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Attention: Much of this lecture is a quick review of material in Analytic Combinatorics, Part |

N

One consequence: it is a bit longer than usual

To: Students who took Analytic Combinatorics, Part |

Bored because you understand it all?

GREAT! Skip to the section on labelled trees and do the exercises.

To: Students starting with Analytic Combinatorics, Part Il

Moving too fast? Want to see details and motivating applications?

No problem, watch Lectures 5, 7, and 9 in Part .
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Labelled combinatorial classes

have objects composed of N atoms, labelled with the integers 1 through N.

Ex. Different unlabelled objects

[l AN

Ex. Different labelled objects



Labelled class example: cycles

Q. How many cycles of labelled atoms?

Yi=1
Yo =1 é @

—

Ys=2

A. (N-1)!
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Labelled class example 2: pairs of cycles

Q. How many unordered pairs of labeled cycles of size N?
5 Q) © é@é © 5'3
o 5 () O 6y O4
T b 24 o042
o @ é@\ @ é@\

A. Dlj| ( Stirling numbers of the first kind. ) Xa=11

\

ele
ele
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stay tuned (next lecture)



Basic definitions (labelled classes)

Def. A set of N atoms is said to be /abelled if they can be distinguished from one another.
Wlog, we use labels 1 through N to refer to them.

Def. A labelled combinatorial class is a set of combinatorial objects built from labelled atoms
and an associated size function.

Def. The exponential generating function (EGF) associated
with a labelled class is the formal power series A(z) = Z W
al!

acA
NN

object name class name

Z|a| <«— size function

Fundamental (elementary) identity Q. How many objects of size N ?

~lal N
Alz) = E w = E A/\/m A, AN = /\/![ZN]A(Z)
acA N>0

With the symbolic method, we specify the class and at the same time characterize the EGF



Basic labelled class 1: urns

Def. An urnis a set of labelled atoms.

@ counting sequence EGF
% ®@ 00

@ @ @ Uy =1 e’
U =1 Uzx=1 Us=1 Us =1



Basic labelled class 2: permutations

Def. A permutation is a sequence of labelled atoms.

LOO® OO®G
OOO® O®G
OI010/080/0/010
eololloeloojolelo
DOE OOOW OVO®W® counting sequence

OO0 000 OOO® OO Py — N
~ 00 000 0000 OO0
r2 OO0 OOOG OREO "

HOO OO0 OO®® XN T2

pos QOO OOEOO
ololelofelolele
ololelojolelele

Py =24




Basic labelled class 3: cycles

Def. A cycle is a cyclic sequence of labelled atoms

)

Y =1

S
£

Y3=2

&
£ &
oY NG
o ©

counting sequence EGF

Yv=(N-=1)! In




Labelled ("star") product operation for labelled classes

is the analog to the Cartesian product for unlabelled classes

Def. Given two labelled combinatorial classes A and B, their labelled product A%xB is a set of

ordered pairs of copies of objects, one from A and one from B, relabelled in all consistent ways.

o, o .

. _ @é @ = @é ON
04D~ oo j?; oo, P8
Q6>



Ex. 2. A permutation of length N is a star product of N atoms

ZxZxZ 001010
g 000 DOG®®
z SO HOO®®
5 G0 e HOEG
Ol OAO®
000
OO0
000
AR 90010
D@OG)
O®RG)
Notation. We write A2 for A % A, A3 for A x A % A, etc. 2)(»)(1)(B)
0010

Combinatorial construction for permutations: P = ZN

0000

VA V4 V4 V4

LO®WE)
OO®WE)
HO®E
0600
LO®WE
00010
OO
00O
0000
000
HOOW
000
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Combinatorial constructions for labelled classes

construction

disjoint union

labelled product

sequence

set

cycle

notation

A+ B

Ax B

SEQ(A)

SET(A)

CYC(A)

semantics

disjoint copies of objects from A and B

ordered pairs of copies of objects,
one from A and one from B
relabelled in all consistent ways

sequences of objects from A

sets of objects from A

cyclic sequences of objects from A

A and B are
combinatorial classes
of labelled objects



The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction
disjoint union

labelled product

sequence

set

cycle

notation

A+ B

A% B

SEQk(A) or Ak

SEQ(A)

SETK(A)
SET(A)
CYCk(A)

CYC(A)

semantics

disjoint copies of objects from A and B

ordered pairs of copies of objects,

one from A and one from B

k- sequences of objects from A

sequences of objects from A

k-sets of objects from A
sets of objects from A

k-cycles of objects from A

cycles of objects from A

EGF



In-class exercise

Check the star-product transfer theorem for a small example.

