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Natural questions about combinatorial parameters

What is the average number
What is the average number of parts in a random
of subsets in a random composition ?
set partition ?

What is the average
number of partsin a
random partition ?
What is the average number
of cycles in a random
permutation ?

What is the average root
degree of a random tree ?

What is the average number
of times each letter appears

in a random M-word ? What is the average number

of leaves in a random tree ?



Natural questions about combinatorial parameters

Problem: Average-case results are sometime easy to derive but unsatisfying.

Example. Separate chaining hashing randomly assigns N keys to M lists.

Q. Average Iength of a list 7 A trivial result that is not very useful because it
A. N/M ) says nothing about the length of a particular list.

Ex: All the keys could be on one list.
Avg. length=(N+0+ 0+ ... + 0)/M= N/M

Solution: Find distribution (probability parameter value is k for all k)

Practical compromises:
ecompute average and variance

ecompute average extremal values ~—— . Compute average length of the longest list.

Goals for this lecture: Learn enough about parameters to be able to
«compute full distribution (in principle)
ecompute moments and extremal values (in practice)

Iyl
|||IIII LT
Algorithms

Section 3.4

Ex: Bound probability that list length deviates significantly from average.



Natural questions about combinatorial parameters

How many compositions
(sequences of positive integers

How many ways to partition
that sum to N ) have k parts?

a set of N objects
into k subsets?

How many partitions (sets
of positive integers that
sum to N ) have k parts?

How many permutations of
size N have k cycles?

How many trees with N
nodes have root degree k?

How many letters

appear k times in an _
M-word of length N ? How many trees with N
nodes have k leaves ?



Basic definitions (combinatorial parameters for unlabelled classes)

Def. A combinatorial class is a set of combinatorial objects and an associated size
function that may have an associated parameter.

Def. The ordinary bivariate generating function (OBGF)
associated with a class is the formal power series A(z,u) = Zz|a|u

Fundamental (elementary) identity

A(z) = Zz'a’uw“(a) = Z ZANkZNUk

acA N>0 k>0

Q. How many objects of size N with value k?
A A= [2M[UA(z, u)

With the symbolic method, we specify the class

size function

cost(a)
~ parameter value
acA
el ™~

object name class name

Terminology.

The variable z marks size
The variable u marks the parameter

Terminology.

BGF: bivariate GF.

ight add arbit
MGF: multivariate GF might add arpitrary

(—
number of markers

and at the same time characterize the OBGF



Q. How many binary strings with N bits?

Combinatorial enumeration: classic example
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Combinatorial parameters: classic example
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OBGF of binomial coefficients

Sy <//:/) N

N>0 k>0

— 2(1 + u)NzN (horizontal OGF)

N>0
Zk

— e Uk (vertical OGF)

= (1—2)
1

— OBGF

1—2z(1+u) ( )

horizontal OGF ~

coefficients

R R R R R R R R R R

O 0N O LT » W N B

10
15
21
28
36

10
20
35
56
84

vertical OGF
coefficients

1= (7)

5 [ 1
15| 6 /1

¥ 7
35 |21 | 7 1 —[uf](1 +u) = (k)

70 | 56 | 28 8 1
126|126 84 36 9 1




The symbolic method for OBGFs (basic constructs)

Suppose that A and B are classes of unlabelled objects with OBGFs A(z,u) and B(z,u)
where z marks size and v marks a parameter value. Then

operation notation semantics OGF

disjoint union A + B disjoint copies of objects from Aand B A(z,u) + B(z,u)

ordered pairs of copies of objects,

Cartesian product AxB one from A and one from B

A(z,u)B(z,u)

1
1 —A(z,u)

sequence SEQ(A) sequences of objects from A

Construction immediately gives OBGF equation, as for enumeration.

Extends immediately to mark multiple parameters simultaneously with MGFs.



