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SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



Warning: entering deep water

Good news: End results are often broadly applicable and not complicated.
Bad news:    Technical skill is often required to prove them to be valid

This lecture:

• Overview of approach.

• Statements of several transfer theorems. 

For full details refer (always) to The Book.
3

symbolic
method

meromorphic
asymptotics

singularity
analysis

rational
asymptotics
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General form of coefficients of combinatorial GFs (revisited)

First principle of coefficient asymptotics

The location of a function’s singularities dictates 
the exponential growth of its coefficients.

exponential
growth factor

subexponential
factor

5

[a5]-(a) = (5θ(5)

Second principle of coefficient asymptotics

The nature of a function’s singularities dictates
the subexponential factor of the growth.

Previous two lectures: F(z) is a meromorphic function f (z)/g (z)

• If the smallest real root of g (z) is α then the exponential growth factor is 1/α.

• If α is a pole of order M, then the subexponential factor is cNM−1.

This lecture: F(z) has singularities that are not poles. is not analytic for any M(� � �a)4



Complex square root

a = YLP� = YJVZ� + P sin �

6

Q. Extend the square root function to the complex plane? public double abs()   
{ return Math.hypot(re, im); }

public double phase() 
{ return Math.atan2(im, re); }

public Complex sqrt()
{
    double r = Math.sqrt(this.abs());
    double theta = this.phase()/2;
    double x = r*Math.cos(theta);
    double y = r*Math.sin(theta);
    return new Complex(x, y);
}

Definition. Given              define                       . a = YLP� �
a �

�
YLP�/�

Multiple values problem:                   for infinitely many z. (
�
a)� = a

Definition (revisited). Given              define                       where                   . a = YLP� �
a �

�
YLP�/� � � (��, �]

Q. Singularities?

A. Yes! But do not show up on absolute value plots
    and they are not poles.

✓
     is uniquely 
defined and

�
a

(
�
a)� = a

✓(
�
a)� = a

(
�

YLP�/�+R�P)� = YLP� MVY�HU`�PU[LNLY R

�
a



Example: 

• Consider the two points                       and                      . 

• By the definition                            and

• Taking ε arbitrarily small, z + and z − are arbitrarily close
together, but the arguments of         and         differ by i π. 

• Therefore,        is not differentiable at −i .

• Same argument works for any z < 0 on the real line.

• Same argument works by change of variables for any use.

Complex square root singularities

7

Definition. Given              define                       where                   . a = YLP� �
a �

�
YLP�/� � � (��, �]

Q. Singularities?

A. Square root function has an infinite number of essential singularities.

�
� � �a

r-plot θ-plot

A. Yes, because of discontinuity in the argument. z +

z −

�
a

a+ = �LP(���) a� = �LP(�+�)

�
a+ = LP(�/���/�) LP(�/�+�/�)not

�
a� = LP(��/�+�/�)

�
a

�
a+

�
a�



Complex logarithm

a = YLP� = YJVZ� + P sin �

8

Q. Extend the logarithm function to the complex plane?

public Complex log()
{
    double x = Math.log(a.abs());
    double y = a.phase();
    return new Complex(x, y);
}

Definition. Given              define                        . a = YLP� ln a = ln Y + P�

Multiple values problem.                   for infinitely many z. Lln a = a

Definition (revisited). Given              define                           where                   . a = YLP� � � (��, �]ln a = ln Y + P�

Other problems. 

•                 only when                     

•                                  only when

ln La = a � � (��, �]
ln^a = ln^+ ln a � � (��, �]

Lln Y+P��R�P = YLP� MVY�HU`�PU[LNLY R

✓
     is uniquely 
defined and

Lln a = a

ln a

✓Lln a = a



Example:     

        [omitted, similar to square root example]

• Same argument works for any z < 1 on the real line.

• Same argument works by change of variables for any use.