& &

o DED «
D ED DED a
362 , O&2 36 06

0 £ @ &>



The symbolic method for labelled classes: basic constructions

urns cycles permutations
construction notation EGF
construction U= SET(Z) Y=CYC(2Z) P=SEQ(Z) o
Wont A+B A(2)+B(2)
labelled
@ o8 sbelled iy g A()B(2)
example @g?’) é @ @@@@ SEQi(A)  A(z)
— sequence 1
SFRA) TG
1 1 SETi(A)  A(2)"/K!
EGF U(z)=¢* Y(z)=In P(z) = et ‘
cvaa)y  A)/k
cycle 1

. In———
counting _ _ . _ CYC(A) 1—A



Proofs of transfers

are immediate from GF counting

A+ B
Zh/l

B0

2.

YEA+B

Ax B

Z panl

I
76AXB’7|

X

=22

acA BeEB

181

Z G

BeB

A(z) + B(z)

Z|O‘|+|B|

(a! + B\)

(laf +18])!

- (>4

aE.A

(X5

BeB

18
61!

20



Proofs of transfers

are immediate from GF counting

, bl . zN . zN
A(z)k = Z{#k—sequences of size /\/}m = Z k{#k-cycles of size /\/}m = Z k!'{#k-sets of size /\/}m
N>0 N>0 N>0
k k
A</f) = Z{#k—cycles of size N}ZNI\: A(kz') = Z{#k—sets of size /\/}7\;\:
N>0 N>0
class construction EGF
k-sequence SEQUA) A(z)
1
sequence  SEQA) = SEQu(A) + SEQi(A) + SEQz(A) + . . . T+ A@Z) +A@) +A@) +.. = 7= A7)
A(2)*
k-cycle CYCk(A) p
2 3
cycle CYCA) = CYCo(A) + CYCI(A) + CYCA(A) +. .. 14+ Al2) n Al2) n A(Z) b —fp !
1 2 3 1T—A@2)
k
k-set SETk(A) A(kz')
2 3
set SETWA) = SETo(A) + SETi(A) + SET2(A) + . . . A2 AR AR e



A standard paradigm for analytic combinatorics

Fundamental constructs
selementary or trivial
e confirm intuition

Compound constructs
*many possibilities
classical combinatorial objects
sexpose underlying structure

Variations
eunlimited possibilities
e not easily analyzed otherwise

OOO
OO
O

° 0

O

OO
OO0

22



A combinatorial bijection [from AC Part | Lecture 5]

A permutation is a set of cycles.

Standard representation

10 12 13 14 15 16

@@@\G@@@@

Set of cycles representation

& e g

23



Enumerating permutations

[from AC Part | Lecture 5]

How many permutations of length N ?

P = SEQ(Z)

Construction

EGF equation

Counting sequence

How many sets of cycles of length N ?

Construction P* = SET(CYC(2))
1

EGF equation
11—z

P*(z) = exp(In

) =

Py, = N'[ZV]P*(2) = N!

Counting sequence

“A permutation is a sequence of labelled atoms"

“A permutation is a set of cycles"

24



Derangements

[from AC Part | Lecture 5]

A group of N graduating seniors each throw their hats in the air akroom.

and each catch a random hat.
Q. What is the probability that nobody gets their own hat back ?

'yi

Definition. A derangement is a permutation with no singleton cycles

25



Enumerating derangements

[from AC Part | Lecture 5]

How many derangements of length N ?