Proofs of correspondences

A+ B

Z Z]C|Ucost(c) _ Zzla\ucost(a) 4+ Zz|b|ucost(b) _ A(Z, U) + B(Z, U)

ceEA+B acA

A x B

beB

Z el cost(c) _ Z Z lal+1b]  cost(a)+cost(b) _ (Z lal Ucost(a)) (Z bl ucost(b))

ceaxb acA beB

SEQ(A)

construction
SEQi(A) = A*

SEQ7(A) = AU + A” + A + ...

where T = ty, b, t3, ... is a subset of the integers

SEQA)=e+A+ A+ AP .

Alz,))" + A(z,u)? + A(z,u)® + ...

1

T+A(Z,u) +A(Z,u)? + ... = T AG)




Combinatorial parameter example: 0 bits in bitstrings

Class B, the class of all binary strings
Size |b|, the number of bits in b
Parameter zeros(b), the number of O bits in b

oscr  Blzu) =3 Alre® =5 5 Byt

beB N>0 k>0

variable u “marks” the parameter

!

Construction B = SEQ (uzo + 1)

1
OBGF equation (z,u) 1—2z(1 +u)
Expansion Bri = [UN[ZN]B(z,u) = [uM](1 + )N = [ZN]
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OBGF moment calculations

size function

e

P(7. U :E :Z|P|UC05f(P)
( ’ ) ™ parameter value
peP

/ \ class name

OBGF

object name

Enumeration
Pn = [2V]P(z,1)

P(z,1) = EZV" PNEZPNk

pEP k=0

Cumulated cost total cost in objects

of size N
On = [ZN]’DU(Za 1) 'Du<Za 1) = Z COSt(p)Z|p| On = ZkPNk
t peP k>0
OP(z,u)
ou u=1

[ZN]'DU(271) Q/\l

[ZN]P(z,1) Py

i [ZN]’D (Za 1)
Variance ol = [ZN]'ZL(’Z 3 + N — 13

Mean cost of objects of size N un =

number of objects of size N

P(z,u) = Z ZkaukzN

N>0 k>0

P(z,1) = Z Pz = Z ZkaZN

N>0 N>0 k>0

Py(z,1) = Z Qnz" = Z kaNkZN

N>0 N>0 k>0
_ N Pk
KN Z Py
k>0
2 PNk (1 _ 2
O-/\/ - Z P ( /‘LN)
g N



Moments for O bits in bitstrings with OBGFs

Class B, the class of all binary strings Example

Size |b|, the number of bits in b
OBGF

Parameter zeros(b), the number of O bits in b

B= SEQ (uzo + 1)

Construction

1
OBGF equation B(z,u) 1—2z(1+u)
Enumeration [ZN]B(Z, 1) = [ZN] 1 1 >
— 2427
Cumulated cost [ZN]B (z,1) = [ZN] (i Zz
—27)?

Mean cost of objects of size N HUN =

Variance

10111010001000

B(Z, U) _ Z Z|b|uzeros(b)
beB
Z
Bu(z,u) = (1 —z — zu)?
Nz/\/—T

(easier with horizontal GFs: stay tuned)



"Horizontal" and "vertical" OGFs

2D Pt

N>0 k>0

— Z pN(u)zN (horizontal OGF)

— Z qk(z)uk (vertical OGF)

horizontal OGF _,

coefficients

vertical OGF
coefficients

l

P57

— ["p7 ()




Moment calculations ("horizontal" OGF)

size function

e

OBGE _ Pl cost(p)
P(Z7 U) Z 27 ™ parameter value

peP
/ \ class name

object name

"Horizontal" OGF [ZMP(u,

Enumeration

Cumulated cost

Mean cost of objects of size N

Variance

GF for costs of objects

/ of size N
) = _ Z Ucost(p)

pEP and size(p)=N

pn(1)= > 1="Py
PEPN
pa(1) = ) cost(p) = Qn
PEPN
= P _ Qv
pn(1) PN
/! ’l
oN = PRU)

