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Warning: entering deep water

symbolic rational meromorphic singularity
method asymptotics asymptotics analysis

Good news: End results are often broadly applicable and not complicated.
Bad news: Technical skill is often required to prove them to be valid

This lecture:
« Overview of approach.
« Statements of several transfer theorems.

Analytic
Combinatorics

For full details refer (always) to The Book.
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General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

subexponential The location of a function’s singularities dictates
N N / factor the exponential growth of its coefficients.
Z7]F(z) = ATO(N)

exponential / Second principle of coefficient asymptotics

growth factor C . .
The nature of a function’s singularities dictates
the subexponential factor of the growth.

Previous two lectures: F(2) is a meromorphic function f(2)/g(2)
* If the smallest real root of g(2) is a then the exponential growth factor is 1/a.

*If « is a pole of order M, then the subexponential factor is cNM-T1,

This lecture: F(z) has singularities that are not poles. «—— (1 — az)" is not analytic for any M



Complex square root

Q. Extend the square root function to the complex plane? public double abs()
{ return Math.hypot(re, im); }

R - RN [0 - — i6/2 B public double phase()
Definition. Given z = re" define /z = \/re'/=. — (vap =z v e o e e . rey: 3

public Complex sqrt()

{
double r = Math.sqrt(this.abs(Q));
double theta = this.phase()/2;
: . 2 C double x = r*Math.cos(theta);
Multiple values problem: (\/E) = 7z for infinitely many z. double v — r*Math.sin(theta):
T return new Complex(x, Yy);
(V/re'®/2+kni\2 — rel® for any integer k ¥
oL L . i0 . i9/2 \/E is uniquely
Definition (revisited). Given z = re"” define v/z = \/re"’/* where 0 € (—m,w]. «——— definedand
(V2 =2z

Q. Singularities?

A. Yes! But do not show up on absolute value plots
and they are not poles.




Complex square root singularities

Definition. Given z = re'’ define VzZ = \ﬁeie/zwhere 0 € (—m,n.

Q. Singularities?

A. Yes, because of discontinuity in the argument.

.\Z_

Example:

« Consider the two points zT = —®= 9 and 7z~ = —¢/("9).

« By the definition 7+ — /(®@/2—¢/2) and /z— — /(—1/2+¢/2)«— pot e/(®/2+¢/2) r-plot 8-plot

* Taking € arbitrarily small, z+ and z- are arbitrarily close

together, but the arguments of Vz+ and Vz— differ by iTr.
« Therefore, vz is not differentiable at —i .
« Same argument works for any z < 0 on the real line. V1 -4z
« Same argument works by change of variables for any use.

A. Square root function has an infinite number of essential singularities.



Complex logarithm

Q. Extend the logarithm function to the complex plane?

Definition. Given z = re'’ define Inz =Inr+1i0. — anr—, ¢ ,
pubTic Complex log()

{
double x = Math.log(a.abs());
double y = a.phase();
return new Complex(x, y);

3

In z

Multiple values problem. e€7° =z for infinitely many z.

t

Inr+i02kni — rei® for any integer k

e

In Z is uniquely

Definition (revisited). Given z = re’ define Inz =1Inr+ i where 6 € (—7, m]. «—  defined and

ean — 7

Other problems.
- Ine” = z only when 0 € (—=, i|
e« Inwz=Inw+1Inz only when 0 € (—=, x|



Complex logarithm singularities

Definition. Given z = re” define Inz =1Inr+i0 where 6 € (—m, @

Q. Singularities?

A. Yes, because of discontinuity in the argument. 0 7

Example:

[omitted, similar to square root example] r-plot ©-plot

« Same argument works for any z < 1 on the real line.

« Same argument works by change of variables for any use.

