0 = o7 - - - 0y is a pair of consecutive elements ;071 satisfying o; < 0j4
(with 1 < i < n). The problem is to determine the number A, ; of permutations of size
having exactly k rises, together with the exponential BGF A(z, u). By symmetry, we are also
enumerating descents (defined by o; > o, 1) as well as ascending runs that are each terminated
by a descent.

Guided by the inclusion—exclusion principle, we tackle the easier problem of enumerating
permutations with distinguished rises, of which the set is denoted by 5. For instance, 15 contains
elements such as

261 3/4/8/9/11\1512]5z10\13714,

where those rises that are distinguished are represented by arrows. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent distinguished rises (boxed in the repre-
sentation) will be called clusters. Then, B can be specified by the sequence construction applied
to atoms (Z) and clusters (C) as

B = SEQ(Z + (), where C=(Z /" 2)+(Z /" Z /" Z)+--- = SET>2(2).
since a cluster is an ordered sequence, or equivalently a set, furthermore having at least two
elements. This gives the EGF of B as

1 1
-G+ —1-2) 2-e&’
which happens to coincide with the EGF of surjections.

For inclusion—exclusion purposes, we need the BGF of I3 with v marking the number of
distinguished rises. A cluster of size k contains k — 1 rises, so that

B(z) =

1 v
1— G+ —1—zv)/v) v4+1—eV

Now, the usual argument applies: the BGF A(z, u) satisfies B(z,v) = A(z, 1 + v), so that
A(z,u) = B(z,u — 1), which yields the particularly simple form

B(z,v) =

75 A __u-t
(75) @) = ——.

In particular, this GF expands as

2 3 4
Z Z Z
A(Z,u)=1+Z+(u+l)§+(u2—|—4u+1)§+(u3+11u2+11u+1)z+~-~
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The coefficients A,  are known as the Eulerian numbers (Invitation, p. 9). In combinatorial
analysis, these numbers are almost as classic as the Stirling numbers; a detailed discussion of
their properties is to be found in classical treatises such as Comtet [129] or Graham et al. [307].
Moments derive easily from an expansion of (75) at u = 1, which gives
1 22 1 222 +2)

p— — — — — — 2 ..
1—z+2(1—z)2(u 1)+12(1—z)3(” Do+

A(z,u) =

In particular: the mean of the number of rises in a random permutation of size n is %(n -1

and the variance is ~ 1]—211, ensuring concentration of distribution.

The same method applies to the enumeration of ascending runs: for a fixed parameter ¢,
an ascending run of length £ is a sequence of consecutive elements 0,0, - - - 0;4¢ such that
0j < 0j41 < -+ < 0j4¢. (Thus, arise is an ascending run of length 1.) We define a cluster as a
sequence of distinguished runs which overlap in the sense that they share some of the elements
of the permutation. The exponential BGF of permutations with distinguished ascending runs is
then

1

l—z—1(z,v)

n
-~ be
where [1(z,v) = E I,,,kvk—,
Z n!
n,

B(z,v) =

and I, i is the number of ways of covering the segment [1, ] with k distinct intervals of length £
that are contained in [1, n] and have integral end points. The numbers I, ; themselves result
from elementary combinatorics (see also the case of patterns in words below) and one has for
the OGF corresponding to I:

ZZ-HU

l—vE+224-+2H)
(Proof: The first segment in the covering must be placed on the left, the others appear in suc-
cession, each shifted right by 1 to ¢ positions from the previous one.) The last two equations

finally determine the exponential BGF of permutations with size marked by z and ascending
runs of length ¢ + 1 marked by u,

I(z,v) =

(76) A(z,u) = B(z,u — 1),

given the inclusion—exclusion principle.

The resulting formulae generalize the case of rises (¢ = 1). They can be made explicit
by first expanding the OGF I (z, v) into partial fractions, then applying the transformation (1 —
wz)~1 > €®Z in order to translate I (z, v) into T(z, v). The net result is

1

4
m, where I(Z, v) = (1 _Z)(U+ 1)+ ZCj(U)ij(U)Z

j=1

A(z,u) =

involves a sum of exponentials. In this last equation, the w j (v) are the roots of the characteristic
equation ol = vl + - + wz_l) and the c;(v) are the corresponding coefficients in the
partial fraction decomposition of (z, v). These expressions were first published by Elizalde
and Noy [190] who obtained them by means of tree decompositions.

The BGF (76) can be exploited in order to determine quantitative information on long runs
in permutations. First, an expansion at u = 1 (also, by a direct reasoning: see the discussion
of hidden words in Chapter I) shows that the mean number of ascending runs of length ¢ — 1
is (n — £ 4+ 1)/¢! exactly, as soon as n > €. This entails that, if n = o(£!), the probability of
finding an ascending run of length £ — 1 tends to 0 as n — co. What is used in passing in this
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argument is the general fact that for a discrete variable X with values in 0, 1, 2, .. ., one has
(with Iverson’s notation),
P(X > 1) = E([X > 1) = E(min(X, 1)) < E(X).
An inequality in the converse direction can be obtained from the second moment method. In
effect, the variance of the number of ascending runs of length £ — 1 is found to be of the exact
form ayn + By, in which «y is essentially 1/£! and By is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of distribution holds as long as ¢ is such that
(+1)! = o(n). In this case, with high probability (i.e., with probability tending to 1 as n tends
to 00), there is at least one ascending run of length ¢ — 1 (in fact, many). In particular:
Let Ly be the length of the longest ascending run in a random permutation of n
elements. Let £y(n) be the smallest integer such that £! > n. Then the distribu-
tion of Ly is concentrated: Ly [€o(n) converges in probability to 1 (in the sense of
Equation (14), p. 162).
What has been found here is a fairly sharp threshold phenomenon. ...................... |
> I11.36. Permutations without {—ascending runs. The EGF of permutations without 1-, 2—
and 3-ascending runs are respectively

-1

2i x2i+1 3i PEa 4i YA+l

X X X
g(Zi)! Qi+D!]"’ g(ﬁ)! Gi+nD!]’ §(4i)! 4i +1)! ’
and so on. (See Carlitz’s review [103] as well as Elizalde and Noy’s article [190] for interesting
results involving several types of order patterns in permutations.)

Many variations on the theme of rises and ascending runs are clearly possible. Lo-
cal order patterns in permutations have been intensely researched, notably by Carlitz
in the 1970s. Goulden and Jackson [303, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutations patterns associated with binary
increasing trees are also studied by Flajolet, Gourdon, and Martinez [235] (by com-
binatorial methods) and Devroye [159] (by probabilistic arguments). On another reg-
ister, the longest ascending run has been found above to be of order (logn)/loglogn
in probability. The superficially resembling problem of analysing the length of the
longest increasing sequence in random permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of attention, but is considerably
harder. This quantity is ~ 2./n on average and in probability, as shown by a pene-
trating analysis of the shape of random Young tableaux due to Logan and Shepp [411]
and Vershik and Kerov [596]. Solving a problem that had been open for over 20 years,
Baik, Deift, and Johansson [24] have eventually determined its limiting distribution.
The undemanding survey by Aldous and Diaconis [10] discusses some of the back-
ground of this problem, while Chapter VIII (p. 596) shows how to derive bounds that
are of the right order of magnitude, using saddle-point methods.

Example 111.26.  Patterns in words. Take the set of all words W = SEQ{.A} over a finite
alphabet A = {ay, ..., ar}. A pattern p = pyp) - - px, which is a particular word of length k
has been fixed. What is sought is the BGF W(z, u) of W, where u marks the number of
occurrences of pattern p inside a word of W. The results of Chapter I already give access to
W (z, 0), which is the OGF of words not containing the pattern.

In accordance with the inclusion—exclusion principle, one should introduce the class X of
words augmented by distinguishing an arbitrary number of occurrences of p. Define a cluster
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as a maximal collection of distinguished occurrences that have an overlap. For instance, if
p = aaaaa, a particular word may give rise to the particular cluster:

abaaaaaaaaaaaaabaaaaaaaabb
aaaaa
aaaaa
aaaaa

Then objects of X decompose as sequences of either arbitrary letters from A or clusters:
X =SEQ(A+(C),

with C the class of all clusters.

Clusters are themselves obtained by repeatedly sliding the pattern, but with the constraint
that it should constantly overlap partly with itself. Let c(z) be the autocorrelation polynomial
of p as defined in Chapter I (p. 61), and set ¢(z) = c(z) — 1. A moment’s reflection should
convince the reader that zX¢(z)s~! when expanded describes all the possibilities for forming
clusters of s overlapping occurrences. On the example above, one has ¢(z) = z + 2+ +74,
and a particular cluster of 3 overlapping occurrences corresponds to one of the terms in zk?:\(z)2
as follows:

ZS
f_-/\ﬁ 5
aaaaaZZ b4
—~ =
aaaaa A X(z+é+z3+z4)
——
aaaaa x(z+22+23+2Y.

The OGEF of clusters is consequently C(z) = Z* /(1 —¢(z)) since this quantity describes all the
ways to write the pattern (z%) and then slide it so that it should overlap with itself (this is given

by (1 —2(2)~h.
By a similar reasoning, the BGF of clusters is vzk/(l —v¢(z)), and the BGF of X with the
supplementary variable v marking the number of distinguished occurrences is
1
1 —rz—vzk/(1 —ve(2)’
Finally, the usual inclusion—exclusion argument (change v to u — 1) yields W(z,u) =
X(z,u —1). As aresult:

X(z,v) =

For a pattern p with correlation polynomial c(z) and length k, the BGF of words
over an alphabet of cardinality r, where u marks the number of occurrences of p, is

(u—1c(z) —u
(1 —rz)((u — De@) —u) + @ — Dk
The specialization u = 0 gives back the formula already found in Chapter I, p. 61. The same
principles clearly apply to weighted models corresponding to unequal letter probabilities, pro-

vided a suitably weighted version of the correlation polynomial is introduced (see Note II1.39
DLW ). .ottt |

7 Wz, u) =

There are a very large number of formulae related to patterns in strings. For
instance, BGFs are known for occurrences of one or several patterns under either
Bernoulli or Markov models; see Note II1.39 below. We refer to Szpankowski’s
book [564] and Lothaire’s chapter [347], where such questions are treated system-
atically in great detail. Bourdon and Vallée [81] have succeeded in extending this
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approach to dynamical sources of information, thereby uniting a large number of pre-
viously known results. Their approach even makes it possible to analyse the occur-
rence of patterns in continued fraction representations of real numbers.

> IIL.37. Moments of number of occurrences. The derivatives of X (z, v) at v = 0 give access
to the factorial moments of the number of occurrences of a pattern. In this way or directly, one
determines

k k k 2
z (I =r)c(@m—D+2") (u—1)
+ u—1)+42 + -
1—rz (l—rz)z( ) (1 —rz)3 21
The mean number of occurrences is r " times the coefficient of z”* in the coefficient of (1 — 1)
andis (n — k + l)r_k, as anticipated. The coefficient of (u — 1)2/2! is of the form

2r=2k KA 2krF —c(1/r)) | P(2)
(1—rz)3 (1 —rz)? 1—rz’
with P a polynomial. This shows that the variance of the number of occurrences is of the form
an+ B,  a=r "k @c/r)—1+r7K1 = 2b)).

Consequently, the distribution is concentrated around its mean. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 61.) <

W(z,u) =

> IIL.38. Words with fixed repetitions. Let W (z) = [u]W(z, u) be the OGF of words
containing a pattern exactly s times. One has, for s > 0 and s = 0, respectively,
_ Nz ! c(2)

(s) 0) ) —
W¥(z) = W, W% (z) = D)’

with N(z) and D(z) given by
N@=(1=-r)e@-D+ D@ =1-rae@+"
The expression of Wi is in agreement with Chapter I, Equation (62), p. 61. <

D> II1.39. Patterns in Bernoulli sequences. Let A be an alphabet where letter o has probabil-
ity 7y and consider the Bernoulli model where letters in words are chosen independently. Fix a

pattern p = pq - - - pr and define the finite language of protrusions as
r= |J pis1pisa- pids
i:ci#0

where the union is over all correlation positions of the pattern. Define now the correlation
polynomial y(z) (relative to p and the my) as the generating polynomial of the finite language
of protrusions weighted by (g ). For instance, p = ababa gives rise to I' = {¢, ba, baba} and

y() =1+ JTaJTbZZ + 71371314.

The BGF of words with z marking length and # marking the number of occurrences of p is

_ (u—Dy@E) —u
Wiz, u) = %
(I =2)((u—=Dy@ —uw) + @ — Drlplz
where 7 [p] is the product of the probabilities of letters of p. <

D> II1.40. Patterns in trees I. Consider the class B of pruned binary trees. An occurrence of
pattern t in a tree 7 is defined by a node of v whose dangling subtree is isomorphic to t. We
seek the BGF B(z, u) of class B where u marks the number of occurrences of t.

The OGF of Bis B(z) = (1 —+/1 — 4z)/(2z). The quantity vB(zv) is the BGF of B with v
marking external nodes. By virtue of the pointing operation, the quantity

1ok
U := <ﬁav (vB(zv))) ,

v=1
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describes trees with & distinct external nodes distinguished (pointed). Let m = |t|. The quantity
V=Y U™ satisfies V= (0B(2v)yifuzn -

by virtue of Taylor’s formula. It is also the BGF of trees with distinguished occurrences of t
marked by v. Setting v — u — 1 in V then gives B(z, u) as

(78) B(z,u) = 2%(1_\/1_42_4@[—1)1”’“)'

In particular B(z, 0) = 2]7 (1 —v1—-4z4+ 4z’"+1) represents the OGF of trees not containing

pattern t. The method generalizes to any simple variety of trees. It can be used to prove that
the factored representation (as a directed acyclic graph) of a random tree of size n has expected

size O (n//logn). (These results appear in [257]; see also Example IX.26, p. 680, for a related
Gausian law.) <

> II1.41. Patterns in trees I1. Here follows an alternative derivation of (78) that is based on the
root decomposition of trees. A pattern t occurs either in the left root subtree 7, or in the right
root subtree 71, or at the root iself in the case in which t coincides with . Thus the number
w[t] of occurrences of t in T satisfies the recursive definition

olt] = olrgl + wlr ]+ [t =t wl[?] = 0.
The function #®[*] is almost multiplicative, and

ueltl — ylir=tlyelnl olnl _ ool ol e = . - 1).
Thus, the bivariate generating function B(z, u) := ), 2111l satisfies the quadratic equation,

B(z.u) =1+ (u— 1)z" + zB(z. u)?,
which, when solved, yields (78). <

II1. 8. Extremal parameters

Apart from additively inherited parameters already examined at length in this
chapter, another important category is that of parameters defined by a maximum rule.
Two major cases are the largest component in a combinatorial structure (for instance,
the largest cycle of a permutation) and the maximum degree of nesting of construc-
tions in a recursive structure (typically, the height of a tree). In this case, bivariate
generating functions are of little help, because of the nonlinear character of the max-
function. The standard technique consists in introducing a collection of univariate
generating functions defined by imposing a bound on the parameter of interest. Such
GFs can then be constructed by the symbolic method in its univariate version.

I11. 8.1. Largest components. Consider a construction 5 = ®[A], where ®
may involve an arbitrary combination of basic constructions, and assume here for
simplicity that the construction for B is a non-recursive one. This corresponds to a
relation between generating functions

B(z) = ¥[A@)],

where W is the functional that is the “image” of the combinatorial construction ®.
Elements of A thus appear as components in an object 8 € B. Let B%) denote the
subclass of B formed with objects whose A—components all have a size at most b. The
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GF of B is obtained by the same process as that of B itself, save that A(z) should
be replaced by the GF of elements of size at most b. Thus,
B (2) = ¥[T,AQ)],

where the truncation operator is defined on series by

b 00

Tof@ =Y fit"  (f@ =) fa2".
n=0 n=0

Example 111.27. A pot-pourri of largest components. Several instances of largest components

have already been analysed in Chapters I and II. For instance, the cycle decomposition of

permutations translated by

P = SET(CYC(Z)) = P =exp (log 1 i Z)

gives more generally the EGF of permutations with longest cycle < b,

2 b
P (7) = TR,
(@) exp<1+2+ +b
which involves the truncated logarithm.
The labelled specification of words over an m—ary alphabet

W = SET,, (SET(Z)) = W(z) = (e%)"
leads to the EGF of words such that each letter occurs at most b times:

(b) Z 22 Zb "
WO@=|1+5+5++5)

which now involves the truncated exponential. Similarly, the EGF of set partitions with largest
block of size at most b is

2 b
®) (. — 2L L
N (z)—eXp<l!+2!+ +b!).

A slightly less direct example is that of the longest run in a binary string (p. 51), which we
now revisit. The collection W of binary words over the alphabet {a, b} admits the unlabelled
specification

W = SEQ(a) - SEQ(b SEQ(a)),
corresponding to a “scansion” dictated by the occurrences of the letter b. The corresponding
OGF then appears under the form

1 1
W@ =Yk -—, where Y() = ——
@O=YQ =y @ =1
corresponds to Y = SEQ(a). Thus, the OGF of strings with at most k — 1 consecutive occur-
rences of the letter a obtains upon replacing Y (z) by its truncation:

1
W<k>(z) = Y<k>(Z)T<k>(z)’ where Y(k)(z) = l4z4224 450
so that .
-z
whkliy = ——=
© 1 — 2z 4 Zk+1

An asymptotic analysis is given in Example V.4, p. 308, .......... ... ... ... |
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Generating functions for largest components are thus easy to derive. The asymp-
totic analysis of their coefficients is however often hard when compared to additive
parameters, owing to the need to rely on complex analytic properties of the truncation
operator. The bases of a general asymptotic theory have been laid by Gourdon [305].
> I11.42. Smallest components. The EGF of permutations with smallest cycle of size > b is

1 z 2 b
exp|l—~— = —---— — .
11—z 1 2 b

A symbolic theory of smallest components in combinatorial structures is easily developed as
regards formal GFs. Elements of the corresponding asymptotic theory are provided by Panario
and Richmond in [470]. <

I11. 8.2. Height. The degree of nesting of a recursive construction is a general-
ization of the notion of height in the simpler case of trees. Consider for instance a
recursively defined class

B = o[B],

where @ is a construction. Let B! denote the subclass of 3 composed solely of ele-
ments whose construction involves at most / applications of ®. We have by definition

B+l — @{B[h]}.

Thus, with W the image functional of construction ®, the corresponding GFs are de-
fined by a recurrence,

B — gty
(This discussion is related to the semantics of recursion, p. 33.)

Example 111.28. Generating functions for tree height. Consider first general plane trees:

Z

Define the height of a tree as the number of edges on its longest branch. Then the set of trees of
height < h satisfies the recurrence

glol = =z, g+l — z « SEQ(g[h]).
Accordingly, the OGF of trees of bounded height satisfies

Z

[0] — [h+1] —
G (2) =z, G (z) = GGy

The recurrence unwinds and one finds

(79) GM(z) =

-z
where the number of stages in the fraction equals b. This is the finite form (technically known
as a “convergent”) of a continued fraction expansion. From implied linear recurrences and
an analysis based on Mellin transforms, de Bruijn, Knuth, and Rice [145] have determined the
average height of a general plane tree to be ~ /mn. We provide a proof of this fact in Chapter V
(p. 329) dedicated to applications of rational and meromorphic asymptotics.
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For plane binary trees defined by
B=Z4+BxB so that B(2) =Z+(B(Z))2,
(size here is the number of external nodes), the recurrence is
BO@) =z, B @) =z 4+ BM ().
In this case, the B are the approximants to a “continuous quadratic form”, namely
BM(@) =24 @+ @+ (-)DHH

These are polynomials of degree 2" for which no closed form expression is known, nor even
likely to exist®. However, using complex asymptotic methods and singularity analysis, Flajolet
and Odlyzko [246] have shown that the average height of a binary plane tree is ~ 2./7n. See
Subsection VII. 10.2, p. 535 for the sketch of a proof.

For Cayley trees, finally, the defining equation is
T = Z*SET(T) = T(z) = zel @,
The EGF of trees of bounded height satisfy the recurrence

T[O](Z) =z, T[h+1](Z) — ZET[H(Z),

We are now confronted with a “continuous exponential”,

- zet

Tlhl (@) = ZeZEZe

The average height was found by Rényi and Szekeres who appealed again to complex analytic
methods and found ittobe ~ V2mwn. ... ... ]

These examples show that height statistics are closely related to iteration theory.
Except in a few cases like general plane trees, normally no algebra is available and
one has to resort to complex analytic methods as expounded in forthcoming chapters.

III. 8.3. Averages and moments. For extremal parameters, the GFs of mean val-
ues obey a general pattern. Let F be some combinatorial class with GF f(z). Consider
for instance an extremal parameter x such that fI"1(z) is the GF of objects with x-
parameter at most h. The GF of objects for which x = h exactly is equal to

FMz) — f=1y).

Thus differencing gives access to the probability distribution of height over F. The
generating function of cumulated values (providing mean values after normalization)
is then

e = Yh[Mo- "]
h=0
= Y [ro- Mol
h=0

as is readily checked by rearranging the second sum, or equivalently using summation
by parts.

OThese polynomials are exactly the much-studied Mandelbrot polynomials whose behaviour in the
complex plane gives rise to extraordinary graphics (Figure VIL.23, p. 536).
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For the largest components, the formulae involve truncated Taylor series. For
height, analysis involves in all generality the differences between the fixed point of a
functional @ (the GF f(z)) and the approximations to the fixed point (f!"!(z)) pro-
vided by iteration. This is a common scheme in extremal statistics.

B> IIL.43. The height of increasing binary trees. Given the specification of increasing binary
trees in Equation (61), p. 143, the EGF of trees of height at most / is given by the recurrence

V4
1) =1, 1”’+”(z)=1+/ 1M (w2 qw.
0

Devroye [157, 158] showed in 1986 that the expected height of a tree of size n is asymptotic
to clogn where ¢ = 4.31107 is a solution of clog((2¢)/c) = 1. <

D> II1.44. Hierarchical partitions. Let €(z) = e* — 1. The generating function
ee(---(e@))) (h times).

can be interpreted as the EGF of certain hierarchical partitions. (Such structures show up in
statistical classification theory [585, 586].) <

B> IIL.45. Balanced trees. Balanced structures lead to counting GFs close to the ones obtained
for height statistics. The OGF of balanced 2-3 trees of height s counted by the number of leaves
satisfies the recurrence

ZH gy = z (22 4+ 23y = (W (2))? + (M (2))3,

which can be expressed in terms of the iterates of o (z) = 22 + 23 (see Note 1.67, p. 91, as well
as Chapter IV, p. 281, for asymptotics). It is possible to express the OGF of cumulated values
of the number of internal nodes in such trees in terms of the iterates of o. <

> I11.46. Extremal statistics in random mappings. One can express the EGFs relative to the
largest cycle, longest branch, and diameter of functional graphs. Similarly for the largest tree,
largest component. [Hint: see [247] for details.] <

> IIL47. Deep nodes in trees. The BGF giving the number of nodes at maximal depth in
a general plane tree or a Cayley tree can be expressed in terms of a continued fraction or a
continuous exponential. <

IIL. 9. Perspective

The message of this chapter is that we can use the symbolic method not just to
count combinatorial objects but also to quantify their properties. The relative ease
with which we are able to do so is testimony to the power of the method as a major
organizing principle of analytic combinatorics.

The global framework of the symbolic method leads us to a natural structural cat-
egorization of parameters of combinatorial objects. First, the concept of inherited pa-
rameters permits a direct extension of the already seen formal translation mechanisms
from combinatorial structures to GFs, for both labelled and unlabelled objects—this
leads to MGFs useful for solving a broad variety of classical combinatorial problems.
Second, the adaptation of the theory to recursive parameters provides information
about trees and similar structures, this even in the absence of explicit representations
of the associated MGFs. Third, extremal parameters, which are defined by a maxi-
mum rule (rather than an additive rule), can be studied by analysing families of uni-
variate GFs. Yet another illustration of the power of the symbolic method is found in
the notion of complete GF, which in particular enables us to study Bernoulli trials and
branching processes.
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As we shall see starting with Chapter IV, these approaches become especially
powerful since they serve as the basis for the asymprotic analysis of properties of
structures. Not only does the symbolic method provide precise information about
particular parameters, but it also paves the way for the discovery of general schemas
and theorems that tell us what to expect about a broad variety of combinatorial types.

Bibliographic notes. Multivariate generating functions are a common tool from classical com-
binatorial analysis. Comtet’s book [129] is once more an excellent source of examples. A
systematization of multivariate generating functions for inherited parameters is given in the
book by Goulden and Jackson [303].

In contrast generating functions for cumulated values of parameters (related to averages)
seemed to have received relatively little attention until the advent of digital computers and
the analysis of algorithms. Many important techniques are implicit in Knuth’s treatises, es-
pecially [377, 378]. Wilf discusses related issues in his book [608] and the paper [606].
Early systems specialized to tree algorithms were proposed by Flajolet and Steyaert in the
1980s [215, 261, 262, 560]; see also Berstel and Reutenauer’s work [56]. Some of the ideas
developed there initially drew their inspiration from the well-established treatment of formal
power series in non-commutative indeterminates; see the books by Eilenberg [189] and Sa-
lomaa and Soittola [527] as well as the proceedings edited by Berstel [54]. Several compu-
tations in this area can nowadays even be automated with the help of computer algebra sys-
tems [255, 528, 628].

Je n’ai jamais été assez loin pour bien sentir I’application de I’algebre a la géométrie. Je
n’aimais point cette maniere d’opérer sans voir ce qu’on fait, et il me sembloit que résoudre un
probléme de géométrie par les équations, ¢’étoit jouer un air en tournant une manivelle.

(“I never went far enough to get a good feel for the application of algebra to geometry. I was not pleased
with this method of operating according to the rules without seeing what one does; solving geometrical
problems by means of equations seemed like playing a tune by turning a crank.”)

— JEAN-JACQUES ROUSSEAU, Les Confessions, Livre VI
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COMPLEX ASYMPTOTICS
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vV

Complex Analysis, Rational and
Meromorphic Asymptotics

Entre deux vérités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe.

PAUL PAINLEVE [467, p. 2]

It has been written that
the shortest and best way between two truths of the real domain

often passes through the imaginary onel.

— JACQUES HADAMARD [316, p. 123]

IV.1.  Generating functions as analytic objects 225
IV.2.  Analytic functions and meromorphic functions 229
IV.3.  Singularities and exponential growth of coefficients 238
IV.4.  Closure properties and computable bounds 249
IV.5. Rational and meromorphic functions 255
IV.6.  Localization of singularities 263
IV.7.  Singularities and functional equations 275
IV.8.  Perspective 286

Generating functions are a central concept of combinatorial theory. In Part A, we have
treated them as formal objects; that is, as formal power series. Indeed, the major theme
of Chapters I-III has been to demonstrate how the algebraic structure of generating
functions directly reflects the structure of combinatorial classes. From now on, we
examine generating functions in the light of analysis. This point of view involves
assigning values to the variables that appear in generating functions.

Comparatively little benefit results from assigning only real values to the vari-
able z that figures in a univariate generating function. In contrast, assigning complex
values turns out to have serendipitous consequences. When we do so, a generating
function becomes a geometric transformation of the complex plane. This transforma-
tion is very regular near the origin—one says that it is analytic (or holomorphic). In
other words, near 0, it only effects a smooth distortion of the complex plane. Farther
away from the origin, some cracks start appearing in the picture. These cracks—the
dignified name is singularities—correspond to the disappearance of smoothness. It
turns out that a function’s singularities provide a wealth of information regarding the
function’s coefficients, and especially their asymptotic rate of growth. Adopting a
geometric point of view for generating functions has a large pay-off.

'Hadamard’s quotation (1945) is a free rendering of the original one due to Painlevé (1900); namely,
“The shortest and easiest path betwen two truths of the real domain most often passes through the complex
domain.”

223
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By focusing on singularities, analytic combinatorics treads in the steps of many
respectable older areas of mathematics. For instance, Euler recognized that for the
Riemann zeta function ¢(s) to become infinite (hence have a singularity) at 1 im-
plies the existence of infinitely many prime numbers; Riemann, Hadamard, and de la
Vallée-Poussin later uncovered deep connections between quantitative properties of
prime numbers and singularities of 1/¢(s).

The purpose of this chapter is largely to serve as an accessible introduction or
a refresher of basic notions regarding analytic functions. We start by recalling the
elementary theory of functions and their singularities in a style tuned to the needs of
analytic combinatorics. Cauchy’s integral formula expresses coefficients of analytic
functions as contour integrals. Suitable uses of Cauchy’s integral formula then make
it possible to estimate such coefficients by suitably selecting an appropriate contour
of integration. For the common case of functions that have singularities at a finite
distance, the exponential growth formula relates the location of the singularities clos-
est to the origin—these are also known as dominant singularities—to the exponential
order of growth of coefficients. The nature of these singularities then dictates the fine
structure of the asymptotics of the function’s coefficients, especially the subexponen-
tial factors involved.

As regards generating functions, combinatorial enumeration problems can be
broadly categorized according to a hierarchy of increasing structural complexity. At
the most basic level, we encounter scattered classes, which are simple enough, so that
the associated generating function and coefficients can be made explicit. (Examples of
Part A include binary and general plane trees, Cayley trees, derangements, mappings,
and set partitions). In that case, elementary real-analysis techniques usually suffice
to estimate asymptotically counting sequences. At the next, intermediate, level, the
generating function is still explicit, but its form is such that no simple expression is
available for coefficients. This is where the theory developed in this and the next chap-
ters comes into play. It usually suffices to have an expression for a generating function,
but not necessarily its coefficients, so as to be able to deduce precise asymptotic esti-
mates of its coefficients. (Surjections, generalized derangements, unary—binary trees
are easily subjected to this method. A striking example, that of trains, is detailed in
Section I'V. 4.) Properties of analytic functions then make this analysis depend only on
local properties of the generating function at a few points, its dominant singularities.
The third, highest, level, within the perspective of analytic combinatorics, comprises
generating functions that can no longer be made explicit, but are only determined by a
functional equation. This covers structures defined recursively or implicitly by means
of the basic constructors of Part A. The analytic approach even applies to a large
number of such cases. (Examples include simple families of trees, balanced trees,
and the enumeration of certain molecules treated at the end of this chapter. Another
characteristic example is that of non-plane unlabelled trees treated in Chapter VII.)

As we shall see throughout this book, the analytic methodology applies to almost
all the combinatorial classes studied in Part A, which are provided by the symbolic
method. In the present chapter we carry out this programme for rational functions and
meromorphic functions (i.e., functions whose singularities are poles).
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IV.1. Generating functions as analytic objects

Generating functions, considered in Part A as purely formal objects subject to al-
gebraic operations, are now going to be interpreted as analytic objects. In so doing one
gains easy access to the asymptotic form of their coefficients. This informal section
offers a glimpse of themes that form the basis of Chapters IV-VII.

In order to introduce the subject, let us start with two simple generating functions,
one, f(z), being the OGF of the Catalan numbers (cf G(z), p. 35), the other, g(z),
being the EGF of derangements (cf DY (), p. 123):

(1) F) = % (1-VI—%). 2= exlp(—_Z)
—Z

At this stage, the forms above are merely compact descriptions of formal power series
built from the elementary series

1 1
(l—y)_1 = 1—|—y—|-y2_|_...’ (1—y)1/2 — I_Ey_gyz_
1 1,
exp(y) = 1+ﬁy+2—!y 4,

by standard composition rules. Accordingly, the coefficients of both GFs are known
in explicit form:

= [2"] _1 2n —2 — "] B 1 1 (—1)"
Jni=1lz f(Z)_;l<n—1>’ &n ‘= 12 g(Z)—(&—l—!+"'+ py >

Stirling’s formula and the comparison with the alternating series giving exp(—1) pro-
vide, respectively,

4n71
2) fa ~ . &= ~ e 1=036787.

n—oo anS n—oo

Our purpose now is to provide intuition on how such approximations could be
derived without appealing to explicit forms. We thus examine, heuristically for the
moment, the direct relationship between the asymptotic forms (2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available for f, and g, it is legitimate to substitute
in the power series expansions of the GFs f(z) and g(z) any real or complex value of
a small enough modulus, the upper bounds on modulus being oy = 1/4 (for f) and
pg = 1 (for g). Figure IV.1 represents the graph of the resulting functions when such
real values are assigned to z. The graphs are smooth, representing functions that are
differentiable any number of times for z interior to the interval (—p, +p). However,
at the right boundary point, smoothness stops: g(z) become infinite at z = 1, and so it
even ceases to be finitely defined; f(z) does tend to the limit % as z — (4—1‘)*, but its
derivative becomes infinite there. Such special points at which smoothness stops are
called singularities, a term that will acquire a precise meaning in the next sections.

Observe also that, in spite of the series expressions being divergent outside the
specified intervals, the functions f(z) and g(z) can be continued in certain regions: it
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Figure IV.1. Left: the graph of the Catalan OGF, f(z), for z € (— L +%); right: the
graph of the derangement EGF, g(z), for z € (—1, +1).

suffices to make use of the global expressions of Equation (1), with exp and VA being
assigned their usual real-analytic interpretation. For instance:
2

f(=D= % (1 —ﬁ), g(=2) = %

Such continuation properties, most notably to the complex realm, will prove essential
in developing efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose
modulus is less than the radius of convergence of the series defining the GF. Fig-
ure IV.2 displays the images of regular grids by f and g, as given by (1). This illus-
trates the fact that a regular grid is transformed into an orthogonal network of curves
and more precisely that f and g preserve angles—this property corresponds to com-
plex differentiability and is equivalent to analyticity to be introduced shortly. The
singularity of f is clearly perceptible on the right of its diagram, since, at z = 1/4
(corresponding to f(z) = 1/2), the function f folds lines and divides angles by a
factor of 2. The singularity of g at z = 1 is indirectly perceptible from the fact that
g(z) = oo as z — 1 (the square grid had to be truncated at z = 0.75, since this book
can only accommodate finite graphs).

Let us now turn to coefficient asymptotics. As is expressed by (2), the coefficients
fn and g, each belong to a general asymptotic type for coefficients of a function F,
namely,

(3) [Z"]1F(z) = A"0(n),
corresponding to an exponential growth factor A" modulated by a tame factor 6 (n),
which is subexponential. Here, one has A = 4 for f, and A = 1 for g,; also,

0(n) ~ 3(7n3)~! for f, and O(n) ~ e~! for g,. Clearly, A should be related
to the radius of convergence of the series. We shall see that, invariably, for combi-
natorial generating functions, the exponential rate of growth is given by A = 1/p,
where p is the first singularity encountered along the positive real axis (Theorem IV.6,
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Figure IV.2. The images of regular grids by f(z) (left) and g(z) (right).

p- 240). In addition, under general complex analytic conditions, it will be established
that 6(n) = O(1) is systematically associated to a simple pole of the generating func-
tion (Theorem IV.10, p. 258), while 6(n) = O(n_3/ 2) systematically arises from a
singularity that is of the square-root type (Chapters VI and VII). We enunciate:

First Principle of Coefficient Asymptotics. The location of a function’s
singularities dictates the exponential growth (A") of its coefficients.
Second Principle of Coefficient Asymptotics. The nature of a function’s
singularities determines the associate subexponential factor (0 (n)).

Observe that the rescaling rule,
[z"1F (2) = p"["1F (p2),

enables one to normalize functions so that they are singular at 1. Then, various the-
orems, starting with Theorems IV.9 and IV.10, provide sufficient conditions under
which the following fundamental implication is valid,

4) h(z) ~o(z) = [Z"1h(z) ~ [2"]o(2).

There h(z), whose coefficients are to be estimated, is a function singular at 1 and o (z)
is a local approximation near the singularity; usually o is a much simpler function,
typically like (1 — z)*log? (1 — z) whose coefficients are comparatively easy to esti-
mate (Chapter VI). The relation (4) expresses a mapping between asymptotic scales
of functions near singularities and asymptotics scales of coefficients. Under suitable
conditions, it then suffices to estimate a function locally at a few special points (sin-
gularities), in order to estimate its coefficients asymptotically.
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A succinct roadmap. Here is what now awaits the reader. Section IV. 2 serves
to introduce basic notions of complex function theory. Singularities and exponential
growth of coefficients are examined in Section I'V. 3, which justifies the First Principle.
Next, in Section IV.4, we establish the computability of exponential growth rates
for all the non-recursive structures that are specifiable. Section IV.5 presents two
important theorems that deal with rational and meromorphic functions and illustrate
the Second Principle, in its simplest version (the subexponential factors are merely
polynomials). Then, Section IV. 6 examines constructively ways to locate singularities
and treats in detail the case of patterns in words. Finally, Section IV.7 shows how
functions only known through a functional equation may be accessible to complex
asymptotic methods.

B> IV.1. Euler, the discrete, and the continuous. Eulers’s proof of the existence of infinitely
many prime numbers illustrates in a striking manner the way analysis of generating functions
can inform us on the discrete realm. Define, for real s > 1 the function

1
¢(s) == Z F,
n=1

known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2,3,5,..))

1 1 1 1 1 1
;(s)=<1+275+27+”'><1+375+37+”'><1+573+57+'”)'”
1

1\~
= 1_[ - >
r

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (5) is easily checked to be valid for all s > 1. Now suppose that there
were only finitely many primes. Let s tend to 17 in (5). Then, the left-hand side becomes
infinite, while the right-hand side tends to the finite limit [ » a-1/ p)_ls a contradiction has
been reached. <

B> IV.2. Elementary transfers. Elementary series manipulation yield the following general re-
sult: Let h(z) be a power series with radius of convergence > 1 and assume that h(1) # 0, then
one has

("]

(&)

h(1)
1—z n

h(z h(l

2Dy, VT~ = ) log
l—z 2v/mn3

See our discussion on p. 434 and Bender’s survey [36] for many similar statements, of which
this chapter and Chapter VI provide many far-reaching extensions. <

> IV.3. Asymptotics of generalized derangements. The EGF of permutations without cycles of
length 1 and 2 satisfies (p. 123)

e—2—22/2 e—3/2
j@=——""— with @) ~ .
-z —>11—z
Analogy with derangements suggests that [7"]j(z) ~ e 32, [For a proof, use Note IV.2 or
n

— 00
refer to Example IV.9 below, p. 261.] Here is a table of exact values of [z"]j(z) (with relative

error of the approximation by e=3/2in parentheses):
n=>5 n=10 n=20 n =50
Jn 0.2 0.22317  0.2231301600 0.2231301601484298289332804707640122

error: (1071 (2.107%  (3-10710) (10733)
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The quality of the asymptotic approximation is extremely good, such a property being, as we
shall see, invariably attached to polar singularities.