Complex logarithm singularities

9

Q. Singularities?

A. Logarithm function has an infinite number of essential singularities.

Definition. Given              define                           where                   . a = YLP� � � (��, �]ln a = ln Y + P�

r-plot θ-plot

A. Yes, because of discontinuity in the argument. ln a

�
� � a

ln
�

� � a



s > 0 (integration by parts)

�(�) = �

�(Z + �) = Z�(Z)

Basic identities

�
�(Z)

=
�
��P

�

H
(�[)�ZL�[K[ H

Hankel representation
�

�(Z)
= ZL�Z

��

U=�

�
� +

Z
U

�
L�Z/U

Product forms

Weierstrass

Gamma function

=
ZPU�Z
�

�(� � Z) =
�

�(Z)

�
��P

�

H
(�[)�ZL�[K[ =

LP�Z � L�P�Z

��P

� �

�
(�[)�ZL�[K[

Proof sketch:

�(Z)�(�Z) = � �
Z sin �Z

�(Z)�(� � Z) =
�

sin �Z

10

Q. Extend the factorial function to the complex plane?

Euler representation

�(Z) �
� �

�
L�[[Z��K[ MVY �(Z) > �

�(5+ �) = 5!

�(�/�) =

� �

�

L�[
�
[
K[ = �

� �

�
L�_�K_ =

�
�

�(��
�

) = �
�
�/�

�(��
�

) = ��
�
�

�(
�
�

) =
�
�

�(
�
�

) =
�
�/�

�(
�
�

) =
�
�/�

sin Z =
��

U=�

�
� � Z�

��U�
�

Euler



Gamma function singularities

11

Q. Singularities?

A. Yes, simple poles at non-positive integers.

�
�(Z)

= ZL�Z
��

U=�

�
� +

Z
U

�
L�Z/U

public Complex Gamma(Complex z)
{
    double gamma = .5772156649;
    Complex one = new Complex(1.0, 0);
    Complex fact = z.times(z.times(gamma).exp());
    for (int i = 1; i < 10; i++)
    {
       fact = fact.times(one.plus(z.times(1.0/i)));
       fact = fact.times(z.times(-1.0/i).exp());
    }
    return fact.reciprocal();
}

�(a)
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Standard function scale (transfer theorem for non-integral powers)

Theorem. Standard function scale (leading term).

                For any α ≠ 0, −1, −2, −3, . . . 

Proof . 
        [See next two slides.]

f (z) [zN ]f (z)

0

1 0

1

14

Extends to give full asymptotic expansion in decreasing powers of N : 

[a5](� � a)�� � 5���

�(�)

�
� +

�(� � �)

�5
+

�(� � �)(� � �)(�� � �)

��5� +6
� �
5�

��

Example: [a5]
� �

�
� � �a
�

� �5

�
�
�5�

�
� � �

�5
� ��

���5� +6
� �
5�

��

[a5](� � a)�� � 5���

�(�)
� �

�
�
�5�

� � �

�
�
�5�

� �
�
5�
�

�
� � a

5+ �
�

(� � a)�

��
� � a

�
(� � a)�/�

�
� � a

(� � a)�/�

� � a

� ��
�5

�(
�
�

) =
�
�



Key concept: Hankel contour of radius R and slit width 1/N

15

1

Hankel contour

function is not 
analytic on this slit

function is 
analytic in 
gray region

function may be analytic 
in white region

1/N1/N

R



Proof sketch:

• Use Cauchy’s coefficient formula for circle C centered at the origin

• Change of variable z = 1 + t/N

• Deform to Hankel contour of radius R and slit width 1/N

• Take R → ∞

•  Apply Hankel’s formula for the Gamma function

Standard function scale

Theorem. Standard function scale.  For any α ≠ 0, −1, −2, . . . [a5](� � a)�� � 5���

�(�)

M5 � [a5](� � a)�� =
�
��P

�

*
(� � a)�� Ka

a5+�

�
��P

�

H
(�[)��

�
� +

[
5

��5��
K[ =

�
�(�)

C

R

[a5](� � a)�� =
5���

��P

�

*
(�[)��

�
� +

[
5

��5��
K[

H



Proof sketch:

       [ omitted, straightforward variant of previous proof ]

Standard function scale with logarithmic factors

Theorem.  For any α ≠ 0, −1, −2, . . . [a5]
�

(� � a)�

��
a

ln
�

� � a

�� � 5���

�(�)
(ln5)�

Example: [a5]
�

� � a
ln

�
� � a

� ln5



AC example with standard scale asymptotics: Binary trees

18

G, the class of all ordered trees see Lecture 1

Speci!cation

G = Z × SEQ(G)

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

.(a) =
a

� �.(a)

=
� +

�
� � �a
�

[a5].(a) � �
�
�
�
�55��/�



AC example with standard scale asymptotics: Cycles in permutations

19

P, the class of all permutations see Lecture 3

Speci!cation

P = SET( u CYC(Z)

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

7(a, \) = L
\ ln

�
� � a = (� � a)�\

7\(a, �) =
�

� � a
ln

�
� � a

[a5]7\(a, �) � ln5

OGF for avg number of 
cycles in a permutation
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Analytic transfer theorems

22

Neither ?