D = SET(CYCs1(2))

Construction

e22/2—|—z3/3—|—z4/4—|—... 1

EGF equation D(Z) —

1Nk
[ZN]D(Z)E%: Z (=1) N%

0<k<N

= exp (ln

Expansion

1—-2

“Derangements are permutations
with no singleton cycles"

—7) = e

26



Derangements

[from AC Part | Lecture 5]

A group of N graduating seniors each throw their hats in the air
and each catch a random hat.

Q. What is the probability that nobody gets their own hat back ?

w2y
_ . |
’@\.‘V i
vl

ve

A. 15 = 0.36788

27



More variations on the theme [from AC Part | Lectures 5 and 7]

How many permutations of length N have no cycles of length < M (generalized derangements)?

: _ ‘Derangements are permutations
Construction Dy = 5ET(CYC>M(Z)) whose cycle lengths are all > M "
M+1 M2 1

g L+ = 27y M
OGF equation Dy(z) = e w1+ = exp(ln — z—7°/2—...—Z //\/I)
72 -3 M
e ‘T2 3 M
B 11—z

How many permutations of length N have no cycles of length > 2 (involutions)?

: _ “Involutions are permutations
Construction I= SET(CYC] 2 (Z)> whose cycle lengths are all 1 or 2"

OGF equation I(z) = o?t7° /2

28



Standard paradigm example: permutations

PERMUTATIONS
with M cycles
DERANGEMENTS P m= SETm(CYC( Z)) INVOLUTIONS
(no singleton cycle) : : (cycle lengths 1 or 2)
— g _ M I=SET (CYC1,2(Z
D= SET(CYG1( 2)) Pr(z) = o (ln+—) (CYC,2( 2))
e’ I(2) = ex+7/2
D(z) =
(2)= 17—
PERMUTATIONS
P=SET (CYU( 2))
1 GENERALIZED INVOLUTIONS
In 1 (no cycle length > r)
11—z I5r = SET(CYCSr( Z ))

/<r(Z) _ ez—i—zz/2—|—...—|—z’/r
GENERALIZED DERANGEMENTS »
(all cycle lengths > r) PERMUTATIONS

D> = SET (CYC<( 2)) with arbitrary

cycle length constraints
—z—22)2—...—Z)r

Ds(z) = P o= SETa(CYC( Z))

PQ(Z) = eZkEQ Zk/k

29
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Words and strings

A string is a sequence of N characters (from an M-char alphabet). There are MN strings.

A word is a sequence of M labelled sets (having N objects in total). There are MNwords.

1 2 3 4 5 6 7 8 9 Typical string
2 4 2 4 5§ 2 4 2 4 5 5 1 2 5

5 2 5
\ é /®' @ Typical word

(7) ¢ {73{183}{}{243}{569}
® 3 @  ©0

=

Correspondence
« For each i in the kth set in the word set the jth char in the string to k.
o If the ith char in the string is k, put i into the kth set in the word.

Q. What is the difference between strings and words?

A. Only the point of view (sequence of characters vs. sets of indices).

32



Balls and urns

Throw N balls into M urns, one at a time. @ @ @ @ @ @ @ @
AN
N

1 2 3 4 5 «—— M=5

Balls-and-urns sequences are equivalent to strings and words

Corresponding string 2 5 1 5 1 1 4 4 3

Corresponding word {356} {13}{9}r{78%r{24}

=9

33



Words

Def. A word is a sequence of M urns holding N objects in total.

“throw N balls into M urns”
Q. How many words ?

Class W, the class of M-sequences of urns Atom type class size GF

. _ _ labelled atom Z 1 z
Size  |w|, the number of objects in w

pad N Example {73} {183} {}{24} {569}
wew N>0
M ®0 % @5 ©O

Construction Wy = SEQuM(SET(Z))

OGF equation Wu(z) = (e9)M = eM?

