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SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



Attention : Much of this lecture is a quick review of material in Analytic Combinatorics, Part I

Bored because you understand it all?

GREAT! Skip to the section on labelled trees and do the exercises.

To: Students who took Analytic Combinatorics, Part I

Moving too fast?  Want to see details and motivating applications?

No problem, watch Lectures 5, 7, and 9 in Part I.

To: Students starting with Analytic Combinatorics, Part II

One consequence: it is a bit longer than usual
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Labelled combinatorial classes
have objects composed of N atoms, labelled with the integers 1 through N.

5

Ex. Different unlabelled objects

Ex. Different labelled objects

43

2 1

42

3 1

41

2 3

42

1 3

43

2 1



Labelled class example: cycles

6

2

1

3

3

1

2
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1
1

4 2

1

3

3 2

1

4

3 4

1

2

4 3

1

2

2 3

1

4

2 4

1

3

Y1 = 1
Y2 = 1

Y3 = 2

Y4 = 6

Q. How many cycles of labelled atoms?

A.  (N−1)!



Labelled class example 2: pairs of cycles

7

21

X2 = 1

4

3

2

1
3

2

4
1

4

2

3
1

3

1

4
2

4

1

3
2

2

1

4
3

4

1

2
3

2

1

3
4

3

1

2
4

4

2

3

1

3

2

4

1

X4 = 11

Q. How many unordered pairs of labeled cycles of size N ?

X3 = 3

3

2
1

3

1
2

2

1
3

A.           ( Stirling numbers of the first kind. )
N
2

stay tuned (next lecture)



Basic definitions (labelled classes)

With the symbolic method, we specify the class and at the same time characterize the EGF

8

Def. A labelled combinatorial class is a set of combinatorial objects built from labelled atoms 
and an associated size function. 

Q. How many objects of size N ?

A.

Def. A set of N atoms is said to be labelled if they can be distinguished from one another. 
Wlog, we use labels 1 through N to refer to them. 

Def. The exponential generating function (EGF) associated

       with a labelled class is the formal power series 

object name class name

size function

((a) =
�

H�(

a|H|

|H|!

Fundamental (elementary) identity

((a) �
�

H�(

a|H|

|H|! =
�

5��

(5
a5

5!
(5 = 5![a5]((a)



Basic labelled class 1: urns

9

Def. An urn is a set of labelled atoms.

counting sequence EGF

1
1

2
4

3
2

1
3

2

1

U1 = 1 U2 = 1 U3 = 1 U4 = 1

<5 = � La

�

5��

a5

5!
= La



Basic labelled class 2: permutations

10

Def. A permutation is a sequence of labelled atoms.

counting sequence EGF

1
1 2

2 1

1 2

2 1

3

3

3 1 2

4 1

1 3

2

2

2 3 1

4

4

4

3

4

4

3 2

4 2

1

1

1 4 2

2 4

3 4

1

1

4 3 1

4

3

3

3

2

2

1 2

2 1

4

4

3 1 4

4 1

1 3

3

4

2 3 4

3

3

2

2

2

1

3 2

4 2

4

3

1 4 3

2 4

3 4

3

2

4 3 2

1

1

2

1

1

1

1 2

2 1

3

3

3 1 2

1 3

2 3

2

1

3 2 1

P1 = 1
P2 = 2

P3 = 6

P4 = 24

75 = 5!
�

� � a

�

5��

5!a5

5!
=

�

5��

a5 =
�

� � a



Basic labelled class 3: cycles

11

2

1

3

3

1

2

2

1
1

4 2

1

3

3 2

1

4

3 4

1

2

4 3

1

2

2 3

1

4

2 4

1

3

Y1 = 1
Y2 = 1

Y3 = 2

Y4 = 6

Def. A cycle is a cyclic sequence of labelled atoms

counting sequence EGF

ln
�

� � a

�

5��

(5� �)!a5

5!
=

�

5��

a5

5
= ln

�
� � a

@5 = (5� �)!



Labelled ("star") product operation for labelled classes
is the analog to the Cartesian product for unlabelled classes

12

Ex. 1

2

1

32

1
★ =

4

3

52

1

4

2

53

1

3

2

54

1

3

2

45

1

4

1

53

2

3

1

54

2

3

1

45

2

2

1

54

3

2

1

45

3
2

1

35

4

Def. Given two labelled combinatorial classes A and B, their labelled product A ★B is a set of 
ordered pairs of copies of objects, one from A and one from B, relabelled in all consistent ways.



Labelled ("star") product operation for labelled classes

13

Ex. 2. A permutation of length N is a star product of N atoms

Notation. We write A2 for A ★ A, A3 for A ★ A ★ A, etc.