• Use singularity analysis.

• Based on approximations to functions in the standard scale.
⬅ 9(a) =

L�a/��a�/�
�
� � a

No singularities ?

• Use saddle-point asymptotics.

• Based on complex analog to Laplace method.

0(a) = La+a�/�

Meromorphic ?

• Find dominant pole a, approximate                 by 

• Based on contour integration and residues.

+(a) =
L−a

�− a� M(�)

�N�(�)

��
�

�5[a5]
M(a)
N(a)

Standard function scale ?

• Approximate                                              by 

• Based on Hankel's representation of the Gamma function.

7\(a, �) =
�

� � a
ln

�
� � a

[a5]
�

(� � a)�

��
a

ln
�

� � a

��



Approximations to functions

23

Standard approach. Use Taylor theorem to approximate functions at nonsingular points.

at z0 = 1

Example: 

M(a) = L�a/��a�/�

M �(a) = ��
�

(� + a)L�a/��a�/�

M ��(a) = (
�
�

(� + a)� � �
�

)L�a/��a�/�

L�a/��a�/� = L��/� + L��/�(� � a) +
L��/�

�
(� � a)� +6(� � a)�

M(a) = M(a�) + M ′(a�)(a − a�) +
M ′′(a�)
�!

(a − a�)� +
M ′′′(a�)

�!
(a − a�)� + . . .



Approximations to functions

24

Standard approach. Use Taylor theorem to approximate functions at nonsingular points.

Modern approach. Have a computer do the work!

Example: 

�
� + a
�a

=
�
� +

�
�

�
�(� � �a) +6((� � �a)�

at z0 = 1/3



Transfer.

• Use known coefficient asymptotics for standard scale.

• Term-by-term transfer is valid (!)

Singularity analysis (overview)

A general approach to coefficient asymptotics (Flajolet and Odlyzko, 1990).

25

Locate the singularities.

• Dominant singularity: closest to the origin.

• Location gives the exponential growth factor.

Approximate the function.

• Find domain of analyticity near dominant singularity.

• Use functions from the standard function scale.

• Use approximations that extend (in principle).

second key
to the method

Example (unary-binary trees)

4(a) =
� � a�

�
(� + a)(� � �a)
�a

dominant singularity: z= 1/3
exponential growth factor: 3N

first key
to the method

4(a) = � �
�
�
�
� � �a+6(� � �a)�/�

45 =
��
��/�

�55��/� +6(�55��/�)



Key concept: Δ-domain
Singularity analysis depends on a function being analytic in a region near its singularities.

26

Δ-domain

A weaker assumption than 
for the Hankel contour

function is not 
analytic on this slit

1

function is 
analytic in 
gray region

function may be analytic 
in white region

Definition. A Δ-analytic function is one that is analytic in a Δ-domain of the shape depicted below.



Why that shape for Δ--domains?

PacMan machine 
at “corner bar”

27

PF’s office

“corner bar”



Brief proof sketch for O-transfer. 

Use Cauchy’s coefficient formula                                            for this contour

• Small circle:

• Line segments (the hard part!):

• Large circle: exponentially small

O-transfers, o-transfers, and sim-transfers

Theorem. O-, o-, and sim-transfers. Let α and β be real numbers and let f (z) be a Δ-analytic function. 

Asymptotic approximations of f (z) that hold in the intersection of a neighborhood of 1 with its Δ-

domain transfer to the corresponding approximations of its coefficients, as follows:

f (z)

[zN ]f (z)

28

γ

[a5]M(a) =
�
��P

�

�
M(a)

Ka
a5+�

6
� �

(� � a)�

�
ln

�
� � a

��
�

6
�
5����ln5)�

�

V
� �

(� � a)�

�
ln

�
� � a

��
�

V
�
5����ln5)�

�

6
�
5����ln5)�

�

6
�
5����ln5)�

�

� �
(� � a)�

�
ln

�
� � a

��

� 5����ln5)�



Singularity analysis (summary)

P. Flajolet and A. Odlyzko, Singularity analysis of generating functions. SIAM Journal on Algebraic and Discrete Methods 3, 2 (1990).