- 3 S puet

N>0 k>0

u) = peu’

k>0

:ZPNk:P

k>0

= kaNk —

k>0

MN—Zkak

k>0

on = Z%(k—ﬂl\/)z

=g



O bits in bitstrings with a "horizontal" OGF

OBGF B(z,u) = 5— 2(11 T
"Horizontal" OGF b(u) = [2V]B(z,u) = (1 + u)N
Enumeration by(1) =2V

Cumulated cost biy(1) = N2N~!

eniom N S 1) /bw(1) = N2 /2N (N2) ¥
Variance b(1)/bn(1) + N/2 = (N/2)* = N/4

concentrated: oy = \/N/2 (stay tuned)
20



Moment calculations ("vertical" OGF)

size function

/
_ |, ,cost(p) kN
OBGF. P(Z’ U) Z 2= u =~ parameter value P(Z’ U) - Z ZkaU Z

peP N>0 k>0

/ \ class name

object name GF for costs of objects

/ of cost k

“Vertical" OGF [uMP(u, 2) = qu(z) = Z zIP q(z) = ZkaZN

pEP and cost(p)=k N>0
Enumeration Py = [ZV]P(2,1) Z kgy(z) = Z Z kpniz

k k N>0
Cumulated cost. [Z] Z kgi(z) = On _ Z (Z kka)zN
k N>0  k N

Q k QN
Mean cost of objects of size N pn = =2 UN = Z Pk

P =0 N

Variance (omitted)



O bits in bitstrings with a "vertical" OGF

OBGF

"Vertical" OGF

Enumeration

Cumulated cost

Average # 1-bits in a
random N-bit string

1
B(z,u) = 20T+ )
Zk
qr(z) = [Uk]B(Z, u) = (1 — Z)k+

22



Moment inequalities and concentration

Let Xy be the value of a parameter for a random object of size N with mean pn and std dev on.

Markov ineaualitv. Pri{Xw >t <1/t “The probability of being much larger
q Y { N = ,LL/\/} - / than the mean must decay, and an upper

: : . 2 bound on the rate of decay is measured
ChEbySheV mequa“ty' PI‘{’X/\/ 'LLN‘ > tON} < 1/t in units given by the standard deviation.”

Def. A distribution is concentrated if oN = O(MN).

Proposition. If a distribution is concentrated,

X
then Xn/pn — 1 in probability: lim Pr{1 —e < N <1 +e} =1
N— 00 UN

When a distribution is concentrated, the expected value is “typical”.
Example: 100,000,000 random bits
Expected # 1 bits N/2 50,000,000

Standard deviation VN/2 5,000

Probability Xn is between 49,900,000 and 50,100,000 9975

23



Moments for letters in M-words with OBGFs

Class Ww, the class of all M-words Example 4355241123
Size w|, the number of letters in w
W] OBGF Wy (z,u) = Z zIWlyocew)
Parameter occ(w), # of occurrences of a given letter in w we Wy
Construction B=SEQ (uzZ+ (M-1)2)
1 N _ N—1
OBGF equation WM(Z U) _l — (M — 1 + U) [Z ]WU(271) = NM
[ZNWou(z,1) = N(N = 1)MN—2
1
. N N N
Enumeration 2N |W(z,1) = |z ]1 —
N N Z N—1
4% 1) = —_— =
Cumulated cost [ZMW,(z,1) = [27] 1 — /\/Iz = NM
Mean # of occurences of a [
given letter in a random UN = @ v
M-word with N letters

4% 1
Variance o = 2] [ZNT\L;\SZ 1)

Standard deviation on = /N/M —N/M? «—— concentrated for fixed M

)+MN—M2N=N//V/—N/M2

24



Application: Hashing algorithms

Goal: Provide efficient ways to
* Insert key-value pairs in a symbol table.

 Search the table for the pair corresponding to a given key.