IV.2. Analytic functions and meromorphic functions

Analytic functions are a primary mathematical concept of asymptotic theory. They
can be characterized in two essentially equivalent ways (see Subsection IV.2.1): by
means of convergent series expansions (a la Cauchy and Weierstrass) and by differ-
entiability properties (a la Riemann). The first aspect is directly related to the use of
generating functions for enumeration; the second one allows for a powerful abstract
discussion of closure properties that usually requires little computation.

Integral calculus with analytic functions (see Subsection I'V. 2.2) assumes a shape
radically different from that which prevails in the real domain: integrals become
quintessentially independent of details of the integration contour—certainly the prime
example of this fact is Cauchy’s famous residue theorem. Conceptually, this indepen-
dence makes it possible to relate properties of a function at a point (e.g., the coeffi-
cients of its expansion at 0) to its properties at another far-away point (e.g., its residue
at a pole).

The presentation in this section and the next one constitutes an informal review
of basic properties of analytic functions tuned to the needs of asymptotic analysis of
counting sequences. The entry in Appendix B.2: Equivalent definitions of analyticity,
p- 741, provides further information, in particular a proof of the Basic Equivalence
Theorem, Theorem IV.1 below. For a detailed treatment, we refer the reader to one
of the many excellent treatises on the subject, such as the books by Dieudonné [165],
Henrici [329], Hille [334], Knopp [373], Titchmarsh [577], or Whittaker and Wat-
son [604]. The reader previously unfamiliar with the theory of analytic functions
should essentially be able to adopt Theorems I'V.1 and IV.2 as “axioms” and start from
here using basic definitions and a fair knowledge of elementary calculus. Figure IV.19
at the end of this chapter (p. 287) recapitulates the main results of relevance to Analytic
Combinatorics.

IV.2.1. Basics. We shall consider functions defined in certain regions of the
complex domain C. By a region is meant an open subset 2 of the complex plane
that is connected. Here are some examples:

.= ’ A .
[ D / e R
\ S~o_ T I} - I} ’ v
\ ) 1 o [ v
1 \ 1 S | L 1 1
P ] \ ~ [N S
\ -~ ’ \ = 9 S 7 ’
~_ - 7 v
\\ - S . - A . v
< __ A
<
simply connected domain slit complex plane indented disc annulus.

Classical treatises teach us how to extend to the complex domain the standard
functions of real analysis: polynomials are immediately extended as soon as complex
addition and multiplication have been defined, while the exponential is definable by
means of Euler’s formula. One has for instance

22 = (x% = y?) +2ixy, et =¢e*cosy+ie‘siny,
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if z = x + iy, thatis, x = 9(z) and y = J(z) are the real and imaginary parts of z.
Both functions are consequently defined over the whole complex plane C.

The square-root and logarithm functions are conveniently described in polar co-
ordinates:

(6) Vi=pe??,  logz=logp +ib,

if z = pe’?. One can take the domain of validity of (6) to be the complex plane slit
along the axis from 0 to —oo, that is, restrict 6 to the open interval (—m, +7), in which
case the definitions above specify what is known as the principal determination. There
is no way for instance to extend by continuity the definition of ,/z in any domain
containing 0 in its interior since, for a > 0 and z — —a, one has \/z — iy/a as
7z — —a from above, whereas /7 — —i+/a as z — —a from below. This situation is
depicted here:

The values of /z
tzzzdzzzzzz:oz aszvarlesalong |z|=a.

The point z = 0, where several determinations “meet”, is accordingly known as a
branch point.

Analytic functions. First comes the main notion of an analytic function that
arises from convergent series expansions and is of obvious relevance to generating-
functionology.

Definition IV.1. A function f(z) defined over a region Q is analytic at a point 79 € Q2
if, for z in some open disc centred at zo and contained in 2, it is representable by a
convergent power series expansion

(M f@ =) ealz—z0)"

n>0
A function is analytic in a region Q2 iff it is analytic at every point of 2.

As derived from an elementary property of power series (Note IV.4), given a
function f that is analytic at a point z¢, there exists a disc (of possibly infinite radius)
with the property that the series representing f(z) is convergent for z inside the disc
and divergent for z outside the disc. The disc is called the disc of convergence and
its radius is the radius of convergence of f(z) at z = zp, which will be denoted by
Reonv(f; z0). The radius of convergence of a power series conveys basic information
regarding the rate at which its coefficients grow; see Subsection IV.3.2 below for
developments. It is also easy to prove by simple series rearrangement that if a function
is analytic at zq, it is then analytic at all points interior to its disc of convergence
(see Appendix B.2: Equivalent definitions of analyticity, p. 741).

D> IVA4. The disc of convergence of a power series. Let f(z) = Y fnz" be a power series.
Define R as the supremum of all values of x > 0 such that {f,x"} is bounded. Then, for
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|z] < R, the sequence f,,z" tends geometrically to 0; hence f(z) is convergent. For |z| > R,
the sequence f,,z" is unbounded; hence f(z) is divergent. In short: a power series converges
in the interior of a disc; it diverges in its exterior. <

Consider for instance the function f(z) = 1/(1 — z) defined over C \ {1} in the
usual way via complex division. It is analytic at O by virtue of the geometric series
sum,

1
- 17",
D DIEE
n>0
which converges in the disc |z| < 1. At a point zg # 1, we may write
1 B 1 1 1
l—z = l-z-@-z2) l-zl1-i2
®) L
= Z( ) (z —z0)".
1 -z

n>0

The last equation shows that f(z) is analytic in the disc centred at zo with radius
|1 — zol, that is, the interior of the circle centred at z¢ and passing through the point 1.
In particular Reony (f, z0) = |1 — zo| and f(z) is globally analytic in the punctured
plane C \ {1}.

The example of (1 — z)~! illustrates the definition of analyticity. However, the
series rearrangement approach that it uses might be difficult to carry out for more
complicated functions. In other words, a more manageable approach to analyticity is
called for. The differentiability properties developed now provide such an approach.

Differentiable (holomorphic) functions. The next important notion is a geomet-
ric one based on differentiability.
Definition IV.2. A function f(z) defined over a region Q2 is called complex-differen-
tiable (also holomorphic) at zq if the limit, for complex §,

. fzo+38) — f(zo)
1m
5§—0 1)

exists. (In particular, the limit is independent of the way & tends to 0 in C.) This

limit is denoted as usual by f’(z0), or d%f(z)) , or 9 f(z0). A function is complex-
20
differentiable in Q2 iff it is complex-differentiable at every zo € Q.

From the definition, if f(z) is complex-differentiable at zop and f’(zg) # 0, it acts
locally as a linear transformation:

f@) — f(z0) = f'(z0)(z — z0) + o(z — 20) (z = z0)-

Then, f(z) behaves in small regions almost like a similarity transformation (composed
of a translation, a rotation, and a scaling). In particular, it preserves angles®> and
infinitesimal squares get transformed into infinitesimal squares; see Figure IV.3 for a
rendering. Further aspects of the local shape of an analytic function will be examined
in Section VIIL. 1, p. 543, in relation with the saddle-point method.

2A mapping of the plane that locally preserves angles is also called a conformal map. Section VIII. 1
(p. 543) presents further properties of the local “shape” of an analytic function.
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Figure IV.3. Multiple views of an analytic function. The image of the domain 2 =
{z | M) < 2,|3(z)| < 2} by f(z) = exp(z) + z + 2: [top] transformation of a
square grid in Q2 by f; [bottom] the modulus and argument of f(z).

For instance the function ./z, defined by (6) in the complex plane slit along the
ray (—o0, 0), is complex-differentiable at any zq of the slit plane since

J —Jo JTF8/0—1 1
) fim YOO = VR0 oV H o= ,
§—0 ) 5—0 8 2./70

which extends the customary proof of real analysis. Similarly, /1 — z is complex-
differentiable in the complex plane slit along the ray (1, +00). More generally, the
usual proofs from real analysis carry over almost verbatim to the complex realm, to
the effect that

! /
(f+8) =f+g. (f&)=fg+fs, (%) = —%, (fog) =(f'o9)g.
The notion of complex differentiability is thus much more manageable than the notion
of analyticity.
It follows from a well known theorem of Riemann (see for instance [329, vol. 1,
p 143] and Appendix B.2: Equivalent definitions of analyticity, p. 741) that analyticity
and complex differentiability are equivalent notions.

Theorem IV.1 (Basic Equivalence Theorem). A function is analytic in a region 2 if
and only if it is complex-differentiable in 2.

The following are known facts (see p. 236 and Appendix B): (i) if a function
is analytic (equivalently complex-differentiable) in €2, it admits (complex) deriva-
tives of any order there—this property markedly differs from real analysis: complex-
differentiable, equivalently analytic, functions are all smooth; (ii) derivatives of a
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function may be obtained through term-by-term differentiation of the series represen-
tation of the function.

Meromorphic functions. We finally introduce meromorphic® functions that are
mild extensions of the concept of analyticity (or holomorphy) and are essential to
the theory. The quotient of two analytic functions f(z)/g(z) ceases to be analytic
at a point a where g(a) = 0; however, a simple structure for quotients of analytic
functions prevails.

Definition IV.3. A function h(z) is meromorphic at zg iff; for z in a neighbourhood of
z0 With z # zo, it can be represented as f(z)/g(z), with f(z) and g(z) being analytic
at zo. In that case, it admits near zo an expansion of the form

(10) h(@) = ) ha(z—z0)".

n>-—M
If h_p # 0and M > 1, then h(z) is said to have a pole of order M at z = zo. The
coefficient h_1 is called the residue of h(z) at z = zo and is written as

Res[h(z2); z = zo].

A function is meromorphic in a region iff it is meromorphic at every point of the region.

IV.2.2. Integrals and residues. A path in a region 2 is described by its pa-
rameterization, which is a continuous function y mapping [0, 1] into Q2. Two paths
v,y in Q that have the same end points are said to be homortopic (in ) if one can
be continuously deformed into the other while staying within €2 as in the following
examples:

homotopic paths:

A closed path is defined by the fact that its end points coincide: y(0) = y (1), and a
path is simple if the mapping y is one-to-one. A closed path is said to be a loop of
Q if it can be continuously deformed within €2 to a single point; in this case one also
says that the path is homotopic to 0. In what follows paths are taken to be piecewise
continuously differentiable and, by default, loops are oriented positively.

Integrals along curves in the complex plane are defined in the usual way as curvi-
linear integrals of complex-valued functions. Explicitly: let f(x + iy) be a function

3“Holornorphic” and “meromorphic” are words coming from Greek, meaning, respectively, “of com-
plete form” and “of partial form”.
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and y be a path; then,

1
/f(z)dz = /Of(y(t))y’(t)dt
v 1 1
= [[AC—BD]dt+if [AD + BC] dt,
0 0

where f oy = A+ iB and y’ = C + i D. However, integral calculus in the complex
plane greatly differs from its form on the real line—in many ways, it is much simpler
and much more powerful. One has:

Theorem IV.2 (Null Integral Property). Let f be analytic in 2 and let ) be a simple
loop of Q. Then, one has |, f = 0.

Equivalently, integrals are largely independent of details of contours: for f analytic
in €2, one has

L ,/},fzf,,/f’

provided y and y’ are homotopic (not necessarily closed) paths in . A proof of The-
orem IV.2 is sketched in Appendix B.2: Equivalent definitions of analyticity, p. 741.

Residues. The important Residue Theorem due to Cauchy relates global prop-
erties of a meromorphic function (its integral along closed curves) to purely local
characteristics at designated points (its residues at poles).

Theorem IV.3 (Cauchy’s residue theorem). Let h(z) be meromorphic in the region Q2
and let A be a positively oriented simple loop in 2 along which the function is analytic.
Then

1
E Ah(z) dz = XS:ReS[h(Z), = S]a

where the sum is extended to all poles s of h(z) enclosed by A.

Proof. (Sketch) To see it in the representative case where 4 (z) has only a pole at
z = 0, observe by appealing to primitive functions that

Zn-H dz
h(z)dz = h h_ —,
/; (2)dz Z ”[n+1]k+ 1

n>—M A z
n#—1

where the bracket notation [u (z)] N designates the variation of the function u(z) along
the contour L. This expression reduces to its last term, itself equal to 2iwh_1, as is
checked by using integration along a circle (set z = re'?). The computation extends
by translation to the case of a unique pole at z = a.

Next, in the case of multiple poles, we observe that the simple loop can only
enclose finitely many poles (by compactness). The proof then follows from a simple
decomposition of the interior domain of A into cells, each containing only one pole.
Here is an illustration in the case of three poles.
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(Contributions from internal edges cancel.) |

Global (integral) to local (residues) connections. Here is a textbook example of
a reduction from global to local properties of analytic functions. Define the integrals

! ._/Oo dx
m = _001+x2m7

and consider specifically /;. Elementary calculus teaches us that /1 = = since the
antiderivative of the integrand is an arc tangent:

oo
I = / d_xz = [arctan x] T = 7.
oo 1 +x
Here is an alternative, and in many ways more fruitful, derivation. In the light
of the residue theorem, we consider the integral over the whole line as the limit of
integrals over large intervals of the form [—R, +R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

—R 0 +R

Let y be the contour comprised of the interval and the semi-circle. Inside y, the
integrand has a pole at x = i, where
o 1 i1
1+x2 (x+iDx—i)  2x—i
so that its residue there is —i /2. By the residue theorem, the integral taken over y is
equal to 2im times the residue of the integrand at i. As R — oo, the integral along
the semi-circle vanishes (it is less than 7 R/ (R? — 1) in modulus), while the integral
along the real segment gives /1 in the limit. There results the relation giving I;:

1 ;
Iy = 2im Res (m;x = i) = (2im) <—l§) =.

The evaluation of the integral in the framework of complex analysis rests solely
upon the local expansion of the integrand at special points (here, the point i). This is a
remarkable feature of the theory, one that confers it much simplicity, when compared
with real analysis.

)
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B> IV.5. The general integral I,. Leta = exp(2” ) so that @®” = —1. Contour integration of
the type used for /1 yields

m
: 1 2'—1)
I, =2im Res| ———:; x = a*/ ,
m ]; <1+x2m

while, for any 8 = 27—l with 1 < j < m, one has

1 1 1 g1

1+ x2m x:ﬂ2mﬂ2m_1x—ﬂ _%x—ﬁ.
As a consequence,
i _ b4
I =——(a+a3+---+a2’" 1) =
m msin 5
In particular, I, = 7/v/2, I3 = 2/3, Iy = Z/2y/2 4 +/2, and %15, %16 are expressible by
. 1 1 . 1 1 . .
radicals, but = I7, - I are not. The special cases - I17, 7 Ip57 are expressible by radicals. <]

B> IV.6. Integrals of rational fractions. Generally, all integrals of rational functions taken over
the whole real line are computable by residues. In particular,

+o0 dx +00 dx
= _—, K, =
" /_OO (14 x2)m " /_oo (12 4+ x2)(22 +x2) - - (m? +x2)
can be explicitly evaluated. <

Cauchy’s coefficient formula. Many function-theoretic consequences are derived
from the residue theorem. For instance, if f is analytic in €2, zo € €2, and A is a simple
loop of € encircling zp, one has

12) f(zo) =3

This follows directly since

Res[f(¢)/(¢ —z0); ¢ = zol = f(z0).-

Then, by differentiation with respect to zo under the integral sign, one has similarly

13 L rw
(13) Ve =5 | FO TS )k+1

The values of a function and its derlvatlves at a point can thus be obtained as values of
integrals of the function away from that point. The world of analytic functions is a very
friendly one in which to live: contrary to real analysis, a function is differentiable any
number of times as soon as it is differentiable once. Also, Taylor’s formula invariably
holds: as soon as f(z) is analytic at zg, one has

1
(14) f@ = fz0) + f'z0)(z = 20) + 7. /" (z0)(z = 20+
with the representation being convergent in a disc centred at zg. [Proof: a verification
from (12) and (13), or a series rearrangement as in Appendix B, p. 742.]

A very important application of the residue theorem concerns coefficients of ana-
lytic functions.
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Theorem IV.4 (Cauchy’s Coefficient Formula). Let f(z) be analytic in a region Q
containing 0 and let A be a simple loop around 0 in Q that is positively oriented.
Then, the coefficient [7"] f (z) admits the integral representation

1
h=l"1f@) = % /f(z)
LT Jy

dz
Zn+1 '
Proof. This formula follows directly from the equalities
1 dz

— —=Res[ =l =O]= " )

i /Af(z) gy @)z z [2"1f (@)
of which the first one follows from the residue theorem, and the second one from the
identification of the residue at O as a coefficient. |

Analytically, the coefficient formula allows us to deduce information about the
coefficients from the values of the function itself, using adequately chosen contours of
integration. It thus opens the possibility of estimating the coefficients [z"] f (z) in the
expansion of f(z) near O by using information on f(z) away from 0. The rest of this
chapter will precisely illustrate this process in the case of rational and meromorphic
functions. Observe also that the residue theorem provides the simplest proof of the
Lagrange inversion theorem (see Appendix A.6: Lagrange Inversion, p. 732) whose
role is central to tree enumerations, as we saw in Chapters I and II. The notes below
explore some independent consequences of the residue theorem and the coefficient
formula.

> IV.7. Liouville’s Theorem. If a function f(z) is analytic in the whole of C and is of modulus
bounded by an absolute constant, | f(z)| < B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Taylor coefficients at the origin of index
> 1 are all equal to 0.] Similarly, if f(z) is of at most polynomial growth, | f(z)| < B (|z]+1)",
over the whole of C, then it must be a polynomial. <

> IV.8. Lindeldf integrals. Let a(s) be analytic in i (s) > % where it is assumed to satisfy
a(s) = O(exp((w — 3)|s])) for some § with 0 < § < m. Then, one has for | arg(z)| < 4,

00 1/24i00

1
> at)(-f = —— f a(s)z® —— ds,
= i J1/2—ic0 sinms

in the sense that the integral exists and provides the analytic continuation of the sum in | arg(z)| <
8. [Close the integration contour by a large semi-circle on the right and evaluate by residues.]
Such integrals, sometimes called Lindelof integrals, provide representations for many functions
whose Taylor coefficients are given by an explicit rule [268, 408]. <

> IV.9. Continuation of polylogarithms. As a consequence of Lindelof’s representation, the
generalized polylogarithm functions,

Lig () = Z n~%(logn) " (@€R, kelZsg).
n>1

are analytic in the complex plane C slit along (14, 0c0). (More properties are presented in
Section VL. 8, p. 408; see also [223, 268].) For instance, one obtains in this way

00 1 2
1 +t° log(s +t
“Z(—l)”IOgn”Z—*/ %d,:gzzyg...:]og .

ot 4 J o cosh(mt) 2

when the divergent series on the left is interpreted as Lig 1 (—1) = lim__, _{+ Lig 1 (2). <
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B> IV.10. Magic duality. Let ¢ be a function initially defined over the non-negative integers but
admitting a meromorphic extension over the whole of C. Under growth conditions in the style
of Note IV.8, the function

F(2) =) ¢m(=2)",
n>1

which is analytic at the origin, is such that, near positive infinity,

F@ _~ E@=3 ¢CmEa7"

n>1

for some elementary function E(z), which is a linear combination of terms of the form z* (log z)k.
[Starting from the representation of Note I'V.8, close the contour of integration by a large semi-
circle to the left.] In such cases, the function is said to satisfy the principle of magic duality—its
expansion at 0 and oo are given by one and the same rule. Functions

52 log(1+2), exp(—z), Lix(=z), Liz(—2),

satisfy a form of magic duality. Ramanujan [52] made a great use of this principle, which
applies to a wide class of functions including hypergeometric ones; see Hardy’s insightful dis-
cussion [321, Ch XIJ. <

> IV.11. Euler—Maclaurin and Abel-Plana summations. Under simple conditions on the ana-
Iytic function f, one has Plana’s (also known as Abel’s) complex variables version of the Euler—
Maclaurin summation formula:

Zf(n) —f<0>+/ f(x)dx+f fo) = 7w,

2171) -1

(See [330, p. 274] for a proof and validity conditions.) <

> IV.12. Norlund—Rice integrals. Let a(z) be analytic for 9i(z) > kg — % and of at most
polynomial growth in this right half-plane. Then, with y a simple loop around the interval
[kg, n], one has

n <n>(_l)n7k *) = 1 / ) nlds
2 i LY s — e - s —n)
k=ko

If a(z) is meromorphic and suitably small in a larger region, then the integral can be estimated
by residues. For instance, with

() (=D* (=D*

! ;@ ko Z()sz
it is found that S, = —H, (a harmonic number), while 7, oscillates boundedly as n —
+o00. [This technique is a classical one in the calculus of finite differences, going back to
Norlund [458]. In computer science it is known as the method of Rice’s integrals [256] and
is used in the analysis of many algorithms and data structures including digital trees and radix
sort [378, 564].] <

IV.3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally defined as a point where the
function ceases to be analytic. (Poles are the simplest type of singularity.) Singu-
larities are, as we have stressed repeatedly, essential to coefficient asymptotics. This
section presents the bases of a discussion within the framework of analytic function
theory.
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IV.3.1. Singularities. Let f(z) be an analytic function defined over the interior
region determined by a simple closed curve y, and let zo be a point of the bounding
curve y. If there exists an analytic function f*(z) defined over some open set *
containing zo and such that f*(z) = f(z) in Q* N 2, one says that f is analytically
continuable at 7o and that f* is an immediate analytic continuation of f. Pictorially:

Y

Analytic continuation: ’ [ @) = f(x)on Q*N Q.

(f) (f*)

Consider for instance the quasi-inverse function, f(z) = 1/(1 — z). Its power series
representation f(z) = ), ., 2" initially converges in |z| < 1. However, the calcula-
tion of (8), p. 231, shows that it is representable locally by a convergent series near
any point zo # 1. In particular, it is continuable at any point of the unit disc ex-
cept 1. (Alternatively, one may appeal to complex-differentiability to verify directly
that f(z), which is given by a “global” expression, is holomorphic, hence analytic, in
the punctured plane C \ {1}.)

In sharp contrast with real analysis, where a smooth function admits of uncount-
ably many extensions, analytic continuation is essentially unique: if f* (in Q*) and
f** (in **) continue f at z(, then one must have f*(z) = f**(z) in the intersection
Q* N Q*, which in particular includes a small disc around zg. Thus, the notion of
immediate analytic continuation at a boundary point is intrinsic. The process can be
iterated and we say that g is an analytic continuation® of f along a path, even if the
domains of definition of f and g do not overlap, provided a finite chain of interme-
diate function elements connects f and g. This notion is once more intrinsic—this is
known as the principle of unicity of analytic continuation (Rudin [523, Ch. 16] pro-
vides a thorough discussion). An analytic function is then much like a hologram: as
soon as it is specified in any tiny region, it is rigidly determined in any wider region
to which it can be continued.

Definition IV.4. Given a function f defined in the region interior to the simple closed
curve y, a point zo on the boundary (y ) of the region is a singular point or a singularity5
if f is not analytically continuable at 7.

Granted the intrinsic character of analytic continuation, we can usually dispense with
a detailed description of the original domain 2 and the curve y. In simple terms, a
function is singular at z¢ if it cannot be continued as an analytic function beyond z.
A point at which a function is analytic is also called by contrast a regular point.

The two functions f(z) = 1/(1 —z) and g(z) = +/1 — z may be taken as initially
defined over the open unit disc by their power series representation. Then, as we
already know, they can be analytically continued to larger regions, the punctured plane

4The collection of all function elements continuing a given function gives rise to the notion of Riemann
surface, for which many good books exist, e.g., [201, 549]. We shall not need to appeal to this theory.
SFor a detailed discussion, see [165, p. 229], [373, vol. 1, p. 82], or [577].
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Q = C\ {1} for f [e.g., by the calculation of (8), p. 231] and the complex plane
slit along (1, +00) for g [e.g., by virtue of continuity and differentiability as in (9),
p. 232]. But both are singular at 1: for f, this results (say) from the fact that f(z) —
oo as z — 1; for g this is due to the branching character of the square-root. Figure IV.4
displays a few types of singularities that are traceable by the way they deform a regular
grid near a boundary point.

A converging power series is analytic inside its disc of convergence; in other
words, it can have no singularity inside this disc. However, it must have at least one
singularity on the boundary of the disc, as asserted by the theorem below. In addition, a
classical theorem, called Pringsheim’s theorem, provides a refinement of this property
in the case of functions with non-negative coefficients, which happens to include all
counting generating functions.

Theorem IV.5 (Boundary singularities). A function f(z) analytic at the origin, whose
expansion at the origin has a finite radius of convergence R, necessarily has a singu-
larity on the boundary of its disc of convergence, |z| = R.

Proof. Consider the expansion

(15) f@ =) f",

n>0

assumed to have radius of convergence exactly R. We already know that there can
be no singularity of f within the disc |z] < R. To prove that there is a singularity
on |z| = R, suppose a contrario that f(z) is analytic in the disc |z] < p for some
p satisfying p > R. By Cauchy’s coefficient formula (Theorem IV.4, p. 237), upon
integrating along the circle of radius r = (R + p)/2, and by trivial bounds, it is seen
that the coefficient [z"]f(z) is O(r~"). But then, the series expansion of f would
have to converge in the disc of radius r > R, a contradiction. [ |

Pringsheim’s Theorem stated and proved now is a refinement of Theorem IV.5
that applies to all series having non-negative coefficients, in particular, generating
functions. It is central to asymptotic enumeration, as the remainder of this section will
amply demonstrate.

Theorem IV.6 (Pringsheim’s Theorem). If f(z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then
the point 7 = R is a singularity of f(2).
> IV.13. Proof of Pringsheim’s Theorem. (See also [577, Sec. 7.21].) In a nutshell, the idea
of the proof is that if f has positive coefficients and is analytic at R, then its expansion slightly
to the left of R has positive coefficients. Then, the power series of f would converge in a disc
larger than the postulated disc of convergence—a clear contradiction.

Suppose then a contrario that f(z) is analytic at R, implying that it is analytic in a disc of
radius r centred at R. We choose a number % such that 0 < & < %r and consider the expansion
of f(z) around zg = R — h:

(16) f@ =) emz—z0".

m>0
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file) = /179

Figure IV.4. The images of a grid on the unit square (with corners £1=£7) by various
functions singular at z = 1 reflect the nature of the singularities involved. Singulari-
ties are apparent near the right of each diagram where small grid squares get folded
or unfolded in various ways. (In the case of functions fp, f1, f4 that become infinite
at z = 1, the grid has been slightly truncated to the right.)
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By Taylor’s formula and the representability of f(z) together with its derivatives at zg by means

of (15), we have
n _
8m = Z <m>fnzg ",

n>0

and in particular, g;; > 0.
Given the way / was chosen, the series (16) converges at z = R + & (so that z — zg = 2h)
as illustrated by the following diagram:

R+h
R
z0=R—h

Consequently, one has

FRED =YY <:1>fn26"_” @)™,

m>0 \n>0

This is a converging double sum of positive terms, so that the sum can be reorganized in any
way we like. In particular, one has convergence of all the series involved in

fR+D) = Y (Z) Fa(R = hY" " 2h)"
m,n>0
= > mlR—k)+@)"
n>0
= Y faR+h)".
n>0

This establishes the fact that f, = o((R + h)™"), thereby reaching a contradiction with the as-
sumption that the series representation of f has radius of convergence exactly R. Pringsheim’s
theorem is proved.

Singularities of a function analytic at 0, which lie on the boundary of the disc of
convergence, are called dominant singularities. Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions
since these have non-negative coefficients—it is sufficient to investigate analyticity
along the positive real line and detect the first place at which it ceases to hold.

Example IV.1. Some combinatorial singularities. The derangement and the surjection EGFs,

—Z

e _
D@ =+—. R@=02-&)"
-z
are analytic, except for a simple pole at z = 1 in the case of D(z), and for points x; =

log2 + 2ikm that are simple poles in the case of R(z). Thus the dominant singularities for
derangements and surjections are at 1 and log 2, respectively.
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It is known that /Z cannot be unambiguously defined as an analytic function in a neigh-

bourhood of Z = 0. As a consequence, the function
IO AR 21 3

which is the generating function of general Catalan trees, is an analytic function in regions that
must exclude 1/4; for instance, one may take the complex plane slit along the ray (1/4, +00).
The OGF of Catalan numbers C(z) = G(z)/z is, as G(z), a priori analytic in the slit plane,
except perhaps at z = 0, where it has the indeterminate form 0/0. However, after C(z) is
extended by continuity to C(0) = 1, it becomes an analytic function at 0, where its Taylor
series converges in |z] < %. In this case, we say that that C(z) has an apparent or removable
singularity at 0. (See also Morera’s Theorem, Note B.6, p. 743.)

Similarly, the EGF of cyclic permutations

1
L(z) =log 7

is analytic in the complex plane slit along (1, 4-00).
A function having no singularity at a finite distance is called entire; its Taylor series then
converges everywhere in the complex plane. The EGFs,

et —1

2
eSTe/2 and e ,

associated, respectively, with involutions and set partitions, are entire. ................... |

IV.3.2. The Exponential Growth Formula. We say that a number sequence
{a,} is of exponential order K", which we abbreviate as (the symbol > is a “bowtie”)

ap>< K" iff  limsupla,|/" = K.

The relation “a, o< K"” reads as “ay, is of exponential order K"”. It expresses both
an upper bound and a lower bound, and one has, for any € > 0:
@) lan| >io0 (K — €)"; that is to say, |a,| exceeds (K — €)" infinitely often (for
infinitely many values of n);
(@1) |ap| <ae. (K + €)"; that is to say, |a,| is dominated by (K + €)" almost
everywhere (except for possibly finitely many values of n).

This relation can be rephrased as a, = K"6(n), where 0 is a subexponential factor :

limsup |6 (n)|'/" = 1;

such a factor’s modulus is thus bounded from above almost everywhere by any in-
creasing exponential (of the form (1 + €)") and bounded from below infinitely often
by any decaying exponential (of the form (1 — €)"). Typical subexponential factors
are
1, n?, (ogn)?, Vn, 1 , n 32 (=), loglogn.
Ylogn

(Functions such as eV and exp(log? n) are also to be treated as subexponential factors
for the purpose of this discussion.) The lim sup definition also allows in principle for
factors that are infinitely often very small or 0, such as n? sin n7,logncos Jn 7, and
so on. In this and the next chapters, we shall develop systematic methods that enable
one to extract such subexponential factors from generating functions.
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It is an elementary observation that the radius of convergence of the series rep-
resentation of f(z) at O is related to the exponential growth rate of the coefficients
fn = [2"1f (2). To wit, if Reony (f; 0) = R, then we claim that

1 n
(17) fn o< (E) , ie., f,=R"6(n) withlimsupl|d(n)'/" = 1.

B> IV.14. Radius of convergence and exponential growth. This only requires the basic definition
of a power series. (i) By definition of the radius of convergence, we have for any small € > 0,

fn(R —€) — 0. In particular, | f,;|(R — €)" < 1 for all sufficiently large n, so that [ flt/ <
(R — 6)71 “almost everywhere”. (ii) In the other direction, for any € > 0, | f;,|(R 4 ¢)" cannot
be a bounded sequence, since otherwise, Zn | fnl(R 4+ €/2)" would be a convergent series.

Thus, | f,]1/" > (R + €)~! “infinitely often”. <
A global approach to the determination of growth rates is desirable. This is made
possible by Theorem IV.5, p. 240, as shown by the following statement.

Theorem IV.7 (Exponential Growth Formula). If f(z) is analytic at 0 and R is the
modulus of a singularity nearest to the origin in the sense that

R:=sup{r=>=0 ‘ fis analyticin |z| <r},

then the coefficient f, = [7"] f (z) satisfies

1\

For functions with non-negative coefficients, including all combinatorial generating
functions, one can also adopt

R = sup{r >0 | f is analytic at all points of 0 < z < r}.

Proof. Let R be as stated. We cannot have R < Rony(f; 0) since a function is analytic
everywhere in the interior of the disc of convergence of its series representation. We
cannot have R > Rony(f; 0) by the Boundary Singularity Theorem. Thus R =
Reonv (f; 0). The statement then follows from (17). The adaptation to non-negative
coefficients results from Pringsheim’s theorem. |

The exponential growth formula thus directly relates the exponential growth of
coefficients of a function to the location of its singularities nearest to the origin. This
is precisely expressed by the First Principle of Coefficient Asymptotics (p. 227), which,
given its importance, we repeat here:

First Principle of Coefficient Asymptotics. The location of a function’s
singularities dictates the exponential growth (A”") of its coefficient.

Example 1V.2. Exponential growth and combinatorial enumeration. Here are a few immediate
applications of exponential bounds.

Surjections. The function
R@)=@2—e)!

60ne should think of the process defining R as follows: take discs of increasing radii r and stop as
soon as a singularity is encountered on the boundary. (The dual process that would start from a large disc
and restrict its radius is in general ill-defined—think of /1 — z.)
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n % logrp % logr)¥

10 0.33385  —0.22508

20  0.35018 —0.18144

50  0.35998  —0.154449

100 0.36325  —0.145447

oo 0.36651 —0.13644
(log1/p) (log(1/p%)

Figure IV.5. The growth rate of simple and double surjections.

is the EGF of surjections. The denominator is an entire function, so that singularities may
only arise from its zeros, to be found at the points x; = log2 + 2ikm, k € Z. The dominant
singularity of R is then at p = xo = log 2. Thus, with r, = [z"]R(2),

1 n
o (s

Similarly, if “double” surjections are considered (each value in the range of the surjection
is taken at least twice), the corresponding EGF is

1
24z —e’
with the counts starting as 1,0,1,1,7,21,141 (EIS A032032). The dominant singularity is at

p* defined as the positive root of equation ¢”” — p* = 2, and the coefficient ¥ satisfies:
rf e (1/p*)" Numerically, this gives

> 1.44269" and < 0.87245",

R*(z) =

with the actual figures for the corresponding logarithms being given in Figure IV.5.

These estimates constitute a weak form of a more precise result to be established later in
this chapter (p. 260): If random surjections of size n are considered equally likely, the probabil-
ity of a surjection being a double surjection is exponentially small.

Derangements. For the cases dy , = [z ]e™*(1 —7z)"land dy p = [z”]eiZ*Zz/z(l -~ L
we have, from the poles at z = 1,

dips<a 1™ and dp, a1

The implied upper bound is combinatorially trivial. The lower bound expresses that the prob-
ability for a random permutation to be a derangement is not exponentially small. For d; ,, we

have already proved (p. 225) by an elementary argument the stronger result dy ,, — e~ L in the

case of dj ,;, we shall establish later (p. 261) the precise asymptotic estimate d; , — e 32,

Unary-binary trees. The expression

1—z—+1-27-372
U(z) = > =742 4224444920+,

represents the OGF of (plane unlabelled) unary—binary trees. From the equivalent form,

l—z—J(0 =321
UG = Y E 00D,
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it follows that U (z) is analytic in the complex plane slit along (%, +00) and (—oo, —1) and is
singular at z = —1 and z = 1/3 where it has branch points. The closest singularity to the origin
being at %, one has

U, > 3".

In this case, the stronger upper bound U,, < 3" results directly from the possibility of encoding
such trees by words over a ternary alphabet using Lukasiewicz codes (Chapter I, p. 74). A
complete asymptotic expansion will be obtained, as one of the first applications of singularity
analysis, in Chapter VI (p. 396). ...t e |

> IV.15. Coding theory bounds and singularities. Let C be a combinatorial class. We say that
it can be encoded with f(n) bits if, for all sufficiently large values of n, elements of C;, can be
encoded as words of f(n) bits. (An interesting example occurs in Note .23, p. 53.) Assume
that C has OGF C(z) with radius of convergence R satisfying 0 < R < 1. Then, for any e,
C can be encoded with (1 + €)kn bits where k = —logy R, but C cannot be encoded with
(1 — €)kn bits.

Similarly, if C has EGF c (z) with radius of convergence R satisfying 0 < R < oo, then C
can be encoded with nlog(n/e) 4+ (1 4 €)xn bits where k = —log, R, but C cannot be encoded
with nlog(n/e) + (1 — €)xn bits. Since the radius of convergence is determined by the distance
to singularities nearest to the origin, we have the following interesting fact: singularities convey
information on optimal codes. <

Saddle-point bounds. The exponential growth formula (Theorem IV.7, p. 244)
can be supplemented by effective upper bounds which are very easy to derive and
often turn out to be surprisingly accurate. We state:

Proposition I'V.1 (Saddle-point bounds). Let f(z) be analytic in the disc |z| < R with
0 < R < o0. Define M(f;r) forr € (0, R) by M(f;r) := supy,—, | f(2)|. Then,
one has, for any r in (0, R), the family of saddle-point upper bounds

M(f;r) . . . M(f;r)
r—n lmplylng [Zn]f(z) < rel(la’fR) r—n

(18  ["1f(@) =

If in addition f(z) has non-negative coefficients at 0, then

f@) g L)

implyin, "1f(z) < in
- plying [2"1f(z) = L

(19) [2"]f(z) =

Proof. In the general case of (18), the first inequality results from trivial bounds ap-
plied to the Cauchy coefficient formula, when integration is performed along a circle:

1 dz
n [
[2"1f () = 7— o f(@) preng
It is consequently valid for any » smaller than the radius of convergence of f at 0. The
second inequality in (18) plainly represents the best possible bound of this type.
In the positive case of (19), the bounds can be viewed as a direct specialization
of (18). (Alternatively, they can be obtained in a straightforward manner, since
£ < f_2+"'+ Jn-1 + ot Jn+1

r pitl

+ -,

whenever the fj are non-negative.) |
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Note that the value s that provides the best bound in (19) can be determined by
setting a derivative to zero,

MO
=n
f(s)

Thanks to the universal character of the first bound, any approximate solution of this
last equation will in fact provide a valid upper bound.

(20) s

We shall see in Chapter VIII another way to conceive of these bounds as a first
step in an important method of asymptotic analysis; namely, the saddle-point method,
which explains where the term “saddle-point bound” originates from (Theorem VIII.2,
p- 547). For reasons that are well developed there, the bounds usually capture the
actual asymptotic behaviour up to a polynomial factor. A typical instance is the weak

form of Stirling’s formula,
n

1 e
—=["]e* < —,
n! —

which only overestimates the true asymptotic value by a factor of ~/27n.

> IV.16. A suboptimal but easy saddle-point bound. Let f(z) be analytic in |z] < 1 with

non-negative coefficients. Assume that f(x) < (1 — x)_ﬁ for some B > O and all x € (0, 1).
Then

[Z"1f(2) = O(nP).

(Better bounds of the form O (n#~1) are usually obtained by the method of singularity analysis
expounded in Chapter VI.)

