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Attention: Much of this lecture is a quick review of material in Analytic Combinatorics, Part |

N

One consequence: it is a bit longer than usual

To: Students who took Analytic Combinatorics, Part |

Bored because you understand it all?

GREAT! Skip to the section on labelled trees and do the exercises.

To: Students starting with Analytic Combinatorics, Part Il

Moving too fast? Want to see details and motivating applications?

No problem, watch Lectures 5, 6, and 8 in Part I.
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Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

1. Use the symbolic method

e Define a class of combinatorial objects

 Define a notion of size (and associated generating function)

« Use standard operations to develop a specification of the structure
Result: A direct derivation of a GF equation (implicit or explicit)

Classic next steps:
* Extract coefficients
» Use classic asymptotics to estimate coefficients
Result: Asymptotic estimates that quantify the desired properties

See An Introduction to the Analysis of Algorithms for a gentle introduction

AN INTRODUCTION

ANALYSIS
ALGORITHMS
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Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

1. Use the symbolic method
» Define a class of combinatorial objects.
» Define a notion of size (and associated generating function)

« Use standard operations to develop a specification of the structure.

Result: A direct derivation of a GF equation (implicit or explicit).

2. Use complex asymptotics to estimate growth of coefficients.
 [no need for explicit solution]
e [stay tuned for details]

Result: Asymptotic estimates that quantify the desired properties

See Analytic Combinatorics for a rigorous treatment
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Analytic combinatorics overview

specification

A. SYMBOLIC METHOD
=) 1.OGFs
2. EGFs
3. MGFs

B. COMPLEX ASYMPTOTICS

. . asymptotic
4. Rational & Meromorphic estimate
5. Applications of R&M .
COMPLEX ASYMPTOTICS
6. Singularity Analysis
g y 4 Analytic v
Combinatorics desired
result!

7. Applications of SA

Philippe Flajoletand ———
Robert Sedgewick S
:
8. Saddle point
Camsmince kg



The symbolic method

An approach for directly deriving GF equations.
 Define a class of combinatorial objects.
« Define a notion of size (and associated generating function)
« Define operations suitable for constructive definitions of objects.
* Prove correspondences between operations and GFs.
Result: A GF equation (implicit or explicit).

See An Introduction to the Analysis of Algorithms for a gentle introduction

Analytic
Combinatorics

See Analytic Combinatorics for a rigorous treatment

This lecture: An overview that assumes some familiarity. «——— Ex: Part | of this course



Basic definitions

Def. A combinatorial class is a set of combinatorial objects and an associated size function.

Def. The ordinary generating function (OGF) associated

Z|a| <«— size function

with a class is the formal power series A(z) = Z

acA
. N
object name class name
Fundamental (elementary) identity Usual conventions
N class name roman A
A(Z) = g Z|a| — E A/\/Z Fantasy: roman
Different letter for each class
acA N>0 OLF mame with arg AZ)

Reality: object variable lowercase a

Only 26 letters!
Q. How many objects of size N?

A An = [ZVA(2)

coefficient  subscripted An

size Norn

With the symbolic method, we specify the class and at the same time characterize the OGF



Unlabeled classes: cast of characters

TREES
Recursive structures

Tn = [Catalan #s]

LANGUAGES
Sets of strings
[REs and CFGs]

STRINGS
Sequences of characters
Sn= NM
COMPOSITIONS
INTE(.:ERS Positive integers sum to N
N objects
Cn = 2N
In=1
PARTITIONS

Unordered compositions
[enumeration not elementary]



The symbolic method (basic constructs)

Suppose that A and B are classes of unlabeled objects with enumerating OGFs A(z) and B(2).

operation notation semantics OGF
dl%iooigt A + B disjoint copies of objects from Aand B A(z) 4+ B(z)
Cartesian A x B ordered pairs of copies of objects, A(2)B(z2)
product one from A and one from B
_ 1
sequence SEQ(A) sequences of objects from A 1= A2)

Stay tuned for other constructs



Proofs of correspondences

A+ B

Z 7l = Zz|a| + Z 7Pl = A(z) + B(z2)

CEA+B acA be B

A x B
3 o= S = () () =A@
c€axb acA beB TexacA beB
SEQ( A ) construction OGF
SEQi(A) = A A(z)*
SEQ7(A) = A" + A" 4+ AB + . AZ)" + A2+ A(Z)E + ...
where T = ty, b, t3, ... is a subset of the integers
1
SEQA)=e+A+A>+ A3+ T+AZ) +A@Z) +A@EZ)° +...=

1—A(2)
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Classic example of the symbolic method

Q. How many trees with N nodes?

as
. !
Gi=1 Go=1 I

3=2

2"

)
A
i

A
N
Tt

A
M AA

Gs=14



Analytic combinatorics: How many trees with N nodes?