29

Transfer.

• Apply O-, o-, and/or sim- transfer theorems.

• Take each term in the function expansion to a term in the asymptotic expansion of its coefficients.

1. Preparation.

• Locate the singularities.

• Establish analyticity in a Δ-domain around each.

2. Singular expansion.

• Expand the function near the singularities.

• Approximate it in the Δ-domain using the standard function scale.

Note: In this lecture, we use sim-transfer.
Key point: Method enables arbitrary asymptotic accuracy.

Three steps to coefficient asyptotics for non-meromorphic functions.



Singularity analysis example: Unary-binary trees

Combinatorial class  M, the class of all unary-binary trees

Construction M = ● × SEQ0,1,2( M )

θ-plot and Δ-domain

1/3

30

“a unary-binary tree is a 
tree where each node has 

0, 1, or 2 children”

OGF equation 4(a) = a(� +4(a) +4(a)�)

Explicit form 4(a) =
� � a�

�
(� + a)(� � �a)
�a

�
� + a
�a

=
�
� +6(� � �a)

At z = 1/3

Singular expansion at 1/3 4(a) = � �
�
�
�
� � �a+6(� � �a)�/�

Coefficient asymptotics 45 =
��
��/�

�55��/� +6(�55��/�)



Robustness of singularity analysis

Consequence: GFs produced by the symbolic method are usually amenable to SA

31

The set of functions amenable to SA is closed for natural operations.

• Addition.

• Multiplication.

• Composition.

• Differentiation.

• Integration.

under certain technical 
conditions (as usual)

Example: If f (z) and g(z) are Δ-analytic functions then so is f (z) g(z).

[a5]M(a) � J
5���

�(�)
M(a) � J(� � a)��

[a5]N(a) � K
5���

�(�)
N(a) � K(� � a)��

[a5]M(a)N(a) � JK
5�+���

�(� + �)
M(a)N(a) � JK(� � a)����
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Schemas

34

Q. Seems like a lot of work. Any shortcuts?

A. YES. Process is automatic for a broad variety of classes.

Recall from previous lecture: A schema is a treatment that unifies the analysis of a family of classes.

schema technical 
condition example transfer via

Sequence supercritical F = SEQ(G) meromophicity

Labelled set exp-log F = SET(G) SA

Simple variety of trees invertible M = ● × SEQ0,1,2(M) SA

Context-free irreducible SA

Next: Examples of schemas that are amenable to singularity analysis (SA):

S = E + U×Z1×S + D×Z0×S

U = Z0 + U×U×Z1

D = Z1 + D×D×Z0



Schema example 1: Sets

Definition. A labelled class that admits a construction of the form F = SET(G), where G is a 
labelled class, is said to be a labelled set class, which falls within the labelled set schema.

35

F = SET(u G)

mark number of G components with uParameters:

-(a, \) = L\.(a)

F = SET(u Gk +  G\ Gk)

mark number of Gk components with u

-R(a, \) = L(\��)NRa
R
-(a)

F = SET(G)Enumeration: M5 = [a5]-(a)
N5 = [a5].(a)

-(a) = L.(a)

labelled: number of structures is N ! fN



Labelled exp-log classes

Definition.  Exp-log labelled set classes.
A labelled set class F = SET(G) is said to be exp-log(α, β, ρ) if the EGF G(z) associated 
with G satisfies the following conditions: 

• G(z) is analytic at 0 and has nonnegative coefficients.

• G(z) has finite radius of convergence ρ.

• The number ρ is the unique singularity of G(z) on |z| = ρ.

• G(z) is continuable to a Δ-domain at ρ.

• As z → ρ  in Δ

36Therefore, the class of permutations P = SET(Y) is exp-log(1, 0, 1).

Example: GF for cycles: @(a) = ln
�

� � a

analytic except  for real z > 1 and z < 0

exp-log : A technical condition that enables us to unify the analysis of labelled set classes.

page 446

.(a) � � log
�

� � a/�
+ �



Theorem. Asymptotics of exp-log labelled sets. 