OO

®
o

Counting sequence NIZMWy(2) = MY 2 4 2 4 5 5 1 2 5



Strings and Words (summary)

class type GF type

STRING unlabelled OGF

WORD labelled EGF

example

242 455125

{73{183}3{}{243{569}
2 42 455125

@ 3

AC enumeration

S=SEQ(Z1 + ... + Zwm)
1

1 —Mz

Sun = MN

S(z) =

Wwm = SEQM(SET(2)

Wi(z) = e

Wun = MN

prototypical
AofA application

string search

hashing

35



Variations on words: occupancy restrictions

Def. A birthday sequence is a word where no letter appears twice.

o Ll l& & L] e lkdle ke

1 2 3 4 5 6 7 8 9

Def. A coupon collector sequence is a word where every letter appears at least once.

4

7

2

1

5

3

4 8 6

1 4

2

5

36



Birthday sequences (M-words with no duplicates)

Def. A birthday sequence is a word where no set has more than one element.

a string with no duplicate letters
Q. How many birthday sequences?

Class Bw, the class of birthday sequences Example
{3y {r{5ry{1r{r{}r{43r{23{1}
zIVl zN
EGF BM(Z):ZW:ZBM/\/M 4817 3
WeEBy N>0
Construction By = SEQm(E+ 2)
EGF equation Bum(z) = (1 + Z)M
M M!
Counting sequence  N![ZV]By(2) = Nl(/\/) = m

=MM-1)...\M=N+1)

37



Coupon collector sequences (M-words with no empty sets)

Def. A coupon collector sequence is an M-word with no empty set.

Q. How many coupon collector sequences?

Class Rw, the class of coupon collector sequences

Construction

EGF equation

Z|W| N

y4
T . p— R —
E | E MN
= jw|! = N!

Rm = SEQm(SET>0(2))

Ru(z) = (e — )M

a string that uses all the letters in the alphabet

Example (M =26)
the quick brown fox jumps over the lazy dog

Example (M =5)
2 42 455153

173{13}{9}r{24} {568}

38



Surjections

Def. An M-surjection is an M-word with no empty set. «—— Alt name for "coupon collector sequence"

Def. A surjection is a word that is an M-surjection for some M.

Q. How many surjections of length N ?

Class Rw, the class of M-surjections Class R, the class of surjections
Construction Construction
Ry = SEQum(SET50(2)) R = SEQ(SET0(2))
EGF equation EGF equation
Ru(z) = (" — 1)V R(z) = 1 _
Coefficients 1—(er=1) 2-e
Run ~ MN Coefficients;\/ N
N![Zz™]R(2) 2 2N .

N R
RN

R>

Il

(09)
NP, WNREFRERRFRWNNNNRER
RNRPRRWNRNWNRNR

WWNNNNNRRRRRR

Best handled with
complex asymptotics

(stay tuned)

39



Some variations on words

M-SURJECTIONS
(M-word, all letters used)

Rwv = SEQm (SET>0(2)
Ru(z) = (e — )M

Generalized Birthday
MAX occupancy M-WORDS

(all letter counts < b)

WM = SEQm (SET<u(2)

( ) = (Zk<b Zk/k')

M-WORD
Wnm = SEQm (SET(Z)

W (z) =

(eZ)M — e/\/Iz

SURJECTIONS
(M-word for some M, all letters used)

R = SEQ(SET>0 (2)

1
R(z) = 2 —¢?

Generalized Coupon Collector

MIN occupancy M-WORDS
(all letter counts > b)

WM = SEQm (SET>b(Z

( ) = (Zk>bz /k'>

OCCUPANCY CONSTRAINED M-WORDS
(arbitrary letter count constraints)

Wma = SEQm (SETo(Z)

WMQ (Z) =

(Frea/K)"

40
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Labelled trees

Def. A labelled tree with N nodes is a tree whose nodes are labelled with the integers 1 to N.

Q. How many different labelled trees of size N?

Q. Order of subtrees significant?

Q. Rooted?

Q. Binary? 17

Q. Labels increase along paths? @ e @ @
» & W

Some of these questions are trivial; others are classic.