Example IV.3.  Combinatorial examples of saddle-point bounds. Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations. First, fragmented permutations (Chapter II, p. 125) are labelled
structures defined by F = SET(SEQ>1(Z)). The EGF is e%/1=2); we claim that

@1 Ly = M/ 170 < Vim0 )
n! -

Indeed, the minimizing radius of the saddle-point bound (19) is s such that

d s 1 n
0=— —nlogs | = — — —.
ds \1—s 1-=952 s

The equation is solved by s = (2n+1—+/4n + 1) /(2n). One can either use this exact value and
compute an asymptotic approximation of f(s)/s", or adopt right away the approximate value
s1 = 1 — 1/4/n, which leads to simpler calculations. The estimate (21) results. It is off from
the actual asymptotic value only by a factor of order n=3/4 (cf Example VIIL7, p. 562).

Bell numbers and set partitions. Another immediate application is an upper bound on
Bell numbers enumerating set partitions, S = SET(SET>(Z)), with EGF e L According
to (20), the best saddle-point bound is obtained for s such that se’ = n. Thus,

1 !
(22) — 58 = ¢ ~1-nlogs where s : se’ =un;
n!

additionally, one has s = logn — loglogn + o(loglogn). See Chapter VIII, p. 561 for the
complete saddle-point analysis.
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n Zl In
100 0.106579 - 108>  0.240533 - 1053 -1

200 0.231809- 1019  0.367247 - 10193
300 0.383502- 10316 0.494575 - 10314
400 0.869362 - 10%4  0.968454 - 10442
500 0.425391-10°78  0.423108 - 10°7° 0 1 2 3

Figure IV.6. A comparison of the exact number of involutions I, to its approxi-
mation I,, = nleVntn/2y—n/2. [left] a table; [right] a plot of loglo(ln/INn) against
logo n suggesting that the ratio satisfies 1,,/I, ~ K - n~12 the slope of the curve

being ~ —%.

Involutions. Involutions are specified by Z = SET(CYC; 7(Z)) and have EGF I(z) =
exp(z + %zz). One determines, by choosing s = /7 as an approximate solution to (20):

1 enn/2

Iy <

23) <

n!
(See Figure 1V.6 for numerical data and Example VIILS, p. 558 for a full analysis.) Similar
bounds hold for permutations with all cycle lengths < k and permutations ¢ such that ok =1d.

Integer partitions. The function

[o.@] l 001 Zz
24 P(z) = = -
24) ) kUll—Z" exp ;“_ZZ

is the OGF of integer partitions, an unlabelled analogue of set partitions. Its radius of con-
vergence is a priori bounded from above by 1, since the set P is infinite and the second form
of P(z) shows that it is exactly equal to 1. Therefore P, > 1". A finer upper bound results
from the estimate (see also p. 576)

2

b4 t 1
25 L(t):=log P(e™") ~ — +1log,/ = — —1 + 0(t?),
(25) (1) :=1log P(e) o Tlogy/ - ! H00)

which is obtained from Euler—-Maclaurin summation or, better, from a Mellin analysis follow-
ing Appendix B.7: Mellin transform, p. 762. Indeed, the Mellin transform of L is, by the
harmonic sum rule,

L*(s) = ¢()¢(s + DI (s), s € (1, +00),

and the successive left-most poles at s = 1 (simple pole), s = 0 (double pole), and s = —1
(simple pole) translate into the asymptotic expansion (25). When z — 17, we have
2
e T /12 71,2
(26) P(z) ~ V1T —zexp| ——— |,
Nz )

from which we derive (choose s = D./n as an approximate solution to (20))

P, < Cn—1/4e7V2T3,

for some C > 0. This last bound is once more only off by a polynomial factor, as we shall
prove when studying the saddle-point method (Proposition VIIL6, p. 578). ............... |
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> IV.17. A natural boundary. One has P(re'?) — oo asr — 17, for any angle 6 that is a

rational multiple of 2w. The points eimr/q being dense on the unit circle, the function P(z)
admits the unit circle as a natural boundary; that is, it cannot be analytically continued beyond
this circle. <

IV.4. Closure properties and computable bounds

Analytic functions are robust: they satisfy a rich set of closure properties. This
fact makes possible the determination of exponential growth constants for coefficients
of a wide range of classes of functions. Theorem IV.8 below expresses computability
of growth rate for all specifications associated with iterative specifications. It is the
first result of several that relate symbolic methods of Part A with analytic methods
developed here.

Closure properties of analytic functions. The functions analytic at a point z = a
are closed under sum and product, and hence form a ring. If f(z) and g(z) are ana-
lytic at z = a, then so is their quotient f(z)/g(z) provided g(a) # 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such prop-
erties are proved most easily using complex-differentiability and extending the usual
relations from real analysis, for instance, (f +g)' = f' +¢', (fg) = f¢g' + f'g.

Analytic functions are also closed under composition: if f(z) is analyticatz = a
and g(w) is analytic at b = f(a), then g o f(z) is analytic at z = a. Graphically:

D7 pdr &

The proof based on complex-differentiability closely mimicks the real case. Inverse
functions exist conditionally: if f’(a) # 0, then f(z) is locally linear near a, hence
invertible, so that there exists a g satisfying f o g = g o f = Id, where Id is
the identity function, /d(z) = z. The inverse function is itself locally linear, hence
complex-differentiable, hence analytic. In short: the inverse of an analytic function f
at a place where the derivative does not vanish is an analytic function. We shall return
to this important property later in this chapter (Subsection IV.7.1, p. 275), then put it
to full use in Chapter VI (p. 402) and VII (p. 452) in order to derive strong asymptotic
properties of simple varieties of trees.
> IV.18. A Mean Value Theorem for analytic functions. Let f be analytic in €2 and assume the
existence of M := sup,.q |f/(z)|. Then, for all a, b in 2, one has
|f (D) = fla)] <2M|b — al.

(Hint: a simple consequence of the Mean Value Theorem applied to R(f), I(f).) <
D> IV.19. The analytic inversion lemma. Let f be analytic on Q > z( and satisfy f'(zg) # 0.
Then, there exists a small region 21 € Q2 containing zg and a C > 0 such that | £ (z) — f(z/)| >
Clz—7'|,forall z, 7' € Q, z # z'. Consequently, f maps bijectively 1 on f(£21). (See also
Subsection IV. 6.2, p. 269, for a proof based on integration.) <

One way to establish closure properties, as suggested above, is to deduce analyt-
icity criteria from complex differentiability by way of the Basic Equivalence Theorem
(Theorem IV.1, p. 232). An alternative approach, closer to the original notion of ana-
lyticity, can be based on a two-step process: (i) closure properties are shown to hold
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true for formal power series; (i7) the resulting formal power series are proved to be
locally convergent by means of suitable majorizations on their coefficients. This is the
basis of the classical method of majorant series originating with Cauchy.
> IV.20. The majorant series technique. Given two power series, define f(z) < g(z) if
}[Zn]f (Z)| < [z"1g(z) for all n > 0. The following two conditions are equivalent: (i) f(z)
is analytic in the disc |z| < p; (ii) for any r > ,o_l there exists a ¢ such that

c

f@) = 1 .
—rz

If f, g are majorized by ¢/(1 —rz), d/(1 —rz), respectively, then f + g and f - g are majorized,

F@ +g@ < <4
1—rz 1—

for any s > r and for some e dependent on s. Similarly, the composition f o g is majorized:

f@ -8 =

c
fog) = m

Constructions for 1/f and for the functional inverse of f can be similarly developed. See
Cartan’s book [104] and van der Hoeven’s study [587] for a systematic treatment.

As a consequence of closure properties, for functions defined by analytic expres-
sions, singularities can be determined inductively in an intuitively transparent manner.
If Sing( f) and Zero( f) are, respectively, the set of singularities and zeros of the func-
tion f, then, due to closure properties of analytic functions, the following informally
stated guidelines apply.

Sing(f +g) C Sing(f)U Sing(g)
Sing(f x g) < Sing(f) U Sing(g)
Sing(f/g) € Sing(f) U Sing(g) U Zero(g)
Sing(fog) C Sing(g) UgD(Sing(f))
Sing(vF)  C  Sing(f) U Zero(f)
Sing(log(f)) < Sing(f) U Zero(f)
Sing(fD) < f(Sing(f)) U f(Zero(f")).

A mathematically rigorous treatment would require considering multivalued func-
tions and Riemann surfaces, so that we do not state detailed validity conditions and
keep for these formulae the status of useful heuristics. In fact, because of Pringsheim’s
theorem, the search of dominant singularities of combinatorial generating function can
normally avoid considering the complete multivalued structure of functions, since only
some initial segment of the positive real half-line needs to be considered. This in turn
implies a powerful and easy way of determining the exponential order of coefficients
of a wide variety of generating functions, as we explain next.

Computability of exponential growth constants. As defined in Chapters I and I,
a combinatorial class is constructible or specifiable if it can be specified by a finite set
of equations involving only the basic constructors. A specification is iterative or non-
recursive if in addition the dependency graph (p. 33) of the specification is acyclic.
In that case, no recursion is involved and a single functional term (written with sums,
products, sequences, sets, and cycles) describes the specification.
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Our interest here is in effective computability issues. We recall that a real number
o is computable iff there exists a program I1,, which, on input m, outputs a rational
number «,, guaranteed to be within 107" of «. We state:

Theorem IV.8 (Computability of growth). Let C be a constructible unlabelled class
that admits an iterative specification in terms of (SEQ, PSET, MSET, CYC; +, X)
starting with (1, Z). Then, the radius of convergence pc of the OGF C(z) of C is
either 400 or a (strictly) positive computable real number.

Let D be a constructible labelled class that admits an iterative specification in
terms of (SEQ, SET, CYC; +, %) starting with (1, Z). Then, the radius of convergence
pp of the EGF D(z) of D is either 400 or a (strictly) positive computable real number.

Accordingly, if finite, the constants pc, pp in the exponential growth estimates,

[2"1C(2) = Cy 5 (i) . D@ = D, (i> ,
pc n! oD

are computable numbers.

Proof. In both cases, the proof proceeds by induction on the structural specification of
the class. For each class JF, with generating function F(z), we associate a signature,
which is an ordered pair (pF, Tr), where pF is the radius of convergence of F and tr
is the value of F' at pF, precisely,
tr = lim F(x).
xX— p;

(The value tF is well defined as an element of R U {+o00} since F, being a counting
generating function, is necessarily increasing on (0, pr).)

Unlabelled case. An unlabelled class G is either finite, in which case its OGF
G (z) is a polynomial, or infinite, in which case it diverges at z = 1, so that pg < 1. It
is clearly decidable, given the specification, whether a class is finite or not: a necessary
and sufficient condition for a class to be infinite is that one of the unary constructors
(SEQ, MSET, CYC) intervenes in the specification. We prove (by induction) the as-
sertion of the theorem together with the stronger property that Tz = oo as soon as the
class is infinite.

First, the signatures of the neutral class 1 and the atomic class Z, with OGF 1 and
z, are (400, 1) and (+00, 400). Any non-constant polynomial which is the OGF of
a finite set has the signature (400, +00). The assertion is thus easily verified in these
cases.

Next, let 7 = SEQ(G). The OGF G (z) must be non-constant and satisfy G(0) =
0, in order for the sequence construction to be properly defined. Thus, by the induc-
tion hypothesis, one has 0 < pg < 400 and g = +00. Now, the function G being
increasing and continuous along the positive axis, there must exist a value 8 such that
0 < B < pg with G(B) = 1. For z € (0, B), the quasi-inverse F(z) = (1 — G(z) !
is well defined and analytic; as z approaches B from the left, F(z) increases un-
boundedly. Thus, the smallest singularity of F along the positive axis is at 8, and
by Pringsheim’s theorem, one has pr = B. The argument shows at the same time that
T = +o00. There only remains to check that 8 is computable. The coefficients of
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G form a computable sequence of integers, so that G (x), which can be well approxi-
mated via a truncated Taylor series, is an effectively computable number” if x is itself
a positive computable number less than pg. Then, binary search provides an effective
procedure for determining f.

Next, we consider the multiset construction, 7 = MSET(G), whose translation
into OGFs necessitates the Polya exponential of Chapter I (p. 34):

F(z) = Exp(G(2)) where Exp(h(2)) := exp (h(z) + %h(z2) + éh(f) +- ) .

Once more, the induction hypothesis is assumed for G. If G is a polynomial, then F
is a rational function with poles at roots of unity only. Thus, pr = 1 and 77 = o0
in that particular case. In the general case of 7 = MSET(G) with G infinite, we start
by fixing arbitrarily a number » such that 0 < r < pg < 1 and examine F(z) for
z € (0, r). The expression for F rewrites as

Exp(G(z)) = ¢“@ - exp <%G(z2) + %G(f) .. ) .

The first factor is analytic for z on (0, pg) since, the exponential function being entire,
Y has the singularities of G. As to the second factor, one has G(0) = 0 (in order
for the set construction to be well-defined), while G (x) is convex for x € [0, r] (since
its second derivative is positive). Thus, there exists a positive constant K such that
G(x) < Kx when x € [0, r]. Then, the series %G(zz) + %G(z3) + - - - has its terms
dominated by those of the convergent series

Koy Ky 2 e
2r+3r + ... =Klog(l—r) Kr.

By a well-known theorem of analytic function theory, a uniformly convergent sum of
analytic functions is itself analytic; consequently, %G(zz) + %G(z3) + - - - is analytic
at all z of (0, r). Analyticity is then preserved by the exponential, so that F'(z), being
analytic at z € (0, r) for any r < pg has a radius of convergence that satisfies pr >
oG- On the other hand, since F'(z) dominates termwise G(z), one has pr < pg. Thus
finally one has pr = pg. Also, ¢ = +oo implies T = +00.

A parallel discussion covers the case of the powerset construction (PSET) whose
associated functional Exp is a minor modification of the Pélya exponential Exp. The
cycle construction can be treated by similar arguments based on consideration of
“Pélya’s logarithm” as F = CYC(G) corresponds to

1
F(z) = Log where  Logh(z) =logh(2) + 5 logh(z?) +--- .

1-G@2)’
In order to conclude with the unlabelled case, it only remains to discuss the binary
constructors +, X, which giveriseto F = G+ H, F = G - H. Itis easily verified that

TThe present argument only establishes non-constructively the existence of a program, based on the
fact that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence.
Making explict this program and the involved parameters from the specification itself however represents a
much harder problem (that of “uniformity” with respect to specifications) that is not addressed here.
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pr = min(pg, pg). Computability is granted since the minimum of two computable
numbers is computable. That 7 = 400 in each case is immediate.

Labelled case. The labelled case is covered by the same type of argument as
above, the discussion being even simpler, since the ordinary exponential and logarithm
replace the Pélya operators Exp and Log. It is still a fact that all the EGFs of infinite
non-recursive classes are infinite at their dominant positive singularity, though the
radii of convergence can now be of any magnitude (compared to 1). ]

> IV.21. Restricted constructions. This is an exercise in induction. Theorem IV.8 is stated for
specifications involving the basic constructors. Show that the conclusion still holds if the corres-
ponding restricted constructions (R=,, <, K>, with £ being any of the basic constructors)
are also allowed. <

> IV.22. Syntactically decidable properties. For unlabelled classes JF, the property pr = 1 is
decidable. For labelled and unlabelled classes, the property pr = +00 is decidable. <

> IV.23. Pélya—Carlson and a curious property of OGFs. Here is a statement first conjectured
by Pélya, then proved by Carlson in 1921 (see [164, p. 323]): If a function is represented by
a power series with integer coefficients that converges inside the unit disc, then either it is a
rational function or it admits the unit circle as a natural boundary. This theorem applies in
particular to the OGF of any combinatorial class.

> IV.24. Trees are recursive structures only! General and binary trees cannot receive an iter-
ative specification since their OGFs assume a finite value at their Pringsheim singularity. [The
same is true of most simple families of trees; cf Proposition VI.6, p. 404].

> IV.25. Non-constructibility of permutations and graphs. The class P of all permutations
cannot be specified as a constructible unlabelled class since the OGF P(z) = ), n!z" has
radius of convergence 0. (It is of course constructible as a labelled class.) Graphs, whether
labelled or unlabelled, are too numerous to form a constructible class.

Theorem IV.8 establishes a link between analytic combinatorics, computability
theory, and symbolic manipulation systems. It is based on an article of Flajolet, Salvy,
and Zimmermann [255] devoted to such computability issues in exact and asymptotic
enumeration. Recursive specifications are not discussed now since they tend to give
rise to branch points, themselves amenable to singularity analysis techniques to be
fully developed in Chapters VI and VII. The inductive process, implied by the proof of
Theorem IV.8, that decorates a specification with the radius of convergence of each of
its subexpressions, provides a practical basis for determining the exponential growth
rate of counts associated to a non-recursive specification.

Example 1V4. Combinatorial trains. This purposely artificial example from [219] (see Fig-
ure IV.7) serves to illustrate the scope of Theorem IV.8 and demonstrate its inner mechanisms
at work. Define the class of all labelled trains by the following specification,

Tr = WaxSEQWa x SET(Pa)),
@n Wa = SEQ>1(PY),

Pl = ZxZx(1+Cyc(2)),

Pa = Cyc(2)xCyc(2).

In figurative terms, a train (7 r) is composed of a first wagon (WWa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers (Pa).
A wagon is itself composed of “planks” (/P£) conventionally identified by their two end points
(Z x Z) and to which a circular wheel (CYC(Z)) may optionally be attached. A passenger is
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Figure IV.7. The inductive determination of the radius of convergence of the EGF of
trains: (left) a hierarchical view of the specification of 7 r; (right) the corresponding
radii of convergence for each subspecification.

composed of a head and a belly that are each circular arrangements of atoms. Here is a depiction

of a random train:

885
Y

The translation into a set of EGF equations is immediate and a symbolic manipulation system
readily provides the form of the EGF of trains as

Ry
2 (1 +log((1 — z)—l)) (loz1=97h)

1=22(1+1og((1 - 7))

2 (1+10g((1 =97 h)
Tr(z) = 1-

(1=22 (141081 =97h))

together with the expansion

2 3 4 5 6 7
b4 Z b4 Z Z b4
§+6§+6OJ+520§+66605 +93408ﬂ+"' .

The specification (27) has a hierarchical structure, as suggested by the top representation of
Figure IV.7, and this structure is itself directly reflected by the form of the expression tree of the
GF Tr(z). Then, each node in the expression tree of 77 (z) can be tagged with the corresponding
value of the radius of convergence. This is done according to the principles of Theorem IV.8;

Tr(z) =2
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see the right diagram of Figure IV.7. For instance, the quantity 0.68245 associated to Wa(z) is
given by the sequence rule and is determined as the smallest positive solution of the equation

2 (1 —log(1 —z)_1> -1

The tagging process works upwards till the root of the tree is reached; here the radius of con-
vergence of Tr is determined to be p = 0.48512 - - -, a quantity that happens to coincide with
the ratio [149]Tr(z) / [ZSO]Tr(z) to more than 15 decimal places. ........................ [ |

IV.5. Rational and meromorphic functions

The last section has fully justified the First Principle of Coefficient Asymptotics
leading to the exponential growth formula f, < A” for the coefficients of an analytic
function f(z). Indeed, as we saw, one has A = 1/p, where p equals both the radius of
convergence of the series representing f and the distance of the origin to the dominant,
i.e., closest, singularities. We are going to start examining here the Second Principle,
already given on p. 227 and relative to the form

fn=A"0(n),
with 6 (n) the subexponential factor:

Second Principle of Coefficient Asymptotics. The nature of a function’s
singularities determines the associate subexponential factor (6 (n)).

In this section, we develop a complete theory in the case of rational functions (that is,
quotients of polynomials) and, more generally, meromorphic functions. The net result
is that, for such functions, the subexponential factors are essentially polynomials:

Polar singularities ~»  subexponential factors 8(n) of polynomial growth.

A distinguishing feature is the extremely good quality of the asymptotic approxima-
tions obtained; for naturally occurring combinatorial problems, 15 digits of accuracy
is not uncommon in coefficients of index as low as 50 (see Figure IV.8, p. 260 below
for a striking example).

IV.5.1. Rational functions. A function f(z) is a rational function iff it is of the
form f(z) = N(z)/D(z), with N(z) and D(z) being polynomials, which we may,
without loss of generality, assume to be relatively prime. For rational functions that
are analytic at the origin (e.g., generating functions), we have D(0) # O.

Sequences { f,}n,>0 that are coefficients of rational functions satisfy linear re-
currence relations with constant coefficients. This fact is easy to establish: com-
pute [z"]f(z) - D(z); then, with D(z) = do + d1z + -+ + d, 7", one has, for all

n > deg(N(2)),
> difuj=0.
j=0

The main theorem we prove now provides an exact finite expression for coeffi-
cients of f(z) in terms of the poles of f(z). Individual terms in these expressions are
sometimes called exponential-polynomials.
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Theorem IV.9 (Expansion of rational functions). If f(z) is a rational function that is
analytic at zero and has poles at points a1, a2, . . ., A, then its coefficients are a sum
of exponential-polynomials: there exist m polynomials {I1 j(x)};."zl such that, for n
larger than some fixed ny,

(28) f=1"1F @) = ) Tma;".

j=1
Furthermore the degree of I1; is equal to the order of the pole of f at aj minus one.

Proof. Since f(z) is rational it admits a partial fraction expansion. To wit:

¢
f@O=00+ ) ——,
(z—a)
(a.r)

where Q(z) is a polynomial of degree ng := deg(N) — deg(D) if f = N/D. Here «
ranges over the poles of f(z) and r is bounded from above by the multiplicity of « as
apole of f. Coefficient extraction in this expression results from Newton’s expansion,
1 (=" 1 (=D (n +r— 1) n

= = a "

e T (N

[z"]

The binomial coefficient is a polynomial of degree r — 1 in n, and collecting terms
associated with a given « yields the statement of the theorem. |

Notice that the expansion (28) is also an asymptotic expansion in disguise: when
grouping terms according to the «’s of increasing modulus, each group appears to be
exponentially smaller than the previous one. In particular, if there is a unique dominant
pole, [a1| < |oz| < |a3| < ---, then

fn ~ o " (n),

and the error term is exponentially small as it is O(a, "n") for some r. A classical
instance is the OGF of Fibonacci numbers,

Z

F(z) = ,
@ 1—z—-22

N&]

—1+4+45 11—
%f = 0.61803 and —— = = —1.61803, 5o that

with poles at

n

Lo Lo ¥ + O( ! )
= —(p —_ _¢ = — —),
SV Y N T
with ¢ = (1 4+ +/5)/2 the golden ratio, and § its conjugate.

B> IV.26. A simple exercise. Let f(z) be as in Theorem IV.9, assuming additionally a single
dominant pole «1, with multiplicity . Then, by inspection of the proof of Theorem IV.9:

["]F(z) =F

C _ _ 1 . .

fu = o) =i+ o= with C = lim (z — o)) f(2).
r—n! n 7=

This is certainly the most direct illustration of the Second Principle: under the assumptions, a

one-term asymptotic expansion of the function at its dominant singularity suffices to determine

the asymptotic form of the coefficients. <
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Example 1V.5. Qualitative analysis of a rational function. This is an artificial example de-
signed to demonstrate that all the details of the full decomposition are usually not required. The
rational function |

(=221 =231 - §)
has a pole of order 5 at z = 1, poles of order 2 at z = w, W w=e
a pole of order 3 at z = —1, and simple poles at z = /2. Therefore,

fa = Pr(n) + Py(mo™" + P3(mo ™" + Py(n) (=" +
+Ps(m)27"2 4 Po(n)(—1)"27"/?
where the degrees of Py, ..., Pgare 4,1,1,2,0,0. For an asymptotic equivalent of f,, only
the poles at roots of unity need to be considered since they correspond to the fastest exponential
growth; in addition, only z = 1 needs to be considered for first-order asymptotics; finally, at

z = 1, only the term of fastest growth needs to be taken into account. In this way, we find the
correspondence

fo~ 1 1 :>f~1<n+4>~n4
¢ 32.23.(H) -2 ! 32.23.(H\ 4 864

The way the analysis can be developed without computing details of partial fraction expansion
IS Y PICAL. .ottt e |

f@) =

2im/3 3 cubic root of unity),

Theorem IV.9 applies to any specification leading to a GF that is a rational func-
tion3. Combined with the qualitative approach to rational coefficient asymptotics, it
gives access to a large number of effective asymptotic estimates for combinatorial
counting sequences.

Example 1V.6. Asymptotics of denumerants. Denumerants are integer partitions with sum-
mands restricted to be from a fixed finite set (Chapter I, p. 43). We let P be the class relative
toset 7 C Z-, with the known OGF,
T 1
Pro=1] —=%
weT
Without loss of generality, we assume that gcd(7") = 1; that is, the coin denomination are not
all multiples of a number d > 1.
A particular case is the one of integer partitions whose summands are in {1, 2, ..., r},

plh r}(Z): 1—[ [ —zm

The GF has all its poles being roots of unity. At z = 1, the order of the pole is r, and one has

1
(Loor) () ~ L
P~ o

as z — 1. Other poles have strictly smaller multiplicity. For instance the multiplicity of z = —1
is equal to the number of factors (1 — Z2J )_1 in P17} which is the same as the number of
coin denominations that are even; this last number is at most r — 1 since, by the gcd assumption
gcd(7T) = 1, at least one is odd. Similarly, a primitive gth root of unity is found to have

8In Part A, we have been occasionally led to discuss coefficients of some simple enough rational
functions, thereby anticipating the statement of the theorem: see for instance the discussion of parts in
compositions (p. 168) and of records in sequences (p. 190).
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multiplicity at most r — 1. It follows that the pole z = 1 contributes a term of the form n” -1

to the coefficient of index n, while each of the other poles contributes a term of order at most
n" 2. We thus find
1

1,..., -1 .
PVE ) ~ Crnr with Cr = m

The same argument provides the asymptotic form of PnT , since, to first order asymptotics,
only the pole at z = 1 counts.
Proposition IV.2. Let T be a finite set of integers without a common divisor (ged(7) = 1).
The number of partitions with summands restricted to T satisfies
T 1 nrfl .
Py ~ = DU with Tt := l_[ w, r:=card(7).
weT
For instance, in a strange country that would have pennies (1 cent), nickels (5 cents), dimes
(10 cents), and quarters (25 cents), the number of ways to make change for a total of n cents is
1 1 ndond
1-21 =251 -z191-225 1-5-10-253! 7500’
ASYMPLOICALLY. .ottt e |

("]

IV.5.2. Meromorphic functions. An expansion similar to that of Theorem IV.9
(p- 256) holds true for coefficients of a much larger class; namely, meromorphic func-
tions.
Theorem IV.10 (Expansion of meromorphic functions). Let f(z) be a function mero-
morphic at all points of the closed disc |z| < R, with poles at points a1, a2, . .., Qp.
Assume that f(z) is analytic at all points of |z| = R and at z = 0. Then there exist m
polynomials {T1 j(x)};.": | Such that:

(29) fn=12"1f@) = Zl'lj(n)aj_" + OR™).

j=1
Furthermore the degree of Tl is equal to the order of the pole of f at aj minus one.

Proof. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(1) Subtracted singularities. Around any pole «, f(z) can be expanded locally:

(30) f@ = ) carz—a)f
k>—M
31) = S¢()+ Hy(2)

where the “singular part” Sy (z) is obtained by collecting all the terms with index in
[-M .. — 1] (that is, forming Sy (z) = Ny (2)/(z — )M with Ny(z) a polynomial
of degree less than M) and H,(z) is analytic at . Thus setting S(z) := Zj Saj (2),
we observe that f(z) — S(z) is analytic for |z| < R. In other words, by collecting
the singular parts of the expansions and subtracting them, we have “removed” the sin-
gularities of f(z), whence the name of method of subtracted singularities sometimes
given to the method [329, vol. 2, p. 448].
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Taking coefficients, we get:

["1f(2) = [2"15(2) + [2"1(f (2) — S(2)).

The coefficient of [z"] in the rational function S(z) is obtained from Theorem IV.9.
It suffices to prove that the coefficient of z" in f(z) — S(z), a function analytic for
|z| < R,is O(R™™). This fact follows from trivial bounds applied to Cauchy’s integral
formula with the contour of integration being A = {z : |z| = R}, as in the proof of
Proposition IV.1, p 246 (saddle-point bounds):

\ ! dz | _ 100
E ](f(z)—S(z))‘ = E‘ /lz:R(f(z)—S(Z)) oi1| = o 2R

(ii) Contour integration. There is another line of proof for Theorem I'V.10 which
we briefly sketch as it provides an insight which is useful for applications to other
types of singularities treated in Chapter VI. It consists in using Cauchy’s coefficient
formula and “pushing” the contour of integration past singularities. In other words,
one computes directly the integral

1 dz

In=— f(@)

= i =R Zn-H

by residues. There is a pole at z = 0 with residue f,, and poles at the «; with residues
corresponding to the terms in the expansion stated in Theorem IV.10; for instance, if
f(z) ~c/(z—a)asz— a,then

—n—1. _ _ _ ¢ —-n—1. _ __ _ ¢
Res(f(2)z ;z2=a) _Res((z_a)z 'z _a> = 7

Finally, by the same trivial bounds as before, 1, is O(R™"). |
> IV.27. Effective error bounds. The error term O(R™") in (29), call it ¢, satisfies
lenl < R™" - sup |f(2)].
lz|=R

This results immediately from the second proof. This bound may be useful, even in the case of
rational functions to which it is clearly applicable. <

As a consequence of Theorem IV.10, all GFs whose dominant singularities are
poles can be easily analysed. Prime candidates from Part A are specifications that
are “driven” by a sequence construction, since the translation of sequences involves a
quasi-inverse, itself conducive to polar singularities. This covers in particular surjec-
tions, alignments, derangements, and constrained compositions, which we treat now.

Example IV.7. Surjections. These are defined as sequences of sets (R = SEQ(SET>1(Z)))
with EGF R(z) = (2 — ez)_1 (see p. 106). We have already determined the poles in Exam-
ple IV.2 (p. 244), the one of smallest modulus being at log2 = 0.69314. At this dominant
pole, one finds R(z) ~ —%(z —log2)~L. This implies an approximation for the number of
surjections:

. 1 n+1
Ra =nll"IR() ~ E(n),  with &(n) :=7(log2) '
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4683|4683
545835545835
102247563 102247563
28091567595|28091567595
10641342970443|10641342970443
5315654681981355|5315654681981355
3385534663256845323 | 338553466325684532 6
2677687796244384203115|2677687796244384203 088
2574844419803190384544203|2574844419803190384544 450

2958279121074145472650648875
4002225759844168492486127539083
6297562064950066033518373935334635
11403568794011880483742464196184901963
23545154085734896649184490637144855476395

295827912107414547265064 6597
40022257598441684924861275 55859
6297562064950066033518373935416161
1140356879401188048374246419617 4527074
2354515408573489664918449063714 5314147690

Figure IV.8. The surjection numbers pyramid: forn = 2,4, ..., 32, the exact values
of the numbers R, (left) compared to the approximation [£(n) | with discrepant digits
in boldface (right).

Figure IV.8 gives, for n = 2,4, ..., 32, a table of the values of the surjection numbers (left)
compared with the asymptotic approximation rounded® to the nearest integer, [E(n)]: Itis
piquant to see that [£(n)] provides the exact value of R, for all valuesof n = 1, ..., 15, and
it starts losing one digit for n = 17, after which point a few “wrong” digits gradually appear,
but in very limited number; see Figure IV.8. (A similar situation prevails for tangent numbers
discussed in our Invitation, p. 5.) The explanation of such a faithful asymptotic representation
owes to the fact that the error terms provided by meromorphic asymptotics are exponentially
small. In effect, there is no other pole in |z| < 6, the next ones being at log2 & 2imw with
modulus of about 6.32. Thus, for r, = [z"]R(z), there holds

1 n+1
| — o®6™").
(o3) o6

For the double surjection problem, R*(z) = (2 + z — €%), we get similarly

R, 1

(32) 5

n!

["1R* () ~ (p*H~ 1,

ert — 1
with p* = 1.14619 the smallest positive root of e?” — p* = 2. ......coviieiiiiiii. .. |

It is worth reflecting on this example as it is representative of a “production chain”
based on the two successive implications which are characteristic of Part A and Part B
of the book:

R = SEQ(SET>1(2)) = R() = Dy
11 1 1
~ - N R, ~ —(log2) "1
D eer 2= log2) 1o~ 5 log2)

9The notation [x] represents x rounded to the nearest integer: [x] := [x + %J‘
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The first implication (written “==", as usual) is provided automatically by the sym-
bolic method. The second one (written here “— ") is a direct translation from the ex-
pansion of the GF at its dominant singularity to the asymptotic form of coefficients; it
is valid conditionally upon complex analytic conditions, here those of Theorem IV.10.

Example IV.8. Alignments. These are sequences of cycles (O = SEQ(CYC(Z2)), p. 119) with
EGF

1
0@R) = ———
There is a singularity when log(1 — 27! =1, whichis at p = 1 — e~ ! and which arises before

z = 1, where the logarithm becomes singular. Then, the computation of the asymptotic form of
[2"10(z) only requires a local expansion near p,

-1 —1

—e
0@)~ ———= — "10(2) ~ ——————,
@~ — 210G ~ T~
and the coefficient estimates result from Theorem IV.10. ............................... | |

> IV.28. Some “supernecklaces”. One estimates

1 1
("1 log [ ————— | ~=(—eH7™",
1_10g17—1 n

where the EGF enumerates labelled cycles of cycles (supernecklaces, p. 125). [Hint: Take
derivatives.] <

Example IV.9. Generalized derangements. The probability that the shortest cycle in a random
permutation of size n has length larger than £ is

1 JR— Jk

(100 ). where DO@) = ——eTTTT T,
— 2

as results from the specification D® = SET(CYC=(Z2)). For any fixed k, one has (easily)
D®) (z) ~ ¢~ He /(1 —z) as z — 1, with 1 being a simple pole. Accordingly the coefficients
[z”]D(k) (z) tend to e™ He asn — 00, In summary, due to meromorphy, we have the character-
istic implication
— Hk
PP ~—  — W)~ et

Since there is no other singularity at a finite distance, the error in the approximation is (at least)
exponentially small,

33 e TR = e o™,

-z
for any R > 1. The cases k = 1, 2 in particular justify the estimates mentioned at the beginning
of this chapter, on p. 228. .. ... . e ]

This example is also worth reflecting upon. In prohibiting cycles of length < k,
we modify the EGF of all permutations, (1 — z)~! by a factor e~%/ 1==2*/k  Tpe
resulting EGF is meromorphic at 1; thus only the value of the modifying factor at
z = | matters, so that this value, namely e~ %, provides the asymptotic proportion
of k—derangements. We shall encounter more and more shortcuts of this sort as we
progress into the book.
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> IV.29. Shortest cycles of permutations are not too long. Let S, be the random variable
denoting the length of the shortest cycle in a random permutation of size n. Using the circle

|z| = 2 to estimate the error in the approximation e~ Hi above, one finds that, for k < logn,

1 Hk+t
P(S, > k) — e~ Hie| < 2762 " ,
which is exponentially small in this range of k-values. Thus, the approximation e He remains

usable when £ is allowed to tend sufficiently slowly to co with n. One can also explore the
possibility of better bounds and larger regions of validity of the main approximation. (See
Panario and Richmond’s study [470] for a general theory of smallest components in sets.) <]

> IV.30. Expected length of the shortest cycle. The classical approximation of the harmonic
numbers, Hy ~ logk + y, suggests e~ /k as a possible approximation to (33) for both large n
and large k in suitable regions. In agreement with this heuristic argument, the expected length
of the shortest cycle in a random permutation of size n is effectively asymptotic to

n -y
e
E:iw ~7 logn,
p e gn

k=1
a property first discovered by Shepp and Lloyd [540]. <

The next example illustrates the analysis of a collection of rational generating
functions (Smirnov words) paralleling nicely the enumeration of a special type of
integer composition (Carlitz compositions), which belongs to meromorphic asymp-
totics.

Example IV.10. Smirnov words and Carlitz compositions. Bernoulli trials have been discussed
in Chapter III (p. 204), in relation to weighted word models. Take the class WV of all words over
an r—ary alphabet, where letter j is assigned probability p; and letters of words are drawn
independently. With this weighting, the GF of all words is W(z) = 1/(1 =} p;z) = (1 —
2)~ L. Consider the problem of determining the probability that a random word of length n is of
Smirnov type, that is, all blocks of length 2 are formed with unequal letters. In order to avoid
degeneracies, we impose » > 3 (since for » = 2, the only Smirnov words are ababa...and
babab...).

By our discussion in Example I11.24 (p. 204), the GF of Smirnov words (again with the
probabilistic weighting) is

= 7_ ij .
- I+pjz

By monotonicity of the denominator, this rational function has a dominant singularity at the
unique positive solution of the equation

r .
(34) _Pir
i I+pjp
and the point p is a simple pole. Consequently, p is a well-characterized algebraic number
defined implicitly by a polynomial equation of degree < r. One can furthermore check, by
studying the variations of the denominator, that the other roots are all real and negative; thus,
p is the unique dominant singularity. (Alternatively, appeal to the Perron—Frobenius argument
of Example V.11, p. 349) It follows that the probability for a word to be Smirnov is, not too
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surprisingly, exponentially small, the precise formula being

-1
r

- pjp
["1S(x) ~C-p7", C= _—
; (14 pjp)?
J=
A similar analysis, using bivariate generating functions, shows that in a random word of length n
conditioned to be Smirnov, the letter j appears with asymptotic frequency

r

1 Dj Z Dj
35 = ==, = I ——
35) i O (1+pjp)? Q e (1+pjp)?

in the sense that the mean number of occurrences of letter j is asymptotic to g;jn. All these
results are seen to be consistent with the equiprobable letter case p; = 1/r, for which p =
r/(r —1).

Carlitz compositions illustrate a limit situation, in which the alphabet is infinite, while
letters have different sizes. Recall that a Carlitz composition of the integer n is a composition
of n such that no two adjacent summands have equal value. By Note II1.32, p. 201, such
compositions can be obtained by substitution from Smirnov words, to the effect that

-1
00

(36) K=|1- Z

j=1

7d
142/

The asymptotic form of the coefficients then results from an analysis of dominant poles. The
OGF has a simple pole at p, which is the smallest positive root of the equation

o0

37) - =1.

(Note the analogy with (34) due to commonality of the combinatorial argument.) Thus:
K, ~C-B", C =0.4563634740, B =1.7502412917.

There, B = 1/p with p as in (37). In a way analogous to Smirnov words, the asymptotic
frequency of summand k appears to be proportional to kpk /(1+ 052 see [369, 421] for further
03 0] 1) (<1 PP |

IV.6. Localization of singularities

There are situations where a function possesses several dominant singularities,
that is, several singularities are present on the boundary of the disc of convergence.
We examine here the induced effect on coefficients and discuss ways to locate such
dominant singularities.