Suppose that a labelled set class F = SETΦ(G) is exp-log(α, β, ρ)

with                                           . Then

and 

Transfer theorem for exp-log labelled set classes

37

Corollary. The expected number of G-components 

in a random F-object of size N is ~α ln N.

and is concentrated there

[a5]-(a) � L�

�(�)

��
�

�5
5���

-(a) � L�
� �
� � a/�

��
.(a) � � log

�
� � a/�

+ �

Brief proof sketch: Check all the conditions; apply SA 



AC example with exp-log labelled set schema asymptotics: Cycles in permutations

38

P, the class of all permutations
Speci!cation

P = SET(CYC(Z))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

ln
�

� � a
= � log

�
� � a/�

+ �

MVY � = �, � = �, HUK � = �

7(a) = exp(ln
�

� � a
)

Next lecture: Many more examples

avg # cycles:       � ln5
avg # permutations:       

[a5]7(a) � �

� 5



F = Z × SEQΩ(F)
unlabelled case: number of structures is

Examples:

F = Z × SETΩ(F)

[a5]-(a)

Schema example 2: Simple varieties of trees

39

Definition. A combinatorial class whose enumeration GF satisfies                              is said 
to be a simple variety of trees with characteristic function    . 

-(a) = a�(-(a))
�

F = Z ★ SETΩ(F)

F = Z ★ SEQΩ(F)

labelled case: number of structures is 5![a5]-(a) -(a) = a�(-(a))

all immediate
via symbolic transfer



Construction

OGF equation

 Example: Rooted ordered trees

G = Z × SEQ( G ))

.(a) =
a

� �.(a)

Invertible tree classes

Definition.  Invertible tree classes. A simple variety of trees whose GF satisfies

is said to be λ-invertible  if its characteristic function φ(u ) satisfies the following conditions: 

• φ(u ) has nonnegative coefficients, and is not of the form φ0 + φ1u.
• φ(u ) is analytic at 0 with φ(0) ≠ 0 and radius of convergence R.
• The characteristic equation                         has a positive real real root λ < R.

invertible : A technical condition that enables us to unify the analysis of tree classes.

40

page 453

-(a) = a�(-(a))

�(�) = ���(�)

Characteristic function �(\) =
�

� � \
��(\) =

�
(� � \)�

positive real root Trees are 1/2-invertible� = �/�

Characteristic equation
�

� � \
=

\
(� � \)�



Transfer theorem for simple varieties of trees

41

Theorem.  If a simple variety of trees with GF                            is 

  -invertible (where    is the positive real root of                          )

then

Proof approach.  

    1. Use analytic inversion to show that 

    2. Transfer via standard function scale.

-(a) = a�(-(a))
� �

Surprising fact: N −3/2 factor is present for all simple varieties of trees.

�(\) = \��(\)

[a5]-(a) � ��
�����(�)/�(�)

�
��(�)

�5
5��/�

Note: "periodic" φ introduce complications that we ignore in lecture (see text).

-(a) � � �
�

��(�)/���(�)
�

� � a��(�)



AC example with invertible tree schema asymptotics: Rooted ordered trees
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G, the class of rooted 
ordered treesSpeci!cation

G = Z × SEQ( G ))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

.(a) =
a

� �.(a)

�(\) =
�

� � \

��(\) =
�

(� � \)�

���(\) =
�

(� � \)�

�
� � �

=
�

(� � �)�

� = �/�

�(�) = �

��(�) = �

���(�) = ��

.5 � �
�
�
�
�55�/�



AC example with invertible tree schema asymptotics: Unary-binary trees
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 M, the class of all 
unary-binary treesSpeci!cation

M = Z × SEQ0,1,2( M )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

�(\) = � + \ + \�

��(\) = � + �\

���(\) = �

� + � + �� = � + ��

� = �

�(�) = �

��(�) = �

���(�) = �

45 � ��
��/�

�55��/�

4(a) = a(� +4(a) +4(a)�)

Next lecture: Many more examples



Significance of tree schema

44

The schema unifies the analysis for an entire family of classes.
• Compute the exponential growth (from the characteristic function).
• Compute the constant (from the characteristic function).
• Surprising fact: N −3/2 factor is present for all simple varieties of trees.