All of them are easily answered with analytic combinatorics.
43



Counting labelled trees

class

rooted ordered

rooted unordered (Cayley)

unrooted unordered

increasing Cayley

increasing binary

same trees

§

0P P o

reason

order of
subtrees is not
significant

same labels on
middle node

different trees

o 000 o “g
9%9 %@Q:e

reason

order of
subtrees is
significant

root label

different labels
on middle node

different labels
on paths

order of
subtrees is
significant

44



Labelled trees

Q. How many different labelled rooted ordered trees of size N?

©

Ly =1

G =1 ()

l\Nay
to label

A. N! Gn .

'

2 ways
to label

i it
i @% @% @% G fb e
O

h
N

12 Ls=120

Iabeleach

Proof. Label any canonical walk of every unlabelled tree N! different ways

45



Labeled rooted ordered trees

Q. How many different labelled rooted ordered trees of size N?

Example e
/
r N ©[GION0
EGF L(Z>:ZW :ZLNM (5) OO
ler " N>0 : o

Class L, the class of labelled rooted ordered trees

Construction L =7%SEQ(Z) “A tree is a root and a sequence of trees"
Z
EGF equation L(Z) = 1 L( ) < Same as OGF for unlabelled trees
— L\Z

Counting sequence Ly = /\/![ZN]L(Z) = /\/![ZN]C(Z) = N!Gxn «<— N!'ways to label a tree walk

— NI

1(2/\/ 2 (2N 2)

N
- <« Stirling's approximation
46



Cayley trees

Q. How many different labelled rooted unordered trees of size N?

1 way
to label

A. NN-T,

<«— 24 ways to label

T <«— 4 ways to label
2 ways <«— 6 ways to label g
to label

Proof. Stay tuned: Cayley trees are special cases of mappings (next section)

47



Increasing Cayley trees

Q. How many different Cayley trees of size N with increasing labels on every path ?

"Cayley" = "rooted, labelled, unordered"

A. (N-1)!. Proof. Stay tuned.

°geeeee

(3) (@) (2) (»)
(%) (3)
ofo
(1)

u=6 (27 (3) (4

48



Increasing binary trees

Q. How many different binary trees of size N with increasing labels on every path ?

o B FEAICI0N
4
B

Ra =24

©
=1

Ri

49



Boxed product construction for labelled classes

construction notation semantics

subset of BXxC where smallest
labelled element is from B

& o

o D&
S o
& 6D

boxed product A=B" % C



Transfer theorem for the boxed product

construction notation semantics EGF

subset of BxC where smallest A/(Z) — B/(Z)C(Z)

boxed product = RV =
P A=B"xC labelled element is from B

Proof. N — 1
A=) (k_1)BkCN_k

1<k<N

A By Cn—k
(/\/—N1)!: 2 (/<—1)!(/\/N—/<)!

1<k<N

/ AN Cn— 9 b Cn-— N—1
A'(z) = Z—(N = Z k /\/—Ii)!zN B (/<—k1)!(/\/—/i)!Z

N>1 N>1 1<k<N

C B _ C
:gg _k1 l/\//\l/ SN+k—1 Z(k_kU!Zk 12%2/\/

51



In-class exercise

Check the boxed-product transfer theorem for a small example.

& D

4D D
OB - © 4
@ £y

_4_
51



Increasing trees

Class Q, the class of Cayley trees whose labels increase on every path Example c

OIORG

Construction Q=27" % SET(Q)
EGF equation Q'(z) = R < 40
: (5)
Solution —1
Q(z) =ln—
Counting sequence Qn = N![ZV]Q(z) = (N = 1)! "Cayley" = "rooted, labelled, unordered"
Class B, the class of binary trees whose labels increase on every path Example
Construction B=E+Z° % BB
EGF equation B'(z) = B(z)*
Solution B —
(2)=73—;
Counting sequence By = N![ZV]B(2) = N!