IV.6.1. Multiple singularities. In the case when there exists more than one
dominant singularity, several geometric terms of the form B” sharing the same mod-
ulus (and each carrying its own subexponential factor) must be combined. In simpler
situations, such terms globally induce a pure periodic behaviour for coefficients that is
easy to describe. In the general case, irregular fluctuations of a somewhat arithmetic
nature may prevail.
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Figure IV.9. The coefficients [z"]f(z) of the rational function f(z) =

-3 -1
<1 + 1.02z4) <1 - 1.05z5) illustrate a periodic superposition of regimes, de-
pending on the residue class of n modulo 40.

Pure periodicities. When several dominant singularities of f(z) have the same
modulus and are regularly spaced on the boundary of the disc of convergence, they
may induce complete cancellations of the main exponential terms in the asymptotic
expansion of the coefficient f,,. In that case, different regimes will be present in the
coefficients f,, based on congruence properties of n. For instance, the functions

1

1+22 1-73

exhibit patterns of periods 4 and 3, respectively, this corresponding to poles that are
roots of unity or order 4 (i), and 3 (& : @> = 1). Then, the function

=1-22+ -+ =14+2+4+7+,

n I 2-22+83+4+ B8+ -0
1+22 1-23 1—z12
has coefficients that obey a pattern of period 12 (for example, the coefficients ¢, such
thatn = 1,5, 6,7, 11 modulo 12 are zero). Accordingly, the coefficients of

1
[z"1¥(2) where Y@ =90+ ——

1—z/2’
manifest a different exponential growth when n is congruent to 1, 5,6, 7, 11 mod 12.
See Figure IV.9 for such a superposition of pure periodicities. In many combinatorial
applications, generating functions involving periodicities can be decomposed at sight,
and the corresponding asymptotic subproblems generated are then solved separately.

o) =

B> IV.31. Decidability of polynomial properties. Given a polynomial p(z) € Q[z], the following
properties are decidable: (i) whether one of the zeros of p is a root of unity; (ii) whether one
of the zeros of p has an argument that is commensurate with . [One can use resultants. An
algorithmic discussion of this and related issues is given in [306].] <

Nonperiodic fluctuations. As a representative example, consider the polynomial
D(z) = 1 — £z + 72, whose roots are
3 4 3

4 _ 4
o=—-+i—, a=-—i-,
5

5 5 5
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Figure IV.10. The coefficients of f(z) = 1/(1 — gz + z2) exhibit an apparently
chaotic behaviour (left) which in fact corresponds to a discrete sampling of a sine
function (right), reflecting the presence of two conjugate complex poles.

both of modulus 1 (the numbers 3,4, 5 form a Pythagorean triple), with argument
+6y where 6y = arctan(%) = 0.92729. The expansion of the function f(z) = 1/D(z)
starts as

_1+6+112 84 5 719 4 25745+
1—S4+22 5 250 150 6250 3125 ’
the sign sequence being
FH+ -ttt —— =+ +———,

which indicates a somewhat irregular oscillating behaviour, where blocks of three or
four pluses follow blocks of three or four minuses.

The exact form of the coefficients of f results from a partial fraction expansion:
a b 1 3 1 3

= ith a=-+-i, b=-—-i,

FRO=1= g Tz W a=g Ty 27§

where o = /%, @ = 7% Accordingly,

sin((n + 1)6p)

sin(fp)

This explains the sign changes observed. Since the angle 6 is not commensurate with
7, the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is
present in the sign patterns. See Figure IV.10 for a rendering and Figure V.3 (p. 299)
for a meromorphic case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur if several such singu-
larities with non-commensurate arguments combine, and some open problem remain
even in the analysis of linear recurring sequences. (For instance no decision proce-
dure is known to determine whether such a sequence ever vanishes [200].) Fortunately,
such problems occur infrequently in combinatorial applications, where dominant poles
of rational functions (as well as many other functions) tend to have a simple geometry
as we explain next.

> IV.32. Irregular fluctuations and Pythagorean triples. The quantity 6y/m is an irrational
number, so that the sign fluctuations of (38) are “irregular” (i.e., non-purely periodic). [Proof:
a contrario. Indeed, otherwise, « = (3 4 4i)/5 would be a root of unity. But then the minimal

(38) fo=ae™ " 4 be" =
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polynomial of & would be a cyclotomic polynomial with non-integral coefficients, a contradic-
tion; see [401, VIIL.3] for the latter property.] <

> IV.33. Skolem-Mahler-Lech Theorem. Let f, be the sequence of coefficients of a rational
function, f(z) = A(z)/B(z), where A, B € Q[z]. The set of all n such that f; = 0 is the
union of a finite (possibly empty) set and a finite number (possibly zero) of infinite arithmetic
progressions. (The proof is based on p-adic analysis, but the argument is intrinsically non-
constructive; see [452] for an attractive introduction to the subject and references.) <

Periodicity conditions for positive generating functions. By the previous dis-
cussion, it is of interest to locate dominant singularities of combinatorial generating
functions, and, in particular, determine whether their arguments (the “dominant direc-
tions”) are commensurate to 2. In the latter case, different asymptotic regimes of the
coefficients manifest themselves, depending on the congruence properties of n.

Definition IV.5. For a sequence (f,)) with GF f (z), the support of f, denoted Supp(f),
is the set of all n such that f,, # 0. The sequence (f,), as well as its GF f(z), is said
to admit a span d if for some r, there holds

Supp(f) Sr+dZso={r, r+d, r+2d,...}.

The largest span, p, is the period, all other spans being divisors of p. If the period is
equal to 1, the sequence and its GF are said to be aperiodic.

If f is analytic at 0, with span d, there exists a function g analytic at 0 such
that f(z) = z’g(zd), for some r € Zxp. With E := Supp(f), the maximal span
[the period] is determined as p = gcd(E — E) (pairwise differences) as well as p =
gcd(E — {r}) where r := min(E). For instance sin(z) has period 2, cos(z) + cosh(z)
has period 4, 3 eZS has period 5, and so on.

In the context of periodicities, a basic property is expressed by what we have
chosen to name figuratively the “Daffodil Lemma”. By virtue of this lemma, the span
of a function f with non-negative coefficients is related to the behaviour of | f(z)| as
z varies along circles centred at the origin (Figure IV.11).

Lemma IV.1 (“Daffodil Lemma”). Let f(z) be analytic in |z| < p and have non-
negative coefficients at 0. Assume that f does not reduce to a monomial and that for
some non-zero non-positive z satisfying |z| < p, one has

|f @] = fzD.

Then, the following hold: (i) the argument of z must be commensurate to 27, i.e.,
7z = Re'¥ with 6/2n) = % € Q (an irreducible fraction) and 0 < r < p; (ii) f
admits p as a span.

Proof. This classical lemma is a simple consequence of the strong triangle inequality.
Indeed, for Part (i) of the statement, with z = Re'?, the equality | f(z)| = f(]z])
implies that the complex numbers f, R"¢'*?, for n € Supp(f), all lie on the same ray
(a half-line emanating from 0). This is impossible if 8 /(2m) is irrational, since, by as-
sumption, the expansion of f contains at least two monomials (one cannot have n16 =
ny0 (mod 2m)). Thus, 6/(27) = r/p is a rational number. Regarding Part (i7), con-
sider two distinct indices n and ny in Supp(f) and let 6/(2w) = r/p. Then, by
the strong triangle inequality again, one must have (n; — n2)6 = 0 (mod 27); that
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Figure IV.11. Illustration of the “Daffodil Lemma”: the images of circles z = Re'?

(R = 0.4..0.8) rendered by a polar plot of | f(z)| in the case of f(z) = 176125 +
22/(1 — £10)), which has span 5.

is, (nj —nj)r/p = (ki — k), for some ki, ky € Z > 0. This is only possible if p
divides n; — n». Hence, p is a span. |

Berstel [53] first realized that rational generating functions arising from regular

languages can only have dominant singularities of the form pw/, where w is a certain
root of unity. This property in fact extends to many non-recursive specifications, as
shown by Flajolet, Salvy, and Zimmermann in [255].
Proposition I'V.3 (Commensurability of dominant directions). Let S be a constructible
labelled class that is non-recursive, in the sense of Theorem IV.8. Assume that the
EGF S(2) has a finite radius of convergence p. Then there exists a computable inte-
ger d > 1 such that the set of dominant singularities of S(z) is contained in the set
{pw’}, where w® = 1.

Proof. (Sketch; see [53, 255]) By definition, a non-recursive class S is obtained from
1 and Z by means of a finite number of union, product, sequence, set, and cycle
constructions. We have seen earlier, in Section IV.4 (p. 249), an inductive algorithm
that determines radii of convergence. It is then easy to enrich that algorithm and
determine simultaneously (by induction on the specification) the period of its GF and
the set of dominant directions.

The period is determined by simple rules. For instance, if S =7 xU (S =T - U)
and T, U are infinite series with respective periods p, g, one has the implication

Supp(T) € a + pZ, Supp(U) € b+qZ = Supp(S) S a+b+E7Z,
with & = ged(p, ¢). Similarly, for S = SEQ(7),
Supp(T) C a + pZ == Supp(S) € 8Z,

where now § = ged(a, p).
Regarding dominant singularities, the case of a sequence construction is typical.
It corresponds to g(z) = (1 — f(z))~'. Assume that f(z) = z%h(zP), with p the
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maximal period, and let p > 0 be such that f(p) = 1. The equations determining
any dominant singularity ¢ are f(¢) = 1, |¢| = p. In particular, the equations imply
£ ()| = f(<]), so that, by the Daffodil Lemma, the argument of ¢ must be of the
form 277 /s. An easy refinement of the argument shows that, for § = gcd(a, p), all the
dominant directions coincide with the multiples of 2w /§. The discussion of cycles is
entirely similar since log(1 — f)~! has the same dominant singularities as (1 — f) ™.
Finally, for exponentials, it suffices to observe that e/ does not modify the singularity
pattern of f, since exp(z) is an entire function. |

B> IV.34. Daffodil lemma and unlabelled classes. Proposition IV.3 applies to any unlabelled
class S that admits a non-recursive specification, provided its radius of convergence p satisfies
p < 1. (When p = 1, there is a possibility of having the unit circle as a natural boundary, a
property that is otherwise decidable from the specification.) The case of regular specifications
will be investigated in detail in Section V. 3, p. 300. <

Exact formulae. The error terms appearing in the asymptotic expansion of coef-
ficients of meromorphic functions are already exponentially small. By peeling off the
singularities of a meromorphic function layer by layer, in order of increasing modulus,
one is led to extremely precise, sometimes even exact, expansions for the coefficients.
Such exact representations are found for Bernoulli numbers B,,, surjection numbers
R, as well as Secant numbers E3, and Tangent numbers E», 1, defined by

o n

B, < = ‘ (Bernoulli numbers)
n! e — 1
n=0
7 1
R, — = (Surjection numbers)
= n! 2 — et
(39) = ]
Z Exy—— = (Secant numbers)
= 2n)! cos(z)
0 Z2n+l
E —_— = t T t b .
,12_(:) 2n+1 2n+ Dl an(z) (Tangent numbers)

Bernoulli numbers. These numbers traditionally written B, can be defined by their
EGF B(z) = z/(e* — 1), and they are central to Euler—-Maclaurin expansions (p. 726).
The function B(z) has poles at the points y; = 2ikmw, with k € Z\ {0}, and the residue
at xx is equal to yy,

P - )

e —1  z—xk
The expansion theorem for meromorphic functions is applicable here: start with the
Cauchy integral formula, and proceed as in the proof of Theorem IV.10, using as
external contours a large circle of radius R that passes half-way between poles. As R
tends to infinity, the integrand tends to O (as soon as n > 2) because the Cauchy kernel
727"~ 1 decreases as an inverse power of R while the EGF remains O (R). In the limit,
corresponding to an infinitely large contour, the coefficient integral becomes equal to
the sum of all residues of the meromorphic function over the whole of the complex
plane.
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From this argument, we get the representation B, = —n! ZkeZ\ oy Xk ". This
verifies that B, = 0 if n is odd and n > 3. If n is even, then grouping terms two by
two, we get the exact representation (which also serves as an asymptotic expansion):

o]

Ban —1~1-2n_-2 1
40 —— = (=" Ty E —.
40 @~ P T
Reverting the equality, we have also established that
B, 00 1 z
_ (_1\"—1n2n—1_12n n : _ — n
c@2n) = (=)' 27" 'y eIk with é'(S)—kE_l o B, =n![z ]ez—l’

a well-known identity that provides values of the Riemann zeta function £ (s) at even
integers as rational multiples of powers of .

Surjection numbers. In the same vein, the surjection numbers have EGF R(z) =
(2 — €%)~! with simple poles at

1 1
Xk = log2 + 2ikm where R(z) ~ = .
2 Xk —2

Since R(z) stays bounded on circles passing half-way in between poles, we find the
exact formula, R, = %n! Y ke Xk "=1 An equivalent real formulation is

R, 1/ 1\ & 1)6 2k
@y —=-(— + Z cos((n + 1)6x) , O = arctan(—n),
n!  2\log2 = (log? 2 + 4k272)(n+1)/2 log?2

which exhibits infinitely many harmonics of fast decaying amplitude.

> IV.35. Alternating permutations, tangent and secant numbers. The relation (40) also provides

a representation of the fangent numbers since En,_; = (—1)""1B,,4" (4" — 1)/(2n). The
secant numbers E»,, satisfy

o]

G0 @
2k 4+ D2+l T 2(2n)!

2n»
k=1

which can be read either as providing an asymptotic expansion of E5,, or as an evaluation of the
sums on the left (the values of a Dirichlet L-function) in terms of . The asymptotic number of
alternating permutations (pp. 5 and 143) is consequently known to great accuracy. <

> IV.36. Solutions to the equation tan(x) = x. Let x,; be the nth positive root of the equation

tan(x) = x. For any integer r > 1, the sum S(r) := >, x, Zisa computable rational number.

For instance: S, = 1/10, S4 = 1/350, S¢ = 1/7875. [From mathematical folklore.] <

IV.6.2. Localization of zeros and poles. We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of
poles of meromorphic functions. A detailed treatment of this topic may be found in
Henrici’s book [329, §4.10].

Let f(z) be an analytic function in a region €2 and let y be a simple closed curve
interior to €2, and on which f is assumed to have no zeros. We claim that the quantity

1 (@

(42) N(f; V)ZE mdz
14
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exactly equals the number of zeros of f inside y counted with multiplicity. [Proof:
the function f’/f has its poles exactly at the zeros of f, and the residue at each pole «
equals the multiplicity of « as a root of f; the assertion then results from the residue
theorem. ]

Since a primitive function (antiderivative) of f’/f is log f, the integral also
represents the variation of log f along y, which is written [log f],. This varia-
tion itself reduces to 2imw times the variation of the argument of f along y, since
log(re'®) = logr + i6 and the modulus r has variation equal to 0 along a closed
contour ([logr], = 0). The quantity [8], is, by its definition, 27 multiplied by
the number of times the transformed contour f(y) winds about the origin, a number
known as the winding number. This observation is known as the Argument Principle:

Argument Principle. The number of zeros of f (z) (counted with multiplic-
ities) inside the simple loop y equals the winding number of the transformed
contour f(y) around the origin.

By the same argument, if f is meromorphic in 2 > y, then N(f; y) equals the differ-
ence between the number of zeros and the number of poles of f inside y, multiplicities
being taken into account. Figure IV.12 exemplifies the use of the argument principle
in localizing zeros of a polynomial.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem. Let the functions f(z) and g(z) be analytic in a region
containing in its interior the closed simple curve y. Assume that f and g
satisfy |g(z)| < |f(z)| on the curve y. Then f(z) and f(z) + g(z) have the
same number of zeros inside the interior domain delimited by y .

An intuitive way to visualize Rouché’s Theorem is as follows: since |g| < | f|, then
f(y) and (f + g)(y) must have the same winding number.
> IV.37. Proof of Rouché’s theorem. Under the hypothesis of Rouché’s theorem, for0 < ¢ < 1,

the function 4(z) = f(z) 4+ tg(z) is such that N (h; y) is both an integer and an analytic, hence
continuous, function of ¢ in the given range. The conclusion of the theorem follows. <

B> IV.38. The Fundamental Theorem of Algebra. Every complex polynomial p(z) of degree n
has exactly n roots. A proof follows by Rouché’s theorem from the fact that, for large enough
|z| = R, the polynomial assumed to be monic is a “perturbation” of its leading term, z”. [Other
proofs can be based on Liouville’s Theorem (Note IV.7, p. 237) or on the Maximum Modulus
Principle (Theorem VIII.1, p. 545).] <

> IV.39. Symmetric function of the zeros. Let Si(f; y) be the sum of the kth powers of the
roots of equation f(z) = 0 inside y. One has

Oy
S ) = 3 / Tk,

by a variant of the proof of the Argument Principle. <

These principles form the basis of numerical algorithms for locating zeros of an-
alytic functions, in particular the ones closest to the origin, which are of most interest
to us. One can start from an initially large domain and recursively subdivide it until
roots have been isolated with enough precision—the number of roots in a subdomain
being at each stage determined by numerical integration; see Figure IV.12 and refer
for instance to [151] for a discussion. Such algorithms even acquire the status of full
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Sk oz o608 1 12 14 176 1]

Figure IV.12. The transforms of y; = {|z| = %} by P4(z) =1—-2z+ z4, for j=
1, 2, 3, 4, demonstrate, via winding numbers, that P4(z) has no zero inside |z| < 0.4,
one zero inside |z| < 0.8, two zeros inside |z| < 1.2 and four zeros inside |z| < 1.6.
The actual zeros are at pq = 0.54368, 1 and 1.11514 £+ 0.77184i.

proofs if one operates with guaranteed precision routines (using, for instance, careful
implementations of interval arithmetics).

IV.6.3. Patterns in words: a case study. Analysing the coefficients of a sin-
gle generating function that is rational is a simple task, often even bordering on the
trivial, granted the exponential-polynomial formula for coefficients (Theorem IV.9,
p- 256). However, in analytic combinatorics, we are often confronted with problems
that involve an infinite family of functions. In that case, Rouché’s Theorem and the
Argument Principle provide decisive tools for localizing poles, while Theorems IV.3
(Residue Theorem, p. 234) and IV.10 (Expansion of meromorphic functions, p. 258)
serve to determine effective error terms. An illustration of this situation is the analysis
of patterns in words for which GFs have been derived in Chapters I (p. 60) and III
(p. 212).

Example IV.11. Patterns in words: asymptotics. All patterns are not born equal. Surprisingly,
in a random sequence of coin tossings, the pattern HTT is likely to occur much sooner (after
8 tosses on average) than the pattern HHH (needing 14 tosses on average); see the preliminary
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Length (k) types c(2) P
k=3 aab, abb, bba, baa 1 0.61803
aba, bab 1422 0.56984
aaa, bbb 142422 0.54368
k=4 aaab, aabb, abbb,
bbba, bbaa, baaa 1 0.54368
aaba, abba, abaa,
bbab, baab, babb 1+ 73 0.53568
abab, baba 1422 0.53101
aaaa, bbbb 1+z+22+23 051879

Figure IV.13. Patterns of length 3, 4: autocorrelation polynomial and dominant
poles of S(z).

discussion in Example .12 (p. 59). Questions of this sort are of obvious interest in the statistical
analysis of genetic sequences [414, 603]. Say you discover that a sequence of length 100,000 on
the four letters A, G, C, T contains the pattern TACTAC twice. Can this be assigned to chance
or is this likely to be a meaningful signal of some yet unknown structure? The difficulty here
lies in quantifying precisely where the asymptotic regime starts, since, by Borges’s Theorem
(Note 1.35, p. 61), sufficiently long texts will almost certainly contain any fixed pattern. The
analysis of rational generating functions supplemented by Rouché’s theorem provides definite
answers to such questions, under Bernoulli models at least.

We consider here the class WV of words over an alphabet A of cardinality m > 2. A
pattern p of some length k is given. As seen in Chapters I and III, its autocorrelation polynomial
is central to enumeration. This polynomial is defined as c(z) = le‘;(l) Ccj 7/, where ¢ jis 1if
p coincides with its jth shifted version and O otherwise. We consider here the enumeration of
words containing the pattern p at least once, and dually of words excluding the pattern p. In
other words, we look at problems such as: What is the probability that a random text of length n
does (or does not) contain your name as a block of consecutive letters?

The OGF of the class of words excluding p is, we recall,

c(2)

43 S@) = —F——""——.
“43) @ K+ (1 —=m2)e(z)

(Proposition 1.4, p. 61), and we shall start with the case m = 2 of a binary alphabet. The func-
tion S(z) is simply a rational function, but the location and nature of its poles is yet unknown.
We only know a priori that it should have a pole in the positive interval somewhere between %
and 1 (by Pringsheim’s Theorem and since its coefficients are in the interval [1, 2"], for n large
enough). Figure IV.13 gives a small list, for patterns of length k = 3, 4, of the pole p of S(z)
that is nearest to the origin. Inspection of the figure suggests p to be close to % as soon as the
pattern is long enough. We are going to prove this fact, based on Rouché’s Theorem applied to
the denominator of (43).

As regards termwise domination of coefficients, the autocorrelation polynomial lies be-
tween 1 (for less correlated patterns like aaa...ab)and 1 +z 4+ --- + -1 (for the special
case aaa...aa). We set aside the special case of p having only equal letters, i.e., a “maxi-
mal” autocorrelation polynomial—this case is discussed at length in the next chapter. Thus, in
this scenario, the autocorrelation polynomial starts as 1 + zt + ... for some £ > 2. Fix the
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Figure IV.14. Complex zeros of B4 (1-22)c(@) represented as joined by a poly-
gonal line: (left) correlated pattern a(ba) 15, (right) uncorrelated pattern a(ab)ls.

number A = 0.6, which proves suitable for our subsequent analysis. On |z| = A, we have

A2
1-A

1

1— =—.
10

(44) @I 1= A2+ 43 40| =

In addition, the quantity (1 —2z) ranges over the circle of diameter [—0.2, 1.2] as z varies along
|z| = A, sothat |1 — 2z| > 0.2. All in all, we have found that, for |z| = A,

[(1 —2z)c(z)| > 0.02.

On the other hand, for k > 7, we have |z¥| < 0.017 on the circle |z| = A. Then, among
the two terms composing the denominator of (43), the first is strictly dominated by the second
along |z| = A. By virtue of Rouché’s Theorem, the number of roots of the denominator inside
|z] < A is then same as the number of roots of (1 — 2z)c(z). The latter number is 1 (due to the
root %) since ¢(z) cannot be 0 by the argument of (44). Figure IV.14 exemplifies the extremely
well-behaved characters of the complex zeros.

In summary, we have found that for all patterns with at least two different letters (¢ > 2)
and length k > 8, the denominator has a unique root in |z] < A = 0.6. The same property
for lengths k satisfying 4 < k < 7 is then easily verified directly. The case £ = 1 where we
are dealing with long runs of identical letters can be subjected to an entirely similar argument
(see also Example V.4, p. 308, for details). Therefore, unicity of a simple pole p of S(z) in the
interval (0.5, 0.6) is granted, for a binary alphabet.

It is then a simple matter to determine the local expansion of S(z) near z = p,

A ~ c(p)
~ A=
5@ Sop—2 2(p) — (1 = 2p)'(p) — kok— T

from which a precise estimate for coefficients results from Theorems IV.9 (p. 256) and IV.10
(p. 258).

The computation finally extends almost verbatim to non-binary alphabets, with p being
now close to 1/m. It suffices to use the disc of radius A = 1.2/m. The Rouché part of the
argument grants us unicity of the dominant pole in the interval (1/m, A) for k > 5 when
m = 3, and for k > 4 and any m > 4. (The remaining cases are easily checked individually.)



“book” — 2008/10/3 — 16:05 — page 274 — #288

274 1V. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

Proposition IV.4. Consider an m—ary alphabet. Let p be a fixed pattern of length k > 4, with
autocorrelation polynomial c(z). Then the probability that a random word of length n does not
contain p as a pattern (a block of consecutive letters) satisfies

5 n
(45) Pyy), (p does not occur) = Ap(m/o)_"_1 +0 ((8) > ;
where p = pp is the unique root in (%, %) of the equation &+ = mpez) = 0 and

Ap = me(p)/(me(p) — ¢ (p)(1 = mp) —kp*~1).

Despite their austere appearance, these formulae have indeed a fairly concrete content.
First, the equation satisfied by p can be put under the form mz = 1 + k /c(2), and, since
p is close to 1/m, we may expect the approximation (remember the use of “~” as meaning
“numerically approximately equal”, but not implying strict asymptotic equivalence)

1
mp ~ 1+ —
ym
where y 1= c(m™1) satisfies 1 < y < m/(m — 1). By similar principles, the probabilities

in (45) are approximately
LA™ /(ym*)
~ ~ ,—n/(ym
Pyy, (p does not occur) ~ (1 + , k) X e .

For a binary alphabet, this tells us that the occurrence of a pattern of length k starts becoming
likely when n is of the order of 2K, that is, when k is of the order of log, n. The more precise
moment when this happens must depend (via y) on the autocorrelation of the pattern, with
strongly correlated patterns having a tendency to occur a little late. (This vastly generalizes our
empirical observations of Chapter 1.) However, the mean number of occurrences of a pattern in
a text of length n does not depend on the shape of the pattern. The apparent paradox is easily
resolved, as we already observed in Chapter I: correlated patterns tend to occur late, while
being prone to appear in clusters. For instance, the “late” pattern aaa, when it occurs, still has
probability % to occur at the next position as well and cash in another occurrence; in contrast no
such possibility is available to the “early” uncorrelated pattern aab, whose occurrences must
be somewhat spread out.

Such analyses are important as they can be used to develop a precise understanding of
the behaviour of data compression algorithms (the Lempel-Ziv scheme); see Julien Fayolle’s
contribution [204] for details. ....... ... |

> IV.40. Multiple pattern occurrences. A similar analysis applies to the generating func-

tion ) (z) of words containing a fixed number s of occurrences of a pattern p. The OGF
is obtained by expanding (with respect to u) the BGF W (z, u) obtained in Chapter III, p. 212,
by means of an inclusion—exclusion argument. For s > 1, one finds

N s—1
s @) = zkﬁ, D) =+ (1 =mae@@), N@ =2+ -ma)e@ - 1),
which now has a pole of multiplicity s + 1 at z = p. <

B> IVA4L. Patterns in Bernoulli sequences—asymptotics. Similar results hold when letters are
assigned non-uniform probabilities, p; = P(a;), for a; € A. The weighted autocorrelation
polynomial is then defined by protrusions, as in Note II1.39 (p. 213). Multiple pattern occur-
rences can be also analysed. <
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IV.7. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have
been dealing with functions that are given by explicit expressions. Such situations
essentially cover non-recursive structures as well as the very simplest recursive ones,
such as Catalan or Motzkin trees, whose generating functions are expressible in terms
of radicals. In fact, as we shall see extensively in this book, complex analytic methods
are instrumental in analysing coefficients of functions implicitly specified by func-
tional equations. In other words: the nature of a functional equation can often provide
information regarding the singularities of its solution. Chapter V will illustrate this
philosophy in the case of rational functions defined by systems of positive equations;
a very large number of examples will then be given in Chapters VI and VII, where
singularities that are much more general than poles are treated.

In this section, we discuss three representative functional equations,

N C) - 247 =T
f@ =20 f@ =+ @D Q=1

associated, respectively, to Cayley trees, balanced 2-3 trees, and Pélya’s alcohols.
These illustrate the use of fundamental inversion or iteration properties for locating
dominant singularities and derive exponential growth estimates of coefficients.

IV.7.1. Inverse functions. We start with a generic problem already introduced
on p. 249: given a function v analytic at a point yp with zo = ¥ (yp) what can be said
about its inverse, namely the solution(s) to the equation 1 (y) = z when z is near z
and y near yg?

Let us examine what happens when v/ (yg) # 0, first without paying attention to
analytic rigour. One has locally (“~” means as usual “approximately equal’)

(46) Y () ~ ¥ (o) + ¥ () (v — Yo,
so that the equation v (y) = z should admit, for z near z, a solution satisfying
1
(47) YA yo+ (z = z0).
¥’ (yo)

If this is granted, the solution being locally linear, it is differentiable, hence analytic.
The Analytic Inversion Lemma!? provides a firm foundation for such calculations.

Lemma IV.2 (Analytic Inversion). Let ¥ (z) be analytic at yo, with ¥ (y9) = zo.
Assume that ' (yg) # 0. Then, for z in some small neighbourhood QX of zo, there
exists an analytic function y(z) that solves the equation (y) = z and is such that
y(zo) = yo.

Proof. (Sketch) The proof involves ideas analogous to those used to establish Rouché’s
Theorem and the Argument Principle (see especially the argument justifying Equa-
tion (42), p. 269). As a preliminary step, define the integrals (j € Zxg)

1 ! ;
(48) 0j(z) == Tim ; % 7d

10A more general statement and several proof techniques are also discussed in Appendix B.5: Implicit
Function Theorem, p. 753.
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where y is a small enough circle centred at yg in the y-plane.

First consider o¢. This function satisfies op(zg) = 1 [by the Residue Theorem]
and is a continuous function of z whose value can only be an integer, this value being
the number of roots of the equation 1 (y) = z. Thus, for z close enough to zg, one
must have o¢(z) = 1. In other words, the equation 1/ (y) = z has exactly one solution,
the function  is locally invertible and a solution y = y(z) that satisfies y(zp) = yo is
well-defined.

Next examine 0. By the Residue Theorem once more, the integral defining o (z)
is the sum of the roots of the equation 1/ (y) = z that lie inside y, that is, in our case,
the value of y(z) itself. (This is also a particular case of Note IV.39, p. 270.) Thus,
one has o1(z) = y(z). Since the integral defining o1 (z) depends analytically on z for
z close enough to zg, analyticity of y(z) results. |
> 1V.42. Details. Let v be analytic in an open disc D centred at yg. Then, there exists a
small circle y centred at yy and contained in D such that ¥ (y) # yg on y. [Zeros of analytic
functions are isolated, a fact that results from the definition of an analytic expansion]. The
integrals 0 (z) are thus well defined for z restricted to be close enough to z, which ensures
that there exists a § > 0 such that [/(y) —z| > 6 for all y € y. One can then expand the

integrand as a power series in (z — z(), integrate the expansion termwise, and form in this way
the analytic expansions of o, o1 at zg. (This line of proof follows [334, I, §9.4].) <

B> IV43. Inversion and majorant series. The process corresponding to (46) and (47) can be
transformed into a sound proof: first derive a formal power series solution, then verify that the
formal solution is locally convergent using the method of majorant series (p. 250). <

The Analytic Inversion Lemma states the following: An analytic function locally
admits an analytic inverse near any point where its first derivative is non-zero. How-
ever, as we see next, a function cannot be analytically inverted in a neighbourhood of
a point where its first derivative vanishes.

Consider now a function ¥ (y) such that ' (yg) = 0 but /" (yo) # 0, then, by the
Taylor expansion of i, one expects

1
(49) YO X YO0 + 50 = 30" (o).
Solving formally for y now indicates a locally quadratic dependency
(v =)~ 2 (z — 20)
—Yo) = = 20),
v (y0)

and the inversion problem admits two solutions satisfying

2
(50) Y&y £, |5 —+v7—20-
v (yo)

What this informal argument suggests is that the solutions have a singularity at z(, and,
in order for them to be suitably specified, one must somehow restrict their domain of
definition: the case of /Z (the root(s) of y2 — z = 0) discussed on p- 230 is typical.

Given some point zg and a neighbourhood 2 of zg, the slit neighbourhood along
direction 6 is the set

QY= {zeQ | arg(z —z0) # 0 mod 27, z # 2o} .
We state:
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Lemma IV.3 (Singular Inversion). Let ¥ (y) be analytic at yy, with V¥ (yp) = zo.
Assume that V' (y9) = 0 and ¥"(yg) # 0. There exists a small neighbourhood
of zo such that the following holds: for any fixed direction 0, there exist two functions,
v1(z) and y>(z) defined on SZ(\)G that satisfy ¥ (y(z)) = z, each is analytic in Q(\)e, has
a singularity at the point zo, and satisfies lim;_, ;; y(z) = Yo.

Proof. (Sketch) Define the functions o;(z) as in the proof of the previous lemma,
Equation (48). One now has o¢(z) = 2, that is, the equation ¥ (y) = z possesses two
roots near yg, when z is near zo. In other words i effects a double covering of a small
neighbourhood €2 of yg onto the image neighbourhood 2¢p = ¥ (£2) > zo. By possibly
restricting €2, we may furthermore assume that v/’ (y) only vanishes at yp in Q (zeros
of analytic functions are isolated) and that €2 is simply connected.

Fix any direction 8 and consider the slit neighbourhood Q(\)g. Fix a point ¢ in
this slit domain; it has two preimages, 11, 72 € 2. Pick up the one named 7;. Since
¥’ (n1) is non-zero, the Analytic Inversion Lemma applies: there is a local analytic
inverse y1(z) of ¥. This y;(z) can then be uniquely continued'! to the whole of Q\e,
and similarly for y>(z). We have thus obtained two distinct analytic inverses.

Assume a contrario that yj(z) can be analytically continued at zg. It would then
admit a local expansion

@ =Y ez —20"
n>0
while satisfying ¥ (y1(z)) = z. But then, composing the expansions of ¥ and y would
entail
v(i@)=2z20+0 ((Z - Zo)z) (z = 20).

which cannot coincide with the identity function (z). A contradiction has been reached.
The point zg is thus a singular point for y; (as well as for y;). |
> IV.44. Singular inversion and majorant series. In a way that parallels Note V.43, the process

summarized by Equations (49) and (50) can be justified by the method of majorant series, which
leads to an alternative proof of the Singular Inversion Lemma. <

> IVA4S. Higher order branch points. If all derivatives of i till order » — 1 inclusive vanish
at yg, there are r inverses, y|(z), ..., yr(z), defined over a slit neighbourhood of z(. <

Tree enumeration. We can now consider the problem of obtaining information
on the coefficients of a function y(z) defined by an implicit equation

(C1)) y(2) =20 (y(2)),

when ¢ (1) is analytic at # = 0. In order for the problem to be well-posed (i.e.,
algebraically, in terms of formal power series, as well as analytically, near the origin,
there should be a unique solution for y(z)), we assume that ¢ (0) # 0. Equation (51)
may then be rephrased as

u
(52) v(y@) =z  where  Y@u)=—

)’

HThe fact of slitting €2 makes the resulting domain simply connected, so that analytic continuation
becomes uniquely defined. In contrast, the punctured domain 2 \ {zg} is not simply connected, so that the
argument cannot be applied to it. As a matter of fact, y; (z) gets continued to y;(z), when the ray of angle 6
is crossed: the point zy where two determinations meet is a branch point.
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2
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Figure IV.15. Singularities of inverse functions: ¢ (1) = e* (left); ¥ (u) = u/¢ (u)
(centre); y = Inv(y) (right).

so that it is in fact an instance of the inversion problem for analytic functions.

Equation (51) occurs in the counting of various types of trees, as seen in Subsec-
tions 1. 5.1 (p. 65), I1. 5.1 (p. 126), and II1. 6.2 (p. 193). A typical case is ¢ (u) = €“,
which corresponds to labelled non-plane trees (Cayley trees). The function ¢ (1) =
(1+u)? is associated to unlabelled plane binary trees and ¢ (1) = 1+u +u?to unary—
binary trees (Motzkin trees). A full analysis was developed by Meir and Moon [435],
themselves elaborating on earlier ideas of Pdlya [488, 491] and Otter [466]. In all
these cases, the exponential growth rate of the number of trees can be automatically
determined.

Proposition IV.5. Let ¢ be a function analytic at 0, having non-negative Taylor co-
efficients, and such that ¢ (0) # 0. Let R < 400 be the radius of convergence of the
series representing ¢ at 0. Under the condition,

(53) 00y
x—> R~ ¢(x)
there exists a unique solution t € (0, R) of the characteristic equation,
/
1) W@
¢(1)

Then, the formal solution y(z) of the equation y(z) = z¢(y(2)) is analytic at 0 and
its coefficients satisfy the exponential growth formula:

T 1
p(v)  ¢(1)
Note that condition (53) is automatically realized as soon as ¢(R™) = 400, which
covers our earlier examples as well as all the cases where ¢ is an entire function (e.g.,

a polynomial). Figure IV.15 displays graphs of functions on the real line associated to
a typical inversion problem, that of Cayley trees, where ¢ (1) = e*.

[2"] y(z) < <%> where p =

Proof. By Note IV.46 below, the function x¢’(x)/¢ (x) is an increasing function of x
for x € (0, R). Condition (53) thus guarantees the existence and unicity of a solution
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Type ) (R) [t p |ynvap™”
binary tree A+uw? o |1 I [wmed" (.67
Motzkin tree L+u+u? (00 |1+ |y=3"  (p.68)
1
gen. Catalan tree T 1) % % V< 4" (p. 65)
Cayley tree e ) |1 e 1| yae (p. 128)

Figure IV.16. Exponential growth for classical tree families.

of the characteristic equation. (Alternatively, rewrite the characteristic equation as
¢o = ¢21’2 + 2¢3 3 4+ ..., where the right side is clearly an increasing function.)

Next, we observe that the equation y = z¢ (y) admits a unique formal power se-
ries solution, which furthermore has non-negative coefficients. (This solution can for
instance be built by the method of indeterminate coefficients.) The Analytic Inversion
Lemma (Lemma IV.2) then implies that this formal solution represents a function,
v(2), that is analytic at 0, where it satisfies y(0) = 0.

Now comes the hunt for singularities and, by Pringsheim’s Theorem, one may
restrict attention to the positive real axis. Let r < 400 be the radius of convergence
of y(z) at 0 and set y(r) := lim,_,,— y(x), which is well defined (although possibly
infinite), given positivity of coefficients. Our goal is to prove that y(r) = t.

— Assume a contrario that y(r) < t. One would then have ¥/ (y(r)) # 0. By
the Analytic Inversion Lemma, y(z) would be analytic at , a contradiction.

— Assume a contrario that y(r) > t. There would then exist r* € (0, r) such
that ¥'(y(r*)) = 0. But then y would be singular at r*, by the Singular
Inversion Lemma, also a contradiction.

Thus, one has y(r) = t, which is finite. Finally, since y and ¢ are inverse functions,
one must have

r=v()=1/¢()=0p,
by continuity as x — r~, which completes the proof. ]

Proposition IV.5 thus yields an algorithm that produces the exponential growth
rate associated to tree functions. This rate is itself invariably a computable number
as soon as ¢ is computable (i.e., its sequence of coefficients is computable). This
computability result complements Theorem IV.8 (p. 251), which is relative to non-
recursive structures only.