Need to solve polynomial equation

Need to expand

Need to check analyticity

"plug and chug"



Schema example 3: Context-free classes

Definition. A combinatorial class that admits a construction of the form

        Y = Y1 = CONSTRUCT (Z, Y1, Y2, . . ., Yr)

             Y2 = CONSTRUCT (Z, Y1, Y2, . . ., Yr)

                             ⋮

             Yr = CONSTRUCT (Z, Y1, Y2, . . ., Yr)

where CONSTRUCT is a construction that involves only + and ×, is said to be a 

context-free class, which falls within the context-free schema.

45

page 483

 Example: Strings with equal
numbers of 0s and 1s. S = E + U×Z1×S + D×Z0×S

U = Z0 + U×U×Z1

D = Z1 + D×D×Z0

Interpretation:
    U is the set of strings where # of 0s > # of 1s in any prefix.
    D is the set of strings where # of 1s > # of 0s in any prefix.

00101000101111101110000110100
U

D D



Irreducible context-free classes

Definition.  Irreducible context-free classes. A context-free class is said to be 
irreducible if it is nonlinear and its dependency graph is strongly connected. 

irreducible : A technical condition that enables us to unify the analysis of context-free classes.

46

S = E + U×Z1×S + D×Z0×S

U = Z0 + U×U×Z1

D = Z1 + D×D×Z0

 Example: Strings with equal
numbers of 0s and 1s.

S

D

U

not strongly connected

nonlinear



Irreducible context-free classes

Definition.  Irreducible context-free classes. A context-free class is said to be 
irreducible if it is nonlinear and its dependency graph is strongly connected. 

irreducible : A technical condition that enables us to unify the analysis of context-free classes.

47

F = E + T

T = Z × F × U

U = E + U × V 

V = Z × F × U × U

 Example: "Non-crossing forests".

nonlinear

F

V

strongly connected

T

U



Transfer theorem for irreducible context-free classes
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Theorem.  If C is an irreducible context-free class, then its generating function C(z) has a 

square-root singularity at its radius of convergence ρ. If C(z) is aperiodic, then the dominant 

singularity is unique and                                                 where α is a computable real.

Proof approach. 

    Drmota-Lalley-Woods theorem.

Computing the constant?

• Can be complicated.

• Maybe best left for a computer.

[a5]-(a) � ��
��

��
�

�5
5��/�



"If you can specify it, you can analyze it"

49

Singularity analysis is an effective approach to develop analytic transfer 
from GF equations to coefficient asymptotics for combinatorial classes.

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics

schema technical 
condition construction coefficient asymptotics

Labelled set exp-log F = SET(G)

Simple variety 
of trees invertible

F = Z × SEQ (F)
F = Z ★ SEQ (F)

Context-free irreducible Family of (+, X) 
constructs

Schema can unify the analysis for entire families of classes.

Note: Several other schemas have been developed (stay tuned).

L�

�(�)

��
�

�5
5���

��
��

��
�

�5
5��/�

Analysis can be detailed and burdensome.

��
��

��
�

�5
5��/�



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

6. Singularity Analysis

•Prelude
•Standard function scale
•Singularity analysis
•Schemas and transfer theorems

II.6d.SA.Schemas



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

6. Singularity Analysis

•Prelude
•Standard function scale
•Singularity analysis
•Schemas and transfer theorems
•Exercises

II.6e.SA.Exercises



Web Exercise VI.1

.

.

Standard scale.

52

Web Exercise VI.1. Use the standard function scale to directly 
derive an asymptotic expression for the number of strings
in the following CFG:

S = E + U×Z1×S + D×Z0×S

U = Z0 + U×U×Z1

D = Z1 + D×D×Z0



Web Exercise VI.2

.

.

2-3 trees (of a certain type)

53

Web Exercise VI.2. Give an asymptotic expression for the number 
of rooted ordered trees for which every node has 0, 2, or 3 children. 
How many bits are necessary to represent such a tree?



Assignments

Program VI.1. Do r- and θ-plots of 1/Γ(z) in the unit square
of size 10 centered at the origin.

1. Read pages 375-438 (Singularity Analysis of Generating Functions) in text.
    Usual caveat: Try to get a feeling for what's there, not understand every detail.

3. Programming exercise.

2. Write up solutions to Web exercises VI.1 and VI.2.

54
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