"binary" = "ordered, each node with 0 or 2 children"



A permutation is an increasing binary tree

Increasing binary tree
representation

Standard
representation

9 10 11 12 13 14 15 16

@@@Q@@@@@@@Q@Q@Q

54



Some variations on labelled trees

M-ARY
BINARY

ROOTED ORDERED

L=Z % SEQ(L)
Z
H2) =11

INCREASING CAYLEY

Q=Z" % SET(Q)
Q(z) =1In !

11—~z

ROOTED UNORDERED

C=Z % SET(C)

(Cayley)

C(z) =

INCREASING BINARY

B=E+Z"%B%B

70¢(2)

UNROOTED UNORDERED

55
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Mappings

Q. How many N-words of length N ?

4111

3111
3112
3113
3114
3121
3122

2111
2112
2113

1111

311
12

3
3

211
212
2
2
2
2
2

2
2

111
112
113
12

11
12

4112

1112

4113
4114

2114
2121

1113
1114

1
2

13
1 32

13
2
2

1
2

AN AN

M =1

4121

1121

2
3 2
3
3

3
3

2
2

12

412 2

1122 21272

3

1
3 2
3

3

1
3 2
3

3
1
2

12

M; =4

1123 2123 3123 4123

3

3

13

2124 3124 4124

1124

13

2131 3131 4131
3132

1131

3

3

3

13

4132

2132

1132

2133 3133 4133

1133

4134

3134
3141
3142
3143
3144
3211

2134

1134

M =27

4141

2141
21472
2143

1141

41 42

1142

41 43

1143

4144

2144

1144

4211

2211

1211

A. NN

58

Ms = 64



Mappings

Def. A mapping is a function from the set of integers from 1 to N onto itself.

Example

1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
9 122933 5 203037262013 8 2 3329 2 353733 9 352118 2 251 20332318295 5 9 11 5 11

Every mapping corresponds to a digraph
« N vertices, N edges @——*
» Outdegrees: all 1 o e @ o g %
* Indegrees: between 0 and N e

L ——)

Natural questions about random mappings @
e Probability that the digraph is connected ?

« How many connected components ? \' 8@9
59

« How many nodes are on cycles ?



Mappings

Q. How many mappings of length N ?

M = NN MmN N mNmmnaN
MmN N

"N NMM M

NN MM AN
"N mMm

(ag] m — N NN AN
(o} — N ™M AN mMmm
— ~N N o NANAN Moo

12
1
2
2

M =1

— N
m -
N N

- N m
— N ™M
- N m

M3 =27

A. NN, by correspondence with N-words, but internal structure is of interest.
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Lagrange inversion

is a classic method for computing a functional inverse.

Def. The inverse of a function f(u) = z is the function u= g(2).

u Z

Ex. f(u):1_u g(z):1+z

Lagrange Inversion Theorem.

If a GF g(z) = Zgnz” satisfies the equation z = f(g(2))
th £(©)= 0 and £'(0) + O then g, — 1[u”—1](i)"
wi =0 an en gp = i)

Proof. Omitted (best understood via complex analysis).

[Un—1](1 . U)n _ (_1)n—1 Z(_1)nzn =- iz

n>1

S| =

Ex. flu) = gn =

Analytic combinatorics context: A widely applicable analytic transfer theorem
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Lagrange-Birmann inversion

A more general (and more useful) formuation:

Lagrange Inversion Theorem (Birmann form).

If a GF g(z) = Zgnz” satisfies the equation z = f(g(2))

n>1
with f(0) =0 and f '(0) # O then, for any function H(u), «<——— H(u) = u gives the basic theorem
21H(E(@) = u"H () (7o)
&) =14 f(u)

One important application: enumerating mappings
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Lagrange inversion: classic application

How many binary trees with N external nodes?

Class T, the class of all binary trees

Size The number of external nodes

Construction IT=/+TxT

OGF equation T(z) =z+T(2)°

Extract coefficients : 1 N
by Lagrange inversion [zN] T(z) = _[UN—1]< )
with f(u) = u — u? N

Lagrange Inversion Theorem.
IfaGF g(z) = Zgnz” satisfies the equation z= f (g (2))

n21 1 n—1 u n
with £(0) =0 and f'(0) # O then 8n = ;[u ]('((T)) .

