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Transfer theorem for invertible tree classes

applicationsapplications

general trees

binary trees

unary-binary 
trees

Cayley trees

[and many, many more...][and many, many more...]

Important note: Singularity analysis gives both

•Coefficient asymptotics.

•Asymptotic estimate of GF near dominant singularity. 

4

Theorem.  If a simple variety of trees  F = Z [ × or ★] SEQΦ(F) 

is   -invertible where the GF satisfies                            and    

is the positive real root of                        then 

and

-(a) = a�(-(a))
�(�) = ���(�)

�

-(a) � � �
�

��(�)/���(�)
�

� � a��(�)

[a5]-(a) � ��
�����(�)/�(�)

��(�)
55��/�

[from Lecture 6]



Example 1: Rooted ordered trees

Q. How many trees with N nodes?

G3 = 2

G1 = 1
G2 = 1

G4 = 5

G5=14
5



Example 1: Rooted ordered trees

6

G, the class of rooted 
ordered treesSpeci!cation

G = Z × SEQ( G ))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

.(a) =
a

� �.(a)

�(\) =
�

� � \

��(\) =
�

(� � \)�

���(\) =
�

(� � \)�

�
� � �

=
�

(� � �)�

� = �/�

�(�) = �

��(�) = �

���(�) = ��

.5 � �
�
�
�
�55�/�

simple variety
of trees 



Example 2: Binary trees

7

How many binary trees with N nodes?

T1 = 1

T2 = 2

T3 = 5

T4 = 14



Example 2: Binary trees

8

B, the class of binary trees
Speci!cation

B = ● × ( E + B) × ( E + B)

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

)(a) = a(� + )(a))�

�(\) = (� + \)�

��(\) = �(� + \)

���(\) = �
(� + �)� = ��(� + �)

� = �

�(�) = �

��(�) = �

���(�) = �
[a5])(a) � ��

�
�55�/�

simple variety
of trees 

B = ● + ● × SEQ0,2(B)Expecting ? Stay tuned.



Example 3: Unary-binary trees

Q. How many unary-binary trees with N nodes?

M3 = 2

M1 = 1
M2 = 1

M4 = 4

M5=9
9

degrees of all nodes 0, 1, or 2



Example 3: Unary-binary trees

10

 M, the class of all 
unary-binary treesSpeci!cation

M = Z × SEQ0,1,2( M )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

4(a) = a(� +4(a) +4(a)�)

�(\) = � + \ + \�

��(\) = � + �\

���(\) = �

� + � + �� = � + ��

� = �

�(�) = �

��(�) = �

���(�) = �

45 � ��
��/�

�55��/�

simple variety
of trees 



Example 4: Cayley trees

11

Q. How many different labelled rooted unordered trees of size N ?

1

T1 = 1

A. N N−1.  (See EGF lecture.)

2

T2 = 2

1

1

2 3

T3 = 9

2

1

2

3

1

3

1

2

1

3

2

2

1

3

1

2

3

1

2 3

2

1 3

3

1 2

6 ways to label2 ways
to label

1 way
to label

T4 = 64
3 ways to label

24 ways to label

12 ways to label

24 ways to label

4 ways to label



Construction "a tree is a root connected to a set of trees"* = A ! (:,;(*))

Example 4: Cayley trees (exact, from EGF lecture)

12

Class C, the class of labelled rooted unordered trees

EGF

Example

EGF equation *(a) = aL*(a)

*(a) =
�

J�C

a|J|

|J|! �
�

5��

*5
a5

5!

7

1

3

8

2 5

6

4

6 2 1 1 2 2 5 1

=
�
5

[\5��]L\5 =
55��

5!

*5 = 5![a5]*(a) = 55��

✓

Extract coefficients
 by Lagrange inversion

with f (u) = u/eu 
[a5]*(a) =

�
5

[\5��]
� \
\/L\

�5



Example 4: Cayley trees

13

 C, the class of all labelled rooted 
unordered treesSpeci!cation

C = Z ★ SET ( C )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

*(a) = aL*(a)

�(\) = L\

��(\) = L\

���(\) = L\
L� = �L�

� = �

�(�) = L

��(�) = L

���(�) = L

7

1

11

8

12 9

15

4

6

2

16
145

17

13 10

3

18

[a5]*(a) =
��
��

L55��/�

simple variety
of trees 



Aside: Stirling’s formula via Cayley tree enumeration

14

Theorem. 5! �
�
��5

�5
L

�5
Stirling's formula

Exact, via Lagrange inversion Approximate, via singularity analysis

55�� � 5!
L5�
��5�
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Theorem. Asymptotics of exp-log labelled sets. 