Strategy

« Develop a hash function that maps each
key into value between 0 and M—1.

e Maintain M lists of key-value pairs

Q. Average list length for N keys?
A. N/M <«—— Trivial

Q. Typical list length for N keys, for fixed M?
A. N/M, concentrated «—— Useful

S

m mr © 2 » X mMm T N ™ > m

key hash

2

O W w A O N O M M p O O

H W NN R O

St

THE CLASSIC WORK
LY UPDATED AND REV

The Art of
Computer
Programming

:
A t VOLUME 3
gorithms [HEESE_GE—
Second Edition

__ DONALD E. KNUTH _

CING-ED

1rst
\ ;
null T—ou independent

SequentialSearchST

ovjects
1rst /
S /

first
~N
(L] P]]

1rst
~
N g Y N o S o K D

25
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Number of parts in compositions

Q. How many compositions of N have k parts?

1+1

1 2
Chi=1 G =1
C2=1

cumulated cost: 3
average: 1.5

N —1
A. CNk:(k—1)

1+1+1
1+ 2
2 + 1
3

G =1
C2=2
Gz =1

cumulated cost: 8
average: 2

1+1+1+1
1 +1+ 2
1+2+1
1+ 3
2 +1+1
2 + 2
3+ 1
4
Cy =1
Cs2=3
Cs3 =3
Casa =1

cumulated cost: 20
average: 2.5

Ca1 + 2Ca2 + 3Ca3 +4Caa = 20

R R R+
RFR+ R+ + R

RN+ W+ + R
RN+

NN+
PWH+ N+ + R4+ + N+ R+

i+ + P+ NP+ + WN+ R+ + B

RN+ W+ + R D+ + R+ NP+
RN+

—

4
Cs3=06
Ca=4
Css =1

cumulated cost: 48
average: 3 28

OO
I



Number of parts in compositions

Class C, the class of all compositions Example l1+3+1+5+2=12
® | 000 |0 | 00000 |00 — 0000000000000000
Size |c|, the number of es in c
OBCE C(z.u) = Z]C|U,oart5(c)
Parameter parts(c), the number of parts in c ( ’ ) ;
Construction C=SEQ(uSEQ-0(2))
Clz,u) 1 11—z
OBGF tion f boli thod Z,U) = =
equation from symbolic metho ) . = 1—Z(u—|—1)

11—z
"Horizontal" OGF for parts in a composition of N ¢y (u) = [ZN]C(Z7 u) = (u+ 1)N — (u+ 1)N_1

Enumeration cn(1) = N _ 9gN=1 _ 9N—1

Cumulated cost C;\/(U — N2N_1 - (N - 1)2/\/_2 — (N‘|‘ 1)2/\/_2

Average # parts in a random composition of N C;\/“ )/CN(1) : v

29



Tree parameters

Q. What is the expected root degree of a random tree with N nodes ?
Q. How many Jeaves in a random tree with N nodes ?

root degree 4

14 leaves

30



Leaves in a random tree

Q. How many /eaves in a random tree with N nodes ?

31



Leaves in random trees

Q. How many trees with N nodes and k leaves ?

) I I /K
Ghio=1 Gl =1
Gz =1
Gl =1
cumulated cost: 3

average: 1.5
Glay =1

Glaz =3
Claz =1

cumulated cost: 10
average: 2

A. N/2 (next slide)

A
N
LA

A
LA

Cls1 =1
Gls2 =3
GCls3 =6
Glsg =1

cumulated cost: 35
average: 2.5

32



Leaves in random trees

Example
Class G, the class of all ordered trees
Size |g|, the number of es in g
OBCF G Z U Z Z|g| leaves(g)
Parameter  leaves(g), the number of leaves in g e
Construction Ct=uZ+ZxSEQ-0( CL)
zGHz,u
OBGF equation from symbolic method GL(z, u) —zu + ( ’ )
1 — Gz, u)
Enumeration OGF GL(z, 1) =G(2) 2N G(z) = A=
N\ N-—1
Cumulated cost OGF Gh(z,1) = 2(1 4+ —— 1
umulated cos =
2 V1 — 4Z [ZN] 1 B (2/\/>
L V1—4z \UN
i [N C (z, 1
Average # leaves in a random tree [ forN>2 V¥
N