A. Logarithm function has an infinite number of essential singularities.



Gamma function

Q. Extend the factorial function to the complex plane?

_ Basic identities 03— avass
Euler representation r(1) = 1 2
r e _tt5_1d for 0 I(s+ 1) =sI'(s) s> 0 (integration by parts) F(_f):_Zﬁ
(5):/0 e t for R(s) > DN+ 1) = NI rQ)=va
oo —t oo 5 i _
r(1/z):/ e—dt:Z/ ePdx= v @V
0 Vi 0 r2) = va/3
Product forms _
Hankel representation
1 d S .
— — e TT(1 + 2)es/" «—— Weierstrass 1 1_/ st H
['(s) E( n) o0s) ~ 2mi H( t) e 'dt Ci/
oo 52
ins = 1 — <«—— Euler
o nll ( n’n? ) Proof sketch:
T 1 eins _ e—ins oo
I'(s)I'(—=s) = —— o A\ Sa—t o =St
(ST(=s) = = — B H( el = —— /O (—t)Se~'dt
=" sinms 1
L(s)I'(1 —5s) e _ nn (1) = o



Gamma function singularities

Q. Singularities?

,l oo

T~ se H(1 + %)e_s/”

n=1

A. Yes, simple poles at non-positive integers.

public Complex Gamma(Complex z)

{

double gamma = .5772156649;
Complex one = new Complex(1.0, 0);
Complex fact = z.times(z.times(gamma).exp());
for (int i = 1; i < 10; i++)
{
fact
fact

fact.times(one.plus(z.times(1.0/i)));
fact.times(z.times(-1.0/1i).exp();

}

return fact.reciprocal();

r(z) ﬂ—
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Standard function scale (transfer theorem for non-integral powers)

f(2 [ZN]f (2)
Theorem. Standard function scale (leading term). ]
N 3/2
/\/ - — ~ 1 J— ~Y
Forany « = 0, -1, -2, -3, . .. @ (1 = 2) F(aD (1-2) WG
11—z
Proof . 1
1—z ~ =
2V N3
E d ive full [ ionind [ fN 1 1
xtends to give full asymptotic expansion in decreasing powers of N : ~
g ymp p gp T VaN
N N ala—1) ala—1)(a—2)Ba—-1) 1
N 1 — o 1 o 1
201 =2) r(a)< TN T 24N2 +O(/\/3)> —
1 2vVN
(1-2p72 = Vr
1 —+/1—4z 4N 3 24 1 1
E le: N ~ — — - INE) N+ 1
xample: [N ——2 T (1 S Tag +O(N3)> =27 +



Key concept: Hankel contour of radius R and slit width 1/N

function may be analytic

Hankel contour in white region

function is
analytic in
gray region

il//\/

\ function is not

analytic on this slit



Standard function scale

Na—1
Theorem. Standard function scale. Forany « # 0, -1, =2, .. .GN]U —7) %~ F<O‘D

Proof sketch:

« Use Cauchy’s coefficient formula for circle C centered at the origin

Ca 1 _ dz
f/\/ = [ZN](1 — Z) = % C(1 — Z) SN+

e Change of variable z=1 + t/N

127 = S [0 () " e

21

» Deform to Hankel contour of radius R and slit width 1/N

* Take R — o0

« Apply Hankel’s formula for the Gamma function

L ()~ (1 + i)_N_1dt 1

21 [y N T'(a)

an

P— =

NP
}J
W

P
k4
N

(——

H



Standard function scale with logarithmic factors

N 1
Theorem. Forany o« # 0, -1, -2, ... z ](

1 —2)

Proof sketch:

[ omitted, straightforward variant of previous proof ]

1 1
Example: [ZV] In ~InN



AC example with standard scale asymptotics: Binary trees

G, the class of all ordered trees

G = Z x SEQ(G)
y4
@) =1"¢cw
B 1++v1 -4z
N 2

[ZN]C(Z) ~ 43/E /\/N—3/2

«—— see Lecture 1



AC example with standard scale asymptotics: Cycles in permutations

P, the class of all permutations «— see Lecture 3
P=SET(u CYC(Z) é @\ . @\
4
l o OO g
()
1

uln
P(z,u) =e 1—Z:(1—z)_“

1 1 OGF for avg number of
D . .
cycles in a permutation

[ZM]Py(z,1) ~ InN
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Analytic transfer theorems

Meromorphic ?

* Find dominant pole a, approximate [zN]@ _M
8(2) ag'(a)

« Based on contour integration and residues.

Standard function scale ?
/\/] 1 1 1

B
—_— b
(1—z)a(zn1—z) Y
» Based on Hankel's representation of the Gamma function.

- Approximate [z

Neither ?

» « Use singularity analysis.
» Based on approximations to functions in the standard scale.

No singularities ?
» Use saddle-point asymptotics.

« Based on complex analog to Laplace method.