Suppose that a labelled set class F = SETΦ(G) is exp-log(α, β, ρ)

with                                           . Then

and 

Transfer theorem for exp-log labelled set classes

17

Corollary. The expected number of G-components 

in a random F-object of size N is ~α ln N.

and is concentrated there

[a5]-(a) � L�

�(�)

��
�

�5
5���

-(a) � L�
� �
� � a/�

��
.(a) � � log

�
� � a/�

+ �

[from Lecture 6]



Example 5: Cycles in permutations

18

Q. How many permutations of N elements?

P3 = 6

P1 = 1

P2 = 2

P4=24

Q. How many cycles in a random permutation of N elements?

avg. # cycles: 1.8333

avg. # cycles: 1.5

avg. # cycles: 2.08333

avg. # cycles: 1



Example 5: Cycles in permutations

19

P, the class of all permutations
Speci!cation

P = SET(CYC(Z))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

ln
�

� � a
= � log

�
� � a/�

+ �

MVY � = �, � = �, HUK � = �

7(a) = exp(ln
�

� � a
)

avg # cycles:       � ln5
# permutations:       � 5!

[a5]7(a) � �

exp-log



Example 6: Cycles in derangements

20

Q. How many derangements of N elements?

D3 = 2

D1 = 0

D2 = 1

D4=9

Q. How many cycles in a random derangement of N elements?

avg. # cycles: 1

avg. # cycles: 1

avg. # cycles: 1.33333

avg. # cycles: 0



Example 6: Cycles in derangements

21

D, the class of all derangements
Speci!cation

D = SET(CYC >0(Z))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

+(a) = exp(ln
�

� � a
� �)

ln
�

� � a
� � = � log

�
� � a/�

+ �

MVY � = �, � = ��, HUK � = �

avg # cycles:       � ln5
# derangements:       � 5!/L

[a5]+(a) � L��

exp-log



Example 6: Cycles in generalized derangements

22

D, the class of all permutations
having no cycles of length w1, w2, ... wtSpeci!cation

D = SET(CYC ≠wi (Z))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

avg # cycles:       � ln5

+(a) = exp(ln
�

� � a
� a^�

^�
� . . . � a^[

^[
)

ln
�

� � a
� � = � log

�
� � a/�

+ �

MVY � = �, � = � �
^�

� . . . � �
^[

HUK � = �

� 5!/L�/^�+...+�/^[# derangements:       

[a5]+(a) = exp(� �
^�

� . . . � �
^[

)

exp-log



Example 7: 2-regular graphs

23

Q. How many labelled 2-regular graphs of N elements?

Q. How many components in a random 2-regular graph of N elements?

R4 = 3

3 ways to label

R5 = 12

12 ways to label

R7 = 465

360 ways to label

105 ways to label

R6 = 70

60 ways to label

10 ways to label

R3 = 1

1 way to label

1

2

3

4

1

4

2

3

1

4

3

2

1-2
1-3
2-4
3-4

1-2
1-4
2-3
3-4

1-3
1-4
2-3
2-4

2 3

1 1-2
1-3
2-3

avg. # components:

(1⋅60 + 2⋅10)/70 ≐ 1.143 

avg. # components:

(1⋅360 + 2⋅105)/465 ≐ 1.226

undirected graphs with 
all nodes degree 2



Example 7: 2-regular graphs

24

R, the class of 2-regular graphs
Speci!cation

R = SET(UCYC >2(Z))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

.(a) � � log
�

� � a/�
+ �

MVY � = �/�, � = �/�, HUK � = �

9(a) = exp
��
�

ln
�

� � a
� a

�
� a�

�

�

avg # components:       � �
�

ln5

# 2-regular graphs:       � 5!
L��/�
�
�5

page 133
page 449

[a5]9(a) � L��/�
�
�5

exp-log
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Natural questions about random mappings
• How many connected components ?

• How many nodes are on cycles ?

Example 7: Mappings

Every mapping corresponds to a digraph
• N vertices, N edges

• Outdegrees: all 1

• Indegrees: between 0 and N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

9 12 29 33 5 20 30 37 26 20 13 8 2 33 29 2 35 37 33 9 35 21 18 2 25 1 20 33 23 18 29 5 5 9 11 5 11

7

6

19

5

2 8

11

13

16
12

24
10

27

29

322

31

18

17 21

35

33

30

25

23

15

3736
34

32

26

1428
19

20

4

27

Def. A mapping is a function from the set of integers from 1 to N  onto itself. 