Combinatorial construction for permutations: P = Z 
N

1
1 2

1 2 3

1 2 3 4 1 2 4 3

2 1

2 1 3

3 1 2

1 3 2

2 3 1

3 2 1

2 1 3 4 2 1 4 3

3 1 2 4 3 1 4 2

4 1 2 3 4 1 3 2

1 3 2 4 1 3 4 2

2 3 1 4 2 3 4 1

3 2 1 4 3 2 4 1

4 2 1 3 4 2 3 1

1 4 2 3 1 4 3 2

2 4 1 3 2 4 3 1

3 4 1 2 3 4 2 1

4 3 1 2 4 3 2 1

Z ★Z

Z ★Z ★Z★Z

Z

Z ★Z ★Z
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Combinatorial constructions for labelled classes 

16

construction notation semantics

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B
ordered pairs of copies of objects,

one from A and one from B
relabelled in all consistent ways

sequence SEQ ( A ) sequences of objects from A

set SET ( A ) sets of objects from A

cycle CYC ( A ) cyclic sequences of objects from A

A and B are 
combinatorial classes 

of labelled objects



The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

17

construction notation semantics EGF

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B ordered pairs of copies of objects,
one from A and one from B

sequence

SEQk ( A ) or Ak k- sequences of objects from A

sequence
SEQ ( A ) sequences of objects from A

set
SETk ( A ) k-sets of objects from A

set
SET ( A ) sets of objects from A

cycle

CYCk ( A ) k-cycles of objects from A

cycle
CYC ( A ) cycles of objects from A

((a) + )(a)

((a))(a)

�
� � ((a)

L((a)

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!



Check the star-product transfer theorem for a small example.

4

3

52

1

4

2

53

1

3

2

54

1

3

2

45

1

4

1

53

2

3

1

54

2

3

1

45

2

2

1

54

3

2

1

45

3
2

1

35

4

In-class exercise

18

2

1

32

1
★

)(a) =
a�

�!
*(a) =

a�

�!

✓= )(a)*(a)((a) = ��
a�

�!
=

a�

��

=



The symbolic method for labelled classes: basic constructions

19

urns cycles permutations

construction U = SET ( Z ) Y = CYC ( Z ) P = SEQ ( Z )

example

EGF

counting
sequence

construction notation EGF

disjoint 
union A + B

labelled 
product A ★ B

sequence

SEQk ( A )

sequence
SEQ ( A )

set
SETk ( A )

set
SET ( A )

cycle

CYCk ( A )

cycle
CYC ( A )

((a) + )(a)

((a))(a)

�
� � ((a)

L((a)

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!

3

2

1

2

1

3
1 2 3 4

7(a) =
�

� � a
<(a) = La @(a) = ln

�
� � a

75 = 5!<5 = � @5 = (5� �)!



Proofs of transfers
are immediate from GF counting

20

A ★ B

A + B
�

��(+)

a|�|

|�|! =
�

��(

a|�|

|�|! +
�

��)

a|�|

|�|! = ((a) + )(a)

�

��A�B

a|�|

|�|! =
�

��A

�

��B

�
|�| + |�|

|�|

�
a|�|+|�|

(|�| + |�|)! =
��

��A

a|�|

|�|!

���

��B

a|�|

|�|!

�
= ((a))(a)



Proofs of transfers
are immediate from GF counting

21

((a)R =
�

5��

{#R�ZLX\LUJLZ�VM�ZPaL 5}a
5

5!
=

�

5��

R{#R�J`JSLZ�VM�ZPaL 5}a
5

5!

((a)R

R
=

�

5��

{#R�J`JSLZ�VM�ZPaL 5}a
5

5!

=
�

5��

R!{#R�ZL[Z�VM�ZPaL 5}a
5

5!

((a)R

R!
=

�

5��

{#R�ZL[Z�VM�ZPaL 5}a
5

5!

class construction EGF

k-sequence SEQk( A )

sequence SEQk( A ) = SEQ0( A ) + SEQ1( A ) + SEQ2( A ) + . . .

k-cycle CYCk( A )

cycle CYCk( A ) = CYC0( A ) + CYC1( A ) + CYC2( A ) + . . .

k-set SETk( A )

set SETk( A ) = SET0( A ) + SET1( A ) + SET2( A ) + . . .

�+ ((a) + ((a)� + ((a)� + . . . =
�

�− ((a)

�+
((a)
�

+
((a)�

�
+
((a)�

�
+ . . . = ln

�
�− ((a)

�+
((a)
�!

+
((a)�

�!
+

((a)�

�!
+ . . . = L((a)

((a)R

((a)R

R

((a)R

R!



A standard paradigm for analytic combinatorics

Fundamental constructs

•elementary or trivial

•confirm intuition

Variations

•unlimited possibilities

•not easily analyzed otherwise

Compound constructs

•many possibilities

•classical combinatorial objects

•expose underlying structure

22



A combinatorial bijection

23

A permutation is a set of cycles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 12 11 10 5 15 1 3 7 6 13 8 2 16 4 14

Standard representation

6 4

10

15

Set of cycles representation

1

7

9
5

2 8

11

313

16

12

14

[from AC Part I Lecture 5]



Enumerating permutations 

24

How many permutations of length N ?