As an example of application of Proposition IV.5, general Catalan trees corres-
pondto ¢ (y) = (1 — y)~!, whose radius of convergence is R = 1. The characteristic
equation is 7/(1 — ) = 1, which implies t = 1/2 and p = 1/4. We obtain (not a
surprise!) y, o< 4", a weak asymptotic formula for the Catalan numbers. Similarly,
for Cayley trees, ¢ (u) = e* and R = +oo. The characteristic equation reduces to
(t —1)e® =0,sothat T = 1 and p = e~ !, giving a weak form of Stirling’s formula:
[2"]y(z) = n"~'/n! s €". Figure IV.16 summarizes the application of the method to
a few already encountered tree families.
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As our previous discussion suggests, the dominant singularity of tree generating
functions is, under mild conditions, of the square-root type. Such a singular behaviour
can then be analysed by the methods of Chapter VI: the coefficients admit an asymp-
totic form

["1y(z) ~ C-p~"n /2,
with a subexponential factor of the form n=3/2; see Section VL. 7, p. 402.

> IV46. Convexity of GFs, Boltzmann models, and the Variance Lemma. Let ¢(z) be a
non-constant analytic function with non-negative coefficients and a non-zero radius of con-
vergence R, such that ¢(0) # 0. For x € (0, R) a parameter, define the Boltzmann random
variable B (of parameter x) by the property

_ o i EGS) = 260
¢ (x) o (x)

the probability generating function of E. By differentiation, the first two moments of E are

(55) P(E =n)

o X9 @) 2y _ @) | xd' @)
E(8) = . EEH="—""++ :
¢ (x) ¢ (x) ¢ (x)
There results, for any non-constant GF ¢, the general convexity inequality valid for0 < x < R:
d /
(56) 4 (20N,
dx \ ¢(x)

due to the fact that the variance of a non-degenerate random variable is always positive. Equiv-
alently, the function log(¢ (e')) is convex for t € (—o0, log R). (In statistical physics, a Boltz-
mann model (of parameter x) corresponds to a class & (with OGF ¢) from which elements
are drawn according to the size distribution (55). An alternative derivation of (56) is given in
Note VIIL4, p. 550.)

B> IVA47. A variant form of the inversion problem. Consider the equation y = z+¢(y), where ¢
is assumed to have non-negative coefficients and be entire, with ¢ (1) = 0(u2) at u = 0. This
corresponds to a simple variety of trees in which trees are counted by the number of their leaves
only. For instance, we have already encountered labelled hierarchies (phylogenetic trees in
Section IL. 5, p. 128) corresponding to ¢ (u) = e* — 1 —u, which gives rise to one of “Schroder’s
problems”. Let T be the root of ¢’(r) = 1 and set p = T — ¢ (7). Then, [z"]y(z) > p"*. For
the EGF L of labelled hierarchies (L = z + e& — 1 — L), this gives L, /n! >a (2log2 — 1),

(Observe that Lagrange inversion also provides [7"]y(z) = %[w”fl](l — y71¢(y))7"‘) <

IV.7.2. Tteration. The study of iteration of analytic functions was launched by
Fatou and Julia in the first half of the twentieth century. Our reader is certainly aware
of the beautiful images associated with the name of Mandelbrot whose works have
triggered renewed interest in these questions, now classified as belonging to the field
of “complex dynamics” [31, 156, 443, 473]. In particular, the sets that appear in this
context are often of a fractal nature. Mathematical objects of this sort are occasionally
encountered in analytic combinatorics. We present here the first steps of a classic
analysis of balanced trees published by Odlyzko [459] in 1982.

Example IV.12. Balanced trees. Consider the class £ of balanced 2-3 trees defined as trees
whose node degrees are restricted to the set {0, 2, 3}, with the additional property that all leaves
are at the same distance from the root (Note 1.67, p. 91). We adopt as notion of size the number
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1
xg = 0.6
o X1 = 0576
xp = 0.522878976
x3 = 0416358802
0.6 xg = 0.245532388
y xs = 0.075088357
- x6 = 0.006061629
; x7 = 0.000036966
- ; R xg = 0.000000001
‘ ! xg = 1867434390 x 107!3
Ao xjp = 3.487311201 x 10736
0;

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure IV.17. The iterates of a point xg € (0, %), here xg = 0.6, by 0 (z) = 2 +73
converge fast to 0.

of leaves (also called external nodes), the list of all 4 trees of size 8 being:

Lo b b b

Given an existing tree, a new tree is obtained by substituting in all possible ways to each external
node (O) either a pair (O, O) or a triple (0, O, O), and symbolically, one has

flo]=0 +5[|:| — (OO + DDD)].

In accordance with the specification, the OGF of & satisfies the functional equation
(57 E@=z1+EE@+2),
corresponding to the seemingly innocuous recurrence

n

k .
E,,:Z(n_Zk)Ek with Eg=0, E; = 1.
k=0

Let 0(z) = 22 + 2°. Equation (57) can be expanded by iteration in the ring of formal
power series,

(58) E@Q=z+0@ +cH@+cBPl@)+--,

where o[/ ](z) denotes the jth iterate of the polynomial o' o0 () =1z, a[h‘H](z) = o[h](a () =
o(o (h] (z)). Thus, E(z) is nothing but the sum of all iterates of . The problem is to determine
the radius of convergence of E(z), and, by Pringsheim’s theorem, the quest for dominant sin-
gularities can be limited to the positive real line.

For z > 0, the polynomial o (z) has a unique fixed point, p = o (p), at

1 _1+45

p=— where 7
17 2

is the golden ratio. Also, for any positive x satisfying x < p, the iterates ol7l(x) do converge
to 0; see Figure IV.17. Furthermore, since o (z) ~ 22 near 0, these iterates converge to 0 doubly
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0.94

0.8

0.74

0.6

Figure IV.18. Left: the fractal domain of analyticity of E(z) (inner domain in white
and gray, with lighter areas representing slower convergence of the iterates of o)
and its circle of convergence. Right: the ratio Ej /(¢" n~h plotted against logn for
n = 1..500 confirms that E, > ¢" and illustrates the periodic fluctuations of (60).

exponentially fast (Note IV.48). By the triangle inequality, we have |0 (z)| < o(|z|), so that the
sum in (58) is a normally converging sum of analytic functions, and is thus itself analytic for
|z| < p. Consequently, E(z) is analytic in the whole of the open disc |z| < p.

It remains to prove that the radius of convergence of E(z) is exactly equal to p. To that
purpose it suffices to observe that E(z), as given by (58), satisfies

E(x) > 400 as xX—p .

Let N be an arbitrarily large but fixed integer. It is possible to select a positive x sufficiently
close to p with xy < p, such that the Nth iterate oV (xp) is larger than % (the function
oVl (x) admits p as a fixed point and it is continuous and increasing at p). Given the sum
expression (58), this entails the lower bound E(xpy) > % for such an xy < p. Thus E(x) is
unbounded as x — p~ and p is a singularity.

The dominant positive real singularity of E(z) is thus p = @1, and the Exponential
Growth Formula gives the following estimate.

Proposition IV.6. The number of balanced 2-3 trees satisfies:

1+J§)"

(59) ("1 E(2) »= ( 5

It is notable that this estimate could be established so simply by a purely qualitative exam-
ination of the basic functional equation and of a fixed point of the associated iteration scheme.

The complete asymptotic analysis of the E}, requires the full power of singularity analysis
methods to be developed in Chapter VI. Equation (60) below states the end result, which in-
volves fluctuations that are clearly visible on Figure I'V.18 (right). There is overconvergence of
the representation (58), that is, convergence in certain domains beyond the disc of convergence
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of E(z). Figure IV.18 (left) displays the domain of analyticity of E(z) and reveals its fractal
nature (compare with Figure VIL.23, p. 536). ...t |

> IV.48. Quadratic convergence. First, for x € [0, %], one has o (x) < %xz, so that a[j](x) <

(3/2)2"._1 x2j. Second, for x € [0, A], where A is any number < p, there is a number k 4 such
that olkal(x) < %’ so that o¥] (x) = (3/2) (3/4)21\7“ . Thus, for any A < p, the series of
iterates of o is quadratically convergent when z € [0, A]. <

> IV.49. The asymptotic number of 2—3 trees. This analysis is from [459, 461]. The number of
2-3 trees satisfies asymptotically

n n
(60) En=2"Qogn)+ 0 (‘%) ,
n n

where €2 is a periodic function with mean value (¢ log(4 — ga))_l = 0.71208 and period log(4 —
@) = 0.86792. Thus oscillations are inherent in E,; see Figure IV.18 (right). <

IV.7.3. Complete asymptotics of a functional equation. George Pélya (1887—
1985) is mostly remembered by combinatorialists for being at the origin of Pélya
theory, a branch of combinatorics that deals with the enumeration of objects invariant
under symmetry groups. However, in his classic article [488, 491] which founded
this theory, PSlya discovered at the same time a number of startling applications of
complex analysis to asymptotic enumeration'2. We detail one of these now.

Example 1V.13. Pdélya’s alcohols. The combinatorial problem of interest here is the determi-
nation of the number M, of chemical isomeres of alcohols Cy, Hy,, 1 O H without asymmetric
carbon atoms. The OGF M (z) = ), Mz" that starts as (EIS A000621)

61) M@ =1+z+2%+22° +32 +55° +8° + 1477 + 238 +397 + .
is accessible through a functional equation,
1
1—2M @)
which we adopt as our starting point. Iteration of the functional equation leads to a continued
fraction representation,

(62) M) =

1
M@= —
1—

from which Pélya found:

Proposition IV.7. Let M(z) be the solution analytic around 0 of the functional equation
1

1= zM(?)

Then, there exist constants K, B, and B > 1, such that

M,=K- -B"(1+0(B™), B = 1.6813675244, K = 0.3607140971.

M(z) =

121, many ways, Pélya can be regarded as the grandfather of the field of analytic combinatorics.
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We offer two proofs. The first one is based on direct consideration of the functional equa-
tion and is of a fair degree of applicability. The second one, following Pdlya, makes explicit a
special linear structure present in the problem. As suggested by the main estimate, the dominant
singularity of M (z) is a simple pole.

First proof. By positivity of the functional equation, M (z) dominates coefficientwise any
GF (1 — zM<"(z2))~1, where M<""(z) := 20§j<m M, 7" is the mth truncation of M(z). In

particular, one has the domination relation (use M <2(z) =147z

1
M) > ——.
() F—
Since the rational fraction has its dominant pole at z = 0.68232, this implies that the radius p
of convergence of M(z) satisfies p < 0.69. In the other direction, since M (zz) < M(2)
for z € (0, p), then, one has the numerical inequality

1
M(Z)S1 0<z<op.

M (z)’
This can be used to show (Note IV.50) that the Catalan generating function C(z) = (1 —
/1 —4z)/(2z) is a majorant of M(z) on the interval (0, %), which implies that M (z) is well
defined and analytic for z € (0, %). In other words, one has i < p < 0.69. Altogether, the
radius of convergence of M lies strictly between 0 and 1.

> IV.50. Alcohols, trees, and bootstrapping.  Since M(z) starts as 1 + z + z2 + -+ while
C(z) starts as 1 + z + 272 + ..., there is a small interval (0, €) such that M(z) < C(z). By
the functional equation of M(z), one has M(z) < C(z) for z in the larger interval (0, \/€).
Bootstrapping then shows that M (z) < C(z) for z € (0, %). <

Next, as z — p~, one must have zM(zz) — 1. (Indeed, if this was not the case, we would
have zM(zz) < A < 1 for some A. But then, since p2 < p, the quantity (1 —zM(zz))_l would
be analytic at z = p, a clear contradiction.) Thus, p is determined implicitly by the equation

pM(pz)zl, O0<p<l.

One can then estimate p numerically (Note IV.51), and the stated value of 8 = 1/p follows.
(Pdlya determined p to five decimals by hand!)
The previous discussion also implies that p is a pole of M (z), which must be simple (since

3, (zM (2%) > 0). Thus
z=p

1 1
63 Miz) ~ K—, K = .
©3) R T PM () + 203 M (%)

The argument shows at the same time that M (z) is meromorphic in |z| < ,/p = 0.77. That
p is the only pole of M(z) on |z| = p results from the fact that zM(zz) =z+z23+-- can
be subjected to the type of argument encountered in the context of the Daffodil Lemma (see
the discussion of quasi-inverses in the proof of Proposition IV.3, p. 267). The translation of the
singular expansion (63) then yields the statement.

> IV.51. The growth constant of molecules. The quantity p can be obtained as the limit of
the py, satisfying Zfzo an,%{Hl = 1, together with p € [%, 0.69]. In each case, only a
few of the M, (provided by the functional equation) are needed. One obtains: pj9 = 0.595,
p20 = 0.594756, p3g = 0.59475397, psg = 0.594753964. This algorithms constitutes a
geometrically convergent scheme with limit p = 0.59475 39639. <
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Second proof. First, a sequence of formal approximants follows from (62) starting with

{ 1 1 _ 1—22 1 _ 1-72—2*
’ ' l—z—-22" __ %  1-z-22-74+7
1—22 - Z2

1—z2

1

which permits us to compute any number of terms of the series M(z). Closer examination
of (62) suggests to set

_ @&

V()
where Y (z) =1 —z — 22 —z* 4+ 22 — 28 + 22 + 210 — 716 4 ... Back substitution into (62)
yields

M)

v _ 1 @) ¥@)
VO e Y@ v -’
)

which shows ¥ (z) to be a solution of the functional equation

V@) =y —zpEh, w0 =1

The coefficients of y satisfy the recurrence

Van = Yon, Yany1 = —¥n, Yant2 = Vontis Yant3 =0,

which implies that their values are all contained in the set {0, —1, +1}.

Thus, M (z) appears to be the quotient of two function, 1//(22) /¥ (z), each analytic in the
unit disc, and M (z) is meromorphic in the unit disc. A numerical evaluation then shows that
¥ (z) has its smallest positive real zero at p = 0.59475, which is a simple root. The quantity p
is thus a pole of M (z) (since, numerically, xp(pz) # 0). Thus

2 2 n
1
M~ YOy VD (7) _
=P (p) pY(p) \p
Numerical computations then yield P6lya’s estimate. Et voila! .............. ... ... .... |

The example of Pdlya’s alcohols is exemplary, both from a historical point of
view and from a methodological perspective. As the first proof of Proposition IV.7
demonstrates, quite a lot of information can be pulled out of a functional equation
without solving it. (A similar situation will be encountered in relation to coin foun-
tains, Example V.9, p. 330.) Here, we have made great use of the fact that if f(z) is
analytic in |z| < r and some a priori bounds imply the strict inequalities 0 < r < 1,
then one can regard functions like f (zz), f (z3), and so on, as “known” since they are
analytic in the disc of convergence of f and even beyond, a situation also evocative of
our earlier discussion of Pdlya operators in Section IV. 4, p. 249. Globally, the lesson
is that functional equations, even complicated ones, can be used to bootstrap the local
singular behaviour of solutions, and one can often do so even in the absence of any
explicit generating function solution. The transition from singularities to coefficient
asymptotics is then a simple jump.
> IV.52. An arithmetic exercise. The coefficients ¥, = [z](z) can be characterized simply
in terms of the binary representation of n. Find the asymptotic proportion of the ¥, for n €
[1. .2N] that assume each of the values 0, +1, and —1. <
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IV.8. Perspective

In this chapter, we have started examining generating functions under a new light.
Instead of being merely formal algebraic objects—power series—that encode ex-
actly counting sequences, generating functions can be regarded as analytic objects—
transformations of the complex plane—whose singularities provide a wealth of infor-
mation concerning asymptotic properties of structures.

Singularities provide a royal road to coefficient asymptotics. We could treat here,
with a relatively simple apparatus, singularities that are poles. In this perspective, the
two main statements of this chapter are the theorems relative to the expansion of ra-
tional and meromorphic functions, (Theorems IV.9, p. 256, and IV.10, p. 258). These
are classical results of analysis. Issai Schur (1875-1941) is to be counted among the
very first mathematicians who recognized their rdle in combinatorial enumerations
(denumerants, Example IV.6, p. 257). The complex analytic thread was developed
much further by George Pélya in his famous paper of 1937 (see [488, 491]), which
Read in [491, p. 96] describes as a “landmark in the history of combinatorial analy-
sis”. There, Pdlya laid the groundwork of combinatorial chemistry, the enumeration
of objects under group actions, and, last but not least, the complex asymptotic theory
of graphs and trees. Thanks to complex analytic methods, many combinatorial classes
amenable to symbolic descriptions can be thoroughly analysed, with regard to their
asymptotic properties, by means of a selected collection of basic theorems of complex
analysis. The case of structures such as balanced trees and molecules, where only a
functional equation of sorts is available, is exemplary.

The present chapter then serves as the foundation stone of a rich theory to be de-
veloped in future chapters. Chapter V will elaborate on the analysis of rational and
meromorphic functions, and present a coherent theory of paths in graphs, automata,
and transfer matrices in the perspective of analytic combinatorics. Next, the method
of singularity analysis developed in Chapter VI considerably extends the range of ap-
plicability of the Second Principle to functions having singularities appreciably more
complicated that poles (e.g., those involving fractional powers, logarithms, iterated
logarithms, and so on). Applications will be given to recursive structures, including
many types of trees, in Chapter VII. Chapter VIII, dedicated to saddle-point methods
will then complete the picture of univariate asymptotics by providing a unified treat-
ment of counting GFs that are either entire functions (hence, have no singularity at a
finite distance) or manifest a violent growth at their singularities (hence, fall outside
of the scope of meromorphic or singularity-analysis asymptotics). Finally, in Chap-
ter IX, the corresponding perturbative methods will be put to use in order to distil limit
laws for parameters of combinatorial structures.

Bibliographic notes. This chapter has been designed to serve as a refresher of basic com-
plex analysis, with special emphasis on methods relevant for analytic combinatorics. See Fig-
ure IV.19 for a concise summary of results. References most useful for the discussion given
here include the books of Titchmarsh [577] (oriented towards classical analysis), Whittaker and
Watson [604] (stressing special functions), Dieudonné [165], Hille [334], and Knopp [373].
Henrici [329] presents complex analysis under the perspective of constructive and numerical
methods, a highly valuable point of view for this book.
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Basics. The theory of analytic functions benefits from the equivalence between two no-
tions, analyticity and differentiability. It is the basis of a powerful integral calculus, much
different from its real variable counterpart. The following two results can serve as “axioms” of
the theory.

THEOREM IV.1 [Basic Equivalence Theorem] (p. 232): Two fundamental notions are equiv-
alent, namely, analyticity (defined by convergent power series) and holomorphy (defined by
differentiability). Combinatorial generating functions, a priori determined by their expansions
at 0 thus satisfy the rich set of properties associated with these two equivalent notions.
THEOREM IV.2 [Null Integral Property] (p. 234): The integral of an analytic function along a
simple loop (closed path that can be contracted to a single point) is 0. Consequently, integrals
are largely independent of particular details of the integration contour.

Residues. For meromorphic functions (functions with poles), residues are essential. Co-
efficients of a function can be evaluated by means of integrals. The following two theorems
provide connections between local properties of a function (e.g., coefficients at one point) and
global properties of the function elsewhere (e.g., an integral along a distant curve).

THEOREM IV.3 [Cauchy’s residue theorem] (p. 234): In the realm of meromorphic functions,
integrals of a function can be evaluated based on local properties of the function at a few specific
points, its poles.
THEOREM IV.4 [Cauchy’s Coefficient Formula] (p. 237): This is an almost immediate conse-
quence of Cauchy’s residue theorem: The coefficients of an analytic function admit of a repre-
sentation by a contour integral. Coefficients can then be evaluated or estimated using properties
of the function at points away from the origin.

Singularities and growth. Singularities (places where analyticity stops), provide essential
information on the growth rate of a function’s coefficients. The “First Principle” relates the
exponential growth rate of coefficients to the location of singularities.

THEOREM IV.5 [Boundary singularities] (p. 240): A function (given by its series expansion
at 0) always has a singularity on the boundary of its disc of convergence.
THEOREM IV.6 [Pringsheim’s Theorem] (p. 240): This theorem refines the previous one for
functions with non-negative coefficients. It implies that, in the case of combinatorial generating
functions, the search for a dominant singularity can be restricted to the positive real axis.
THEOREM IV.7 [Exponential Growth Formula] (p. 244): The exponential growth rate of co-
efficients is dictated by the location of the singularities nearest to the origin—the dominant
singularities.
THEOREM IV.8 [Computability of growth] (p. 251): For any combinatorial class that is non-
recursive (iterative), the exponential growth rate of coefficients is invariably a computable num-
ber. This statement can be regarded as the first general theorem of analytic combinatorics.
Coefficient asymptotics. The “Second Principle” relates subexponential factors of coef-
ficients to the nature of singularities. For rational and meromorphic functions, everything is
simple.
THEOREM IV.9 [Expansion of rational functions] (p. 256): Coefficients of rational functions
are explicitly expressible in terms of the poles, given their location (values) and nature (multi-
plicity).
THEOREM IV.10 [Expansion of meromorphic functions] (p. 258): Coefficients of meromorphic
functions admit of a precise asymptotic form with exponentially small error terms, given the
location and nature of the dominant poles.

Figure IV.19. A summary of the main results of Chapter IV.
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De Bruijn’s classic booklet [143] is a wonderfully concrete introduction to effective asymp-
totic theory, and it contains many examples from discrete mathematics thoroughly worked out
using a complex analytic approach. The use of such analytic methods in combinatorics was pi-
oneered in modern times by Bender and Odlyzko, whose first publications in this area go back
to the 1970s. The state of affairs in 1995 regarding analytic methods in combinatorial enumer-
ation is superbly summarized in Odlyzko’s scholarly chapter [461]. Wilf devotes Chapter 5 of
his Generatingfunctionology [608] to this question. The books by Hofri [335], Mahmoud [429],
and Szpankowski [564] contain useful accounts in the perspective of analysis of algorithms. See
also our book [538] for a light introduction and the chapter by Vitter and Flajolet [S98] for more
on this specific topic.

Despite all appearances they [generating functions] belong to algebra and not to analysis.

Combinatorialists use recurrence, generating functions, and such transformations as the
Vandermonde convolution; others to my horror, use contour integrals,
differential equations, and other resources of mathematical analysis.

— JOHN RIORDAN [513, p. viii] and [512, Pref.]
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Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powertul and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [461]

V.1. A roadmap to rational and meromorphic asymptotics 290
V.2. The supercritical sequence schema 293
V.3. Regular specifications and languages 300
V.4. Nested sequences, lattice paths, and continued fractions 318
V.5. Paths in graphs and automata 336
V. 6. Transfer matrix models 356
V.7. Perspective 373

The primary goal of this chapter is to provide combinatorial illustrations of the power
of complex analytic methods, and specifically of the rational-meromorphic frame-
work developed in the previous chapter. At the same time, we shift gears and envisage
counting problems at a new level of generality. Precisely, we organize combinatorial
problems into wide families of combinatorial types amenable to a common treatment
and associated with a common collection of asymptotic properties. Without attempt-
ing a formal definition, we call schema any such family determined by combinatorial
and analytic conditions that covers an infinity of combinatorial classes.

First, we discuss a general schema of analytic combinatorics known as the su-
percritical sequence schema, which provides a neat illustration of the power of mero-
morphic asymptotics (Theorem IV.10, p. 258), while being of wide applicability. This
schema unifies the analysis of compositions, surjections, and alignments; it applies to
any class which is defined as a sequence, provided components satisfy a simple ana-
lytic condition (“supercriticality”). For instance, one can predict very precisely (and
easily) the number of ways in which an integer can be decomposed additively as a
sum of primes (or twin primes), this even though many details of the distribution of
primes are still surrounded in mystery.

The next schema comprises regular specifications and languages, which a priori
lead to rational generating functions and are thus systematically amenable to Theo-
rem IV.9 (p. 256), to the effect that coefficients are described as exponential poly-
nomials. In the case of regular specifications, much additional structure is present,
especially positivity. Accordingly, counting sequences are of a simple exponential—
polynomial form and fluctuations can be systematically circuamvented. Applications
presented in this chapter include the analysis of longest runs, attached to maximal

289
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sequences of good (or bad) luck in games of chance, pure birth processes, and the
occurrence of hidden patterns (subsequences) in random texts.

We then consider an important subset of regular specifications, corresponding to
nested sequences, that combinatorially describe a variety of lattice paths. Such nested
sequences naturally lead to nested quasi-inverses, which are none other than continued
fractions. A wealth of combinatorial, algebraic, and analytic properties then surround
such constructions. A prime illustration is the complete analysis of height in Dyck
paths and general Catalan trees; other interesting applications relate to coin fountain
and interconnection networks.

Finally, the last two sections examine positive linear systems of generating func-
tions, starting with the simplest case of finite graphs and automata, and concluding
with the general framework of transfer matrices. Although the resulting generating
functions are once more bound to be rational, there is benefit in examining them as
defined implicitly (rather than solving explicitly) and work out singularities directly.
The spectrum of matrices (the set of eigenvalues) then plays a central réle. An im-
portant case is the irreducible linear system schema, which is closely related to the
Perron—Frobenius theory of non-negative matrices, whose importance has been long
recognized in the theory of finite Markov chains. A general discussion of singularities
can then be conducted, leading to valuable consequences on a variety of models—
paths in graphs, finite automata, and transfer matrices. The last example discussed
in this chapter treats locally constrained permutations, where rational functions com-
bined with inclusion—exclusion provide an entry to the world of value-constrained
permutations.

In the various combinatorial examples encountered in this chapter, the generating
functions are meromorphic in some domain extending beyond their disc of conver-
gence at 0. As a consequence, the asymptotic estimates of coefficients involve main
terms that are explicit exponential-polynomials and error terms that are exponentially
smaller. This is a situation well summarized by Odlyzko’s aphorism quoted on p. 289:
“Analytic methods [... ] often yield estimates of unparalleled precision”.

V.1. A roadmap to rational and meromorphic asymptotics

The key character in this chapter is the combinatorial sequence construction SEQ.
Since its translation into generating functions involves a quasi-inverse, (1 — f)~!, the
construction should in many cases be expected to induce polar singularities. Also,
linear systems of equations, of which the simplest case is X = 1 + AX, are solvable
by means of inverses: the solution is X = (1 — A)’1 in the scalar case, and it is oth-
erwise expressible as a quotient of determinants (by Cramer’s rule) in the matrix case.
Consequently, linear systems of equations are also conducive to polar singularities.

This chapter accordingly develops along two main lines. First, we study non-
recursive families of combinatorial problems that are, in a suitable sense, driven by a
sequence construction (Sections V.2-V.4). Second, we examine families of recursive
problems that are naturally described by linear systems of equations (Sections V. 5—
V.6). Clearly, the general theorems giving the asymptotic forms of coefficients of
rational and meromorphic functions apply. As we shall see, the additional positivity
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structure arising from combinatorics entails notable simplifications in the asymptotic
form of counting sequences.

The supercritical sequence schema. This schema, fully described in Section V.2
(p. 293) corresponds to the general form F = SEQ(G), together with a simple an-
alytic condition, “supercriticality”, attached to the generating function G(z) of G.
Under this condition, the sequence (F},) happens to be predictable and an asymptotic
estimate,

(D F, =cp" + O(B"), 0<B<p, ceRso,

applies with 8 such that G(1/8) = 1. Integer compositions, surjections, and align-
ments presented in Chapters I and II can then be treated in a unified manner. The
supercritical sequence schema even covers situations where G is not necessarily con-
structible: this includes compositions into summands that are prime numbers or twin
primes. Parameters, like the number of components and more generally profiles, are
under these circumstances governed by laws that hold with a high probability.

Regular specification and languages. This topic is treated in Section V. 3 (p. 300).
Regular specifications are non-recursive specifications that only involve the construc-
tions (+, x, SEQ). In the unlabelled case, they can always be interpreted as describing
a regular language in the sense of Section .4, p. 49. The main result here is the fol-
lowing: given a regular specification R, it is possible to determine constructively a
number D, so that an asymptotic estimate of the form

2) R, =PmpB" + O(B"), 0 < B < B, P apolynomial,

holds, once the index n is restricted to a fixed congruence class modulo D. (Naturally,
the quantities P, 8, B may depend on the particular congruence class considered.) In
other words, a “pure” exponential polynomial form holds for each of the D “sections”
[subsequences defined on p. 302] of the counting sequence (R;),>¢. In particular, ir-
regular fluctuations, which might otherwise arise from the existence of several domi-
nant poles sharing the same modulus but having incommensurable arguments (see the
discussion in Subsection IV. 6.1, p. 263 dedicated to multiple singularities), are simply
not present in regular specifications and languages. Similar estimates hold for profiles
of regular specifications, where the profile of an object is understood to be the number
of times any fixed construction is employed.

Nested sequences, lattice paths, and continued fractions. The material consid-
ered in Section V. 4 (p. 318) could be termed the SEQ o - - - o SEQ schema, correspond-
ing to nested sequences. The associated GFs are chains of quasi-inverses; that is,
continued fractions. Although the general theory of regular specifications applies, the
additional structure resulting from nested sequences implies, in essence, uniqueness
and simplicity of the dominant pole, resulting directly in an estimate of the form

3) S, =cp" + O(B™), 0<B<pB, ceR.y,
for objects enumerated by nested sequences. This schema covers lattice paths of
bounded height, their weighted versions, as well as several other bijectively equivalent

classes, like interconnection networks. In each case, profiles can be fully character-
ized, the estimates being of a simple form.
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Paths in graphs and automata. The framework of paths in directed graphs ex-
pounded in Section V.5 (p. 336) is of considerable generality. In particular, it covers
the case of finite automata introduced in Subsection I.4.2, p. 56. Although, in the
abstract, the descriptive power of this framework is formally equivalent to the one of
regular specifications (Appendix A.7: Regular languages, p. 733), there is great ad-
vantage in considering directly problems whose natural formulation is recursive and
phrased in terms of graphs or automata. (The reduction of automata to regular ex-
pressions is non-trivial so that it does not tend to preserve the original combinatorial
structure.) The algebraic theory is that of matrices of the form (I — z7)~!, where T
is a matrix with non-negative entries. The analytic theory behind the scene is now that
of positive matrices and the companion Perron—Frobenius theory. Uniqueness and
simplicity of dominant poles of generating functions can be guaranteed under easily
testable structural conditions—principally, the condition of irreducibility that corres-
ponds to a strong connectedness of the system. Then a pure exponential polynomial
form holds,

) Cp ~ M| + O(A"), 0<A <A, ceRyy,

where A1 is the (unique) dominant eigenvalue of the transition matrix 7. Applications
include walks over various types of graphs (the interval graph, the devil’s staircase)
and words excluding one or several patterns (walks on the De Bruijn graph).

Transfer matrices. This framework, whose origins lie in statistical physics, is an
extension of automata and paths in graphs. What is retained is the notion of a finite
state system, but transitions can now take place at different speeds. Algebraically, one
is dealing with matrices of the form (/ — T (2))~ L, where T is a matrix whose entries
are polynomials (in z) with non-negative coefficients. Perron—Frobenius theory can
be adapted to cover such cases, that, to a probabilist, look like a mixture of Markov
chain and renewal theory. The consequence, for this category of models, is once more
an estimate of the type (4), under irreducibility conditions; namely

®) Dy~ci +0M"), 0<M<u, ceRey,

where w1 = 1/0 and o is the smallest positive value of z such that 7'(z) has dominant
eigenvalue 1. A striking application of transfer matrices is a study, with an experi-
mental mathematics flavour, of self-avoiding walks and polygons in the plane: it turns
out to be possible to predict, with a high degree of confidence (but no mathemati-
cal certainty, yet), what the number of polygons is and which distribution of area is
to be expected. A combination of the transfer matrix approach with a suitable use
of inclusion—exclusion (Subsection V. 6.4, p. 367) finally provides a solution to the
classic ménage problem of combinatorial theory as well as to many related questions
regarding value-constrained permutations.

Browsing notes. We, authors, recommend that our gentle reader first gets a bird’s
eye view of this chapter, by skimming through sections, before descending to ground
level and studying examples in detail—some of the latter are indeed somewhat tech-
nically advanced (e.g., they make use of Mellin transforms and/or develop limit laws).
The contents of this chapter are not needed for Chapters VI-VIII, so that the reader
who is impatient to penetrate further the logic of analytic combinatorics can at any
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time have a peek at Chapters VI-VIII. We shall see in Chapter IX (specifically,
Section IX. 6, p. 650) that all the schemas considered here are, under simple non-
degeneracy conditions, associated to Gaussian limit laws.

Sections V.2 to V. 6 are organized following a common pattern: first, we discuss
“combinatorial aspects”, then “analytic aspects”, and finally “applications”. Each of
Sections V.2 to V.5 is furthermore centred around two analytic—combinatorial theo-
rems, one describing asymptotic enumeration, the other quantifying the asymptotic
profiles of combinatorial structures. We examine in this way the supercritical se-
quence schema (Section V.2), general regular specifications (Section V.3), nested
sequences (Section V.4), and path-in-graphs models (Section V.5). The last section
(Section V. 6) departs slightly from this general pattern, since transfer matrices are
reducible rather simply to the framework of paths in graphs and automata, so that we
do not need specifically new statements.

V.2. The supercritical sequence schema

This schema is combinatorially the simplest treated in this chapter, since it plainly
deals with the sequence construction. An auxiliary analytic condition, named “super-
criticality” ensures that meromorphic asymptotics applies and entails strong statistical
regularities. The paradigm of supercritical sequences unifies the asymptotic properties
of a number of seemingly different combinatorial types, including integer composi-
tions, surjections, and alignments.

V.2.1. Combinatorial aspects. We consider a sequence construction, which may
be taken in either the unlabelled or the labelled universe. In either case, we have

F = SEQ(9) == F(z) = T-6Q)’

with G(0) = 0. It will prove convenient to set
fn ="1F (2), gn = [2"1G(2),

so that the number of F;, structures is f;, in the unlabelled case and n! f;,, otherwise.
From Chapter III, the BGF of F—structures with # marking the number of G-
components is

1
6 F =SE - F(z,u) = —————.
(©6) QuG) @0 = TG0
We also have access to the BGF of F with u marking the number of Gy—components:

1
1—(G@) + u— Dgzk)

(7 FH =SEQ G + G\ G)) = FY(z,u) =

V.2.2. Analytic aspects. We restrict attention to the case where the radius of
convergence p of G(z) is non-zero, in which case, the radius of convergence of F(z)
is also non-zero by virtue of closure properties of analytic functions. Here is the basic
concept of this section.
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Definition V.1. Let F, G be generating functions with non-negative coefficients that
are analytic at 0, with G(0) = 0. The analytic relation F(z) = (1 — G(2))™' is
said to be supercritical if G(p) > 1, where p = pg is the radius of convergence
of G. A combinatorial schema F = SEQ(G) is said to be supercritical if the relation
F(2) = (1—G(2))~! between the corresponding generating functions is supercritical.

Note that G(p) is well defined in RU{+-00} as the limit lim, _, ,— G (x) since G (x)
increases along the positive real axis, for x € (0, p). (The value G(p) corresponds
to what has been denoted earlier by g when discussing “signatures” in Section IV. 4,
p- 249.) From now on we assume that G (z) is strongly aperiodic in the sense that there
does not exist an integer d > 2 such that G(z) = h(z%) for some h analytic at 0. (Put
otherwise, the span of 1 + G(z), as defined on p. 266, is equal to 1.) This condition
entails no loss of analytic generality.

Theorem V.1 (Asymptotics of supercritical sequence). Let the schema F = SEQ(G)
be supercritical and assume that G(z) is strongly aperiodic. Then, one has

[Z"F(z) = o " (14 0(AM),

1
oG (o)
where o is the root in (0, pg) of G(o) = 1 and A is a number less than 1. The
number X of G—components in a random F—structure of size n has mean and variance

satisfying

_ //(o_) n
B0 = gy @ D14 G 0w
o0 = CEOIED0C ko,

In particular, the distribution of X on F,, is concentrated.

Proof. See also [260, 547]. The basic observation is that G increases continuously
from G(0) = 0to G(pg) = TG (With 7¢ > 1 by assumption) when x increases from
0 to pg. Therefore, the positive number o, which satisfies G(o) = 1 is well defined.
Then, F is analytic at all points of the interval (0, o). The function G being analytic
at o, satisfies, in a neighbourhood of o

1
G@ =1+G©@)=0)+ 56" (o)~ o) -

so that F(z) has a pole at z = o also, this pole is simple since G'(g) > 0, by
positivity of the coefficients of G. Thus, we have

F(z) ~ — ! = ! ! .

—=p G'(o)(z—0) oG (o)l —z/o

Pringsheim’s theorem (Theorem IV.6, p. 240) then implies that the radius of conver-
gence of F must coincide with o.

There remains to show that F(z) is meromorphic in a disc of some radius R > o
with the point o as the only singularity inside the disc. This results from the assump-
tion that G is strongly aperiodic. In effect, as a consequence of the Daffodil Lemma
(Lemma IV.3, p. 267), one has G(oe'?)y # 1, forall & # 0 (mod 27) . Thus, by
compactness, there exists a closed disc of radius R > o in which F is analytic except
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for a unique pole at 0. We can now apply the main theorem of meromorphic function
asymptotics (Theorem IV.10, p. 258) to deduce the stated formula with A = o/R.

Next, the number of G—components in a random F structure of size n has BGF
given by (6), and by differentiation, we get

I S _ 1 _ 6@
]En(X) B fn [Z ] du 1 —uG(Z) u=1 B fn (1 - G(Z))z'

The problem is now reduced to extracting coefficients in a univariate generating func-
tion with a double pole at z = o, and it suffices to expand the GF locally at o:

[z"]

G(2) 1 _ 1 1
(1-G@@)? =0 G'(0)2(z—0)?  02G'(0)* (1 —z/0)?
The variance calculation is similar, with a triple pole being involved. ]

When a sequence construction is supercritical, the number of components is in
the mean of order n while its standard deviation is O (y/n). Thus, the distribution is
concentrated (in the sense of Section III.2.2, p. 161). In fact, there results from a
general theorem of Bender [35] that the distribution of the number of components is
asymptotically Gaussian, a property to be established in Section IX. 6, p. 650.

Profiles of supercritical sequences. We have seen in Chapter III that integer
compositions and integer partitions, when sampled at random, tend to assume rather
different aspects. Given a sequence construction, = SEQ(G), the profile of an
element « € F is the vector (X, X . )) where X)(«) is the number of G—
components in « that have size j. In the case of (unrestricted) integer compositions,
it could be proved elementarily (Example II1.6, p. 167) that, on average, for size n,
the number of 1-summands is ~ n/2, the number of 2-summands is ~ n/4, and so
on. Now that meromorphic asymptotics is available, such a property can be placed in
a much wider perspective.