Approximations to functions

Standard approach. Use Taylor theorem to approximate functions at nonsingular points.

f'//(ZO)
2!

f///(ZO)
3!

f(z) = f(zo) + f'(z0)(z — z0) + (z — z0)* + (z—2z0) + ...

Example:

at zo =1
o—3/4

e—z/2_z2/4 _ e—3/4 4+ 6_3/4(1 o Z) 4+ (1 o Z)2 4+ O(—l o Z)S

23



Approximations to functions

Standard approach. Use Taylor theorem to approximate functions at nonsingular points.

Modern approach. Have a computer do the work!

& WolframAlvha

| Series[Sart{1 + 2/2/2, {z, 1/3, 2}]

-8B g
Example: Input interpretation:
1
cLos L series ! Vies ZZS
2 z , Y
V1 7 2
2:2 =V3+5V3(1-32)+ O((1 - 32)°

Series expansion at z=1/3:

V3 2VE - )+ BV e 3 offe- 1)



Singularity analysis (overview)

A general approach to coefficient asymptotics (Flajolet and Odlyzko, 1990).

Example (unary-binary trees)

1—z—+/(14+2)(1-32)
* Dominant singularity: closest to the origin. M(z) = \/ 75

Locate the singularities.

* Location gives the exponential growth factor. e SiralEr e 2= 1/

exponential growth factor: 3V
first key

/ to the method
 Find domain of analyticity near dominant singularity.

 Use functions from the standard function scale. M(z) =1 — V3V =37+ o1 — 32)3/2
« Use approximations that extend (in principle).

Approximate the function.

Transfer.
» Use known coefficient asymptotics for standard scale. My = 1 3INNT3/2 ¢ O(3NN_5/2)
« Term-by-term transfer is valid (!) \% 4m/3

second key
to the method

25



Key concept: A-domain

Singularity analysis depends on a function being analytic in a region near its singularities.

Definition. A A-analytic function is one that is analytic in a A-domain of the shape depicted below.

T

_ _ A weaker assumption than
function may be analytic for the Hankel contour

A-domain in white region

function is
analytic in
gray region

\ function is not

analytic on this slit

26



Why that shape for A-domains?
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O-transfers, o-transfers, and sim-transfers

Theorem. O-, o-, and sim-transfers. Let « and B be real numbers and let f(z) be a A-analytic function.

Asymptotic approximations of f(z) that hold in the intersection of a neighborhood of 1 with its A-
domain transfer to the corresponding approximations of its coefficients, as follows:

f@ O<(1—1—z)a<ln 1 )B) O<(1—1—z)0‘(1n1 1—z)ﬁ> ~ (1 —12)0‘ (ln1 1—2)5

11—~z

2V If (2 O(N*~" (1 N)?) o(N"" (nN)?) ~ N1 (In N)®

Brief proof sketch for O-transfer.

1 d
Use Cauchy’s coefficient formula [2"]f(z) = — / f(2) z
g

> NTT for this contour
T

. Small circle: o</\/@—1 (In /\/)5)

* Line segments (the hard part!): O(/\/O“1 (ln /\/)5> \J

« Large circle: exponentially small

28



Singularity analysis (summary)

Three steps to coefficient asyptotics for non-meromorphic functions.

1. Preparation.

 Locate the singularities.

* Establish analyticity in a A-domain around each.

2. Singular expansion.

« Expand the function near the singularities.

* Approximate it in the A-domain using the standard function scale.

Note: In this lecture, we use sim-transfer.
Transfer. / Key point: Method enables arbitrary asymptotic accuracy.

* Apply O-, o-, and/or sim- transfer theorems.

» Take each term in the function expansion to a term in the asymptotic expansion of its coefficients.

P. Flajolet and A. Odlyzko, Singularity analysis of generating functions. SIAM Journal on Algebraic and Discrete Methods 3, 2 (1990).
29



Singularity analysis example: Unary-binary trees

Combinatorial class

Construction

OGF equation

Explicit form

Singular expansion at 1/3

Coefficient asymptotics

M, the class of all unary-binary trees

M=e@X SEQo12(M)

M(z) = z(1 + M(z) + M(z)?)

M(z) = 1—z— \/(12;—2)(1 —32)

f
Atz=1/3

V1+2z
2z

=V3+0(1 - 32)

M(z) =1—+3VT=3z+0(1 —32)*/?