Construction

EGF equation

Counting sequence

“A permutation is a sequence of labelled atoms" 

[from AC Part I Lecture 5]

How many sets of cycles of length N ?

Construction 7∗ = :,;(*@*(A))

EGF equation 7∗(a) = exp
(
ln

�
�− a

)
=

�
�− a

Counting sequence 7∗5 = 5![a5]7∗(a) = 5!

“A permutation is a set of cycles" 

7 = :,8(A)

7(a) =
�

�− a

75 = 5![a5]7(a) = 5!



Derangements

N people go to the opera and leave their hats on a shelf in the cloakroom. 
When leaving, they each grab a hat at random. 

Q. What is the probability that nobody gets their own hat ? 

Definition. A derangement is a permutation with no singleton cycles

25

A group of N graduating seniors each throw their hats in the air 
and each catch a random hat.

Q. What is the probability that nobody gets their own hat back ? 

[from AC Part I Lecture 5]



Enumerating derangements

26

How many permutations of length N ?

Construction 7∗ = :,;(*@*(A))

EGF equation 7∗(a) = exp
(
ln

�
�− a

)
=

�
�− a

Counting sequence 7∗5 = 5![a5]7∗(a) = 5!

“A permutation is a set of cycles" 

How many derangements of length N ?

“Derangements are permutations 
with no singleton cycles" Construction + = :,;(*@*>�(A))

= exp
(
ln

�
�− a

− a
)

EGF equation +(a) = La
�/�+a�/�+a�/�+... =

L−a

�− a

Expansion [a5]+(a) � +5

5!
=

�

��R�5

(��)R

R!
� �
L

[from AC Part I Lecture 5]



Derangements

27

A group of N graduating seniors each throw their hats in the air 
and each catch a random hat.

Q. What is the probability that nobody gets their own hat back ? 

A.
�
L

.
= �.�����

[from AC Part I Lecture 5]



Construction +4 = :,;(*@*>4(A)) “Derangements are permutations 
whose cycle lengths are all > M " 

More variations on the theme

28

= exp
(
ln

�
�− a

− a− a�/�− . . .− a4/4
)

OGF equation +4(a) = L
a4+�
4+� + a4+�

4+� +...

=
L−a−

a�
� − a�

� −... a4
4

�− a

How many permutations of length N  have no cycles of length ≤ M (generalized derangements)?

How many permutations of length N  have no cycles of length > 2 (involutions)?

Construction “Involutions are permutations 
whose cycle lengths are all 1 or 2" 0 = :,;(*@*�,�(A))

OGF equation 0(a) = La+a�/�

[from AC Part I Lectures 5 and 7]



Standard paradigm example: permutations

29

DERANGEMENTS
(no singleton cycle)
D = SET (CYC>1( Z ))

+(a) =
L�a

� � a

7(a) = L
ln

�
� � a =

�
� � a

PERMUTATIONS
P = SET (CYC( Z ))

INVOLUTIONS
(cycle lengths 1 or 2)
I = SET (CYC1,2( Z ))

0(a) = La+a�/�

PERMUTATIONS
with M cycles

P M = SETM(CYC( Z ))

74(a) =
�
4!

�
ln

�
� � a

�4

0�Y(a) = La+a�/�+...+aY/Y

GENERALIZED INVOLUTIONS
(no cycle length > r)

I≤r = SET (CYC≤r( Z ))

+>Y(a) =
L�a�a�/��...�aY/Y

� � a

GENERALIZED DERANGEMENTS
(all cycle lengths > r)

D>r = SET (CYC≤r( Z ))

7£(a) = L
�

R�£ aR/R

PERMUTATIONS
with arbitrary 

cycle length constraints

P Ω = SETΩ(CYC( Z ))
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Words and strings

32

Correspondence

• For each i in the kth set in the word set the i th char in the string to k. 

• If the i th char in the string is k, put i into the k th set in the word.

7 !3

1

8 4

2

9

5

6

1  2  3  4  5  6  7  8  9

2  4  2  4  5  5  1  2  5

A word is a sequence of M labelled sets (having N objects in total). There are MN words.

Typical word
{ 7 } { 1 8 3 } { } { 2 4 } { 5 6 9 }

A string is a sequence of N characters (from an M-char alphabet). There are MN  strings.

Typical string
2  4  2  4  5  5  1  2  5

Q. What is the difference between strings and words?

A. Only the point of view (sequence of characters vs. sets of indices).



Balls and urns

Throw N balls into M urns, one at a time.