Theorem V.2 (Profiles of supercritical sequences). Consider a supercritical sequence
construction, F = SEQ(G), with G(z) strongly aperiodic, as in Theorem V.I. The
number of G—components of any fixed size k in a random F-object of size n satisfies
k
(8) E,(x%) = 52 n o), v,(x®) = 0m),
oG'(0)

where o in (0, o) is such that G(o') = 1, and gx = [ZF1G (z).
Proof. The BGF with u marking the number of G—components of size k is given in (7).
The mean value is then obtained as a quotient,

1 ad 1 gk
E (X = —["] ~F@uw)| ="l

! fo " ou T (1-G@)?
The GF of cumulated values has a double pole at z = o, and the estimate of the mean
value follows. The variance is estimated similarly, after two successive differentiations
and the analysis of a triple pole. |

The total number of components X satisfies X = > X &) and, by Theorem V.1,
its mean is asymptotic to n/(oG'(c)). Thus, Equation (8) indicates that, at least

u=1
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in some average-value sense, the “proportion” of components of size k among all
components is given by gro.
> V.1. Proportion of k—components and convergence in probability. For any fixed k, the random
variable X ,ik) / Xn converges in probability to the value gkak ,

X,(lk> P k . . k iglk) k

X, — gro", e, nl_l)mOOIF’ gro'(1—e) < X—n <gro'(l+e); =1,

for any € > 0. The proof is an easy consequence of the Chebyshev inequalities (the distributions
of X;; and X ,<,k) are both concentrated). <

V.2.3. Applications. We examine here two types of applications of the super-
critical sequence schema. Example V.1 makes explicit the asymptotic enumeration
and the analysis of profiles of compositions, surjections and alignments. What stands
out is the way the mean profile of a structure reflects the underlying inner construc-
tion R in schemas of the form SEQ(R(Z)). Example V.2 discusses compositions into
restricted summands, including the striking case of compositions into primes.

Example V.1. Compositions, surjections, and alignments. The three classes of interest here
are integer compositions (C), surjections (R) and alignments (O), which are specified as

C = SEQ(SEQ>1(2)), ‘R = SEQ(SET>1(2)), O = SEQ(CYC(2))

and belong to either the labelled universe (C) or to the labelled universe (R and O). The
generating functions (of type OGF, EGF, and EGF, respectively) are

1 1

Ce) = —e-n 29T a1

1
- R@=
Iz
A direct application of Theorem V.1 (p. 294) gives us back the known results
1

1 1
— Ry ~ = (log2)"7 1, —Op=et1—e7 ™1
2 n!

Cn — 2"—1’
n!

corresponding to o equal to %, log2,and 1 — e 1 respectively.

Similarly, the expected number of summands in a random composition of the integer n
is ~ n/2; the expected cardinality of the range of a random surjection whose domain has
cardinality n is asymptotic to Sn with 8 = 1/(2log2); the expected number of components in
a random alignment of size n is asymptotic to n/(e — 1).

Theorem V.2 also applies, providing the mean number of components of size k in each
case. The following table summarizes the conclusions.

1
Compositions  SEQ(SEQx>1(Z)) 7% Geometric

Structures specification law (gkak ) type o
1

2
1
Surjections SEQ(SET>1(2)) il (log 2)]‘ Poisson log?2

1
Alignments SEQ(CYC(2)) z(l — e_l)k Logarithmic | 1 —e

Note that the stated laws necessitate k > 1. The geometric and Poisson law are classical; the
logarithmic distribution (also called “logarithmic-series distribution”) of a parameter A > 0 is
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Figure V.1. Profile of structures drawn at random represented by the sizes of their
components in sorted order: (from left to right) a random composition, surjection,
and alignment of size n = 100.

by definition the law of a discrete random variable Y such that

1 Ak
PY=k)=——+—, k>1.
log(1 —2)~1 &
The way the internal construction £ in the schema SEQ(R(Z)) determines the asymptotic pro-
portion of component of each size,

Sequence — Geometric; Set — Poisson; Cycle — Logarithmic,
stands out. Figure V.1 exemplifies the phenomenon by displaying components sorted by size

and represented by vertical segments of corresponding lengths for three randomly drawn objects
Of SIZ€ 71 = 100, ..ottt e |

Example V.2.  Compositions with restricted summands, compositions into primes. Unre-
stricted integer compositions are well understood as regards enumeration: their number is ex-
actly C,, = 2"=1 their OGF is C (z) = (1 —z2)/(1 — 2z), and compositions with k summands
are enumerated by binomial coefficients. Such simple exact formulae disappear when restricted
compositions are considered, but, as we now show, asymptotics is much more robust to changes
in specifications.

Let S be a subset of the integers Z~1 such that gcd(S) = 1, i.e., not all members of § are
multiples of a common divisor d > 2. In order to avoid trivialities, we also assume that § has at
least two elements. The class C5 of compositions with summands constrained to the set S then
satisfies:

1
C5 = SEQ(SEQs(Z = So=— So=) 7.
Q(SEQs(2)) =155 5@ >
ses
By assumption, S(z) is strongly aperiodic, so that Theorem V.1 (p. 294) applies directly. There
is a well-defined number o such that
S(o) =1, O0<o <1,
and the number of S—restricted compositions satisfies
1

o8 (o)
Among the already discussed cases, S = {1, 2} gives rise to Fibonacci numbers F; and, more
generally, S = {1, ..., r} corresponds to partitions with summands at most . In this case, the

) CS = ["1C5(z) = o 7" (14 0(A")).
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10 16]15

20 732|734

30 3603936057

40 177220717722 61

50 87109263|871092 48

60 4281550047 (4281549331

70 210444532770|21044453 0095

80 10343662267187| 1034366226 5182

90 508406414757253 (5084064147 81706
100 24988932929490838 | 24988932929 612479

Figure V.2. The pyramid relative to compositions into prime summands for n =
10..100: (left: exact values; right: asymptotic formula rounded).

OGF,
11—z

-2 12z 41

is a simple variant of the OGF associated to longest runs in strings, which is studied at length
in Example V.4, p. 308. The treatment of the latter can be copied almost verbatim to the effect
that the largest component in a random composition of z is found to be log, n + O(1), both on
average and with high probability.

C{l,...,r}(z) —

Compositions into primes. Here is a surprising application of the general theory. Consider
the case where S is taken to be the set of prime numbers, Prime = {2, 3, 5,7, 11, .. .}, thereby
defining the class of compositions into prime summands. The sequence starts as

1,0,1,1,1,3,2,6,6, 10, 16, 20, 35, 46, 72, 105,

corresponding to G(z) = 22423+ +- -, and is EIS A023360 in Sloane’s Encyclopedia. The
formula (9) provides the asymptotic shape of the number of such compositions (Figure V.2). It
is also worth noting that the constants appearing in (9) are easily determined to great accuracy,
as we now explain.

By (9) and the preceding equation, the dominant singularity of the OGF of compositions
into primes is the positive root o < 1 of the characteristic equation

S(z) = Z P =1.
p Prime

Fix a threshold value m (for instance mq = 10 or 100) and introduce the two series

ST@= Y 2o Sto=| Y f|+s

SES, s<mg SES, s<mg

Clearly, for x € (0, 1), one has S~ (x) < S(x) < ST (x). Define then two constants ¢ ~, o+ by
the conditions

ST(cT)=1, ST(@hH=1, 0<o ,0t <1.
These constants are algebraic numbers that are accessible to computation. At the same time,
they satisfy ot < o < o~. As the order of truncation, my, increases, the values of oct, o~
provide better and better approximations to o, together with an interval in which o provably
lies. For instance, my = 10 is enough to determine that 0.66 < o < 0.69, and the choice
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80000 100000 1
60000 80000
40000 60000 4
20000 | 40000 4

] 20000 4

0 2
20000 | 0

-20000 1

-40000 40000 |

~60000 60000 ]

-80000 -80000

~100000 ~100000

-120000 1 ~120000 1

Figure V.3. Errors in the approximation of the number of compositions into primes
for n = 70..100: left, the values of CF"IMe _ ¢(n); right, the correction arising
from the next two poles, which are complex conjugate, and its continuous extrapola-
tion gp(n), for n € [70, 100].

mg = 100 gives o to 15 guaranteed digits of accuracy, namely, ¢ = 0.67740 17761 30660.
Then, the asymptotic formula (9) instantiates as

(10)  CPme < on),  g(n):=Ar-B", A=0.3036552633, B =1.4762287836.

(The constant 8 = o~ = 1.47622 is akin to the family of Backhouse constants described
in[211].)

Once more, the asymptotic approximation is very good, as is exemplified by the “pyramid”
of Figure V.2. The difference between C,I,) Time and its approximation g(n) from Equation (10) is
plotted on the left-hand part of Figure V.3. The seemingly haphazard oscillations that manifest
themselves are well explained by the principles discussed in Section IV. 6.1 (p. 263). It appears
that the next poles of the OGF are complex conjugate and lie near —0.76 £ 0.44i, having
modulus about 0.88. The corresponding residues then jointly contribute a quantity of the form

gr(n) = ¢ - A" sin(wn + wyg), A = 1.13290,

for some constants ¢, w, wy. Comparing the left-hand and right-hand parts of Figure V.3, we
see that this next layer of poles explains quite well the residual error C,P; rime _ g(n).

Here is finally a variant of compositions into primes that demonstrates in a striking way
the scope of the method. Define the set Prime, of “twinned primes” as the set of primes that
belong to a twin prime pair, that is, p € Prime, if one of p —2, p + 2 is prime. The set Prime,
starts as 3,5, 7,11, 13,17, 19, 29, 31, . .. (prime numbers like 23 or 37 are thus excluded). The
asymptotic formula for the number of compositions of the integer n into summands that are
twinned primes is

cPrime2 . 0.18937 - 1.29799",

where the constants are found by methods analogous to the case of all primes. It is quite
remarkable that the constants involved are still computable real numbers (and of low complexity,
even), this despite the fact that it is not known whether the set of twinned primes is finite or
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infinite. Incidentally, a sequence that starts like C,I,) rimez,
1,0,0,1,0,1,1,1,2,1,3,4,3,7,7,8, 14, 15,21, 28, 33,47, 58, . ..

and coincides till index 22 included (!), but not beyond, was encountered by MacMahonl, as the
authors discovered, much to their astonishment, from scanning Sloane’s Encyclopedia, where
itappears as EIS AQ02124. ... . |

B> V.2. Random generation of supercritical sequences. Let F = SEQ(G) be a supercritical
sequence scheme. Consider a sequence of i.i.d. (independently identically distributed) random
variables Y1, Y5, ... each of them obeying the discrete law

P(Y =k) = grof, k> 1.

A sequence is said to be hitting n if Y| +- - - + Y, = n for some r > 1. The vector (Yq, ..., Y})
for a sequence conditioned to hit n has the same distribution as the sequence of the lengths of
components in a random F—object of size n.

For probabilists, this explains the shape of the formulae in Theorem V.1, which resemble
renewal relations [205, Sec. XIII.10]. It also implies that, given a uniform random generator for
G—objects, one can generate a random F—object of size n in O (n) steps on average [177]. This
applies to surjections, alignments, and compositions in particular.

B> V.3. Largest components in supercritical sequences. Let F = SEQ(G) be a supercritical

sequence. Assume that g = [zX1G (z) satisfies the asymptotic “smoothness” condition
kkﬁ

8, o "k", c,peRyp, BER.

— 00

Then the size L of the largest G component in a random F—object satisfies, for size n,

Eg (L) = (logn + Bloglogn) + o(loglogn).

log(p/o)
This covers integer compositions (o = 1, § = 0) and alignments (p = 1, 8 = —1). [The
analysis generalizes the case of longest runs in Example V.4 (p. 308) and is based on similar
principles. The GF of F objects with L < m is Fim(z) = (1 - k<m gkzk) 1, according to
Section IIL.7. For m large enough, this has a dominant singularity which is a simple pole at o,
such that o, — 0 ~ ¢1(/p)™mP . There follows a double-exponential approximation

P, (L = m)~ exp (—canmP (a/0)")

in the “central” region. See Example V.4 (p. 308) for a particular instance and Gourdon’s
study [305] for a general theory.]

V. 3. Regular specifications and languages

The purpose of this section is the general study of the (+, x, SEQ) schema, which
covers all regular specifications. As we show now, “pure” exponential-polynomial
forms (ones with a single dominating exponential) can always be extracted. Theo-
rems V.3 and V.4 below provide a universal framework for the asymptotic analysis
of regular classes. Additional structural conditions to be introduced in later sections
(nested sequences, irreducibility of the dependency graph and of transfer matrices)
will then be seen to induce further simplifications in asymptotic formulae.

1See “Properties of prime numbers deduced from the calculus of symmetric functions”, Proc. London
Math. Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to compositions into arbitrary odd
primes, and 23 is the first such prime that is not twinned.
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V.3.1. Combinatorial aspects. For convenience and without loss of analytic
generality, we consider here unlabelled structures. According to Chapter I (Defini-
tion I.10, p. 51, and the companion Proposition 1.2, p. 52), a combinatorial specifica-
tion is regular if it is non-recursive (“iterative”) and it involves only the constructions
of Atom, Union, Product, and Sequence. A language L is S—regular if it is com-
binatorially isomorphic to a class M described by a regular specification. Alterna-
tively, a language is S—regular if all the operations involved in its description (unions,
catenation products and star operations) are unambiguous. The dictionary translating
constructions into OGFs is

(1) F+Gr F+G, FxGr FxG, SEQF) — (1—F) !

and for languages, under the essential condition of non-ambiguity (Appendix A.7:
Regular languages, p. 733),

(12) LUMb L+ M, LM LxM, L (1-L0)".

The rules (11) and (12) then give rise to generating functions that are invariably ra-
tional functions. Consequently, given a regular class C, the exponential-polynomial
form of coefficients expressed by Theorem IV.9 (p. 256) systematically applies, and
one has

(13) Cr =[2"1CGR) =Y Mjme;",
j=1

for a family of algebraic numbers o; (the poles of C(z)) and a family of polynomi-
als IT;.

As we know from the discussion of periodicities in Section IV. 6.1 (p. 263), the
collective behaviour of the sum in (13) depends on whether or not a single o domi-
nates. In the case where several dominant singularities coexist, fluctuations of sorts
(either periodic or irregular) may manifest themselves. In contrast, if a single « dom-
inates, then the exponential-polynomial formula acquires a transparent asymptotic
meaning. Accordingly, we set:

Definition V.2. An exponential-polynomial form Z';l:l IT; (n)ozj_” is said to be pure if
lat| < |ajl, forall j > 2. In that case, a single exponential dominates asymptotically
all the other ones.

As we see next for regular languages and specifications, the corresponding count-
ing coefficients can always be described by a finite collection of pure exponential—
polynomial forms. The fundamental reason is that we are dealing with a special subset
of rational functions, one that enjoys strong positivity properties.

D> V4. Positive rational functions. Define the class Rat™ of positive rational functions as
the smallest class containing polynomials with positive coefficients (R ¢[z]) and closed under

sum, product, and quasi-inverse, where Q(f) = (1 — f )_1 is applied to elements f such that
f(0) = 0. The OGF of any regular class with positive weights attached to neutral structures
and atoms is in Rat™. Conversely, any function in Rat™ is the OGF of a positively weighted

regular class. The notion of a Rat™ function is for instance relevant to the analysis of weighted
word models and Bernoulli trials (Section III. 6.1, p. 189). <
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V.3.2. Analytic aspects. First we need the notion of sections of a sequence.

Definition V.3. Let (f,) be a sequence of numbers. Its section of parameters D, r,
where D € Z~o and r € Zx is the subsequence ( f,,p+r). The numbers D and r are
referred to as the modulus and the base, respectively.

The main theorem describing the asymptotic behaviour of regular classes is a
consequence of Proposition IV.3 (p. 267) and is originally due to Berstel. (See Soit-
tola’s article [546] as well as the books by FEilenberg [189, Ch VII] and Berstel—
Reutenauer [56] for context.)

Theorem V.3 (Asymptotics of regular classes). Let S be a class described by a regular
specification. Then there exists an integer D such that each section of modulus D of
Sy that is not eventually 0 admits a pure exponential-polynomial form: for n larger
than some ngo, and any such section of base r, one has

m
Sp =TImE" + Y _ Pjmp!  n=rmodD,
j=1

where the quantities B, B;, with B > |B;|, and the polynomials 1, P;, with T1(x) # 0,
depend on the base r.

Proof. (Sketch.) Let oy be the dominant pole of S(z) that is positive. Proposition IV.3
(p. 267) asserts that any dominant pole, « is such that «/|«| is a root of unity. Let Dy
be such that the dominant singularities are all contained in the set {orj /! }?21’ where
w = exp(2im/Dy). By collecting all contributions arising from dominant poles in the
general expansion (13) and by restricting » to a fixed congruence class modulo Dy,
namely n = vDgy + r with 0 < r < Dg, one gets

(14) Supor = M ™Y + 0(4™).

There 11 is a polynomial depending on r and the remainder term represents an ex-
ponential polynomial with growth at most O (A™") for some A > «;.

The sections with modulus Dy that are not eventually O can then be categorized
into two classes.

— Let R be the set of those values of r such that TT'"! is not identically 0.
The set R is non-empty (else the radius of convergence of S(z) would be
larger than «.) For any base r € R, the assertion of the theorem is then
established with 8 = 1/a;7.

— Let Ry be the set of those values of r such that T1(x) = 0, with 1" as
given by (14). Then one needs to examine the next layer of poles of S(z), as
detailed below.

Consider a number r such that € Ry, so that the polynomial IT/"! is identically 0.
First, we isolate in the expansion of S(z) those indices that are congruent to r modulo
Dy. This is achieved by means of a Hadamard product, which, given two power series
a(z) =Y ap7" and b(z) = Y_ byz", is defined as the series ¢(z) = Y _ ¢,z" such that
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¢n = apby, and is written ¢ = a © b. In symbols:

(15) Zanz” ® anz” =Zanbnz”.

n=0 n>0 n>0

We have:

Zr
(16) ¢ =500 (= ).
A classical theorem [57, 189] from the theory of positive rational functions (in the
sense of Note V.4) asserts that such functions are closed under Hadamard product. (A
dedicated construction for (16) is also possible and is left as an exercise to the reader.)
Then the resulting function G(z) is of the form

g(2) = 2"y (2P0,

with the rational function y (z) being analytic at 0. Note that we have [z"]y(z) =
SvDy+r» S0 that y is exactly the generating function of the section of base r of S(z).
One verifies next that y(z), which is obtained by the substitution z +— z!/?0 in
g(2)z7", is itself a positive rational function. Then, by a fresh application of Bers-
tel’s Theorem (Proposition IV.3, p. 267), this function, if not a polynomial, has a
radius of convergence p with all its dominant poles o being such that o/ p is a root of
unity of order D1, for some D; > 1. The argument originally applied to S(z) can thus
be repeated, with y (z) replacing S(z). In particular, one finds at least one section (of
modulus Dj) of the coefficients of y(z) that admits a pure exponential-polynomial
form. The other sections of modulus D; can themselves be further refined, and so on

In other words, successive refinements of the sectioning process provide at each
stage at least one pure exponential-polynomial form, possibly leaving a few congru-
ence classes open for further refinements. Define the layer index of a rational function
f as the integer « (f), such that

k(f) =card{|¢| | f(¢)=o0}.

(This index is thus the number of different moduli of poles of f.) It is seen that each
successive refinement step decreases by at least 1 the layer index of the rational func-
tion involved, thereby ensuring termination of the whole refinement process. Finally,
the collection of the iterated sectionings obtained can be reduced to a single section-
ing according to a common modulus D, which is the least common multiple of the
collection of all the finite products Dy Dy - - - that are generated by the algorithm. W

For instance the coefficients (Figure V.4) of the function
1 " z
Q-2 —z2—2z%  1-3z%

associated to the regular language a*(bb + cccc)* +d(ddd + eee + fff)*, exhibit an
apparently irregular behaviour, with the expansion of L(z) starting as

a7 L(z) =

L +2z+ 222 +22° + 724 + 425 + 78 41627 + 1228 + 1227 + 47210 42021 4
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Figure V.4. Plots of log Fj, with F;; = [7"]F (z) and F(z) as in (17) display fluctua-
tions that disappear as soon as sections of modulus 6 are considered.

The first term in (17) has a periodicity modulo 2, while the second one has an obvious
periodicity modulo 3. In accordance with the theorem, the sections modulo 6 each
admit a pure exponential-polynomial form and, consequently, they become easy to
describe (Note V.5).

> V.5. Sections and asymptotic regimes. For the function L(z) of (17), one finds, with ¢ :=
(1++/5)/2and ¢, ¢; € Ro,

L, =371/3.320/3 4 0(p"/?) (n =1, 4 mod 6),

Ln =c1o"™?+ 0(1) (n = 0,2 mod 6),
L =™+ 0(1) (n =3,5mod 6),
in accordance with the general form predicted by Theorem V.3. <

D> V.6. Extension to Rat™ functions. The conclusions of Theorem V.3 hold for any function
in Rat™ in the sense of Note V.4. <

> V.7. Soittola’s Theorem. This is a converse to Theorem V.3 proved in [546]. Assume that
coefficients of an arbitrary rational function f(z) are non-negative and that there exists a sec-
tioning such that each section admits a pure exponential-polynomial form. Then f(z) is in
Rat™ in the sense of Note V.4; in particular, f is the OGF of a (weighted) regular class. <

Theorem V.3 is useful for interpreting the enumeration of regular classes and
languages. It serves a similar purpose with regards to structural parameters of regular
classes. Indeed, consider a regular specification C augmented with a mark u that is, as
usual, a neutral object of size 0 (see Chapter III). We let C(z, u) be the corresponding
BGFof C, sothat C,, x = [Z”uk]C(z, u) is the number of C—objects of size n that bear k
marks. A suitable placement of marks makes it possible to record the number of times
any given construction enters an object. For instance, in the augmented specification
of binary words,

C = (SEQ.,(b) 4+ u SEQ>,(b)) SEQ(a(SEQ,(b) + u SEQ>,(D))),
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all maximal runs of b having length at least r are marked by a u. There results the
following BGF for the corresponding parameter “number of runs of bs of length > r”,

11—z uz” 1
(18) Clz,u) = + : ~
l—z 1-z 1_Z(l—z +ﬂ)

v}"
I-z 1—z

from which mean and variance can be determined. In general, marks make it possible
to analyse profile, with respect to constructions entering the specification, of a random
object.

Theorem V.4 (Profile of regular classes). Consider a regular specification of a class C,
augmented with a mark and let x be the parameter corresponding to the number of
occurrences of that mark. There exists a sectioning index d such that for any fixed
section of (C,) of modulus d, the following holds: the moment of integral order s > 1
of x satisfies an asymptotic formula

(19) Ec,[x*1= Qm)B" + O(G"),

where the quantities B, Q, G depend on the particular section considered, with 0 <
B <1, Q(n) a rational fraction, and G < B.

(Only sections that are not eventually O are to be considered.)

Proof. The case of expectations suffices to indicate the lines of a general proof. One
possible approach? is to build a derived specification £ such that

E,

)

which is also a regular specification. To this purpose, define a transformation on
specifications defined inductively by the rules

0(A+ B)=0A+ 0B, d0(AXx B)=0Ax B+ A x0B,
0 SEQ(A) = SEQ(A) x 0A x SEQ(A),

together with the initial conditions du = 1 and 0Z = ¢. This is a form of combina-
torial differentiation: an object y € C corresponds to x (y) objects in £, namely, one
for each choice of an occurrence of the mark.

As a consequence, E, is the cumulated value of x over C,, so that E,/C, =
Ec,[x]. On the other hand, £ is a regular specification to which Theorem V.3 ap-
plies. The result follows upon considering (if necessary) a sectioning that refines the
sectionings of both C and £. The argument extends easily to higher moments. ]

Ec,[x] =

> V.8. A rational mean. Consider the regular language C = a*(b + ¢)*d (b + ¢)*. Let x be the
length of the initial run of a’s. Then one finds

Z 22

P a—— Ex)=—————.
(1 —2)(1 —22)2 (1 —2)2(1 —2z)2
Thus the mean of x satisfies

B =32 +m+3) _n-3 EAY
EC"[X]_Cn_ (n—12"+1 _n_1+0((4)>.

C(z)=

quuivalently, one may operate at generating function level and observe that the derivative of a Rat™
function is Rat™; cf Notes V.4 and V.6.
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Class Asymptotics
Integer compositions T

k=1
— k summands ~ h (§1.3.1, p. 44)
— summands < r ~ B! (§81.3.1,p. 42)
Integer partitions
k-1 .

— k summands ~ m (§1.3.1, p. 44)
— summands < r ~ W (§1.3.1, p. 43)
Set partitions, k classes ~ % (§1.4.3,p. 62)
Words excluding a pattern p ~ cﬂg (§IV.6.3, p. 271)

Figure V.5. A pot-pourri of regular classes and their asymptotics.

Generally, in the statement of Theorem V.4, let Q(n) = A(n)/B(n) with A, B polynomials and
a = deg(A), b = deg(B). The following combinations prove to be possible (for first moments):
B =1 and (a, b) any pair such that 0 < a < b + 1; also, 8 < 1 and (a, b) any pair of elements
> 0. <

D> V.9. Shuffle products. Let L, M be two languages over two disjoint alphabets. Then, the
shuffle product S of £ and M is such that S (z) = L(z) M (z), where S L M are the expo-
nential generating functions of S, £, M. Accordingly, if the OGF L(z) and M(z) are rational
then the OGF S(z) is also rational. (This technique may be used to analyse generalized birthday
paradox and coupon collector problems; see [231].) <

V.3.3. Applications. This subsection details several examples that illustrate the
explicit determination of exponential-polynomial forms in regular specifications, in
accordance with Theorems V.3 and V.4. We start by recapitulating a collection, a
“pot-pourri”, of combinatorial problems already encountered in Part A, where rational
generating functions have been used en passant. We then examine longest runs in
words, walks of the pure-birth type, and subsequence (hidden pattern) statistics.

Example V.3. A pot-pourri of regular specifications. A few combinatorial problems, to be
found scattered across Chapters -1V, are reducible to regular specifications: see Figure V.5 for
a summary.

Compositions of integers (Section 1.3, p. 39) are specified by C = SEQ(SEQx>1(2)),
whence the OGF (1 — z)/(1 — 2z) and the closed form C,, = =1 an especially transpar-
ent exponential-polynomial form. Polar singularities are also present for compositions into k
summands that are described by SEQ; (SEQ>1(Z)) and for compositions whose summands are
restricted to the interval [1..r] (i.e., SEQ(SEQq . ,(2£)), with corresponding generating func-

tions
Ja 1-z

(1 — )k’ 1 —2z 4zt

In the first case, there is an explicit form for the coefficients, (k 1) which constitutes a partic-
ular exponential-polynomial form (with the basis of the exponential being 1). The second case
requires a dedicated analysis of the dominant polar singularity, which is recognizably a variant
of Example V.4 (p. 308 below) dedicated to longest runs in random binary words.
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Integer partitions involve the multiset construction. However, when summands are re-
stricted to the interval [1 .. r], the specification and the OGF are given by

1
1—z/°

MSET(SEQ; . ,(2)) = SEQ(Z) x SEQ(Z%) x ---SEQ(Z") =[]
j=1

This case, introduced in Section L. 3 (p. 39) also served as a leading example in our discussion
of denumerants in Example IV.6 (p. 257): the analysis of the pole at 1 furnishes the domi-
nant asymptotic behaviour, n” —L/(r1r = 1Y), for such special partitions. The enumeration of
partitions by number of parts then follows, by duality, from the staircase representation.

Set partitions are typically labelled objects. However, when suitably constrained, they can
be encoded by regular expressions; see Section I. 4.3 (p. 62) for partitions into k classes, where
the OGF found is

k n
s®(z) = < implying s,ﬁk) ~ k—,
(1-21-22)---(1—k2) k!
and the asymptotic estimate results from the partial fraction decomposition and the dominant
pole at 1/k.

Words lead to many problems that are prototypical of the regular specification framework.
In Section 1.4 (p. 49), we saw that one could give a regular expression describing the set of
words containing the pattern abb, from which the exact and asymptotic forms of counting
coefficients derive. For a general pattern p, the generating functions of words constrained to
include (or dually exclude) p are rational. The corresponding asymptotic analysis has been
given in Section IV. 6.3 (p. 271).

Words can also be analysed under the Bernoulli model, where letter i is selected with
probability p;; cf Section III. 6.1, p. 189, for a general discussion including the analysis of
records in random words (p. 190). . ...t e | |

D> V.10. Partially commutative monoids. Let VW = A* be the set of all words over a finite
alphabet A. Consider a collection C of commutation rules between pairs of elements of A. For
instance, if A = {a, b, ¢}, then C = {ab = ba, ac = ca} means that a commutes with both b
and c, but bc is not a commuting pair: bc # cb. Let M = W/[C] be the set of equivalent
classes of words (monomials) under the rules induced by C. The set M is said to be a partially
commutative monoid or a trace monoid [105].

If A = {a, b}, then the two possibilities for C are C = ¢ and C := {ab = ba}. Normal
forms for M are given by the regular expressions (a + b)* and a*b* corresponding to the OGFs

1 1
l—a—-b’ l—a—b+ab’
If A = {a, b, ¢}, the possibilities for C, the corresponding normal forms, and the OGFs M are
as follows. If C = 4, then M = (a + b + ¢)* with OGF (1 —a — b — ¢)~1; the other cases are

ab = ba ab = ba, ac = ca ab = ba, ac = ca, bc =cb

(a*b*c)*a*b* a*(b +co)* a*b*c*
1 1 1

l—-a—b—c+ab 1—a—-b—-—c+ab+ac 1—a—b—c+ab+ac+bc—abc’

Cartier and Foata [105] have discovered the general form (based on extended Mobius inversion),

M= (Z(—l)”F)l,

F

where the sum is over all monomials ' composed of distinct letters that all commute pairwise.
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Viennot [597] has discovered an attractive geometric presentation of partially commutative
monoids in terms of heaps of pieces, which has startling applications to several areas of combi-
natorial theory. (Example 1.18, p. 80, relative to animals provides an example.) Goldwurm and
Santini [298] have shown that [z 1M (z) ~ K - " for K, a > 0. <

Longest runs. 1t is possible to develop a complete analysis of runs of consecutive
equal letters in random sequences: this is in theory a special case of the analysis
of patterns in random texts (Section IV. 6.3, p. 271), but the particular nature of the
patterns makes it possible to derive much more explicit results, including asymptotic
distributions.

Example V4. Longest runs in words Longest runs in words, introduced in Section I.4.1
(p. 51), provide an illustration of the technique of localizing dominant singularities in rational
functions and of the corresponding coefficient extraction process. The probabilistic problem is
a famous one, discussed by Feller in [205]: it represents a basic question in the analysis of runs
of good (or bad) luck in a succession of independent events. Our presentation closely follows
an insightful note of Knuth [375] whose motivation was the analysis of carry propagation in
certain binary adders.

Start from the class WV of all binary words over the alphabet {a, b}. Our interest lies in
the length L of the longest consecutive block of a’s in a word. For the property L < k, the
specification and the corresponding OGF are

1-zk 1
W = spo (@ SEQ SEQ k(@) = W@ = < —
¢ 1z
that is,
12
20 whli = —— .
0 O = g

This represents a collection of OGFs indexed by k, which contain all the information relative to
the distribution of longest runs in random words. We propose to prove:

Proposition V.1. The longest run parameter L taken over the set of binary words of length n
(endowed with the uniform distribution) satisfies the uniform estimate®

logn> 7 a(n) = ollgn}

Jn

@) Pu(L<lgnl+h=e®2" 1o (

In particular, the mean satisfies

2
y 3 log“n
E,(L)=1 — — =+ P(1 0 ,
n(L) gn+10g2 5 +Pdgm) + ( NG
where P is a continuous periodic function whose Fourier expansion is given by (29). The
variance satisfies V(L) = O (1) and the distribution is concentrated around its mean.

The probability distributions appearing in (21) are known as double exponential distributions
(Figure V.6, p. 311). The formula (21) does not represent a single limit distribution in the usual
sense of Chapter IX, but rather a whole family of distributions indexed by the fractional part of
g n, thus dictated by the way n places itself with respect to powers of 2.

3The symbol 1g x denotes the binary logarithm, Igx = log, x, and {x} is the fractional part function
({7} =0.14159---,.
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Proof. The proof consists of the following steps: locate the dominant pole; estimate the cor-
responding contribution; separate the dominant pole from the other poles in order to derive
constructive error terms; finally approximate the main quantities of interest.

(i) Location of the dominant pole. The OGF W) has, by the first form of (20), a dominant
pole pg, which is a root of the equation 1 = s(pg), where s(z) = z(1 — zk)/(l —2z). We consider
k > 2. Since s(z) is an increasing polynomial and s(0) = 0, s(1/2) < 1, s(1) = k, the root py
must lie in the open interval (1/2,1). In fact, as one easily verifies, the condition £ > 2
guarantees that s(0.6) > 1, hence the first estimate

22) —<pr <= (k> 2).

It now becomes possible to derive precise estimates by bootstrapping. (This technique is a
form of iteration for approaching a fixed point—its use in the context of asymptotic expansions
is detailed in De Bruijn’s book [143].) Writing the defining equation for p; as a fixed point
equation,
1
=1+,

and making use of the rough estimates (22) yields next

1 1\ k! 1 3\ (!
23 11 - -1 - .
@3) - +<2) <pi<s +(5)
Thus, pg is exponentially close to %, and further iteration from (23) shows

1 1 k
(24) pk=§+ﬁ+0(ﬁ)’

(i1) Contribution from the dominant pole. A straightforward calculation provides the value
of the residue,

k
1= p —n—1

(25) R := —Res W(k>(z)2_n_1; I=ppl= ——F—
n.k [ k] 2k + 1)/0]](( k

which is expected to provide the main approximation to the coefficients of Wk asn — oo.

The quantity in (25) is of the rough form 2"¢ "/ 2kt

shortly.

; we shall return to such approximations

(iii) Separation of the subdominant poles. Consider the circle |z] = 3/4 and take the
second form of the denominator of W (k) namely, that of (20):

1—2z 4 KL

In view of Rouché’s theorem (p. 270), we may regard this polynomial as the sum f(z) + g(z),
where f(z) =1 —2zand g(z) = Z&*+1. The term f(z) has on the circle |z| = 3/4 a modulus
that varies between 1/2 and 5/2; the term g(z) is at most 27/64 for any k > 2. Thus, on the
circle |z| = 3/4, one has |g(z)| < | f(z)], so that f(z) and f(z) + g(z) have the same number
of zeros inside the circle. Since f(z) admits z = 1/2 as only zero there, the denominator must
also have a unique root in |z| < 3/4, and that root must coincide with py.

Similar arguments also give bounds on the error term when the number of words w satisfy-
ing L(w) < k is estimated by the residue (25) at the dominant pole. On the circle |z| = 3/4, the
denominator of W) stays bounded away from O (its modulus is at least 5/64 when k > 2, by
previous considerations). Thus, the modulus of the remainder integral is O ((4/3)"), and in fact
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bounded from above by 35(4/3)". In summary, letting g, x represent the probability that the
longest run in a random word of length 7 is less than &, one obtains the main estimate (k > 2)

s G e ()
26 =P,(L<k)=—"— | — of[= ,
(26) Ink L=k 1= (k+ Dpk/2 \ 20 * 3

which holds uniformly with respect to k. Here is a table of the numerical values of the quantities
appearing in the approximation of g, ¢, written under the form cy - (2p5)™":

k o o) "
2 1.17082-0.80901"
3 1.13745-0.91964"
4 1.09166 - 0.96378"
5 1.05753-0.98297"
10 1.00394 - 0.99950"

(iv) Final approximations. There only remains to transform the main estimate (26) into
the limit form asserted in the statement. First, the “tail inequalities” (with Igx = log, x)

3 —2y
Q7 Py <L<Zlgn):O(e_%‘4/ﬁ), ]P’,,(LzZlgn-Fy)ZO(e)
n

describe the tail of the probability distribution of L,. They are derived from simple bounding
techniques applied to the main approximation (26) using (24). Thus, for asymptotic purposes,
only a relatively small region around lg n needs to be considered.

Regarding the central regime, for k = lgn + x and x in [—% lgn, Ign], the approxima-
tion (24) of p and related quantities applies, and one finds

—n _ n 2k - /2k+1 lOgI’l
200 ”—exp(—zﬁwamz )>—e " (1+0(ﬁ)).

(This results from standard expansions of the form (1 — a)? = ¢~ "¢ exp(O(naz)).) At the
same time, the coefficient in (26) of the quantity (20;) ™" is

k logn
I+ O0kpp)=1+0 A

Thus a double exponential approximation holds (Figure V.6): for k = lgn + x with x in
[—% Ign, lgn], one has (uniformly)

_py Jok+1 logn
28) Gug =e "2 (1+0<jﬁ>>.

In particular, upon setting k = |Ign] + & and making use of the tail inequalities (27), the first
part of the statement, namely Equation (21), follows. (The floor function takes into account the
fact that k£ must be an integer.)

The mean and variance estimates are derived from the fact that the distribution quickly
decays at values away from lgn (by (27)) while it satisfies Equation (28) in the central region.
The mean satisfies

. _ n logzn . —x/2h
E, (L) ._};[1—19,1@ <h)]_<b(2)—1+0(n>, D) ._gg[l—e ]

Consider the three cases h < hg, h € [ho, h1], and h > hq with by = lgx — loglogx and
h1 =l1gx + loglog x, where the general term is (respectively) close to 1, between 0 and 1, and
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Figure V.6. The double exponential laws: Left, histograms for n at 27 (black),
2P+1/3 (dark gray), and 2P*2/3 (light gray), where x = k — lgn. Right, empiri-
cal histograms for 1000 simulations with n = 100 (top) and n = 140 (bottom).

close to 0. By summing, one finds elementarily ®(x) = lgx + O(loglogx) as x — 0co. (An
elementary way of catching the next O(1) term is discussed for instance in [538, p. 403].)

The method of choice for precise asymptotics is to treat @ (x) as a harmonic sum and apply
Mellin transform techniques (Appendix B.7: Mellin transforms, p. 762). The Mellin transform
of d(x)is

e I (s
D*(s) ::/ d(x)x* " ldx = e NR(s) € (—1,0).
0 1-25
The double pole of ®* at 0 and the simple poles at s = %é]g‘g are reflected by an asymptotic

expansion that involves a Fourier series:
(29)
14

1 1 2ik :
O(x) = lgxt+ 2=+ PIg)+0GY, Pw)=—— Y (=) Hkmw,
log2 2 IOngEZ\{O} log?2

The oscillating function P(w) is found to have tiny fluctuations, of the order of 10_6; for
instance, the first Fourier coefficient has amplitude: |I'(2iz/log?2)|/log2 = 7.86 - 10=7. (See
also [234, 311, 375, 564] for more on this topic.) The variance is similarly analysed. This
concludes the proof of Proposition V.1. |

The double exponential approximation in (21) is typical of extremal statistics. What is
striking here is the existence of a family of distributions indexed by the fractional part of Ign.
This fact is then reflected by the presence of oscillating functions in moments of the random
variable L. ... ... ]

B> V.11. Longest runs in Bernoulli sequences. Consider an alphabet A = {a;} with letter a;
independently chosen with probability {p;}. The OGF of words where each run of equal letters
has length at most k is derived from the construction of Smirnov words (pp. 204 and 262), and
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it is found to be .

l _
Wi = (1-E e S

Let pmax be the largest of the p;. Then the expected length of the longest run of any letter is
logn/log pmax + O(1), and precise quantitative information can be derived from the OGFs by
methods akin to Example IV.10 (Smirnov words and Carlitz compositions, p. 262). <

Walks of the pure-birth type. The next two examples develop the analysis of
walks in a special type of graphs. These examples serve two purposes: they illus-
trate further cases of modelling by means of regular specifications, and they provide
a bridge to the analysis of lattice paths in the next section. Furthermore, some spe-
cific walks of the pure-birth type turn out to have applications to the analysis of a
probabilistic algorithm (Approximate Counting).