1
My = ——=3"N"3/2 + OBNN73/2)
41/3

“a unary-binary tree is a
tree where each node has
0, 1, or 2 children”

B-plot and A-domain

‘ |
1/3

30



Robustness of singularity analysis

The set of functions amenable to SA is closed for natural operations.
« Addition.
« Multiplication.
« Composition.
« Differentiation.

* Integration.

Example: If f(2) and g(2) are A-analytic functions then so is f(2) g(2).

-« N Na—1
f(z) ~ c(1 — z) [ZMf(z) ~ Ty
NG
Z) ~ — 7 _B ZN 7
8(z) ~d(1 =2) 282) ~ I
a+
f(2)g(2) ~ cdl(1 —2)=~7 M) ~ cd XD

Consequence: GFs produced by the symbolic method are usually amenable to SA

under certain technical
conditions (as usual)

31
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Schemas

Q. Seems like a lot of work. Any shortcuts?

A. YES. Process is automatic for a broad variety of classes.

Recall from previous lecture: A schema is a treatment that unifies the analysis of a family of classes.

Next: Examples of schemas that are amenable to singularity analysis (SA):

technical

schema condition example transfer via
Labelled set exp-log F = SET(G) SA
Simple variety of trees invertible M = e X SEQo,1.2(M) SA

S = E + UXZXS + DXZoXS
Context-free irreducible U = Zo + UXUXZ, SA

D =2, + DXDXZo

34



Schema example 1: Sets

Definition. A labelled class that admits a construction of the form F = SET(G), where G is a
labelled class, is said to be a labelled set class, which falls within the labelled set schema.

Enumeration: F=SET(G) — F(z) = eC?) fv = [ZV]F(2)
gy = [ZV]G(2)

labelled: number of structures is N! fn

Parameters:  mark number of G components with u

F=SET(uG) — F(z,u) = e"“®

mark number of Gk components with u

F=SET(uGk+ G\ G —— F(z u)= e(“_”ngkF(Z)

35



Labelled exp-log classes

exp-log: A technical condition that enables us to unify the analysis of labelled set classes.

Definition. Exp-log labelled set classes.

A labelled set class F = SET(G) is said to be exp-log(x, B, p) if the EGF G(2) associated

with G satisfies the following conditions:

« G(2) is analytic at 0 and has nonnegative coefficients.

* G(2) has finite radius of convergence p.

* The number p is the unique singularity of G(z) on |z| = p.
* G(z) is continuable to a A-domain at p.

*Asz—->p inA G(z) ~alog—

1
11—z

Example: GF for cycles:  Y(z) =In

analytic except forrealz>1and z<0

Therefore, the class of permutations P = SET(Y) is exp-log(1, 0O, 1).

Analytic

Combinatorics

page 446

36



Transfer theorem for exp-log labelled set classes

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«+(G) is exp-log(x, B, p)

1 o
with G(z) ~ alog =2/ + 8. Then F(z) ~ 66(1 —z/p)
and N B 1N 1
ZV|F(z) ~ —) N ™¢
q FD) ~ s () >
Corollary. The expected number of G-components ©)
in a random F-object of size Nis ~x In N. 6 (4)
| No%

and is concentrated there

Brief proof sketch: Check all the conditions; apply SA

N

®

GJe

R

37



AC example with exp-log labelled set schema asymptotics: Cycles in permutations

P, the class of all permutations

P = SET(CYC(2))

P(z) = exp(In

11—z

[ZMP(2) ~ 1

avg # permutations: ~ N
avg # cycles: ~InN

Next lecture: Many more examples

6%@<:>§.}

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)

e

1

with G(z) ~ alog =2/
—z/p

+ 3. Then F(z) ~ 5(

—z/p
and e“3 1
@]F(Z) ~ i@ ) N>

1
=al
1—2z C“)g1—z/p—i_ﬂ

fora=1,8=0, and p =1

In

Corollary. The expected number of G-components
in a random F-object of size Nis ~x In N.

I

and is concentrated there

38



Schema example 2: Simple varieties of trees

Definition. A combinatorial class whose enumeration GF satisfies F(z) = z¢(F(z)) is said
to be a simple variety of trees with characteristic function ¢.

Examples: N
unlabelled case: number of structures is |z |F(z)

F = Z x SEQqa(F)

F=2Z x SETa(F) \
—

labelled case: number of structures is N![z"]F(2)
F = Z % SEQq(F) / AN
all immediate

F=27 % SETa(F) via symbolic transfer

39



Invertible tree classes

invertible: A technical condition that enables us to unify the analysis of tree classes.