Symbolic method

Combinatorial class

Construction

OGF equation

Quadratic equation

Classic next steps

Binomial theorem

Extract coefficients

Stirling’s approximation

Simplify

G, the class of all trees

C=QX5EQ(C) <

"a tree is a node and

G(z2)=z14+G(2)+G(2)?*+G(z)* +...) =
G(z2) —G(2)?* =z

G(2)

_1—0—\/1—42

2

1

Gl =5 3 ()42

V4

1—G(z2)

a sequence of trees"

N>1

1/% 1 /2N -2 1 2N

Cn=—=(2)( )NZ— =
2 \N N\N-1 AN =2\ N detailed
1 calculations
~ 1N exp(2NIn(2N) — 2N + In V4N — 2(N1In(N) — N +In \/w omitted
4/\/—1
GN ~

vV aN3



Analytic combinatorics: How many trees with N nodes?

Symbolic method

Combinatorial class G, the class of all trees
: "a tree is a node and
Construction C=0XSEQGC) < a sequence of trees"
OGF equation G(z) =2(1+G(2) + G(2)* + CG(2)* +...) = ﬁ
G(z) - G(z)* =z

Complex asymptotics

. . . AN 4N GF equation directly

—_= N ~v —_= <

Singularity analysis Gy = [27]G(2) TAYN - VAN implies asymptotics

This lecture: Focus on symbolic method for deriving OGF equations (stay tuned for asymptotics).



A standard paradigm for the symbolic method

Fundamental constructs
selementary or trivial
e confirm intuition

Compound constructs

«many possibilities OOO OOc O
classical combinatorial objects 0o
sexpose underlying structure OOOQOQOO@

«one of many paths to known results

sunlimited possibilities

Variations @
O

OO
OO0

* not easily analyzed otherwise QQ




Variations on a theme 1: Trees

Fundamental construct

Combinatorial class G, the class of all trees "a tree is a node and
a sequence of trees"

Construction C=eXx SEQ(G) — a

OGF equation G(z)=z(1+G(2)+ G2 + Gz’ +...) = ﬁ

G(z) - G(z)* =z

Variation on the theme: restrict each node to O or 2 children

Combinatorial class T, the class of binary trees "a binary tree is a
node and a sequence
Construction T=0X SEQo,z(T)‘/ of 0 or 2 binary trees"

OGF equation T(z) = z(1 + T(2)*)



Variations on a theme 1: Trees (continued)

Variation on the theme:

Combinatorial class

Atoms

Construction

OGF equation

Combinatorial class

OGF equation

multiple node types

T®, binary trees, enumerated by internal nodes
type class size GF

external node [ 0 1

internal node ® 1 4

T=0+ TXexT

T*(z) =1+ 2T°*(2)*

T®, binary trees, enumerated by external nodes

T2(2) = 2+ T2(2)?

More variations: unary-binary trees, ternary trees, ...

Still more variations: gambler’s ruin sequences, context-free languages, triangulations, ...



Some variations on ordered (rooted plane) trees

Binary Unary-binary

Ordered

M=e@ X SEQSZ(M )
T=ex SEQo2T) M(z) = z(1 4+ M(z) + M(z)?)
T(z) = z(1 + T(2)?) G =0 X SEQ(G)

@ =1—¢cm

Ternary

Bracketings

Arbitrary restrictions

T=eXx SEQo3(T) T=0xSEQ(T)
T(2) = 2(1 + T(2)%) T%(z) = z¢(T*(2)) S=@+ SEQ:2(S)
P(u) = Z u® S(z) =z + S(Z)z

we 1 —S(Z)

20



Variation on a theme 2: Strings

Fundamental construct

Combinatorial class B, the class of all binary strings

- _ “a binary string is empty or
Construction B=E+ (ZO + Z1) x B a bit followed by a binary string”
OGF equation B(z) =1+ 2zB(z)

Variation on the theme: disallow sequences of P or more Os
Combinatorial class Bp, the class of all binary strings with no 0°

: _ “a string with no 0” is a string of Os
Construction Bp = Z<p(E+ Z1Bp) of length <P followed by an empty

string or a 1 followed by a string
with no 0°P”

OGF equation Bo(z)=(1+2z+...+2")(1 + zBp(2))

More variations: disallow any pattern (autocorrelation), REs, CFGs ...