33

1 2 3 4 5 6 7 8 9

Corresponding string                   2 5 1 5 1 1 4 4 3

Corresponding word { 3 5 6 } { 1 } { 9 } { 7 8 } { 2 4 }

Balls-and-urns sequences are equivalent to strings and words

1 2 3 4 5

N = 9

M = 5



Construction >4 = :,84(:,;(A))

Words

type class size GF

labelled atom Z 1 z

Atom

34

Def. A word is a sequence of M urns holding N objects in total. 

Class WM, the class of M-sequences of urns

Size |w |, the number of objects in w

EGF >4(a) =
∑

^∈>4

a|^|

|^|! =
�

5��

>45
a5

5!

OGF equation >4(a) = (La)4 = L4a

Counting sequence 5![a5]>4(a) = 45

Q. How many words ?
“throw N balls into M urns”

Example

7 !3

1

8 4

2

9

5

6

{ 7 } { 1 8 3 } { } { 2 4 } { 5 6 9 }

2

4

7 5

6

9

1

3

8

2  4  2  4  5  5  1  2  5



Strings and Words (summary)

35

class type GF type example AC enumeration prototypical
AofA application

STRING unlabelled OGF 2 4 2 4 5 5 1 2 5

S = SEQ(Z1 + ... + ZM)

SMN = MN

string search

WORD labelled EGF 2 4 2 4 5 5 1 2 5

WM = SEQM(SET(Z)

WMN = MN

hashing>4(a) = L4a

:(a) =
�

�−4a

7 !
3

1

8 4

2

9

5

6

{7}{183}{}{24}{569}

2

4

7 5

6

9

1

3

8



Variations on words: occupancy restrictions

36

Def. A birthday sequence is a word where no letter appears twice.

Def. A birthday sequence is a word where no letter appears twice.

Def. A coupon collector sequence is a word where every letter appears at least once.

3 4 5 2 67 1

1 2 3 4 5 6 7 8 9

9 7 1 3 4 8 6

1 2

3

45

6

7

8

9

2 4 2 5 1 4 2 5

1 2 3 4 5



Construction )4 = :,84(,+ A)

Birthday sequences (M-words with no duplicates)

37

Def. A birthday sequence is a word where no set has more than one element. 

Q. How many birthday sequences?
a string with no duplicate letters

EGF equation )4(a) = (� + a)4

Counting sequence 5![a5])4(a) = 5!

�
4
5

�
=

4!

(4�5)!

= 4(4� �) . . . (4�5+ �)

Class BM, the class of birthday sequences

EGF

Example

{ 3 } { } { 5 } { 1 } { } { } { 4 } { 2 } { }

4 8 1 7 3=
�

5��

)45
a5

5!
)4(a) =

∑

^∈)4

a|^|

|^|!



Construction 94 = :,84(:,;>�(A))

Coupon collector sequences (M-words with no empty sets)

38

Def. A coupon collector sequence is an M-word with no empty set. 

Q. How many coupon collector sequences?

Example  ( M = 5 )

{ 7 } { 1 3 } { 9 } { 2 4 } { 5 6 8 }

2 4 2 4 5 5 1 5 3

a string that uses all the letters in the alphabet

Example  ( M = 26 )
the quick brown fox jumps over the lazy dogClass RM, the class of coupon collector sequences

EGF 94(a) =
∑

^∈94

a|^|

|^|! =
�

5��

945
a5

5!

EGF equation 94(a) = (La � �)4



Class R, the class of surjections

Construction

Class RM, the class of M-surjections

Construction

94 = :,84(:,;>�(A))

Surjections

39

Def. An M-surjection is an M-word with no empty set. Alt name for "coupon collector sequence"

Def. A surjection is a word that is an M-surjection for some M. 

Q. How many surjections of length N ?

1 1 1
1 1 2
1 2 1
1 2 2
1 2 3
1 3 2
2 1 1
2 1 2
2 1 3
2 2 1
2 3 1
3 1 2
3 2 1

R3 = 13

1 1  
1 2
2 1
  R2 = 3

1   

R1 = 1

EGF equation

94(a) = (La � �)4
EGF equation

Coefficients
Best handled with 

complex asymptotics
(stay tuned)

Coefficients



Some variations on words

40

94(a) = (La � �)4

M-SURJECTIONS
(M-word, all letters used)

RM = SEQM (SET>0( Z )

SURJECTIONS
(M-word for some M, all letters used)

R = SEQ (SET>0 ( Z )

9(a) =
�

� � La

>4(a) = (La)4 = L4a

M-WORD

WM = SEQM (SET( Z )

≤b

>≤I
4 (a) =

(∑
R≤I a

R/R!
)4

Generalized Birthday
MAX occupancy M-WORDS

(all letter counts ≤ b )

WM = SEQM (SET≤b( Z )

>b

Generalized Coupon Collector

MIN occupancy M-WORDS
(all letter counts > b )

WM = SEQM (SET>b( Z )
>>I
4 (a) =

(∑
R>I a

R/R!
)4

OCCUPANCY CONSTRAINED M-WORDS
(arbitrary letter count constraints )

WMΩ = SEQM (SETΩ( Z )

>4£(a) =
(∑

R∈£ a
R/R!