Definition. Invertible tree classes. A simple variety of trees whose GF satisfies F(z) = z¢(F(2))

is said to be A-invertible if its characteristic function ¢(u) satisfies the following conditions:

* ¢(u) has nonnegative coefficients, and is not of the form ¢o + ¢1u.
* ¢(u) is analytic at 0 with ¢(0) # 0 and radius of convergence R.

* The characteristic equation ¢(\) = A¢'(\) has a positive real real root A < R.

Example: Rooted ordered trees

Construction
OGF equation
Characteristic function
Characteristic equation

positive real root

Analytic
Combinatorics

G =7 x SEQ(G))

z
C(z) = 1—G(2)
1 oy ]
¢(U):1—U ¢(U)_(1—u)z
1 u

T—u (1 —u)?

A=1/2 — Trees are 1/2-invertible

40



Transfer theorem for simple varieties of trees

Theorem. If a simple variety of trees with GF F(z) = z¢(F(2)) is
A-invertible (where X is the positive real root of ¢(u) = u¢’(u) )

then NVE( 1 / N =3/
(]F() Trroay W) N

Proof approach.
1. Use analytic inversion to show that

F(z) ~ A= \/20(N)/¢" (M) T — 28/ (A)

2. Transfer via standard function scale.

Surprising fact: N-3/2 factor is present for all simple varieties of trees.

Note: "periodic" ¢ introduce complications that we ignore in lecture (see text).

41



AC example with invertible tree schema asymptotics: Rooted ordered trees

G, the class of rooted
ordered trees

G =7 x SEQ(G))

Z
C@)=1¢cw
GN ~ IINTE
4y/n

Theorem. If a simple variety of trees with GF F(z) = z¢(F(z)) is
M-invertible (where X is the positive real root of ¢(u) = u¢'(u) )

then NE(7) ~ 1 i N —-3/2
(]F“ ooz ) >

¢(U)=11_u : N A=1/2
; — == ¢(A) =2
YW= A 07N ‘() = 4

! ¢"(\) =16

42



AC example with invertible tree schema asymptotics: Unary-binary trees

M, the class of all
unary-binary trees

M=2Zx SEQo,1 2(M)

Theorem. If a simple variety of trees with GF F(z) = z¢(F(z)) is
M-invertible (where \ is the positive real root of ¢(u) = u¢'(u) )
M(z) = z(1 + M(z) + M(z)? then NF(z) ~ ! /) N2
(2) = 2(1 + M(2) + M(2)?) (1700~ sy (Y O0)

p(u) =1 +u+u? A=1
Sy =14+20  TFAFXN=2+20 6N =3
¢"(u) =2 ' (\) =3
V ¢//<)\)Z2

1

M ~
N \A4r/3

Next lecture: Many more examples

INN—3/2

43



Significance of tree schema

Singularity analysis example: Unary-binary trees

Combinatorial class M, the class of all unary-binary trees AR B
C . tree where each node has
truct = ildren” g e 5 . .
onstruction M =0 SEQ12(M) Sillog2icidien AC example with invertible tree schema asymptotics: Unary-binary trees
P ymp Y Y
OGF equation M(z) = z(1 + M(z) + M(2)?) M, the class of all
unary-binary trees
Explicit form _1-z—y/(1+2)(1-32)
M(z) = 2z M =Z x SEQo)2(M)
At ZL 13 6-plot and A-domain
T+2 _ 54001 -32)
2z Theorem. If a simple variety of trees with GF F(z) = zo(F(z))
A is Minvertible ( A s the positive real root of &()) = A¢/()) ) then
Singular expansion at 1/3 (2) =1 - V3VT =32} 0(1 — 32)” ’ M(z) = z(1 + M(z) + M(2)*) (P r~ ‘1\ i (HK\,\‘)\‘\‘ \‘
. ANy V270" (A)/d(A) N A J
1 (=32 (N =572 _
Coefficient asymptotics My = = 3NN L O(BNNT2) ‘ o(u)=1+u+u? A=
Van/3 I o) =1+2u 1+A+ X =x+22 ¢ =3
173 ¢"(u) =2 dN=3
A ¢"(\) =2
/ / 1 o
My ~ 3N
Need to solve polynomial equation P Van/3
Need to check analyticity

Need to expand

The schema unifies the analysis for an entire family of classes.