concentrated: oy is O(VN)
33



Root degree in random trees

Q. How many trees with N nodes and root degree k?

.o A
o o A

Gh3 =1
GD3 =1
cumulated cost: 3
average: 1.5
GDyy =2
CPs2 =2
CDy3 =1

A. (next slide
( ) cumulated cost: 9

average: 1.8

Ay
ﬁpaqq

AiA

GPbsy =5
GPs2 =5
GDs3 =3
GDs4 =1

cumulated cost: 28
average: 2 34



Root degree in random trees

Class G, the class of all ordered trees
Size |g|, the number of es in g
oscr  G'(z,u)
Parameter deg(g), the degree of the root of g

Construction

GP =Z x SEQs0( uGP)

OBGF equation from symbolic method GP(z,u) = T jC(Z)
Enumeration OGF GP(z,1) = G(2)
Cumulated cost OGF CE(Z, 1) = (1 icé?;))z =
Average # leaves in a random tree [ZN]GE(Z’ 1) — GN“

ZMG(z)  Cn

&3

— 1

Example

Z gl des(g)

geG

6
3 -
N N+ 1

1 0

2 1

3 1.5

4 1.8
G(z 5 2 ¥

Z) ()_1 11
Z

) aneN- 1IN
%(2/3’__12) (N+ 1)NN
40
N+ 1

35



Rhyming schemes

Q. How many ways to rhyme a poem ?

There was a small boy of Quebec A
Who was buried in snow to his neck A
When they said, "Are you friz?" B
He replied, " Yes, | is — B

But we don't call this cold in Quebec! A

TWO roads diverged in a yellow wood,
And sorry | could not travel both
And be one traveler, long | stood

And looked down one as far as | could

To where it bent in the undergrowth;

36



Rhyming schemes

7
6

[ T T
T ¥ 9 3
R RV
AU UISUVUUDM<CO <<m <
vuuUuBUICOO T <O <<
I -2 - - - T G - - I - I - T G
A CACACACAACAACACATCACCC
Vo <o«

_— " —

M ome < N

IV

CCEICICI

A B
A A
Sa1=1
S22 =1

Q. How many ways to rhyme an N-line poem with k rhymes ?
Sii=1

37



Rhyming schemes

Class S, the class of all rhyming patterns B ABCAUDATGBE
Size number of lines
_ |s|, rhymes(s)
Parameter number of rhymes with k lines OBGF S(z,u) = Z ZAN
SES
"Vertical" construction Zax SEQ(Za) x Z x SEQ(Za+ ZB) x Zc x SEQ(Za+ Zs+ Zc) % ...
Zk

Vertical OGF SK(z) =

(1—=2)(1=22)...(1 — kz)

"Stirling numbers of the 2nd kind " (stay tuned)

u ~ —-

Average # k-rhyming patterns in an N-line poem Z Z K] (see page 63)

N>0 k>0

N
{N}ZN k k details omitted



OBGF of Stirling numbers of the 2nd kind (partition numbers)

S {R

N>0 k>0
_ N (horizontal OGF)
BN(U)Z "Bell polynomials” N k<
N>0 \
K vertical OGF
z k 1 fficient
— Z u- (vertical OGF) RSl L
1—2)(1=22)...(1 —kz
(-2 -22)...(0 - k2) SN
1 3 1
horizontal OGF _ 1 7 6 1l «— [uk]B4(u)

coefficients
1 15 25 10 1

1 31 9 65 15 1

1 63 301 350 140 21 1
N TZ3
](1 —2)(1 =22)(1 —32)

1z
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Basic definitions (combinatorial parameters for labelled classes)

Def. A labelled combinatorial class is a set of labelled combinatorial objects and an associated

size function that may have an associated parameter.