)4
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Labelled trees

43

Def. A labelled tree with N nodes is a tree whose nodes are labelled with the integers 1 to N. 

Q. How many different labelled trees of size N ?

Q. Order of subtrees significant ?

Q. Rooted ?

Q. Binary ?

Q. Labels increase along paths ?

Some of these questions are trivial; others are classic.

All of them are easily answered with analytic combinatorics.

6

1 2

4

9 35

7 10

8

12

13 11

14 16

15

17



class same trees reason different trees reason

rooted ordered
order of 

subtrees is 
significant

rooted unordered (Cayley)
order of 

subtrees is not 
significant

root label

unrooted unordered same labels on 
middle node

different labels 
on middle node

increasing Cayley different labels 
on paths

increasing binary
order of 

subtrees is 
significant

Counting labelled trees

44

3

1 4

2

3

4 1

2

3

1 4

2

3

4 1

2

3

1 2

2

1 3

3

1

2

1

2 3

3

2

1

1

2 3

1

2 4

3

1

4 2

3

1

2 4

3

1

3 2

4

1

2 4

3

1

4 2

3



Labelled trees

45

Q. How many different labelled rooted ordered trees of size N ?

1

L1 = 1

A. N ! GN .  Proof. Label any canonical walk of every unlabelled tree N ! different ways

2

L2 = 2

1

1

2 3

L3 = 12

2

1

2

3

1

3

1

2

1

3

2

2

1

3

1

2

3

1

2 3

2

1 3

3

1 2

1

3 2

2

3 1

3

2 1

G1 = 1
G2 = 1

G3 = 2

G4 = 5

6 ways to
label each

2 ways
to label

1 way
to label

24 ways to
label each

L4 = 120



Construction “A tree is a root and a sequence of trees" 3 = A ! :,8(A)

Labeled rooted ordered trees

46

Q. How many different labelled rooted ordered trees of size N ?

Class L, the class of labelled rooted ordered trees

EGF 3(a) =
∑

S∈3

a|S|

|S|! =
�

5��

35
a5

5!

6

1 7 8 2

Example 

5

4

9 3

EGF equation 3(a) =
a

� � 3(a)
Same as OGF for unlabelled trees

= 5!
�
5

�
�5� �
5� �

�
=

(�5� �)!

(5� �)!

� (�/L)5

�
�
�
55�� Stirling's approximation

Counting sequence 35 = 5![a5]3(a) = 5![a5].(a) = 5!.5 N ! ways to label a tree walk



Cayley trees

47

Q. How many different labelled rooted unordered trees of size N ?

1

T1 = 1

A. N N−1.  Proof. Stay tuned: Cayley trees are special cases of mappings (next section)

2

T2 = 2

1

1

2 3

T3 = 9

2

1

2

3

1

3

1

2

1

3

2

2

1

3

1

2

3

1

2 3

2

1 3

3

1 2

6 ways to label2 ways
to label

1 way
to label

T4 = 64
3 ways to label

24 ways to label

12 ways to label

24 ways to label

4 ways to label



Increasing Cayley trees

48

Q. How many different Cayley trees of size N with increasing labels on every path ?

1

Q1 = 1

A. (N−1)! .  Proof. Stay tuned.

3

Q3 = 2

2

1

1

2 3

Q4 = 6

2

Q2 = 1

1

3

2

1

1

3 2

1

2 3

1

2 4

3

2

1

3

1

4

4 4 3

4

2 4

"Cayley" = "rooted, labelled, unordered"



Increasing binary trees

49

Q. How many different binary trees of size N with increasing labels on every path ?

1

R1 = 1

A. N ! .  Proof. Stay tuned.

R3 = 6

3

2

1

1

2 3

R4 = 24

2

R2 = 2

1

1

3 2

4

2

1

4

3

2

1

3

2

1

1

3 2

3

2

1

1

2 3

4

1

2 4

3

1

3 2

4

1

2 3

4

1

2 4

3

1

2 3

4

1

2 3

4

1

3 2

4

1

4 2

3

1

3 2

4

1

4 2

3

3

2

1

4 3

2

1

4 4

2

1

3

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

43

2

1

"binary" = "ordered, each node with 0 or 2 children"



Boxed product construction for labelled classes

50

construction notation semantics

boxed product A = B□ ★ C subset of B★C where smallest 
labelled element is from B

Example

2

1

32

1
★ =

4

3

52

1

4

2

53

1

3

2

54

1

3

2

45

1

4

1

53

2

3

1

54

2

3

1

45

2

2

1

54

3

2

1

45

3
2

1

35

4



Transfer theorem for the boxed product

51

construction notation semantics EGF

boxed product A = B□ ★ C subset of B★C where smallest 
labelled element is from B

Proof.
(5 =

�

��R�5

�
5� �
R� �

�
)R*5�R

(�(a) = )�(a)*(a)

(5
(5� �)!