Example V.5. Walks of the pure-birth type. Consider a walk on the non-negative integers that
starts at 0 and is only allowed either to stay at the same place or move by an increment of +1.
Our goal is to enumerate the walks that start from 0 and reach point m in n steps. A step from j
to j + 1 will be encoded by a letter a; a step from j to j will be encoded by ¢, in accordance
with the following state diagram:

€0 3 2
(30)

ag ai ap
The language encoding all legal walks from state O to state m can be described by a regular
expression:
Ho,m = SEQ(cg)ag SEQ(cy)ay - - - SEQ(cpp—1)am—1 SEQ(Cm)-

Symbolicly using letters as variables, the corresponding ordinary multivariate generating func-
tion is then (with a = (agp, ...) and ¢ = (¢, .. .))

apdi - dm—1
(I—co)l—cp)--(I—cm)

Assume now that the steps are assigned weights, with & j corresponding toa; and y; toc;.
Weights of letters are extended multiplicatively to words in the usual way (cf Section III. 6.1,
p- 189). In addition, upon taking y; = 1 —a;, one obtains a probabilistic weighting: the walker
starts from position 0, and, if at j, at each clock tick, she either stays at the same place with

probability 1 — & ; or moves to the right with probability « ;. The OGF of such weighted walks
then becomes

3D HO,m (2) =

HO,m (a,c) =

agery -0y 12"
A-0-op)1—1T—apz)---Q—1—amz)’

and [z""]Hy ,, is the probability for the walker to be found at position m at (discrete) time n.
4

This walk process can be alternatively interpreted as a (discrete-time) pure-birth process™ in
the usual sense of probability theory: There is a population of individuals and, at each discrete
epoch, a new birth may take place, the probability of a birth being o ; when the population is of
size j.

4The theory of pure-birth processes is discussed under a calculational and non measure-theoretic
angle in the book by Bharucha-Reid [62]. See also the Course by Karlin and Taylor [363] for a concrete
presentation.
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Figure V.7. A simulation of 10 trajectories of the pure-birth process till n = 1024,
with geometric probabilities corresponding to ¢ = 1/2, compared to the curve log; x.

The form (31) readily lends itself to a partial fraction decomposition. Assume for simplic-
ity that the «; are all distinct. The poles of Hy ;, are at the points (1 — « j)_l and one finds as
2> (1—aph:

e R

o —oi)
l_[ke[O,m], k#j( k j)

Tj.m

HO,m(Z) ~ 71 - Olj)

where  rj 1=

Thus, the probability of being in state m at time # is given by a sum:
m

(32) ["1Hom(z) =Y rjm(l—ap"
—o

An especially interesting case of the pure-birth walk is when the quantities o are geomet-
ric: o = qk for some g with 0 < g < 1. In that case, the probability of being in state m after n
transitions becomes (cf (32))

m

(_1)jq(é) i 5 .
33 —_— 1 - Hn = (1 — 1— oo (1 —g’).
(33) Jgo O T @p= =90 —g))

This corresponds to a stochastic progression in a medium with exponentially increasing hard-
ness or, equivalently, to the growth of a population whose size adversely affects fertility in an
exponential manner. On intuitive grounds, we expect an evolution of the process to stay reason-
ably close to the curve y = logy /, x; see Figure V.7 for a simulation confirming this fact, which
can be justified by means of formula (33). This particular analysis is borrowed from [218],
where it was initially developed in connection with the “approximate counting” algorithm to be
SEUAIEA MEXL. .. vttt ettt ettt et et e e e e e e e e e e |

Example V.6. Approximate Counting. Assume you need to keep a counter that is able to
record the number of certain events (say impulses) and should have the capability of keeping
counts till a certain maximal value N. A standard information-theoretic argument (with £ bits,
one can only keep track of 2t possibilities) implies that one needs [log, (N + 1)1 bits to perform
the task—a standard binary counter will indeed do the job. However, in 1977, Robert Morris
has proposed a way to maintain counters that only requires of the order of log log N bits. What’s
the catch?

Morris’ elegant idea consists in relaxing the constraint of exactness in the counting process
and, by playing with probabilities, tolerate a small error on the counts obtained. Precisely, his
solution maintains a random quantity Q which is initialized by Q = 0. Upon receiving an
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impulse, one updates Q according to the following simple procedure (with g € (0, 1) a design
parameter):

procedure Update(Q);

with probability ¢€ do Q := Q + 1 (else keep Q unchanged).

When asked the number of impulses (number of times the update procedure was called) at any
moment, simply use the following procedure to return an estimate:

procedure Answer(Q);
g 2-1

1—q
Let Q) be the value of the random quantity Q after n executions of the update procedure

and X, the corresponding estimate output by the algorithm. It is easy to verify (by recurrence
or by generating functions; see Note V.12 below for higher moments) that, forn > 1,

(34) E(qu") =n(l—gq)+1, sothat E(X,) =n.

output X =

Thus the answer provided at any instant is an unbiased estimator (in a mean value sense) of
the actual count n. On the other hand, the analysis of the geometric pure-birth process in
the previous example applies. In particular, the exponential approximation (1 — )" ~ =¥
in conjunction with the basic formula (33) shows that for large n and m sufficiently near to
log; /, n, one has (asymptotically) the geometric-birth distribution

o0
35 P@Qu=m=)
j=0

(~1ig®

—_g*—J +o(1), =m — 1 .
@ g ST T o, w=m gy

(We refer to [218] for details.) Such calculations imply that Q;, is with high probability (w.h.p.)
close to logl/q n. Thus, if n < N, the value of Q, will be w.h.p. bounded from above by
(14 e)logy, N, with € a small constant. But this means that the integer @, which can itself
be represented in binary, will only require

(36) log, logn + O(1)

bits for storage, for fixed g.

A closer examination of the formulae reveals that the accuracy of the estimate improves
considerably when ¢ becomes close to 1. The standard error is defined as %\/\m and it
measures, in a mean-quadratic sense, the relative error likely to be made. The variance of Qj

is, as for the mean, determined by recurrence or generating functions, and one finds

_ o3 _
37) V(q_Q”_H) _ <H>M’ l /V(Xy) ~ 17(]
2 q n V' 24

(see also Note V.12 below). This means that accuracy increases as g approaches 1 and, by
suitably dimensioning g, one can make it asymptotically as small as desired. In summary,
(34), (37), and (36) express the following property: Approximate counting makes it possible to
count till N using only about loglog N bits of storage, while achieving a standard error that is
asymptotically a constant and can be set to any prescribed small value. Morris’ trick is now
fully understood.

For instance, with ¢ = 271716 ¢ proves possible to count up to 216 = 65536 using only
8 bits (instead of 16), with an error likely not to exceed 20%. Naturally, there’s not too much
reason to appeal to the algorithm when a single counter needs to be managed (everybody can
afford a few bits!): Approximate Counting turns out to be useful when a very large number of
counts need to be kept simultaneously. It constitutes one of the early examples of a probabilistic
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algorithm in the extraction of information from large volumes of data, an area also known as
data mining; see [224] for a review of connections with analytic combinatorics and references.
Functions akin to those of (35) also surface in other areas of probability theory. Guillemin,
Robert, and Zwart [314] have detected them in processes that combine an additive increase and
a multiplicative decrease (AIMD processes), in a context motivated by the adaptive transmis-
sion of “windows” of varying sizes in large communication networks (the TCP protocol of the
internet). Biane, Bertoin, and Yor [58] encountered a function identical to (35) in their study of
exponential functionals of Poisson processes. ...............oiiiiiiiiiiiiiiiiiiia., |

> V.12. Moments of q_Q". It is a perhaps surprising fact that any integral moment of q‘Q" is
a polynomial in n, ¢, and q_l, as in (34), (37). To see it, define

g_-mwm

(A +89)(1+5¢%) - (1 +Egm T

P(w) = d(w.&.q) =y _ " HD/2

m=>0

By (31), one has

1
> Hypm(@w" = —@ (w; = q).
’ 1—z 1—z

m=>0

On the other hand, ® satisfies ®(w) = 1 — g&(1 — w)P(qw), hence the g—identity,

D) = Y (—q&) [(1 = )1 = qu) -+ (1 = ¢/ 'w)]
j=0

which belongs to the area of q—calculus5 . Thus ®(¢~"; £, ¢) is a polynomial for any r € Zx,
as the expansion terminates. See Prodinger’s study [498] for connections with basic hypergeo-
metric functions and Heine’s transformation.

Hidden patterns: regular expression modelling and moments. We return here
to the analysis of the number of occurrences of a pattern p as a subsequence in a ran-
dom text. The mean number of occurrences can be obtained by enumerating contexts
of occurrences: in a sense we are then enumerating the language of all words by means
of a dedicated regular expression where the ambiguity coefficient (the multiplicity) of
a word is precisely equal to the number of occurrences of the pattern. This technique,
which gives an easy access to expectations, also works for higher moments. It supple-
ments the fact that there is no easy way to get a BGF in such cases, and it appears to
be sufficient to derive a concentration of distribution property.

Example V.7. Occurrences of “hidden” patterns in Bernoulli texts. ~ Fix an alphabet A =
{a1, ..., ar} of cardinality r and assume a probability distribution on A to be given, with p;
the probability of letter a;. We consider the Bernoulli model on YW = SEQ(A), where the
probability of a word is the product of the probabilities of its letters (cf Subsection III. 6.1,
p- 189). A word p = yq - - - yi called the pattern is fixed. The problem is to gather information
on the random variable X representing the number of occurrences of p in the set WV,, where
occurrences as a “hidden pattern”, i.e., as a subsequence, are counted (see Example I.11, p. 54,
for the case of equiprobable letters).

5By g—calculus is roughly meant the collection of special function identities relating power series of
the form ) a, (¢)z", where a, (q) is a rational fraction whose degree is quadratic in n. See [15, Ch. 10] for
basics and [284] for more advanced (¢g—hypergeometric) material.
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Mean value analysis. The generating function associated to WV endowed with its proba-
bilistic weighting is

1 1
W(2) = = .
@ 1-> pjz 1—z
The regular specification
(38) O = SEQ(A)y1 SEQ(A) - - - SEQ(A) yk—1 SEQ(A) yx SEQ(A)

describes all contexts of occurrences of p as a subsequence in all words. Graphically, this may
be rendered as follows, for a pattern of length 3 such as p = y;yry3:

(39 b 2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (SEQ(.A)). The corresponding OGF

7 (p)k

(40) 0@ = m s

7T (P) := Py, = Pyt Pk
counts elements of YV with multiplicityﬁ, where the multiplicity coefficient A (w) of a word w €
W is precisely equal to the number of occurrences of p as a subsequence in w:

0@ = Y rwmw)™l
weA*

This shows that the mean value of the number X of hidden occurrences of p in a random word
of length n satisfies

(41) Eyy, (X) = [2"10(2) = 7 (p) (Z)

which is consistent with what a direct probabilistic reasoning would give.

Variance analysis. In order to determine the variance of X over W, we need contexts in
which pairs of occurrences appear. Let Q denote the set of all words in WV with rwo occurrences
(i.e., an ordered pair of occurrences) of p as a subsequence being distinguished. Then clearly
[z2"1Q(z) represents Eyy, (X 2). There are several cases to be considered. Graphically, a pair of
occurrences may share no common position, like in what follows:

]
@) )1 »

Y1 Y2 y3

But they may also have one or several overlapping positions, like in

) )1 2
7] 5] 3]
Vi 2] I
(a4) L 2
1| v =]

(This last situation necessitates y, = y3, typical patterns being abb and aaa.)

6 In language-theoretic terms, we make use of the regular expression O = A*yj] A* - - yj_ A* yp A*
that describes a subset of A* in an ambiguous manner and takes into account the ambiguity coefficients.
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In the first case corresponding to (42), where there are no overlapping positions, the con-
figurations of interest have OGF

[0] _ 2k ﬂ(p)212k

There, the binomial coefficient (2kk) counts the total number of ways of freely interleaving two
copies of p; the quantity rr(p)2z2k takes into account the 2k distinct positions where the letters
of the two copies appear; the factor (1 — 7)~2k-1 corresponds to all the possible 2k + 1 fillings
of the gaps between letters.

In the second case, let us start by considering pairs where exactly one position is overlap-
ping, like in (43). Say this position corresponds to the rth and sth letters of p (r and s may be
unequal). Obviously, we need y, = y; for this to be possible. The OGF of the configurations is
now

r—1

(r + 5 — 2) <2k —r— s) n(p)2(pyr)_1z2k_1

k—r (1 —z)%k '
rfiTz) counts the total number of ways of interleaving
y1-+-yr—1 and yq - - - ys_1; the second binomial (Zk,;:;s) is similarly associated to the inter-
leavings of y,41---yr and ysi - - - yk; the numerator takes into account the fact that 2k — 1
positions are now occupied by predetermined letters; finally the factor (1 — )% corresponds
to all the 2k fillings of the gaps between letters. Summing over all possibilities for r, s gives the
OGF of pairs with one overlapping position as

2 2k—1
P o <r+s—2>(2k—r—S> Myr =351} 7077~
@6 ol mZSSk o k—r N (11—

There, the first binomial coefficient (

Similar arguments show that the OGF of pairs of occurrences with at least two shared
positions (see, e.g., (44)) is of the form, with P a polynomial,

P(2)
(1 —z)2k=17
for the essential reason that, in the finitely many remaining situations, there are at most (2k — 1)
possible gaps.

We can now examine (45), (46), (47) in the light of singularities. The coefficient [z"] Q[O] ()
is seen to cancel to first asymptotic order with the square of the mean as given in (41). The
contribution of the coefficient [z"]Q[Zz] (z) appears to be negligible as it is O(nZk_z). The
coefficient [z”]Q[l](z), which is 0(;12]‘71 ), is seen to contribute to the asymptotic growth of
the variance. In summary, after a trite calculation, we obtain:

(47) 0=2(z) =

Proposition V.2. The number X of occurrences of a hidden pattern p in a random text of size n
obeying a Bernoulli model satisfies

2 2 1
Eyy, (X) = ”“”(Z) ~ TR 00 = %rﬂk—l (1 4 0(;)) ,

where the “correlation coefficient” K(p)2 is given by

r4+s—=2\[2k—r—s Ly, = ys1
o= () (B )

1<r,s<k

In particular, the distribution of X is concentrated around its mean.
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This example is based on an article by Flajolet, Szpankowski, and Vallée [263]. There the
authors show further that the asymptotic behaviour of moments of higher order can be worked
out. By the Moment Convergence Theorem (Theorem C.2, p. 778), this calculation entails that
the distribution of X over W, is asymptotically normal. The method also extends to a much
more general notion of “hidden” pattern; e.g., distances between letters of p can be constrained
in various ways so as to determine a valid occurrence in the text [263]. It also extends to the very
general framework of dynamical sources [81], which include Markov models as a special case.
The two references [81, 263] thus provide a set of analyses that interpolate between the two
extreme notions of pattern occurrence—as a block of consecutive symbols or as a subsequence
(“hidden pattern™). Such studies demonstrate that hidden patterns are with high probability
bound to occur an extremely large number of times in a long enough text—this might cast some
doubts on numerological interpretations encountered in various cultures: see in particular the
critical discussion of the “Bible Codes” by McKay et al. in [433]. ........ ...t |

D> V.13. Hidden patterns and shuffle relations. ~ To each pairs u, v of words over A associate
the weighted-shuffle polynomial in the indeterminates A denoted by ((})), and defined by the

) =) o ) o)
()-()-

where ¢ is a parameter, x, y are elements of A, and 1 is the empty word. Then the OGF of Q(z)

above is
cr=o[((),.Jo-bs
p)1—z) (I_Z)Zk-l-l’

where o is the substitution a; > pjz. <

V.4. Nested sequences, lattice paths, and continued fractions

This section treats the nested sequence schema, corresponding to a cascade of
sequences of the rough form SEQo SEQo--- o SEQ. Such a schema covers Dyck
and Motzkin path, a particular type of Lukasiewicz paths already encountered in Sec-
tion I. 5.3 (p. 73). Equipped with probabilistic weights, these paths appear as trajec-
tories of birth-and-death processes (the case of pure-birth processes has already been
dealt with in Example V.5, p. 312). They also have great descriptive power since,
once endowed with integer weights, they can encode a large variety of combinatorial
classes, including trees, permutations, set partitions, and surjections.

Since a combinatorial sequence translates into a quasi-inverse, Q(f) = (1 —
£)~!, aclass described by nested sequences has its generating function expressed by
a cascade of fractions, that is, a continued fracti0n7. Analytically, these GFs have
two dominant poles (the Dyck case) or a single pole (the Motzkin case) on their disc
of convergence, so that the implementation of the process underlying Theorem V.3
is easy: we encounter a pure polynomial form of the simplest type that describes all
counting sequences of interest. The profile of a nested sequence can also be easily
characterized.

7Characteristically, the German term for “continued fraction”, is “Kettenbruch”, literally “chain-
fraction”.
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This section starts with a statement of the “Continued Fraction Theorem” (Propo-
sition V.3, p. 321) taken from an old study of Flajolet [214], which provides the general
set-up for the rest of the section. It then proceeds with the general analytic treatment of
nested sequences. A number of examples from various areas of discrete mathematics
are then detailed, including the important analysis of height in Dyck paths and gen-
eral Catalan trees. Some of these examples make use of structures that are described
as infinitely nested sequences, that is, infinite continued fractions, to which the finite
theory often extends—the analysis of coin fountains below is typical.

V.4.1. Combinatorial aspects. We discuss here a special type of lattice paths
connecting points of the discrete cartesian plane Z x Z.

Definition V.4 (Lattice path). A Motzkin path v = (Uy, Uy, ..., Uy) is a sequence
of points in the discrete quarter-plane Z>o X Zxo, such that U; = (j, ;) and the
Jump condition |yjy1 — y;| < 1is satisfied. An edge (U, Uji1) is called an ascent if
yj+1 —yj = +1,adescentifyj11 —y; = —1, and alevel stepif y; 11 —y; =0. A
path that has no level steps is called a Dyck path.

The quantity n is the length of the path, ini(v) := yo is the initial altitude,
fin(v) := y, is the final altitude. A path is called an excursion if both its ini-
tial and final altitudes are zero. The extremal quantities sup{v} := max; y; and
inf{v} := min; y; are called the height and depth of the path.

A path can always be encoded by a word with a, b, ¢ representing ascents, de-
scents, and level steps, respectively. What we call the standard encoding is such a
word in which each step a, b, ¢ is (redundantly) subscripted by the value of the y-
coordinate of its initial point. For instance,

w = cg ag aj ax b3 ¢z ¢ ax b3 by by ap ¢
encodes a path that connects the initial point (0, 0) to the point (13, 1). Such a path
can also be regarded as the evolution in discrete time of a walk over the integer line
with jumps restricted to {—1, 0, 41}, or equivalently as a path in the graph:

(48)

Lattice paths can also be interpreted as trajectories of birth-and-death processes, where
a population can evolve at any discrete time by a birth or a death. (Compare with the
pure-birth case in (30), p. 312.)
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As a preparation for later developments, let us examine the description of the

class written H([)<()]] of Motzkin excursions of height < 1. We have

1

Hyo' ZSEQe)) = Hyp' =1
’ —C0

The class of excursions of height < 2 is obtained from here by a substitution

co > co + ap SEQ(c1)b1,

to the effect that
Hiyo! = SEQ (co + ao SEQ(c1)b1)
1 1—c¢
—  HP = !

aphy 1 —co—c1+coci —aphy

l_Co_l—cl

Iteration of this simple mechanism lies at the heart of the calculations performed be-
low. Clearly, generating functions written in this way are nothing but a concise de-
scription of usual counting generating functions: for instance if individual weights®
aj, B,y are assigned to the letters a;, bj, c;, respectively, then the OGF of multi-
plicatively weighted paths with z marking length is obtained by setting

(49) aj = ajz, bj = ﬂjz, Cj = yjz.

The general class of paths of interest in this subsection is defined by arbitrary
combinations of flooring (by m) ceiling (by h), as well as fixing initial (k) and final
(I) altitudes. Accordingly, we define the following subclasses of the class H of all
Motzkin paths:

H= M = {w e M ini(w) =k, fin(w) =1, m < inf(w}, sup{w} < h).
We shall also need the special cases:
H][:[h] — H][C(?]S.<h]s H][(,Z]m] — H][(r’nlfo<oo]’ Hk,l — H][((?]S.<OO]-

(Thus, the supercript indicates the condition that is to be satisfied by all abscissae of
vertices of the path.) Three simple combinatorial decompositions of paths (Figure V.8)
then suffice to derive all the basic formulae.

(i) Arch decomposition: An excursion from and to level O consists of a sequence
of “arches”, each made of either a ¢ or an angzll]bl, so that

(50) Hoo = SEQ (co UagHiF b ),

which relativizes to height < &.
(i1) Last passages decomposition. Recording the times at which each level 0, ..., k
is last traversed gives

0 1 k
51) Hox = My acHFay - a M.

8Throughout this chapter, all weights are assumed to be non-negative.
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Figure V.8. The three major decompositions of lattice paths: the arch decomposition
(top), the last passages decomposition (bottom left), and the first passage decomposi-
tion (bottom right).

(iii) First passage decomposition. The quantities Hy ; with k < [ are implicitly
determined by the first passage through k in a path connecting level O to /, so that

)

(52) Moy = Hypjar—1Hes (k<D

(A dual decomposition holds when k > [.)

The basic results of the theory express the generating functions in terms of a fun-
damental continued fraction and its associated convergent polynomials. They involve
the “numerator” and “denominator” polynomials, denoted by P, and Qj, that are de-
fined as solutions to the second-order (or “three-term”) linear recurrence equation

(53) Ynpr=A —cp)Yy —ap—1bpYp—1, h >0,

together with the initial conditions (P_1, Q_1) = (—1,0), (Py, Qp) = (0, 1), and
with the convention a_1by = 1. In other words, setting C; = 1—cjand A; = a;_1bj,
we have:
(54)

Py=0, P=1, P, =C, Py =C1Cr,— A

Qo=1, Q1 =Co, Q2=CoCi— A1, Q3=CoC1Cr— CrA — CpA.

These polynomials are also known as continuant polynomials [379, 601].

> V.14. Combinatorics of continuant polynomials. The polynomial Qj, is obtained by the fol-
lowing process: start with the product IT := C(yCy - - - Cj,_1; then cross out in all possible ways
pairs of adjacent elements C;_|Cj, replacing each such crossed pair by —A ;. For instance,
Q4 is obtained as

—A —A —A —A, -4
1 2 3 1 3
CoC1CrC3 + €961 C2C3 + Co €162 C3 + CpC €263 + €€ €263 .

The polynomials P, are obtained similarly after a shift of indices. (These observations are due
to Euler; see [307, §6.7].) <
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Proposition V.3 (Continued Fraction Theorem [214]). (i) The generating function
Hy o of all excursions is represented by the fundamental continued fraction:

1

(55) Hop =
apby

aiby

(ii) The generating function of ceiled excursion H(gf)h] is given by a convergent of the
fundamental continued fraction (55), with Py, Q, as in Equation (53):
1 P
h h
(56) HY = - I
aobi On

1—co—
0 airby
1—c —

1 —cp-1

(iii) The generating function of floored excursions is given by a truncation of the
fundamental fraction:

1
>h]
(57) 2 -
hh apbpy1
1—cy—
apy1bpyo
l—cpy1 ———
(58) _ 1 OnHoo — Py

ap—1bp Qn—1Hoo — Ph—1’

Proof. Repeated use of the arch decomposition (50) provides a form of H(gf)h] with

nested quasi-inverses (1 — f )~! that is the finite fraction representation (56); for in-
stance,

Hig ! = SEQ(co),  Hy” = SEQ(co + ao SEQ(e)b1),
Hbg>' = SEQ(co + o SEQ(c1 + a1 SEQ(2)b2)by).

The continued fraction representation for basic paths without height constraints (namely
Hy o) is then obtained by taking the limit # — oo in (56). Finally, the continued frac-
tion form (57) for ceiled excursions is nothing but the fundamental form (55), when
the indices are shifted. The three continued fraction expansions (55), (56), (57) are
hence established.

Finding explicit expressions for the fractions H(gf)h] and H,E’Zhh] next requires de-
termining the polynomials that appear in the convergents of the basic fraction (55).
By definition, the convergent polynomials Py, and Qj, are the numerator and denomi-
nator of the fraction H(gf)h]. For the computation of H(gj)h] and Py, Qp, one classically
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introduces the linear fractional transformations
1

1 —Cj —ajbj_,_]y’

gi(y) =
so that

h
(59)  Hyg'=g00g108200gu_1(0) and Hoo=goo 810820 ..

Now, linear fractional transformations are representable by 2 x 2 matrices

b
(60) atb (e b,
cy+d c d

in such a way that the composition corresponds to matrix product. By induction on

the compositions that build up H(g<0h], there follows the equality

Py — Pp_1ap—1bny

On — Qn—1ap—1bpy’

where P, and Q) are seen to satisfy the recurrence (53). Setting y = 0 in (61)
proves (56).

(61) googiogro---ogp1(y) =

Finally, H,E?hh] is determined implicitly as the root y of the equation gg o --- o
gn—1(y) = Hp 0, an equation that, when solved using (61), yields the form (58). W

A large number of generating functions can be derived by similar techniques. We
refer to the article [214], where this theory was first systematically developed and to
the synthesis given in [303, Chapter 5]. Our presentation also draws upon [238] where
the theory was put to use in order to develop a formal algebraic theory of general birth-
and-death processes in continuous time.

B> V.18. Transitions and crossings. The lattice paths H ; corresponding to the transitions from
altitude 0 to [ and Hy ¢ (from k to 0) have OGFs

1 1
Ho; = — (O1Hoo— P,  Hpo= — (OxHoo— Pp).
0=, (QiHo,0 — Pr) k.0 Q[k(Qk 0.0 — P)

The crossings H([)<hh11 and 'HLihl] o have OGFs,

(<hl _ Ap—1 gl<hl _ %h—1.

H = , e =
0,h—1 on h—1,0 on

(Abbreviations used here are: 2, = ag---a,_1, Bm = by ---by.) These extensions pro-

vide combinatorial interpretations for fractions of the form 1/Q. They result from the basic

decompositions combined with Proposition V.3; see [214, 238] for details.

D> V.16. Denominator polynomials and orthogonality. Let Hy, = [z""]1Hp o(z) represent the
number of all excursions of length n equipped with non-negative weights. Define a linear
functional £ on the space C(z) of polynomials by £[z""] = H,. Introduce the reciprocal poly-
nomials: Q,(z) = " 0O(1/z). The fact, deducible from Note V.15, that Q;Hy o — P; = o)
corresponds to the property £[z/ Q;) = O forall 0 < j < I. In other words, the polynomials
‘0, are orthogonal with respect to the special scalar product (f, g) := L[ fg]. (Historically, the
theory of orthogonal polynomials evolved from the theory of continued fractions, before living
a life of its own; see [118, 343, 563] for its many facets.) <
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> V.17. Discrete time birth-and-death processes. Assume that, at discrete timesn =0, 1,2, ...,
a population of size j can grow by one element [a birth] with probability « j, decrease by one
element [a death] with probability 8;, and stay the same with probability y; = 1 —a; — B;.
Let w;, be the probability that an initially empty population is again empty at time n. Then the
GF of the sequence (wy,) is

> -

aoBiz?

1—yz—
o1 oz’

1—y1z—
This result was found by 1. J. Good in 1958: see [302]. <

> V.18. Continuous time birth-and-death processes. Consider a continuous time birth-and-
death process, where a transition from state j to j + 1 takes place according to an exponential
distribution of rate A ; and a transition from j to j — 1 has rate u ;. Let @ (¢) be the probability
to be in state O at tlme t starting from state O at time 0. One has

st 1 1
e Vo t)dt = o = T
0 01 0
}\. —_
s+ ALio st 131
sHA+p - —— L+ ——
} 4 1
g 2L

Thus, continued fractions and orthogonal polynomials may be used to analyse birth-and-death
processes. (This fact was originally discovered by Karlin and McGregor [362], with later ad-
ditions due to Jones and Magnus [358]. See [238] for a systematic discussion in relation to
combinatorial theory.) <

V.4.2. Analytic aspects. We now consider the general asymptotic properties of
lattice paths of height bounded from above by a fixed integer & > 1. Letters denoting
elementary steps are weighted, as previously indicated, with

aj=ajz,  bj=pjz, ¢ =vjz,

the weights being invariably non-negative. We shall limit the discussion to excursions,
which are often the most interesting objects from the combinatorial point of view.

As a preamble, in the Dyck case, where all y; are O (level steps are disallowed),
the GF H!<" is a function of z? only, since it takes an even number of steps to return
to altitude O when starting from altitude 0. In such a case, we shall systematically
assume that, when considering [7"]H [<h], the index n = 2v is even. In order to
avoid trivialities, we also assume that none of the coefficients attached to ascents and
descents are 0.

Theorem V.5 (Asymptotics of nested sequences). Consider the class HO 0 of weighted
Motzkin excursions of height < h. In the non-Dyck case (at least one y; # 0), their
number satisfies a pure exponential-polynomial formula,

Hyg = cB™ + 0(C™,

where B > 0 and 0 < C < B. In the Dyck case, the formula holds, assuming
furthermore that n = 0 (mod 2).
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Proof. The proof proceeds by induction according to the depth of nesting of the
sequence constructions, starting with the innermost construction. (The present dis-
cussion is similar to the analysis of the supercritical sequence schema in Section V. 2,
p- 293.) Write
fi@) = H,E}’_;J__l,lf_';fll(z),

and let p; denote the dominant singularity of f; that is positive (existence is guaran-
teed by Pringsheim’s Theorem).

For ease of discussion, we first examine the case where all y; are non-zero. The
function fy(z) is

Jfo() = TE—
— Yh—12
and one has pgp = 1/y,—1. The function fj is given by

1

1 — yh2z — ap—2Bn-12% fo@)

fiz) =

The quantity y;,_2z + an_2Bn—12>fo(z) in its denominator increases continuously
from 0 to +o0 as z increases from 0 to pg; consequently, it crosses the value 1 at some
point which must be p;. In particular, one must have p; < pp. Our assumption that
all the y; are non-zero implies the absence of periodicities, so that p; is the unique
dominant singularity. The argument can be repeated, implying that the sequence of
radii is decreasing pp > p; > p2 > ---, the corresponding poles are all simple, and
they are uniquely dominating. The statement is thus established in the case that all the
Y are non-zero.

Dually, in the Dyck case where all the y; are zero, one can reason in a similar
manner, operating with the collection of “condensed” series f (y/z), which are seen
to have a unique dominant singularity. This implies that f;(z) itself has exactly two
dominant singularities, namely p, and — pj,, both being simple poles.

In the mixed case, the f; are initially of the Dyck type, until a certain y; 1 j, # 0
is encountered. In that case the function f}, is aperiodic (its span in the sense of Def-
inition IV.5, p. 266, is equal to 1). The reasoning then continues in a similar manner
to the Motzkin case, with all the subsequent f; (for j > jo) including f,_1(z) =
H(gfoh](z) having a unique dominant singularity. ]

Similar devices yield a characterization of the profile of a random path, that is,
the number of times a given step appears in a random excursion.
Theorem V.6 (Profile of nested sequences). Let X, be the random variable repre-
senting the number of times a given step (of type aj, bj, or cj) with non-zero weight
appears in a random excursion of length n and height < h. The moments of X, satisfy

E(X,) = cin+d; + O(D"), V(X,) = con+dr + O(D"),
for constants cy, c2,dy, dy, D, with c1,co > 0and 0 < D < 1. In particular the
distribution of X, is concentrated.

Proof. Introduce an auxiliary variable # marking the number of designated steps, and
form the corresponding BGF H (z, u). We only detail the case of expectations. The
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function H is a linear fractional transformation in « of the form
H I, u) = AQ)+ ——mmm.
(@ u) @ C()+uD(2)

(The coefficients A, B, C are a priori in C(z); they are in fact computable from Propo-
sition V.3.) Then, one has

___ b
et (CQ@+D@)?

This function resembles H (z, 1)%. An application of the chain rule permits us to verify
that indeed

8H( )
- u
u ¢

= E(H(z, 1)?,

u=1

8H( )
- u
ou ¢

where E(z) is analytic in a disc larger than the disc of analyticity of H(z, 1). The
analysis of the dominant double pole then yields the result. (The determination of the
second moment follows along similar lines: a triple pole is involved.) |

B> V.19. All poles are real. Assume again «jBj1 > 0 and y; > 0. By Note V.16, the

denominator polynomials Qy, are reciprocals of a family of polynomials ( 0}, that are formally
orthogonal with respect to a scalar product. Thus the zeros of any of the Q, are all real, and so
are the zeros of Q. Consequently: The poles of the OGF of ceiled excursions H(g<0h] are all

real. (See for instance [563, §3.3] for the basic argument.)

V.4.3. Applications. Lattice paths have quite a wide range of descriptive power,
especially when weights are allowed. We illustrate this fact by three types of exam-
ples.

Example V.8 provides a complete analysis of height in Dyck paths and general
plane rooted trees, as regards moments as well as distribution. This is the simplest
case of a continued fraction (one with constant coefficients) attached to the OGF of
Catalan numbers and involving Fibonacci-Chebyshev polynomials. Example V.9 dis-
cusses coin fountains. There, we are dealing with an infinite continued fraction to
which the techniques of the previous subsection can be extended. (The developments
take us close to the realm of g—calculus and to the analysis of alcohols seen in Chap-
ter IV.) Example V.10 constitutes a typical application of the possibility of encoding
combinatorial structures—here, interconnection networks—by means of lattice paths
weighted by integers. The enumeration involves Hermite polynomials. (Other ex-
amples related to set partitions and permutations are described in the accompanying
notes.)

Example V.8. Height of Dyck paths and plane rooted trees. In order to count lattice paths of
the Dyck (D) or Motzkin (M) type, it suffices to effect one of the substitutions,

aM:ajr—>z,bj|—>z,c./»—>z; aD:aj|—>z,bjr—>z,cj~r—>O.

We henceforth restrict attention to the case of Dyck paths. See Figure V.9 for three simulations
suggesting that the distribution of height is somewhat spread. Given the parenthesis system
representation (Note 1.48, p.77), the height of a Dyck path automatically translates into as height
of the corresponding plane rooted tree.
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i SN S

Figure V.9. Three random Dyck paths of length 2n = 500 have heights, respectively,
20, 31, 24: the distribution is spread, see Proposition V.4.

Expressions of GFs. The continued fraction expressing Hy ( results immediately from
Proposition V.3 and is in this case periodic (here, in the sense that its stages are all alike); it
represents a quadratic function,

1 1
Hoo(2) = ————5—=— (1 -1 —4z2),

z 2z

since Hy g satisfies y = (1 —z2 y)_l. The families of polynomials Py, Qj, are in this case deter-
mined by a recurrence with constant coefficients. Define classically the Fibonacci polynomials
by the recurrence

(62) Fpi2@) = Fpy1(2) —z2F(2),  Fp(2) =0, Fi(z) =1

One finds Q) = Fh+1(z2) and P, = Fp, (zz). (The Fibonacci polynomials are reciprocals of
Chebyshev polynomials; see Note V.20, p. 329.) By Proposition V.3, the GF of paths of height
< h is then

Fp (22
HM @) = ThED )2 .
Fpy1(z%)
(We get more and, for instance, the number of ways of crossing a strip of width 4 — 1 is
H([)<hh_]l (z) = " _1/ Fpq (22).) The Fibonacci polynomials have an explicit form,
L(h—1)/2]
h—1—-k &
Fn(z) = —-2)",
7(@) ;) ( . )( 2)

as follows from the generating function expression: »_, Fp, (z)yh =y/(1—-y+ zyz).

The equivalence between Dyck paths and (general) plane tree traversals discussed in Chap-
ter I (p. 73) implies that trees of height at most / and size n + 1 are equinumerous with Dyck
paths of length 2n and height at most A. Set for convenience

Bl _ o gl<ht1l, 172y _  Fry1(2)
G =zHy (') =z Fria@)’
which is precisely the OGF of general plane trees having height < A. (This is otherwise in
agreement with the continued fraction forms obtained directly in Chapter III: cf (53), p. 195
and (79), p. 216.) It is possible to go much further as first shown by De Bruijn, Knuth, and Rice
in a landmark paper [145], which also constitutes a historic application of Mellin transforms in
analytic combinatorics. (We refer to this paper for historical context and references.)



“book” — 2008/10/3 — 16:05 — page 328 — #342

328 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

First, solving the linear recurrence (62) with z treated as a parameter yields the alternative
closed form expression

—h
Gh -G 1-VT—4z — 1+J/1-4
(63) Po=2"9  glzviz® G _ltviz%
G-G 2 2
There, G(z) is the OGF of all trees, and an equivalent form of Gl is provided by
h 2
_ 1-V1-4z G
64 G -Gl 2]:«/1—4ZM7, where U= —r—o—=—,
9 1 —uh 1+/T—4 =z

as is easily verified. Thus G!"1 can be expressed in terms of G(z) and z:
G -G = T=42 Y /"G ()M
jzl
The Lagrange—Biirmann inversion theorem (p. 732) then gives after a simple calculation

[h=2] 2 2n
j=1 /

2) = G 202 ()

Consequently, the number of trees of height > 4 — 1 admits a closed form: it is a “sampled”
sum, by steps of /4, of the 2nth line of Pascal’s triangle (upon taking second-order differences).

where

Probability distribution of height. The relation (65) leads easily to the asymptotic distribu-
tion of height in random trees of size n. Stirling’s formula yields the Gaussian approximation
of binomial numbers: for k = o(n3/ 4) and with w = k//n, one finds

(66)

() ot (w3 . 5wS — 54u® + 135w* — 60w? L
(Zn") 6n 360n2 '

The use of the Gaussian approximation (66) inside the exact formula (65) then implies: The
probability that a tree of size n + 1 has height at least h — 1 satisfies uniformly for h €
[/, B/n] (for any a, B such that 0 < a < B < 00) the estimate

[h—2]

Gny1 — Gn+1 h 1 2.2 59
(67) — =0 (*) + 0 (*) , Ox) = e I (4jcxT = 2).
Gnt1 vn n jZ>l

The function ®(x) is a “theta function” which classically arises in the theory of elliptic func-
tions [604]. Since binomial coefficients decay rapidly, away from the centre, simple bounds also
show that the probability of the height being at least nl/2+e decays as exp(—nze), so that it is
exponentially small. Note also that the probability distribution of height H itself admits an exact
expression obtained by differencing (65), which is reflected asymptotically by differentiation of
the estimate of (67):

(68)

1

1 .
BG,. . [H = LVl = ——=0"() + 0 (;) L e =Y e 22 - 847,
jz1

The forms (67) and (68) also give access to moments of the distribution of height. We find

r NL i — ray/
Eg,. [H"] ﬁs,<ﬁ>, where  S,(y) := h;h ®' (hy).
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Figure V.10. The limit density of the distribution of height —®’(x).