Def. The exponential bivariate generating function (EBGF)
associated with a labelled class is the power series

Fundamental (elementary) identity

Z Cost(a) Z Z MZNUk

aGA N>0 k>0

Q. How many objects of size N with value k?
A. Anie = NI[ZM[UNA(z, u)

With the symbolic method, we specify the class

size function

e

§ : Cost(a)
~ parameter value

aEA
e ‘\

object name class name

Terminology.

The variable z marks size
The variable u marks the parameter

Terminology.

BGF: bivariate GF.

ight add arbit
MGF: multivariate GF might add arpitrary

(—
number of markers

and at the same time characterize the EBGF

42



The symbolic method for EBGFs (basic constructs)

Suppose that A and B are classes of unlabelled objects with EBGFs A(z,u) and B(z,u)
where z marks size and v marks a parameter value. Then

operation notation semantics OGF

disjoint union A + B disjoint copies of objects from Aand B A(z,u) + B(z,u)

ordered pairs of copies of objects,

labelled product AxB one from A and one from B

A(z,u)B(z,u)

1
1 —A(z,u)

sequence SEQ(A) sequences of objects from A

Construction immediately gives BGF equation, as for enumeration.

Extends immediately to mark multiple parameters simultaneously with MGFs.
43



Number of different letters in 3-words

Q. How many different letters in a 3-word of length N ?

11 111 211 311
12 112 212 312
13 113 213 313
1 2 1 121 221 321
2
X 2 2 122 222 322
Wi =3 2 3 123 223 323
e ot 1 s 31 131 231 331 .
3 2 T
Wor = 3 132 232 332 Wor = 18
33 ok 133 233 333 Was = 6
cumulated cost: 15 cumulated cost: 57

average: 1.667 average: 2.111

44



Number of different letters in M-words

Class Ww, the class of all M-words Example 314641223441
Size |wl|, the length of w |l
let
| | EBGF Wa(z,u) = ) Tmu™™
Parameter  lets(w), the # of different letters in w o= lw|!
Construction Wy =SEQu (E+ u SET>0(2Z))
EBGF equation from symbolic method Wi(u,z) = (1 4+ u(e” — 1))M
N AN
Enumeration EGF Wi(1,z) = oM 1 1
2 1.667
Cumulated cost EGF W,(1,z) = /\/IeZ(M_”(eZ — 1) = Me™ — Me?M=1) 3 2111

4
N
Average # different letters in UN = N [z¥ W, (1, 2)
a random M-word of length N NIZNIW(1, z)

45



Number of different letters with a given frequency in M-words

Class Ww, the class of all M-words

Size |w|, the length of w

Parameter fi(w), the # of different letters in w

Construction

EBGF equation from symbolic method

Enumeration EGF

Cumulated cost EGF

Average # letters that appear k times
in a random M-word of length N

Example

EBGF

314641223441

Wy =SEQu ( SET««k(Z) + u SETk( Z))

k

V4 4 M
Wi(u,z) = (¢’ + (u— 1)F>
WM(1,Z) = eZM
z(l\/l—1)Zk
WU(1,Z) = Me F
N![ZNIW, (1, 2) NY , 1

NIZNW(1, 2)

:M(

k

)

M

=)

\ occupancy

distribution

4
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Cycles in random permutations

Q. How many permutations of N elements have k cycles ?

00

5 &
Pii=1

P21 =1
P22 =1

cumulated cost: 3
average: 1.5

cumulated cost: 11
average: 1.8333

w8
o 0086
@@@ @ @

ONO
@@@ e::
ol 23
@@®® eee
(1) @
0o 04 04 B
Ps1 =6
Psz =11
Pi3=6
Pas =1

cumulated cost: 50
average: 2.0833
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Cycles in random permutations