Take M=Nand k=N-1 in

(i —1z>M22<km?1>zk

k>0
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Cayley trees

Class C, the class of labelled rooted unordered trees SN C@)‘ C)‘ <>
6 2 1 12 2 5 1 G

Z|C| ZN
EGF Clz)=> i > Cn De—

ceC N>0 é
Construction C=7Zx (SET(C)) <— "atree is a root connected to a set of trees"
i C _ -C(2)
EGF equation (Z) = ze
Lagrange Inversion Theorem.
Extract coefficients N 1 . U N agrange Inversio eoe. | |
by Lagrange inversion [Z ]C(Z) = N[U o ](—u) If a GF g(2) =§gnz satisfies the equ:tlon z=f(g (2)
> y on
with f(u) = u/ev U/e with £(0) =0 and f'(0) # 0 then & = E[UH](@) .
N—1
_ 1_[UN—1]eu/\/ _ N
N N!
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Connected components in mappings

Q. How many different cycles of Cayley trees of size N?

18 112
11 131
Yy =1 22 221
2 33
313
Yo =3 111
222
333
NN /@

(see next slide)

Y3

w w wWhNh NN

17

WWkHREWR R
NRRNNR

w

N
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Connected components in mappings

Class Y, the class of cycles of Cayley trees SCAE ‘ @ E ( >

Z|Y| ZN
EGF Y(Z>:ZWEZYNM ()
yeY

N=>0 110 2 1 10 2 9 1 2 3 1 é

Construction Y = CYC(C) < "a component is a cycle of trees"
1 Lagrange Inversion Theorem (Birmann form).
EGF equation Y(z) =In ———
quatl ( ) 1 — C(Z) IfaGF g(z) = Zg,,z” satisfies the equation z = f(g(2))
Extract coefficients 1 1 with £(0) = 0 a;(_11f‘(0) + 0 then, for any function H(u),
by Lagrange inversion (2MY(2) = =[N ——e"N ) = LTH ) (L
2"|H(g(2)) = —[u"'IH' (u)( 7~
with f(u) = u/ev N 1T —u n (f(U)>
and H(u) =In (1/(1-u)) Nk NN—k=1
- o N — k)!
0<k<N k! 1<k<N ( )
N! NN/
Yn = NI[ZNY(z) = NN=T )y NN=TQ(N)
k — k)! A/
1<k<N (N k) 2N
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Mappings

<0 (3~ ®

Class M, the class of mappings Example @ @ @ 9
|m| :

ZRLCED SRy © Coe—m)

mE/\/I N>0 1213110139773111010é

Construction M = SET(CYC(C))

"a mapping is a set of cycles of trees"

1 1 Lagrange Inversion Theorem (Birmann form).

‘l - C(Z)) — ‘1 _ C(Z) Ifa GF g(z Zgz satisfies the equation z = f(g(2))

n>1

EGF equation M(z) = exp (ln

Extract coefficients 1 1 with f(0) = 0 and f'(0) # O then, for any function H(u),
by Lagrange-Biirmann [ZN]/\//(Z) — _[UN—1]—€.UN ) = Lo (L
with f(u) = u/ev N (1 — u)2 n (f(u))
and Hu) = 1/(1-u) L Nk—1 /\/k Nk—1 NN
= 2 IN=K= = H_Z(k—mzﬁ
0<k<N ' 0<k<N 1<k<N :
My = )/
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The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction notation
disjoint union A+ B
labelled product A% B