21



Some variations on strings

M-ary Exclude 0°
Binary
Bp=Z.p(E+2Z1 XB
B:SEQ(Zo++ZM_1) B:E+(Z0—|—Z1)XB P <P( 1_1ZP P)
| B=SEQZo+2))  Brle) =51
B(z) = — 1
1 — Mz B(z) =
- 1=2z
Regular languages Exclude pattern p

Context-free languages

[Rational OGFs] 5,(2) = ¢p(2)

- 2P+ (1 =22)cy(2)
[Algebraic OGFs]
[See Part I, Lecture 8]

22
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The symbolic method (two additional constructs)

Suppose that A is a class of unlabeled objects with enumerating OGF A(2).

operation

powerset

multiset

nhotation

PSET (A)

MSET(A)

semantics

finite sets of objects from A
(no repetitions)

finite sets of objects from A
(with repetitions)

OGF

[stay tuned]

[stay tuned]

25



Powersets

Def. The powerset of a class A is the class consisting of all subsets of A.

PSET {a}

P,

Lemma: PSET {a1, a2,

PSET {a, b, c}

PSET {a, b}

a

2 b

b a,Cb

a, b

a, c
P2=4 bl C
a, b, c
P;=8

. am}=PSET {a1, a2,

PSET {a, b,c,d}

d
a a, d
b b, d
a, b a, b, d
C c, d
a, ¢ a, c, d
b, c b, c, d
a, b, c a, b, c, d
! 1
subsets same subsets
without d with d
Ps=16

.oav-1p X ({} + {am})

26



Powersets

Atoms
Combinatorial class Pu, the powerset class for M atoms notation  size  GF
ak 1 z
Example {a, ¢, f, g, h}
Pu(7) = Pl — Pz Pun is the # of sul?s_ets of size N
OGF m(2) Z Z MN D (no repetitions)
PEPM N>0

Construction Py =({} + {a1} ) x({} + {a})x...x({} + {amw})

OGF equation Pu(z) = (1 4+ 2)M

v () ¥
Expansion MN —
N Pu(1) =2

I

total # subsets
of M atoms



Multisets

Def. The multiset of a class A is the class consisting of all subsets of A with repetitions allowed.

MSET {a, b} MSET {a, b, c}
{} {} {c} {c, c}
{a} {a} {a, c} {a, ¢, ¢}
{a, a} {a, a} {a, a, c} {a, a, ¢, c}
MSET {a} {a, a, a} {a, a, a} {a, a, a, c} {a, a, a, ¢, c}
{3 {b} {b} {b, c} {b, c, c}

{a} {a, b} {a, b} {a, b, c} {a, b, ¢, c}
{a, a} {a, a, b} {a, a, b} {a, a, b, c} {a, a, b, ¢, c}
{a, a, a} {a, a, a, b} {a, a, a, b} {a, a, a, b, c} {a, a, a, b, c, c}
{b, b} {b, b} {b, b, b, c} {b, b, c, c}
{a, b, b} {a, b, b} {a, b, b, b, c} {a, b, b, ¢, ¢}
{a, a, b, b} {a, a, b, b} {a, a, b, b, b, c} {a, a, b, b, ¢, c}

{a, a, a, b, b} {a, a, a, b, b} {a, a, a, b, b, b, ¢} {a, a, a, b, b, ¢, c}

Lemma: MSET {a1, a2, ... am}=MSET{ai, a2, ... aw-1} X SEQ {am}

28



Multisets

Combinatorial class

Example

OGF

Construction

OGF equation

Expansion

Atoms
Sm, the multiset class for M atoms notation  size  GF
ak 1 V4

{a! a, 4, b, b, b, C}

Soi(7) = sl — Sy 7N Swn is the # of subsets of size N
M( ) Z Z MN (with repetitions)
SESy N>0

Sv = SEQ(a1) X SEQ(a2) X . .. X SEQ(awm)

1
(1= z)

o _(N+M-T
MN=\ M =1 v

SM(Z) =

29



The symbolic method (two additional constructs)

Suppose that A is a class of unlabeled objects with enumerating OGF A(2).