=
�

��R�5

)R
(R� �)!

*5�R

(5� R)!
�

5��

(5
(5� �)!

a5�� =
�

5��

�

��R�5

)R
(R� �)!

*5�R

(5� R)!
a5��=

�

R��

�

5�R

)R
(R� �)!

*5�R

(5� R)!
a5��

=
�

R��

�

5��

)R
(R� �)!

*5
5!

a5+R��=
�

R��

)R
(R� �)!

aR��
�

5��

*5
5!

a5

= )�(a)*(a)

(�(a) =



In-class exercise

Check the boxed-product transfer theorem for a small example.

52

2

1

32

1
★=

4

3

52

4

2

53

1

3

2

54

1

3

2

45

1

1

((a) = �
a�

�!

)(a) =
a�

�!
*(a) =

a�

�!

)�(a) = a

(�(a) =
a�

�! = )�(a)*(a) ✓



Construction B = E + Z □ ★ B ★ B

Construction Q = Z □ ★ SET ( Q )

Increasing trees

53

Class Q, the class of Cayley trees whose labels increase on every path 1

3 7 8 2

Example 

4

5

9 6
EGF equation 8�(a) = L8(a)

Counting sequence 85 = 5![a5]8(a) = (5� �)!

8(a) = ln
�

� � a
Solution

"Cayley" = "rooted, labelled, unordered"

Class B, the class of binary trees whose labels increase on every path 1

4

3

9

2

Example 

5

7

8 6

"binary" = "ordered, each node with 0 or 2 children"

Solution )(a) =
�

� � a
Counting sequence )5 = 5![a5])(a) = 5!

EGF equation )�(a) = )(a)�



Increasing binary tree
representation

1

A permutation is an increasing binary tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9 12 11 10 5 15 1 3 7 6 13 8 2 16 4 14
Standard

representation

11 7 8   

5 2

9 15 3 4

10 6 16 14

12 13   

1

54



Some variations on labelled trees

55

ROOTED ORDERED

L = Z  ★ SEQ ( L )

INCREASING BINARY

B = E + Z □ ★ B ★ B

)(a) =
�

� � a

INCREASING CAYLEY

Q = Z □ ★ SET ( Q )

8(a) = ln
�

� � a

3(a) =
a

� � 3(a)

ROOTED UNORDERED
(Cayley )

C = Z  ★ SET ( C )

*(a) = aL*(a)

BINARY

M-ARY

UNROOTED UNORDERED
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Mappings

Q. How many N-words of length N ? 

1 1 1
1 2
2 1
2 2

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3

2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 3 1
2 3 2
2 3 3

3 1 1
3 1 2
3 1 3
3 2 1
3 2 2
3 2 3
3 3 1
3 3 2
3 3 3

1 1 1 1
1 1 1 2
1 1 1 3
1 1 1 4
1 1 2 1
1 1 2 2
1 1 2 3
1 1 2 4
1 1 3 1
1 1 3 2
1 1 3 3 
1 1 3 4 
1 1 4 1
1 1 4 2
1 1 4 3 
1 1 4 4
1 2 1 1
...

A. N N 

2 1 1 1
2 1 1 2
2 1 1 3
2 1 1 4
2 1 2 1
2 1 2 2
2 1 2 3
2 1 2 4
2 1 3 1
2 1 3 2
2 1 3 3 
2 1 3 4 
2 1 4 1
2 1 4 2
2 1 4 3 
2 1 4 4
2 2 1 1
...

3 1 1 1
3 1 1 2
3 1 1 3
3 1 1 4
3 1 2 1
3 1 2 2
3 1 2 3
3 1 2 4
3 1 3 1
3 1 3 2
3 1 3 3 
3 1 3 4 
3 1 4 1
3 1 4 2
3 1 4 3 
3 1 4 4
3 2 1 1
...

4 1 1 1
4 1 1 2
4 1 1 3
4 1 1 4
4 1 2 1
4 1 2 2
4 1 2 3
4 1 2 4
4 1 3 1
4 1 3 2
4 1 3 3 
4 1 3 4 
4 1 4 1
4 1 4 2
4 1 4 3 
4 1 4 4
4 2 1 1
...

58

M1 = 1

M2 = 4

M3 = 27

M4 = 64



Natural questions about random mappings
• Probability that the digraph is connected ?

• How many connected components ?

• How many nodes are on cycles ?