&
Class P, the class of all permutations © ON ® ®
Example <5 LN O
. o
Size |p|, the length of p - @
zIP
Parameter cyc(p), the number of cycles in p EBGF P(z,u) = Z WucyC(p)
peP Pl
Construction P=SET(uCYC(Z))
1
uln
EBGF equation from symbolic method P(z,u) =e 11—z — (1—2)"Y N Ha
1 1 1
Enumeration EGF P(z7 1) —
11—z 2 1.5
1 1
Cumulated cost EGF ,DU(Z7 1) _ In 3 1.833
T—-z 1-z 4 2.083
NI[zN1P 1 v
Average # cycles in a random permutation '[Z ] “(Z’ ) :@
NIzN]P(z,1) ~

concentrated: on is O(1/logN)
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EBGF of Stirling numbers of the 1st kind (cycle numbers)

N>0 k>0
/\/
= Zu (u+1)...(U+N-— 1)m (horizontal EGF)
N>0 N k=
Z k' n (vertical EGF)
k>0
— m (EBGF)

[WNu(u+1)(u+2)(u+3)—

vertical OGF
coefficients

1 1 l

2 3 1

horizontal OGF

e L e L coefficients

24 50 35 10 1
120 274 225 85 15 1

720 1764 1624 735 175 21 1
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Number of cycles of a given length in random permutations

®
Class P, the class of all permutations © ® ®
Example ° g
Size |p|, the length of p &
P
4
Parameter cycAp), # of cycles of length rin p EBGF P(z,u) = Z Wucycr(p)
peP Pl
Construction P=SET(CYCsr(Z)+ uCYCH(Z))
1 zZ  uZ
In — — 4+ — elw=0Z/r
EBGF equation from symbolic method P(z,u)y=e 11—z 71 r = 5
—Z
1
Enumeration EGF P(z,1) =
— 7
zZ 1
Cumulated cost EGF Pu(z,1) = T
N![ZzNP,(z,1)

Average # r-cycles in a random permutation

N![ZzN]P(z, 1)



Set partitions

{1} {23 {3} {4}

{1} {2 3 4}

{2} {1 3 4}

3} {12 4

{4} {1 2 3}

13 23 (3} (12} {3} {4}

1 42} {1} 2 3} {13} {2} {4}
12 {2} {13} {14} {2} {3}

> S ) 13} {1 2} {2 3} {1} {4}
2 {1} {23} {3} {2 4} {1} {3}

S$3=5 {3 4} {1} {2}

{1 2} {3 4}

{1 3} {2 4}

{14} {2 3}

{1234}
S4=15

Q. How many ways to partition a set of size of N?



Set partitions

Q. How many ways to partition a set of size of N into k subsets?

{1} {2}

{1} {1 23}
Sii=1
Sa1=1

S =1

cumulated cost: 3
average: 1.5

{1} {2} {3}
{1} {2 3}
{2} {1 3}
{3} {1 2}

{1 2 3}
S31=1
S32=3
S33 =1

cumulated cost: 11
average: 2

11} {2} {3} {4}

{1} {2 3
{2} {13
{3} {1 2
{4} {1 2
{1 2} {3}
{1 3} {2}
{1 4} {2}
{2 3} {1}
{2 4} {1}
{3 4} {1}
{1 2} {3
{1 3} {2
{1 4} {2

4}
4}
4}
3}
{4}
{4}
{3}
{4}
{3}
{2}
4}
4}
3}

{1 2 3 4}

cumulated cost: 37

Say =

S42=7
S43 =06
S44 =1

average: 2.466



Number of subsets in set partitions

Class S, the class of all set partitions B (1} {2 5 6} {3 7 8} {4}
Size size of the set "
z" subsets(s)
Parameter number of subsets in the partition EBGF 5(z,u) = Z WU
ses T
Construction S=SET(u SET-0(Z))
Z —_—
EBGF equation from symbolic method S(Z, U) = eu(e 1)
V4
Enumeration EGF S(z,1) = € — 1
. z (ez — 1)
Cumulated cost EGF Su(z,1)=(e"—1)e
N
N![Z ]Su (Za 1 ) ) need complex asymptotics

Average # subsets in a random set partition <
g p /\/![ZN]S(Z, 1 ) (stay tuned)



EBGF of Stirling numbers of the 2nd kind (partition numbers)

Sy { e

N>0 k>0
z .