operation notation semantics OGF

. : —1)kA(ZF
powerset  PSET(A) finite sets of objects from A H“ 4 Zn)A,, _ exp(— Z (—=1)"A( ))

(no repetitions) e = k
multiset  MSET(A) finite sets of objects from A H 1 — exp (Z AZ)
(with repetitions) (1= zM)A P

30



Proof of correspondences for powersets

PSET(A) construction OGF
PSET({a,b}) = ({} +{a}) x ({} + {b}) (1 + 27 (1 + 2
PSET(A) = [ [ ({} + {a}) [T+ = T] (1 + 2
acA acA N>0

exp-log version H (14 2Ny = eXP(Z AnIn(T + ZN))
N>0 N>0

ZINk
=exp(— > Ay (-1 )kT>

N>0  k>1

Zk
= (- Y (-1 42

k>1

31



Proof of correspondences for multisets

HEEITA) construction OGF
1
MSET({a,b}) = SEQ({a}) x SEQ({b}) (1= 201 — 2151)
MSET(A) = HSEQ({a}) H (1_1—Z|a) - H (1 _LN)AN
acA acA N=>0

1 1
exp-log version H (1 = ZN)A = eXP(ZAN In )

32



Multiset application example

Q. How many unordered trees with N nodes? D~
N

Hi= 4

Combinatorial class H, the class of all unordered trees

"a tree is a node and Hs=9

Construction H=® x MSET(H) 2 multiset of trees"

OGF equation H(z) = zexp(H(z) + H(Z*)/2 + H(Z})/3 +...)

33
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Compositions

Q. How many ways to express N as a sum of positive integers?

1+1+1+1+1

1+1+1+ 2

1+1+2+1

1+1+1+1

1+1+ 3

1 +1+ 2

— —
+ N + N —
N+ +<H + +n+ N
+ NN+ AN+ A+ + 0
N 4+ +Hd - + + N + 00 <
+ - o + NN ™M
— ~N
— —
+ N + N c0
N+ A+ + < I
+ - + N =
— ~N
—
+ N <
— + + o Il
+ = N <
—

— o~

+ N I

— Ny

— I

~

Is=16

A. In=2N-]

36



Integers as a combinatorial class

Atom potation size GF

Combinatorial class I, the class of all positive integers
° 1 z

Example o000 0 06 — unary notation for 7
OGF I(z) = Zz"" = Z Inz"

icl N>0
Construction | = SEQ-o0(®)
OGF ti (z) z

equation Z) =
1—2z

Expansion In=1for N >0

4



Compositions

Combinatorial class C, the class of all compositions
3 unary notation for
Example ®| 000 0| 00000 |00 — 0000000000000000 1+3+145+2=12
OGF C(z) = ZZ|C| = Z Cnz"
ceC N>0
. _ ) "a composition is a sequence
Construction C = SEQ) ) of positive integers"”
OGF i C(z) 1
equation Z) = ————
1—1(z)
1 11—z
= — = e0000 _ 6,6 06000000
Expansion Cy = 2N — Nt :@ for N >0
N-1 spaces between dots
‘/ each could have a bar or not

=2N-1 possibilities v

38



Partitions

Q. How many ways to express N as a sum of unordered positive integers?

1+1+1+1+1

tati
1 +1+1+1 —— representations

of the same
14141 — partition
1 1+1
2 2 +1 2 +1+1
P =1 Py = 2 3 2 + 2
2 = 3 +1 2 +1+1+1
Ps=3 4 ™~ keep the one
>4+ 2 4+ 1 whose parts
Ps =75 are nonincreasing
3 +1+1
3 + 2
4 + 1
5

A. N ' !
ot so obvious P — 7

39



Ferrers diagrams

Def. A Ferrers diagram is a 2D representation of a partition: one column of dots per part.

partition 8+8+6+5+4+4+4+2+1 = 42

Ferrers
diagram

o
o ® <«—42 dots

Q. How many Ferrers diagrams with N dots?

A. Not so obvious [need symbolic method plus saddle-point asymptotics—stay tuned]

Applications. AofA, representation theory, Lie algebras, particle physics, . . .