The quantity y" 1S, (y) is a Riemann sum relative to the function —x” ®’(x), and the step
y = n"1/2 decreases to 0 as n — oo. Approximating the sum by the integral, one gets:

o0
Eg, .. [Hr] ~ ”r/zﬂr where  p, 1= —/ x"0'(x)dx.
0

The integral giving p, is a Mellin transform in disguise (set s = r + 1) to which the treatment
of harmonic sums applies. We then get upon replacing n + 1 by n:

Proposition V.4. The expected height of a random plane rooted tree comprising n + 1 nodes is

3
(69) Jrn — 2 + o(1).
More generally, the moment of order r of height is asymptotic to
(70) wn'? where = r(r — DI (r/2)¢(r).

The random variable H //n obeys asymptotically a Theta distribution, in the sense of both the
“central” estimate (67) and the “local” estimate (68). The same asymptotic estimates hold for
height of Dyck paths having length 2n.

The improved estimate of the mean (69) is from [145]. The general form of moments
in (70) is in fact valid for any real r (not just integers). An alternative formula for the Theta
function appears in Note V.20 below. Figure V.10 plots the limit density —®’(x), which surfaces
again in the height of binary and other simple trees (Example VIL.27, p. 535). ............ |

D> V.20. Height and Fibonacci—Chebyshev polynomials. The reciprocal polynomials F(z) =
Fp_1(2) = zh_th(l/zz) are related to the classical Chebyshev polynomials by Fj(2z) =
Up(z), where Uy (cos(0)) = sin((h + 1)0)/sin(0). (This is readily verified from the recur-
rence (62) and elementary trigonometry.) Then, the roots of Fj,(z) are (4 cos? jm/(h + 1))7]
and the partial fraction expansion of G"(z) can be worked out explicitly [145]. Thus, for
n>1,

h—2y _ 4"+1 3 2T op T

= sin“ — cos ,
n+1 h h h

1<j<h/2

(71) G

which provides in particular an asymptotic form for any fixed /4. (This formula can also be
found directly from the sampled sum (65) by multisection of series.) Asymptotic analysis of
this last expression when h = x/n yields the alternative expression
22,2
lim Pg,, [H <xvn]=4r"273 3" 2770 (=1-0x),

n—>00
j=0
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which, when compared with (67), reflects an important transformation formula of elliptic func-
tions [604]. See the study by Biane, Pitman, and Yor [64] for fascinating connections with
Brownian motion and the functional equation of the Riemann zeta function. Height in simple
varieties of trees also obeys a Theta law, but the proofs (Example VIL.27, p. 535) require the
full power of singularity analysis.

1> V.21. Motzkin paths. The OGF of Motzkin paths of height < s 11 -PHT" (1% ), where
DH(E<Oh] refers to Dyck paths. Therefore, such paths can be enumerated exactly by formulae

derived from Equations(65) to (71). Accordingly, the mean height is ~ /37 n. <

Example V.9. Area under Dyck path and coin fountains. Consider Dyck paths and the area
parameter: area under a lattice path is taken here as the sum of the indices (i.e., the starting
altitudes) of all the variables that enter the standard encoding of the path. Thus, the BGF D(z, q)
of Dyck paths with z marking half-length and ¢ marking area is obtained by the substitution

aj |—>qu, bj |—>qj, cj—>0

inside the fundamental continued fraction (55). (We rederive here Equation (54) of Chapter 111,
p. 196.) It proves convenient to operate with the continued fraction

|
72) Fz.q)= ——
J——

2
Z
P

sothat D(z,q) = F (q_lz, qz). Since F satisfies a difference equation,

1

7 Fed =T Fan o’
moments of area can be determined by differentiating and setting ¢ = 1 (see Chapter III, p. 184,
for a direct approach.

A general trick from g—calculus is effective for deriving an alternative form of F. Express
the continued fraction F of (72) as a quotient F(z,q) = A(z)/B(z). Then, the relation (73)
implies

AR 1

0 " 1=

and, by identifying numerators and denominators, we get
A(2) = B(g2), B() = B(q2) — 42B(q°2),

with ¢ treated as a parameter. The difference equation satisfied by B(z) is then readily solved
by indeterminate coefficients. (This classical technique was introduced in the theory of integer
partitions by Euler.) With B(z) = )_ b, z", the coefficients satisfy the recurrence

bo=1, bp=q"bp—q*" b,_;.

This is a first-order recurrence on b, that unwinds to give

n2

q

by = (=" .
( )(1—61)(1—42)”'(1—61")
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In other words, introducing the “g—exponential function”,

s n, n*
(74) E(Z,Q)ZZ%! where  (g)n = (1 - q)(1 —g%)---(1—g"),
n=0 n

one finds

E(qz, q)

E(z.q)
The exact distribution of area in Dyck paths can then be regarded as known, in the sense that
it is fully characterized by (74) and (75). (Example VIIL.26, p. 533, presents an analysis of the
corresponding limit distribution, based on “moment pumping”, to the effect that an Airy law
prevails.)

Given the importance of the functions under discussion in various branches of mathemat-
ics, we cannot resist a quick digression. The name of the g—exponential comes form the obvious
property that E(z(1 — q), q) reduces to e~ % as ¢ — 17 . The explicit form (74) constitutes in
fact the “easy half” of the proof of the celebrated Rogers—Ramanujan identities, namely,

(75) F(z,q) =

©  p? 00
E(—1,9) = (qq)n = 1_[(1 _q5”+1)—1(1 _q5n+4)—1

(76) OOO n(n+1) 00
E(~q.q)=) 2 o = JLa-a5 DI - g5,

n=0 n =

that relate the g—exponential to modular forms. See Andrews’ book [14, Ch. 7] for context.

Coin fountains. Here is finally a cute application of these ideas to the asymptotic enu-
meration of some special polyominoes. Odlyzko and Wilf define in [461, 464] an (n, m) coin
fountain as an arrangement of n coins in rows in such a way that there are m coins in the bottom
row, and that each coin in a higher row touches exactly two coins in the next lower row. Let
Cy,m be the number of (n, m) fountains and C(z, ¢) be the corresponding BGF with ¢ mark-
ing n and z marking m. Set C(q) = C(1, q). The question is to determine the total number of
coin fountains of area n, [¢"]C(q). The series starts as (this is EIS A005169)

C@)=14q+4>+2¢° +3¢" +5¢° +9¢° + 15¢7 +26¢% + - -,

as results from inspection of the first few cases.

There is a clear bijection with Dyck paths (do a 135° scan) that takes area into account: a
coin fountain of size n with m coins on its base is equivalent to a Dyck path of length 2m and
area 2n — m (with our earlier definition of area of Dyck paths). From this bijection, one has
C(z,q) = F(z, q) (with F as defined earlier) and, in particular, C(q) = F(1, q). Consequently,
by (72) and (75), we find

! _E@.9
E(l.q)’

Clg) =
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Objects weights (o, Bjy;) counting orthogonal pol.
Simple paths 1,1,0 Catalan # Chebyshev
Permutations j+1,5,2j+1 Factorial # Laguerre
Alternating perm. j+1,j,0 Secant # Meixner
Involutions 1, 7,0 Odd factorial # Hermite
Set partition 1,j,j+1 Bell # Poisson—Charlier
Non-overlap. setpart. 1,1,/ +1 Bessel # Lommel

Figure V.11. Some special families of combinatorial objects together with cor-
responding weights, counting sequences, and orthogonal polynomials. (See also
Notes V.23— 25.)

The rest of the discussion is analogous to Section IV. 7.3 (p. 283) relative to alcohols. The
function C(g) is a priori meromorphic in |g| < 1. An exponential lower bound of the form
1.6" holds for [¢"]C(g), since (1 — ¢q)/(1 — g — ¢?) is dominated by C(g) for ¢ > 0. At the
same time, the number [¢"]C (q) is majorized by the number of compositions, which is 2n—1,
Thus, the radius of convergence of C(q) has to lie somewhere between 0.5 and 0.61803. ... It
is then easy to check by numerical analysis the existence of a simple zero of the denominator,
E(1,g), near p = 0.57614. Routine computations based on Rouché’s theorem then make it
possible to verify formally that p is the only pole in |g| < 3/5 and that this pole is simple (the
process is detailed in [461]). Thus, singularity analysis of meromorphic functions applies.

Proposition V.5. The number of coin fountains made of n coins satisfies asymptotically
[¢"1C(q) = cA" + O((5/3)"), ¢=0.31236, A= ,0_1 = 1.73566.

This example illustrates the power of modelling by continued fractions as well as the
smooth articulation with meromorphic function asymptotics. .................. ... |

Lattice path encodings of classical structures. The systematic theory of lattice
path enumerations and continued fractions was developed initially because of the need
to count weighted lattice paths, notably in the context of the analysis of dynamic data
structures in computer science [226]. In this framework, a system of multiplicative
weights o, B, y; is associated with the steps a;, bj, cj, each weight being an in-
teger that represents a number of “possibilities” for the corresponding step type. A
system of weighted lattice paths has counting generating functions given by the usual
substitution from the corresponding multivariate expressions; namely,

(77) aj— oz, bij— Bjz, cjr vz,

where z marks the length of paths. One can then attempt to solve an enumeration
problem expressible in this way by reverse-engineering the known collection of con-
tinued fractions as found in reference books such as those by Perron [479], Wall [601],
and Lorentzen—Waadeland [412]. Next, for general reasons, the polynomials P, Q are
always elementary variants of a family of orthogonal polynomials that is determined
by the weights (see Note V.16, p. 323, and [118, 563]). When the multiplicities have
enough structural regularity, the weighted lattice paths are likely to correspond to
classical combinatorial objects and to classical families of orthogonal polynomials;
see [214, 226, 295, 303] and Figure V.11 for an outline. We illustrate this by a simple
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e

Figure V.12. An interconnection network on 2n = 12 points.

example due to Lagarias, Odlyzko, and Zagier [394], which is relative to involutions
without fixed points.

Example V.10. Interconnection networks and involutions. =~ The problem treated here is the
following [394]. There are 2n points on a line, with n point-to-point connections between pairs
of points. What is the probable behaviour of the width of such an interconnection network?
Imagine the points to be 1, ..., 2n, the connections as circular arcs between points, and let a
vertical line sweep from left to right; width is defined as the maximum number of arcs met by
such a line. One may freely imagine a tunnel of fixed capacity (this corresponds to the width)
inside which wires can be placed to connect points pairwise (Figure V.12).

Let J>, be the class of all interconnection networks on 2n points, which is precisely the
collection of ways of grouping 2n elements into n pairs, or, equivalently, the class of all invo-
lutions without fixed points, i.e., permutations with cycles of length 2 only. The number J,,
equals the “odd factorial”,

Ty =1:3.5..2n—1),

whose EGF is ¢=/2 (see Chapter II, p. 122). The problem calls for determining the quantity
JZ[Z] that is the number of networks having width < h.

The relation to lattice paths is as follows. First, when sweeping a vertical line across a
network, define an active arc at an abscissa as one that straddles that abscissa. Then build
the sequence of active arc counts at half-integer positions %, %, L., 2n — %, 2n + % This
constitutes a sequence of integers in which each member is +1 the previous one; that is, a
lattice path without level steps. In other words, there is an ascent in the lattice path for each
element that is smaller in its cycle and a descent otherwise. One may view ascents as associated
to situations where a node “opens” a new cycle, while descents correspond to “closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence from
involutions to lattice paths has to be many-to-one. However, one can easily enrich lattice paths,
so that the enriched objects are in one-to-one correspondence with involutions. Consider again
a scanning position at a half-integer where the vertical line crosses ¢ (active) arcs. If the next
node is of the closing type, there are £ possibilities to choose from. If the next node is of
the opening type, then there is only one possibility, namely, to start a new cycle. A complete
encoding of a network is accordingly obtained by recording additionally the sequence of the n
possible choices corresponding to descents in the lattice path (some canonical order is fixed, for
instance, oldest first). If we write these choices as superscripts, this means that the set of all
enriched encodings of networks is obtained from the set of standard lattice path encodings by
effecting the substitutions

j

(k)

bj ij )
k=1



“book” — 2008/10/3 — 16:05 — page 334 — #348

334 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

Figure V.13. Three simulations of random networks with 2n = 1000 illustrate the
tendency of the profile to conform to a parabola with height close to n/2 = 250.

The OGEF of all involutions is obtained from the generic continued fraction of Proposi-
tion V.3 by the substitution

aij = Z, b j = ] *Z,
where z records the number of steps in the enriched lattice path, or equivalently, the number

of nodes in the network. In other words, we have obtained combinatorially a formal continued
fraction representation,

s 1
Y@
n=0 1— 1

which was originally discovered by Gauss [601]. Proposition V.3 also gives immediately the
OGF of involutions of width at most / as a quotient of polynomials. Define

Sy =3 g2

n>0
One has
J[h](Z) — _ Ph-‘,—[(Z)
' 122 On+1()
2. 72
1 —
1—h-72

where Ph and Qh satisfy the recurrence
h - 2 -
Ypy1 Yp —hz"Yp—1.

The polynomials are readily determined by their generating functions that satisfies a first-order
linear differential equation reflecting the recurrence. In this way, the denominator polynomials
are identified to be reciprocals of the Hermite polynomials,

1
ep(z) = 22" Oy /3
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themselves defined classically [3, Ch. 22] as orthogonal with respect to the measure e_x2 dx
on (—o00, 00) and expressible via

Lm/2]

(—l)jm! m—2j " 2xt—12
He,, (x) = Z m(zx) , Z Hep(x) — =e .
m=0 m=>0
In particular, one finds
2 2
A [T 11 L S 1) B e S 1) D el S 9
1—22 1-372 1 — 6724374

The interesting analysis of the dominant poles of the rational GFs, for any fixed A, is
discussed in the paper [394]. Furthermore, simulations strongly suggest that the width of a ran-
dom interconnection network on 2n nodes is tightly concentrated around n/2; see Figure V.13.
Louchard [418] (see also Janson’s study [353]) succeeded in proving this fact and a good deal
more. With high probability, the altitude (the altitude is defined here as the number of active
arcs as time evolves) of a random network conforms asymptotically to a deterministic parabola
2nx(1 — x) (with x € [0, 1]) to which are superimposed random fluctuations of a smaller am-
plitude, O(4/n), well-characterized by a Gaussian process. In particular, the width of a random
network of 2n nodes converges in probability to n/2. ........ .. .. i |

> V.22. Bell numbers and continued fractions. With S, = n![z”]eez_1 a Bell number:

Z SnZn = !

n>0 1—1z—

122

22
1—2z—i

[Hint: Define an encoding like for networks, with level steps representing intermediate elements
of blocks [214].] Refinements include Stirling partition numbers and involution numbers. <]

> V.23. Factorial numbers and continued fractions. One has
1

Z”!Zn: 12,2

n=0 1—1z— <

22,2
1—31——Z

Refinements include tangent and secant numbers, as well as Stirling cycle numbers and Euler-
ian numbers. (This continued fraction goes back to Euler [198]; see [214] for a proof based on
a bijection of Francon—Viennot [269] and Biane [63] for an alternative bijection.) <

> V.24, Surjection numbers and continued fractions. Let R, = n![z"](2 — ez)_l. Then

ad 1

R, =
Z n 2. 1212
n=0 1—1z —

2.2%272
1-T7z—---
This continued fraction is due to Flajolet [216]. <

1—4z—
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B> V.25, The Ehrenfest2 two-chambers model. (See Note II.11, p. 118 for context.) The OGF
of the number of evolutions that lead to chamber A full satisfies
N
(x)

EWNn = ==y
2 Ene INZZ 2NI§)1—(N—2/€)Z

n>0 1—

2N - 1)z2

This results from the EGF of Note II.11 (p. 118), the Continued Fraction Theorem, and basic
properties of the Laplace transform. (This continued fraction expansion is originally due to
Stieltjes [562] and Rogers [516]. See also [304] for additional formulae.)

V.5. Paths in graphs and automata

In this section, we develop the framework of paths in graphs: given a graph,
a source node, and a destination node, the problem is to enumerate all paths from
the source to the destination in the graph. Non-negative weights acting multiplica-
tively (probabilities, multiplicities) may be attached to edges. Applications include
the analysis of walks in various types of graphs as well as languages described by
finite automata. Under a fundamental structural condition, known as irreducibility and
corresponding to strong-connectedness of the graph, generating functions of paths all
have the same dominant singularity, which is a simple pole. This essential property im-
plies simple exponential forms for the asymptotics of coefficients (possibly tempered
by explicit congruence conditions in the periodic case). The corresponding results can
equivalently be formulated in terms of the set of eigenvalues (the spectrum) of the cor-
responding adjacency matrix and are related to the classical Perron—Frobenius theory
of non-negative matrices—under irreducibility, only the largest positive eigenvalue
matters asymptotically.

V.5.1. Combinatorial aspects. A directed graph or digraph I" is determined by
the pair (V, E) of its vertex set V and its edge set E € V x V. Here, self-loops
corresponding to edges of the form (v, v) are allowed. Given an edge, e = (a, b),
we denote its origin by orig(e) := a and its destination by destin(e) := b. For I" a
digraph with vertex set identified to the set {1, . .., m}, we allow each edge (a, b) to be
weighted by a quantity g, 5, which we may take as a formal indeterminate for which
we allow the possibility of substituting positive weight values; the matrix G such that

(78) Gu.p = gap if theedge (a,b) € T, G,.» = 0 otherwise,

is called the weighted adjacency matrix of the (weighted) graph I' (Figure V.14). The
usual adjacency matrix of I' is obtained by the substitution g, , — 1.

A path is a sequence of edges, @ = (eq, ..., e,), such that, for all j with 1 <
J < n, one has destin(e;) = orig(e;+1). The parameter n is called the length of the
path and we define: orig(ew) := orig(e;), destin(zw) := destin(e,). A circuit is a
path whose origin and destination are the same vertex. Note that, with our definition,
a circuit has its origin that is distinguished. We do not identify here two circuits
such that one is obtained by circular permutation from the other: the circuits that we
consider, with such a distinguished root, are rooted circuits.



“book” — 2008/10/3 — 16:05 — page 337 — #351

V.5. PATHS IN GRAPHS AND AUTOMATA 337
4
0 812 0 g4
0 0 g3 0
r— 1 2 _ ,
’ G 83.1 0 0 0 ’
3 0 g2 O 0

FOD(@) =1 +g1,2gz,3g3,1z3 +g1,4g4,2g2,383,124 +ee

Figure V.14. A graph I, its formal adjacency matrix G, and the generating
function F-1) (z) of paths from 1 to 1.

From the standard definition of matrix products, the powers G" have elements
that are path polynomials. More precisely, one has the simple but essential relation,

(79) Gy}, = Y w,

weFiH)

where }",S” ' is the set of paths in I" that connect i to j and have length #, and a path w
is identified with the monomial in indeterminates {g; ;} that represents multiplicatively
the succession of its edges; for instance:

(G)?J = Z 8vi,v28vy,v38v3,04 -

VI=1,V2,V3,4=]

In other words: powers of the matrix associated to a graph generate all paths in
graph, the weight of a path being the product of the weights of the individual edges
it comprises. (This fact probably constitutes the most basic result of algebraic graph
theory [66, p. 9].) One may then treat simultaneously all lengths of paths (and all
powers of matrices) by introducing the variable z to record length.

Proposition V.6. (i) Let " be a digraph and let G be the formal adjacency matrix
of T as given by (78). The OGF F'-J)(z) of the set of all paths from i to j in T, with
z marking length and g, p the weight associated to edge (a, b), is the entry i, j of the
matrix (I — zG)™!; namely

AT (7)
A(z)

where A(z) = det(I — zG) is the reciprocal polynomial of the characteristic polyno-
mial of G and AY-)(2) is the determinant of the minor of index j,i of I — zG.

(ii) The generating function of (rooted) circuits is expressible in terms of a loga-
rithmic derivative:

.. A
81) Y FH@ -1 =— ©),

(80) Fli)(z) = ((1 —2G)~! )-,- = (=1)it

’

¢ A(2)

In this algebraic statement, if one takes the {g, 5} as formal indeterminates, then
F'7)(z) is a multivariate GF of paths in z with the variable {ga.p} marking the num-
ber of occurrences of edge (a, b). The result applies, in particular, to the case where
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the g, are assigned numerical values, in which case [z"]F (0.7} (z) becomes the to-
tal weight of paths of length n, which we also refer to as “number of paths” in the
weighted graph.
Proof. For the proof, it is convenient to assume that the quantities g, , are assigned
arbitrary real numbers, so that usual matrix operations (triangularization, diagonaliza-
tion, and so on) can be easily applied. As the properties expressed by the statement
are ultimately equivalent to a collection of multivariate polynomial identities, their
general validity is implied by the fact that they hold for all real assignments of values.
Part (i) is a consequence of the fundamental equivalence between paths and ma-
trix products (79), which implies

o
(i, J) — n (qn _ _ -1
F(7) = Zz (G )i’j = ((I zG) )i’j,
n=0
and from the cofactor formula of matrix inversion.
Part (ii) results from elementary properties of the matrix trace® functional. With m

the dimension of G and {A1, ..., A,,} the multiset of its eigenvalues, we have
m m
(82) DR =TrG" =) A,
i=1 i=1
where F,Y’” = ["]F%J)(z). Upon taking a generating function, there results that

83 F(l ,i ) Zl’l — J ,
@ 55 rne S

i=1 n=1 j=1
which, up to a factor of —z, is none other than the logarithmic derivative of A(z). B
B> V.26. Positivity of inverses of characteristic polynomials. Let G have non-negative coef-
ficients. Then, the rational function Zg(z) := 1/det({ — zG) has non-negative Taylor co-
efficients. More generally, if G = (g, ) is a matrix in the formal indeterminates g, 5, then

[z"]1Z¢ (z) is a polynomial in the g, ; with non-negative coefficients. (Hint: The proof proceeds
by integration from (81): we have, for 1/A(z), the equivalent expressions

(A N R S A T o
A(z)_eXp( /o A d’)“”‘p/o;w (=1 T )=exp| >, TG,

>1

which ensure positivity of the coefficients of Z¢.) <
> V.27. MacMahon’s Master Theorem. Let J be the determinant
1 —z1g1 —22812 - —Zm8&1m
—z1821 l—z2800 -+ —Zm&2m
J(@Z1, o zm) = . .. .
—Zm8m1 —zm&m ' 1 —zZm&mm
MacMahon’s “Master Theorem” asserts the identity of coefficients,
1
o «, o o o Q,
[le..»me]m:[zll...me]yll,,.ymm’ where Y]:Zgljzj
i
91f H is an m x m matrix with multiset of eigenvalues {uq, ..., m}, the trace is defined by TrH :=

Y.L (H);; and, by triangularization (Jordan form), it satisfies TrH = Z;-”:l i
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This result can be obtained by a simple change of variables in a multivariate Cauchy integral and
is related to multivariate Lagrange inversion [303, pp. 21-23]. Cartier and Foata [105] provide
a general combinatorial interpretation related to trace monoids of Note V.10, p. 307. <

> V.28. The Jacobi trace formula. this trace formula [303, p. 11] for square matrices is
(84) detoexp(M) = exp o Tr(M);

equivalently, with due care paid to determinations: log o det(M) = Trolog(M). It generalizes

the scalar identities e%e? = ¢T? and logab = loga + logb. (Hint: recycle the computations
of Note V.26.) <

> V.29. Fast computation of the characteristic polynomial. The following algorithm is due
to Leverrier (1811-1877), the astronomer and mathematician who, together with Adams, first
predicted the position of the planet Neptune. Since, by (82) and (83), one has

m
Ajz

Zz"TrG":Zl_)LjZ,

n>1 j=1

it is possible to deduce an algorithm that determines the characteristic polynomial of a matrix
of dimension m in O(m*) arithmetic operations. [Hint: computing the quantities Tr G/ for
j =1, ..., mis sufficient and requires precisely m matrix multiplications.] <

> V.30. The Matrix Tree Theorem. Let I' be a directed graph without loops and associated
matrix G, with g, 5, the weight of edge (a, b). The Laplacian matrix L[G] is defined by

LIGl; j = —gij+ i =j1,  where & :=)_ gy
k

Let L [G] be the matrix obtained by deleting the first row and first column of L[G]. Then, the
“tree polynomial”

T1[G] := detL{[G]

enumerates all (oriented) spanning trees of I" rooted at node 1. (This classic result belongs to a
circle of ideas initiated by Kirchhoff, Sylvester, Borchardt and others in the nineteenth century.
See, for instance, the discussions by Knuth [377, p. 582-583] and Moon [445].) <

Weighted graphs, word models, and finite automata. The numeric substitution
0 : gap > 1 transforms the formal adjacency matrix G of I' into the usual adja-
cency matrix. In particular, the number of paths of length n is obtained, under this
substitution, as [z"](1 — zG)~!. As already noted, it is possible to consider weighted
graphs, where the g, ; are assigned positive real-valued weights; with the weight of a
path being defined by the product of its edge weights. One finds that [z*](] — zG) ™!
equals the total weight of all paths of length n. If furthermore the assignment is made
in such a way that ), g, 5 = 1, for all a, then the matrix G, which is called a stochas-
tic matrix, can be interpreted as the transition matrix of a Markov chain. Naturally,
the formulae of Proposition V.6 continue to hold in all these cases.

Word problems corresponding to regular languages can be treated by the theory
of regular specifications whenever they have enough structure and an unambiguous
regular expression description is of tractable form. (This is the main theme of Sub-
section I. 4.1, p. 51, further pursued in Sections V.3 and V. 4.) The dual point of view
of automata theory introduced in Subsection 1. 4.2 (p. 56) proves useful whenever no
such direct description is in sight. Finite automata can be reduced to the theory of
paths in graphs, so that Proposition V.6 is applicable to them. Indeed, the language £
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accepted by a finite automaton A, with set of states Q, initial state go, and Q s the set
of final states, decomposes as
L= Z _7:<qo,q),

qeQy

where F(90-9) is the set of paths from the initial state go to the final state, g. (The
corresponding graph I' is obtained from A by collapsing multiple edges between any
two vertices, { and j, into a single edge equipped with a weight that is the sum of
the weights of all the letters leading from i to j.) Proposition V.6 is then clearly
applicable.

Profiles. The term “profile of a set of paths”, as used here, means the collection
of the m? statistics N = (N1,1, -+, Np,m) where N; ; is the number of times the
edge (i — j) is traversed. This notion is, for instance, consistent with the notion of
profile given earlier for lattice paths in Section V.4. It also contains the information
regarding the letter composition of words in a regular language and is thus compatible
with the notion of profile introduced in Section V. 3.

Let I' be a graph with edge (a, b) weighted by y, . Then, the BGF of paths with
u marking the number of times a particular edge (c, d) is traversed is in matrix form

I - Zé)_l, with G =G [ga,b > ga,bu[[(a’b):(c’d)]]] .

The entry (i, j) in this matrix gives the BGF of paths with origin i and destination j.
The GF of cumulated values (moments of order 1) is then obtained in the usual way,
by differentiation followed by the substitution # = 1. Higher moments are similarly
attainable by successive differentiations.

V.5.2. Analytic aspects. In full generality, the components of a linear system
of equations may exhibit the whole variety of behaviours obtained for the OGFs of
regular languages in Section V.3, p. 300. However, positivity coupled with some
simple ancillary conditions (irreducibility and aperiodicity defined below) entails that
the GFs of interest closely resemble the extremely simple rational function,

1 _ 1
1—z/p 1—=n27
where p is the dominant positive singularity and A1 = 1/p is a well-characterized

eigenvalue of T. Accordingly, the asymptotic phenomena associated with such sys-
tems are highly predictable and coefficients involve the pure exponential form ¢ - p~".
We propose first to expound the general theory, then treat classical applications to

statistics of paths in graphs and languages recognized by finite automata.

Irreducibility and aperiodicity of matrices and graphs. From this point on, we
only consider matrices with non-negative entries. Two notions are essential, irre-
ducibility and aperiodicity (the terms are borrowed from Markov chain theory and
matrix theory).

For A a scalar matrix of dimension m x m (with non-negative entries), a crucial
role is played by the dependency graph (p. 33); this is the (directed) graph with vertex
set V. = {1..m} and edge set containing the directed edge (a — b) iff A, # 0.
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Figure V.15. Irreducibility conditions. Left: a strongly connected digraph. Right: a
weakly connected digraph that is not strongly connected decomposes as a collection
of strongly connected components linked by a directed acyclic graph.

The reason for this terminology is the following: Let A represent the linear transfor-

mation { i =2 Aijy j}.; then, the fact that an entry A; ; is non-zero means that
]

¥} depends effectively on y; and is translated by the directed edge (i — j) in the

dependency graph.

Definition V.5. The non-negative matrix A is called irreducible if its dependency
graph is strongly connected (i.e., any two vertices are connected by a directed path).

By considering only simple paths, it is then seen that irreducibility is equivalent to
the condition that (1 + A)" has all its entries that are strictly positive. See Figure V.15
for a graphical rendering of irreducibility and for the general structure of a (weakly
connected) digraph.

Definition V.6. A strongly connected digraph T is said to be periodic with parameter
d iff the vertex set V can be partitioned into d classes, V = VoU---UVy_1, in sucha
way that any edge whose source is an element of a V; has its destination in V11 mod d-

The largest possible d is called the period. If no decomposition exists with d > 2,
so that the period has the trivial value 1, then the graph and all the matrices that admit
it as their dependency graph are called aperiodic.

For instance, a directed 10—cycle is periodic with parameters d = 1,2, 5, 10
and the period is 10. Figure V.16 illustrates the notion. Periodicity implies that the
existence of paths of length n between any two given nodes i, j is constrained by the
congruence class n mod d. Conversely, aperiodicity entails the existence, for all n
sufficiently large, of paths of length n connecting i, j.
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Vo
C—
V3 Vi
r—
Vo

Figure V.16. Periodicity notions: the overall structure of a periodic graph withd = 4
(left), an aperiodic graph (middle) and a periodic graph of period 2 (right).

From the definition, a matrix A with period d has, up to simultaneous permutation
of its rows and columns, a cyclic block structure

0 .0
0 0

0 A],Z

0 00 [Aran]

where the blocks A; ;1 reflect the connectivity between V; and V; 1. In the case of a
period d, the matrix A4 admits a diagonal square block decomposition where each of
its diagonal block is aperiodic (and of a smaller dimension than the original matrix).
Then, the matrices A" can be analysed block by block, and the analysis reduces to the
aperiodic case. Similarly for powers A"“*" for any fixed r as v varies. In other words,
the irreducible periodic case with period d > 2 can always be reduced to a collection
of d irreducible aperiodic subproblems. For this reason, we usually postulate in our
statements both an irreducibility condition and an aperiodicity condition.
> V.31. Sufficient conditions for aperiodicity. Any one of the following conditions suffices to
guarantee aperiodicity of the non-negative matrix 7':
(i) T has (strictly) positive entries;

(ii) some power T° has (strictly) positive entries;

(iii) T isirreducible and at least one diagonal element of 7 is non-zero;

(iv) T isirreducible and the dependency graph of T is such that there exist two circuits

(closed paths) that are of relatively prime lengths.

(Any such condition implies in turn the existence of a unique dominant eigenvalue of 7', which
is simple, according to Theorem V.7 and Note V.34 below.) <

> V.32. Computability of the period. There exists a polynomial time algorithm that determines
the period of a matrix. (Hint: in order to verify that I' is periodic with parameter d, develop a
breadth-first search tree, label nodes by their level, and check that edges have endpoints satis-
fying suitable congruence conditions modulo d.) <
Paths in strongly connected graphs. For analytic combinatorics, the importance
of irreducibility and aperiodicity conditions stems from the fact that they guarantee
uniqueness and simplicity of a dominant pole of path generating functions.



“book” — 2008/10/3 — 16:05 — page 343 — #357

V.5. PATHS IN GRAPHS AND AUTOMATA 343

Theorem V.7 (Asymptotics of paths in graphs). Consider the matrix
F(z) = —z1)7",

where T is a scalar non-negative matrix, in particular, the adjacency matrix of a
graph T equipped with positive weights. Assume that T is irreducible. Then all entries
F0)(2) of F(z) have the same radius of convergence p, which can be defined in two
equivalent ways:

@) asp = Al_l with Ay the largest positive eigenvalue of T;
(ii) as the smallest positive root of the determinantal equation: det(I —zT) = 0.

Furthermore, the point p = )Lfl is a simple pole of each F 1) (7).

If T is irreducible and aperiodic, then p = )Lfl is the unique dominant singularity
of each F'"J)(z), and

["FOP () = @i A1+ O(A"),  0<A <Al
for computable constants ¢; j > 0.

Proof. The proof proceeds by stages, building up properties of the F -/} by means
of the relations that bind them, with suitable exploitation of Proposition V.6, p. 337 in
conjunction with Pringsheim’s Theorem (p. 240). In parts(i)—(v), we assume that the
matrix T is aperiodic. Periodicity is finally examined in part (vi).

(i) All FUJ) have the same radius of convergence. Simple upper and lower
bounds show that each F{/) has a finite non-zero radius of convergence p;. j. By
Pringsheim’s Theorem, this p; ; is necessarily a singularity of the function F 1,
Since each F{7) is a rational function, it then has a pole at p; j, hence becomes infi-
nite as z — 0;,j. Now, the matrix F' satisfies the identities

(85) F=1+zTF, and F=1+zFT.

Thus, given that 7' is irreducible, each F {.J) is positively (linearly) related to any
other F&:0 Then, the F/) must all become infinite as soon as one of them does.
Consequently, all the p; ; are equal—we let p denote their common value.

(ii) All poles are of the same multiplicity. By a similar argument, we see that all
the F /) must have the same multiplicity « of their common pole p, since otherwise,
one function would be of slower growth, and a contradiction would result with the
linear relations stemming from (85). We thus have, for some ¢; ; > 0 and ¥ > 1I:

Flid) 7)) ~ — b
® 2 T /nr

(iii) The common multiplicity of poles is k = 1. This property results from
the expression of the GF of all rooted circuits (Proposition V.6, Part (ii)) in terms of a
logarithmic derivative, which has by construction only simple poles. Hence, a positive
linear combination of some of the F -/} has only a simple pole, so that x = 1 and

(86) Fid(g) ~
=pl—2z/p
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Another consequence is that we have p = 1/A|, where X1 is an eigenvalue of matrix
T, which then satisfies the property that A; > |A| for any eigenvalue X of T': in matrix
theory terminology, such an eigenvalue is called dominant'°.

(iv) There are positive dominant eigenvectors. From the relations (85) satisfied
by the F!/) (z) with j fixed and from (86), one finds as z — p

%i,j li,k Pk, j
87 — ~ —_ where T = (T; ;).
(87) T pgl_w (T:.})
This expresses the fact that the column vector (¢, ..., @m, j)’ is a right eigenvector
corresponding to the eigenvalue A; = p~!. Similarly, for each fixed i, the row vec-

tor (¢; 1, ..., ,) is found to be a left eigenvector. By part (ii), these eigenvector
have all their components strictly positive.

(v) The eigenvalue A is simple. This property is needed in order to identify the
@i, j coefficients. We base our proof on the Jordan normal form and simple inequalities.

Assume first that there are two different Jordan blocks corresponding to the eigen-
value A1. Then there exist two vectors, v = (v, ..., U,) and w = (wq, ..., wy)’,
such that

Tv=Av, Tw=Mw,
where we may assume that the eigenvector v has positive coordinates, given part (iv).
Let jo be an index such that

w j w i
wil _ - Jwl

Vjo ~ J=l..m v
By possibly changing w to —w and by rescaling, we may freely assume that wj, =
vj,- Also, since v and w are not collinear, there must exist j; such that [wj | < vj,.
In summary:

(88) Wiy = Vjy, |wj1|<vj1, Vj:|wj|§vj.

Consider finally the two relations 7"v = )Jl”v and T"w = )»’l”w, and examine con-
sequences for the j) components. One has

m m
(89) Vj, = ZUjogkvk’ wj, = ZUjoakwk’
k=1 k=1

where each Uy, the (j, k) entry of T™, is positive, by the irreducibility and aperi-
odicity assumptions. But then, by the triangle inequality, there is a contradiction be-
tween (89) and (88). Thus, there cannot be two distinct Jordan blocks corresponding
to Ag.

It only remains to exclude the existence of a Jordan block of dimension > 2
associated with A1. If such a Jordan block were present, there would exists a vector w

1010 matrix theory, a dominant eigenvalue (1) is one that is largest in modulus, while, for an analytic
function, a dominant singularity (p) is one that is smallest in modulus. The two notions are reconciled by
the fact that singularities of generating functions are inverses of eigenvalues of matrices (p = 1/11).
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such that

90y TV =t implying | L.V = AW,
Tw = Mw+v plying TV"w = A"w + vm)»‘l’m_lv.

By simple bounds obtained from comparing w to v componentwise, it is found that
the vector 7" w must have all its coordinates that are O (A}"). Upon taking v — oo,
a contradiction is reached with the last relation of (90), where the growth of these
coordinates is of the form vk‘fm. Thus, a Jordan block of dimension > 2 is also
excluded, and the eigenvalue X1 is simple.

(vi) Aperiodicity of T is equivalent to the existence of a unique dominant eigen-
value. If X1 uniquely dominates, meaning that A; > |A| for all eigenvalues A # A1,
then each F -/} has a simple pole at p that is its unique dominant singularity. Hence
the coefficients [z"]F /) (z) are non-zero for n large enough, since they are asymp-
totic to ¢; jp~" by (86). This last property ensures aperiodicity.

Conversely, if T is aperiodic, then A| uniquely dominates. Indeed, suppose that
w is an eigenvalue of T such that || = A1, with w a corresponding eigenvecto