SEQk(A) or Ak

sequence
SEQ(A)
SET«(A)
set
SET(A)
CYCk(A)
cycle
CYC(A)
boxed product A=B" % C

semantics EGF

disjoint copies of objects from Aand B A(z) + B(z)

ordered pairs of copies of objects,
one from A and one from B A(Z)B(Z)
k- sequences of objects from A A(z)
1
sequences of objects from A m
k-sets of objects from A A(2)k /K1
sets of objects from A e (2)
k-cycles of objects from A A(2)* 1k
1
cycles of objects from A In ——
1 —A(z)

subset of BXC where smallest labelled A’(z) — B’(Z)C(Z)

element is from B
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Constructions for labelled objects (summary)

class

urns
cycles
permutations

derangements

involutions
words
surjections
trees
Cayley trees
increasing Cayley trees

mappings

construction

U= SET(Z)
Y=CYC(Z)
P=SEQ(Z)
D = SET (CYG1(2))
| =SET (CYG 2(2))
Wnm = SEQM(SET(Z))
R = SEQ (SET>0(2))
L=27x SEQ(L)
C=2Zx SET(C)

Q=2"x SET(Q)
M = SET (CYC(C))




Analytic combinatorics overview

To analyze properties of a large combinatorial structure:

1. Use the symbolic method
» Define a class of combinatorial objects.
» Define a notion of size (and associated generating function)

« Use standard operations to develop a specification of the structure.

Result: A direct derivation of a GF equation (implicit or explicit).

Important note: GF equations vary widely in nature D(z) = e~ ?
uz) =€ Q'(2) = e 1 -7
R(z) = I(z) = "7 /2
1 2 —e?
Y(z) =In
1 1=z wWeb(z)=(1+z4+22/20+ ...+ 22 /p)V
P(Z) - —z—722)2—...—7r
1—-2z 1 D=, (z) = e
M(z) = ——— ;O -
D=1 Wi (z) = e 1=z

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

/<r(Z) _ ez+zz/2—|—...—|—zr/r

L(z) =In

1—2z

C(z) = ze*®

2. Use complex asymptotics to estimate growth of coefficients (stay tuned).

72



Direct advantages of the symbolic method

specification

We can automate the transfer from specifications to GFs. &

<« g,
Ref: Automatic average-case analysis of algorithms. §E - | GF.
by Philippe Flajolet, Bruno Salvy, and Paul Zimmerman (TCS 1991). Sl 5 ™ [N Squation

SYMBOLIC METHOD

We can use specifications to generate random structures.

Approach 1: Use a recursive program based on the specification.
Drawback: Requires quadratic time (not useful for large structures).

Approach 2: Use a probabilistic recursive program based on the specification.
Need to settle for approximate size N.
Can generate large structures in linear time.

Ref: Boltzmann samplers for random generation of combinatorial structures.
by Philippe Duchon, Philippe Flajolet, Guy Louchard and Gilles Schaefer (CPC 2004).




French mathematicians on the utility of GFs (continued)

“This approach eliminates virtually all calculations.”

:} — Dominique Foata & Marco Schiitzenberger, 1970

-
((z
D\ W M/
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Note 11.11

Ehrenfest model

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

> 1I.11. Balls switching chambers: the Ehrenfeszr model. Consider a system of two cham-
bers A and B (also classically called “urns’). There are N distinguishable balls, and, initially,
chamber A contains them all. At any instant %, %, ..., one ball is allowed to change from one
chamber to the other. Let E,[f] be the number of possible evolutions that lead to chamber A

containing ¢ balls at instant n and E [€](z) the corresponding EGE. Then
N
£l = (e)(COShz)E(sinhz)N =t EWlz) = (cosh)N = 27N (et + e )N,

[Hint: the EGF EIVN] enumerates mappings where each preimage has an even cardinality.] In
particular the probability that urn A is again full at time 27 is

N

1 N
g > <k>(N — 2k)%".

k=0
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Note 11.31

Combinatorics of trigonometrics

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

> 11.31. Combinatorics of trigonometrics. Interpret tan
combinatorial classes.

<

1-z°

tantan z, tan(e< — 1) as EGFs of
<
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Assignments

1. Read pages 95-149 (Labelled Structures and EGFs) in text.

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

2. Write up solutions to Notes Il.11 and I1.31.

3. Programming exercise (Extra Credit).

Program Il.1. Write a program to simulate the Ehrenfest mode
(see Note 1l.11) and use it to plot the distribution of the number of
balls in urn A after 103, 104 and 105 steps when starting with 103
balls in urn A and none in urn B.
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