_ B/\/ c (horizontal EGF)
Z N! "Bell polynomials”
N>0

kU

— Z(ez - 1) X (vertical EGF)

k>0
V4
_l(e® = 1) (EBGF)

horizontal EGF .

coefficients

vertical EGF
coefficients

15 25 10 1
31 90 65 15 1

63 301 350 140 21 1

3! 54



Mappings

Def. A mapping is a function from the set of integers from 1 to N onto itself.

Example

1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
9 122933 5 203037262013 8 2 3329 2 353733 9 352118 2 251 20332318295 5 9 11 5 11

Every mapping corresponds to a digraph e
* N vertices, N edges ( : )——-> @
» Outdegrees: all 1 @ o e @ o @
* Indegrees: between 0 and N @ @ e
N0 —)

Natural questions about random mappings o @ @
« How many connected components ? @ @
« How many nodes are on cycles ? o Q \@ ég)\gg
) () )
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Mapping EGFs (see lecture on EGFs)

Combinatorial class

Construction

EGF equation

Combinatorial class

Construction

EGF equation

Combinatorial class

Construction

EGF equation M(z) = exp (111

C, the class of Cayley trees <«—— labelled, rooted, unordered

C=Zx(SET(C)) <«— "atreeis aroot connected to a set of trees"

C(z) = ze*®

Y, the class of mapping components

Y = CYC(C) <— "a mapping component is a cycle of trees"
1
Y(z) =In ———
(2) ==

C, the class of Cayley trees

M = SET(CYC(C)) <— "a mapping is a set of components”
LI
1-Cz)) 1-C(2)
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Mapping parameters

are available via EBGFs based on the same constructions

Ex 1. Number of components

Construction M = SET(uCYC(C)) f E
EGF equation  M(z) = exp(uln 5 —1C(z)) T a- Zi(z))“ Y

Ex 2. Number of trees (nodes on cycles)

Construction M = SET(CYC(uC)) .A%/H’“
EGF equation  M(z) = exp(In #C(z)) = #C(z) #

Q. Moments? Coefficients? Other parameters?

A. Stay tuned for general theorems from complex aysmptotics.



“We shall now stop supplying examples that could be multiplied ad libitum, since such
calculations greatly simplify when interpreted in the light of asymptotic analysis”

— Philippe Flajolet, 2007
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Note I1I.17

Leaves in Cayley trees

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

> III.17. Leaves and node-degree profile in Cayley trees. For Cayley trees, the bivariate EGF
with # marking the number of leaves is the solution to
T(z,u) = uz + z(e? @0 — 1),

(By Lagrange inversion, the distribution is expressible in terms of Stirling partition numbers.)

The mean number of leaves in a random Cayley tree is asymptotic to ne—!. More generally, the
mean number of nodes of outdegree k in a random Cayley tree of size n is asymptotic to

1 1
k!

Degrees are thus approximately described by a Poisson law of rate 1. <

n-e

6l



Note I11.21

After Bhaskara Acharya

Ivti > II1.21. After Bhaskara Acharya (circa 1150AD). Consider all the numbers formed in decimal
.Ana Y}lC with digit 1 used once, with digit 2 used twice.. .., with digit 9 used nine times. Such numbers
(0707011000100 o (&M all have 45 digits. Compute their sum S and discover, much to your amazement that S equals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

L Rl This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
Sl tion? This exercise is inspired by the Indian mathematician Bhaskara Acharya who discovered

multinomial coefficients near 1150AD. <

45875559600006153219084769286399999999999999954124440399993846780915230713600000
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Assignments

1. Read pages 151-219 in text.

2. Write up solutions to Notes Ill.17 and Ill.21.

3. Programming exercise.

Program lll.1. Write a program that generates 1000 random
permutations of size N for N= 103, 104, ... (going as far as you
can) and plots the distribution of the number of cycles, validating
that the mean is concentrated at Hn.

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick
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