7

Mappings

Every mapping corresponds to a digraph
• N vertices, N edges

• Outdegrees: all 1

• Indegrees: between 0 and N

6

19

5

2 8

11

13

16
12

24
10

27

29

322

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9 12 29 33 5 20 30 37 26 20 13 8 2 33 29 2 35 37 33 9 35 21 18 2 25 1 20 33 23 18 29 5 5 9 11 5 11

18

17 21

35

33

30

25

23

15

3736
34

32

26

1428
19

20

4

59

Def. A mapping is a function from the set of integers from 1 to N  onto itself. 

Example



Mappings

60

Q. How many mappings of length N ? 

A. N N, by correspondence with N-words, but internal structure is of interest.

1 1
2 2

1 2

2 1

1

M1 = 1

M2 = 4

1 1 3
1 2 1
1 2 2
1 3 3
2 2 3
3 2 3

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

2 1 1
2 1 2
2 3 2
3 1 1
3 3 1
3 3 2

1 2 3

1 1 1
2 2 2
3 3 3

2 1 3
3 2 1
1 3 2

2 3 1
3 1 2

M3 = 27



Ex. = (−�)U−�M(\) =
\

�− \
NU =

�
U
[\U−�](�− \)U

∑

U≥�

(−�)UaU =
a

�+ a ✓

Lagrange inversion
is a classic method for computing a functional inverse.

61

Def. The inverse of a function f (u) = z is the function u = g (z). 

Analytic combinatorics context: A widely applicable analytic transfer theorem

Lagrange Inversion Theorem.

If a GF                           satisfies the equation z = f (g (z))

with f (0) = 0 and f ' (0) ≠ 0 then 

Proof. Omitted (best understood via complex analysis). 

N(a) =
�

U��

NUaU

NU =
�
U

[\U��]
� \
M(\)

�U
.

Ex. M(\) =
\

�− \
N(a) =

a
�+ a



Lagrange Inversion Theorem (Bürmann form).

If a GF                           satisfies the equation z = f (g (z))

with f (0) = 0 and f ' (0) ≠ 0 then, for any function H(u), 

Lagrange-Bürmann inversion

62

One important application: enumerating mappings

[aU]/(N(a)) =
�
U

[\U��]/�(\)
� \
M(\)

�U

N(a) =
�

U��

NUaU

A more general (and more useful) formuation:

H(u) = u gives the basic theorem



Lagrange inversion: classic application

63

Class T, the class of all binary trees

Size  The number of external nodes

How many binary trees with N external nodes?

OGF equation

Construction ; = A+ ;� ;

;(a) = a + ;(a)�

a = ;(a) � ;(a)�

✓

Extract coefficients
 by Lagrange inversion

with f (u) = u − u2 
[a5];(a) =

�
5

[\5��]
� �
� � \

�5

=
�
5

�
�5� �
5� �

� Take M = N and k = N − 1 in

�
(�− a)4

=
∑

R≥�

(
R+4− �
4− �

)
aR



Construction "a tree is a root connected to a set of trees"* = A ! (:,;(*))

Cayley trees

64

Class C, the class of labelled rooted unordered trees

EGF

Example

EGF equation *(a) = aL*(a)

*(a) =
�

J�C

a|J|

|J|! �
�

5��

*5
a5

5!

7

1

3

8

2 5

6

4

6 2 1 1 2 2 5 1

=
�
5

[\5��]L\5 =
55��

5!

*5 = 5![a5]*(a) = 55��

✓

Extract coefficients
 by Lagrange inversion

with f (u) = u/eu 
[a5]*(a) =

�
5

[\5��]
� \
\/L\

�5



Connected components in mappings

65

Q. How many different cycles of Cayley trees of size N ?

1

Y1 = 1

Y2 = 3

Y3 = 17

1 1
2 2

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

1 1 1
2 2 2
3 3 3

A.                       (see next slide)� 55�
��

�5

2 1

2 1 1
2 1 2
2 3 2
3 1 1
3 3 1
3 3 2

2 3 1
3 1 2



Construction @ = *@*(*) "a component is a cycle of trees"

Connected components in mappings

66

Class Y, the class of cycles of Cayley trees

EGF

Example 7

1

11

8

2 9

6

4
1 10 2 1 10 2 9 1 2 3 1

@(a) =
�

`�@

a|`|

|`|! �
�

5��

@5
a5

5!

8

5

3

10

EGF equation @(a) = ln
�

� � *(a)

=
�

��R<5

5R��

R!
=

�

��R�5

55�R��

(5� R)!

@5 = 5![a5]@(a) = 55��
�

��R�5

5!

5R(5� R)!
= 55��8(5) � 55

�
��

�5

Extract coefficients
 by Lagrange inversion

with f (u) = u/eu 
and H(u) =ln (1/(1-u))

[a5]@(a) =
�
5

[\5��]
�

� � \
L\5



Construction 4 = :,;(*@*(*)) "a mapping is a set of cycles of trees"

Mappings

67

Class M, the class of mappings

EGF

Example 7

1

11

12

13 9

6

4
1 2 13 1 10 13 9 7 7 3 1 1 10 10

14

5

3

10

4(a) =
�

T�4

a|T|

|T|! �
�

5��

45
a5

5!