40



Partitions

Combinatorial class

Example

OGF

Construction

OGF equation

Expansion

P, the class of all partitions

s o Ferrers diagram for

S 28 ¢ o 5+3+2+1+1=12
P(z) = Zz|p| = Z PnzY

pEP N>0

P = MSET (1) «<—— "a partition is a multiset of positive integers"

1 MSET(A) = [[ SEQ({a})
P(z) = acA
() 1-2)1=-2)(1-23)... 1 1 1] 1
(1 —zlal) — (1 — zZN)Aw
acA N>0
PN ~ \
Classic result of Hardy and Ramanujan

(need saddle-point asymptotics) 4l



Some variations on compositions and partitions

Restricted compositions
Compositions
T={any subset of /}

CT =SEQ (SEQ7(2)) C = SEQ(I)
1

CT(7) — N

(2) 1—T(2) C(z) = 1—-2z

P = MSET (1)
en\/2/\//3

Partitions into distinct parts
Q = PSET(!)
Qz)=1+21+2)0+2) ...

Pn ~

Partitions

Compositions
into M parts

Cm = SEQu(I)

Z/\/I

T 1M

CM(Z)

Restricted partitions

T={any subset of /}
PT = MSET (SEQ7(Z2))

P =Tl =

42



In-class exercises

Q. OGF for compositions into parts less than or equal to R?

Q. How many partitions into parts that are powers of 2?

A1 [Ta+2)=0+20+20 +2H01 +2°...
= =(1+z+22+2)0+2H01+75) ...
=(1+z4+2+2+2+2+24+2)1+7...

N+ z24+224+2 4+ +2+2°4+27 4+ 4+22+20+ ...

Q. How many ways to represent an integer as a sum of powers of 27

A1 H“ _|_sz): 1

. 1 -2
j=0

43



How many ways to change a dollar?

Q. How many ways to change a dollar with quarters ?

1
A 1 [Z1OO]E _[ 100](1 —|—225 —|—ZSO—|— ) 1

Q. How many ways to change a dollar with quarters and dimes?

1 1
A. 3 [2100] _[ 100](1 _|_Z25 —|—ZSO—|— )(1 —|—Z1O—|—Z2O—|—..

1 —27251— 710

— [2100](1 —|—250 _|_Z100)(1 —|—Z5O _|_Z100)

)

44



How many ways to change a dollar?

Q. How many ways to change a dollar with quarters ?

1
A. 1 [2100]@ _[ 100](1 +Z25 —|—Z50+ ) 1

Q. How many ways to change a dollar with quarters and dimes ?

1 1
A. 3 [2100]1 _225 : _Z1() _[ 100](1 —|—225 —I—ZSO—i— )(1 _‘_Z1O_|_ZZO+”-)

Q. How many ways to change a dollar with quarters, dimes and nickels ?

1 1 1
1—2z21-2101 -2

100
A. ? F4aad «<— need a computer?

Q. How many ways to change a dollar with quarters, dimes, nickels and pennies ?

1 1 1 1

100
A Z ]1—2251—2101—251—2

<—— need a computer?

45



How many ways to change a dollar?

then b(z)(1 —7zM)=a(z) and therefore b, = b,_y + a,

Key insight (P6lya): If b(z) = 3(2)1 — M

Gives an easy way to compute small values by hand.

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8085 90 95 100

17"] 1 1111111111111 11111 1 1

Y

4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21

n
[2]1 —z1—27°

1 1 1
1—z1—2>1— 2710

o 1 1 1
E o a1 | 13 49 121 242

2]

1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 8190 100 110 121

46



In-class exercise

For whatever reason, the government switches to 20-cent pieces instead of dimes.

How many ways to change a dollar?

2]

11—z

) 1 1

1—2z1—-2°

1 1 1
1—z1—2>1— 2710

1 1 1 1

2]

[2]1 —z1—-221-2101—-2%

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8085 90 95 100

1 1111111111111 11111 1 1

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21

1 2 3 4 6 8 10 12 15 18 21 24 28 32 36 40 4550 55 60 66

1 9 30 70 136

47
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The symbolic method for unlabeled objects (summary)

operation notation semantics OGF

disjoint disjoint copies of objects

union A+E from A and B Az) + B(2)
Cartesian 5 . p  ordered pairs of copies of objects, A(2)B(z)

product one from A and one from B

SEQ(A f obj f A 1
sequence Q(A) sequences of objects from 1—A(2)
finite sets of objects from A mA, (—=1)kA(Z)
powerset  PSET(A) (no repetitions) H“ +27)0 = eXp(_Z k )
n>1 k>1
. finite sets of objects from A 1 - A(Z")

multiset ~ MSET(A) with repetitions) ,71;[1 T = exp(; =)