« Compute the exponential growth (from the characteristic function).

« Compute the constant (from the characteristic function).

« Surprising fact: N-3/2 factor is present for all simple varieties of trees.

"plug and chug"
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Schema example 3: Contexi-free classes

Definition. A combinatorial class that admits a construction of the form
Y = Y] = CONSTRUCT (Z, Y], YZ, = oE omy YI‘) Combiﬁ:tégi,itcig
Y2=CONSTRUCT (Z, Y1, Y2, - - -, Yi¥) :

Yr= CONSTRUCT (Z, Y1, Y2, « = -, Y¥)
where CONSTRUCT is a construction that involves only + and X, is said to be a

context-free class, which falls within the context-free schema.

Example: Strings with equal
> 2 : S = E + UXZ XS + DXZoXS U

numbers of Os and 1s.
U= Z, + UXUXZ; 00]0100010]HHOHII;)OOOHOI;OO

D =27, + DXDXZo

Interpretation:
U is the set of strings where # of 0s > # of 1s in any prefix.

D is the set of strings where # of 1s > # of Os in any prefix.
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Irreducible context-free classes

irreducible: A technical condition that enables us to unify the analysis of context-free classes.

Definition. Irreducible context-free classes. A context-free class is said to be
irreducible if it is nonlinear and its dependency graph is strongly connected.

S = E + UXZ1XS + DXZoXS

numbers of Os and 1s.
U=1270+ UXUXZ; @

D =127, + DXDXZo

nonlinear ‘

not strongly connected

Example: Strings with equal 'e

46



Irreducible context-free classes

irreducible: A technical condition that enables us to unify the analysis of context-free classes.

Definition. Irreducible context-free classes. A context-free class is said to be
irreducible if it is nonlinear and its dependency graph is strongly connected.

Example: "Non-crossing forests". FeE4T 0‘6
T=ZXFXU ~
U=E+UXYV
V=ZXFXUXU a‘a,

I

nonlinear strongly connected
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Transfer theorem for irreducible context-free classes

Theorem. If Cis an irreducible context-free class, then its generating function ((2) has a

square-root singularity at its radius of convergence p. If ((2) is aperiodic, then the dominant

1T 1
singularity is unique and @N]F(z) ~ \/_(—)N/\/3Bwhere « is a computable real.
am '\ p

Proof approach.

Drmota-Lalley-Woods theorem.

Computing the constant?
» Can be complicated.

« Maybe best left for a computer.
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"If you can specify it, you can analyze it"

Singularity analysis is an effective approach to develop analytic transfer
from GF equations to coefficient asymptotics for combinatorial classes.

Analysis can be detailed and burdensome.

Schema can unify the analysis for entire families of classes.

schema techqigal
condition
Labelled set exp-log
Simple variety invertible
of trees
Context-free irreducible

construction

F = SET(G)
F=2ZXx SEQ(F)
F=2Z % SEQ(F)

Family of (+, X)
constructs

coefficient asymptotics

eﬁ 1 N T—«
iy ) N
1 l N\—=3/2
vaz ) N
1 l N\—=3/2
\/ﬁ(p) N

Note: Several other schemas have been developed (stay tuned).
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Web Exercise VI.1

Standard scale.

Web Exercise VI.1. Use the standard function scale to directly
derive an asymptotic expression for the number of strings
in the following CFG:

Analytic
Combinatorics

S =E + UXZXS + DXZoXS
U=2,+ UXUXZ,
D=2, + DXDXZo

Philippe Flajolet and
Robert Sedgewick
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Web Exercise V1.2

2-3 trees (of a certain type)

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

Web Exercise VI.2. Give an asymptotic expression for the number
of rooted ordered trees for which every node has 0, 2, or 3 children.
How many bits are necessary to represent such a tree?
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Assignments

1. Read pages 375-438 (Singularity Analysis of Generating Functions) in text.
Usual caveat: Try to get a feeling for what's there, not understand every detail.

Analytic
Combinatorics

2. Write up solutions to Web exercises VI.1 and VI.2.

Philippe Flajolet and
Robert Sedgewick

3. Programming exercise.

Program VI.1. Do r- and O-plots of 1/I(2) in the unit square
of size 10 centered at the origin.
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