2 8

EGF equation 4(a) = exp
�
ln

�
� � *(a)

�
=

�
� � *(a)

=
�

��R�5

(5� R)
5R��

R!
=

�

��R�5

5R

R!
�

�

��R�5

5R��

(R� �)!
=
55

5!

45 = 55
✓

Extract coefficients
 by Lagrange-Bürmann

with f (u) = u/eu 
and H(u) = 1/(1-u)

[a5]4(a) =
�
5

[\5��]
�

(� � \)�
L\5
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The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

70

construction notation semantics EGF

disjoint union A + B disjoint copies of objects from A and B

labelled product A ★ B ordered pairs of copies of objects,
one from A and one from B

sequence

SEQk ( A ) or Ak k- sequences of objects from A

sequence
SEQ ( A ) sequences of objects from A

set
SETk ( A ) k-sets of objects from A

set
SET ( A ) sets of objects from A

cycle

CYCk ( A ) k-cycles of objects from A

cycle
CYC ( A ) cycles of objects from A

boxed product A = B□ ★ C subset of B★C where smallest labelled 
element is from B

((a) + )(a)

((a))(a)

�
� � ((a)

L((a)

ln
�

� � ((a)

((a)R

((a)R/R

((a)R/R!

(�(a) = )�(a)*(a)



Constructions for labelled objects (summary)

71

class construction EGF

urns U = SET ( Z )

cycles Y = CYC ( Z )

permutations P = SEQ ( Z )

derangements D = SET (CYC>1(Z ))

involutions I = SET (CYC1,2( Z ))

words WM = SEQM(SET(Z ))

surjections R = SEQ (SET>0(Z ))

trees L = Z ★ SEQ ( L )

Cayley trees C = Z ★ SET (C )

increasing Cayley trees Q = Z□ ★ SET ( Q )

mappings M = SET (CYC(C ))

+(a) =
L�a

� � a

7(a) =
�

� � a

<(a) = La

0(a) = La+a�/�

9(a) =
�

� � La

>4(a) = L4a

3(a) = ln
�

� � a

@(a) = ln
�

� � a

*(a) = aL*(a)

8�(a) = L8(a)

4(a) =
�

� � *(a)



Analytic combinatorics overview

1. Use the symbolic method 
• Define a class of combinatorial objects.
• Define a notion of size (and associated generating function)
• Use standard operations to develop a specification of the structure.

Result: A direct derivation of a GF equation (implicit or explicit).

2. Use complex asymptotics  to estimate growth of coefficients (stay tuned). 

To analyze properties of a large combinatorial structure:

72

Important note: GF equations vary widely in nature
+(a) =

L�a

� � a

7(a) =
�

� � a

<(a) = La

0(a) = La+a�/�

0�Y(a) = La+a�/�+...+aY/Y

+>Y(a) =
L�a�a�/��...�aY/Y

� � a

9(a) =
�

� � La

>4(a) = L4a

>�I
4 (a) = (� + a+ a�/�! + . . . + aI/I!)4

3(a) = ln
�

� � a
@(a) = ln

�
� � a

*(a) = aL*(a)

8�(a) = L8(a)

4(a) =
�

� � *(a)



Direct advantages of the symbolic method

Approach 1: Use a recursive program based on the specification.

Drawback: Requires quadratic time (not useful for large structures).

Approach 2: Use a probabilistic recursive program based on the specification.

Need to settle for approximate size N.

Can generate large structures in linear time.

Ref: Boltzmann samplers for random generation of combinatorial structures.
         by  Philippe Duchon,  Philippe Flajolet, Guy Louchard  and Gilles Schaefer (CPC 2004).

Ref: Automatic average-case analysis of algorithms.
       by Philippe Flajolet, Bruno Salvy, and Paul Zimmerman (TCS 1991).

We can automate the transfer from specifications to GFs.

We can use specifications to generate random structures.

73



French mathematicians on the utility of GFs (continued)

“This approach eliminates virtually all calculations.”

                                   — Dominique Foata & Marco Schützenberger, 1970

74
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Note II.11

Ehrenfest model

77

.



Note II.31

Combinatorics of trigonometrics

78

.



Assignments

79

Program II.1. Write a program to simulate the Ehrenfest mode 
(see Note II.11) and use it to plot the distribution of the number of 
balls in urn A after 103, 104 and 105 steps when starting with 103 
balls in urn A and none in urn B.

1. Read pages 95-149 (Labelled Structures and EGFs) in text.

3. Programming exercise (Extra Credit).

2. Write up solutions to Notes II.11 and II.31.
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