Additional constructs are available (and still being invented)—one example to follow

50



Another construct for the symbolic method: substitution

Suppose that A and B are classes of unlabeled objects with enumerating OGFs A(z) and B(2).

operation notation semantics OGF

replace each object in an instance of A A(B(2))

substitution Ao [ B] with an object from B
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Substitution application example

Q. How many 2-3 trees with N nodes?
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Substitution application example

Q. How many 2-3 trees with N nodes?

Combinatorial class W, the class of all 2-3 trees

. “a 2-3 tree is a 2-3 tree with each external
Construction W=2+Wol(ZxZ)+(ZXZXZ)] <=  pode replaced by a 2-node or a 3-node”
OGF equation W(z) =z + W(Z* + 2°)

W2)=2>+22+2* 422 +22° 4327 +425 + ...
WZ+2)=24+2+Z+2) 2+ P+ + P +2)+. ..
=2 +2 4+ +22+2)+ (2 +327 +3282 +2)+ 2P +...

Coefficient asymptotics are complicated (oscillations in the leading term).

See A. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional equations, Adv. in Mathematics (1982).
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Two French mathematicians on the utility of GFs

“A property... is understood better, when one constructs a bijection... than when one calculates the
coefficients of a polynomial whose variables have no particular meaning. The method of
generating functions, which has had devastating effects for a century, has fallen into

obsolescence, for this reason. — Claude Bergé, 1968

K Generating functions are the central objects of the theory, rather than
"S a mere artifact to solve recurrences, as it is still often believed. ”

— Philippe Flajolet, 2007
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Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

1. Use the symbolic method :
] _ _ _ Analytic
» Define a class of combinatorial objects. Combinatorics

» Define a notion of size (and associated generating function)

Philippe tand
Robert icl

« Use standard operations to develop a specification of the structure.
Result: A direct derivation of a GF equation (implicit or explicit).

Important note: GF equations vary widely in nature
2 3
b | C(z) = - 1/(2) T(2) =2+ T1(2 +2°)
Z) = - =
-2 -2)0 - 2)... B(z)
1 H(z) = zexp(H(z) + H(z*)/2 + H(Z’ /3 + ...)
(1 —2)M C(2)2 _
1_2F (2)"—=C(z2)+z=0
Be(z) = 1 —2z+ zM1

SM(Z) =

Qz)=1+2)14+22)1+2°)...

2. Use complex asymptotics to estimate growth of coefficients (stay tuned).
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Note 1.23

Alice, Bob, and coding bounds

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

> 1.23. Alice, Bob, and coding bounds. Alice wants to communicate n bits of information to
Bob over a channel (a wire, an optic fibre) that transmits O, 1-bits but is such that any occurrence
of 11 terminates the transmission. Thus, she can only send on the channel an encoded version
of her message (where the code is of some length ¢ > n) that does not contain the pattern 11.

Here is a first coding scheme: given the message m = mymy - - -mp, where m; € {0, 1},
apply the substitution: O — 00 and 1 — 10; terminate the transmission by sending 11. This
scheme has ¢ = 2n + O(1), and we say that its rate is 2. Can one design codes with better
rates? with rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of length 7, a code of length L =

L(n) is achievable only if there exists a one-to-one mapping from {0, 1}" into UJL:() Cj, ie.,

2" < Zfzo C ;. Working out the OGF of C, one finds that necessarily

1
= 1.440420, ¢ = +V5

~logy ¢ 2
Thus no code can achieve a rate better than 1.44; i.e., a loss of at least 44% is unavoidable.

L(n) > An+ O(1), A
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Note 1.43

Calculating Cayley numbers and partition numbers

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

> 1.43. Fast determination of the Cayley—Pdlya numbers. Logarithmic differentiation of H(z)

provides for the H, a recurrence by which one computes H; in time polynomial in n. (Note: a

similar technique applies to the partition numbers Py; see p. 42.)

<
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Assignments

1. Read pages 15-94 in text.

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

2. Write up solutions to Notes 1.23 and 1.43.

3. Programming exercises.

Program L.1. Determine the choice of four coins that maximizes
the number of ways to change a dollar.

Program L.2. Write programs that estimate the rate of growth of the Cayley
numbers and the partition numbers (Hn/Hn-1 and Pn/Pn-1). See Note 1.43.
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