Example

[from Lecture 2]



Mappings

28

Q. How many mappings of length N ? 

A. N N, by correspondence with N-words, but internal structure is of interest.

1 1
2 2

1 2

2 1

1

M1 = 1

M2 = 4

1 1 3
1 2 1
1 2 2
1 3 3
2 2 3
3 2 3

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

2 1 1
2 1 2
2 3 2
3 1 1
3 3 1
3 3 2

1 2 3

1 1 1
2 2 2
3 3 3

2 1 3
3 2 1
1 3 2

2 3 1
3 1 2

M3 = 27

[from Lecture 2]



Mapping EGFs 

29

Construction "a tree is a root connected to a set of trees"* = A ! (:,;(*))

EGF equation *(a) = aL*(a)

Combinatorial class C, the class of Cayley trees labelled, rooted, unordered

Combinatorial class Y, the class of mapping components

Combinatorial class M, the class of mappings

Construction "a mapping component is a cycle of trees"@ = *@*(*)

Construction "a mapping is a set of components"4 = :,;(*@*(*))

EGF equation @(a) = ln
�

� � *(a)

EGF equation 4(a) = exp
�
ln

�
� � *(a)

�
=

�
� � *(a)

[from Lecture 2]



Example 4: Cayley trees

30

 C, the class of all labelled rooted 
unordered treesSpeci!cation

C = Z ★ SET ( C )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

*(a) = aL*(a)

�(\) = L\

��(\) = L\

���(\) = L\
L� = �L�

� = �

�(�) = L

��(�) = L

���(�) = L

[a5]*(a) =
��
��

L55��/�

7

1

11

8

12 9

15

4

6

2

16
145

17

13 10

3

18

simple variety
of trees 

*(a) � � �
�
�
�
� � La

[from earlier in this lecture]



Cycles of Cayley trees

31

 Y, the class of cycles of trees
(mapping components)Speci!cation

Y = CYC ( C )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

@(a) = ln
�

� � *(a)

� �
�

ln
�

� � La
� ln

�
�

from previous slide

*(a) � � �
�
�
�
� � La

[a5]@(a) � L5

�5

standard scale

Stirling

# cycles of trees:       5! �
�
��5

�5
L

�5
� 5!

L5

�5
�

�
�
�5

55

1 10 2 1 10 2 9 1 2 3 1

7

1

11

8

2 9

6

4

8

5

3

10



Mappings

32

 M, the class of all mappings
Speci!cation

M = SET ( Y )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

exp-log

5![a5]4(a) � 5!
L5�
��5

✓� 55

�
�

ln
�

� � La
= � log

�
� � a/�

+ �

MVY � = �/�, � = � ln
�
�, HUK � = �/L

from previous slide

@(a) � �
�

ln
�

� � La
� ln

�
�

4(a) = L@(a)



Cayley trees: simple variety

Mappings overview

33

Components: standard scale

Mappings: exp-log



Mapping parameters

34

Q. How many components in a random mapping of length N ? 

1 1
2 2

1 2

2 1

1

M1 = 1

M2 = 4

1 1 3
1 2 1
1 2 2
1 3 3
2 2 3
3 2 3

1 1 2
1 3 1
2 2 1
2 3 3
3 1 3
3 2 2

2 1 1
2 1 2
2 3 2
3 1 1
3 3 1
3 3 2

1 2 3

1 1 1
2 2 2
3 3 3

2 1 3
3 2 1
1 3 2

2 3 1
3 1 2

M3 = 27

avg. # components: 1.25

avg. # components: 38/27 ≐ 1.407

avg. # nodes on cycles: 1.5

avg. # nodes on cycles: 51/27 ≐ 1.889

Q. How many nodes on cycles in a random mapping of length N ? 



Components in mappings

35

 M, the class of all mappings
Speci!cation

M = SET ( Y )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

4(a) = L@(a)

@(a) � �
�

ln
�

� � La
� ln

�
�

✓

exp-log

5![a5]4(a) � 5!
L5�
��5

� 55

avg # components:       
�
�

ln5



Nodes on cycles in mappings

36

Construction M = SET (CYC ( u C ))

M, the class of mappingsCombinatorial class

Parameter the number of nodes on cycles (tree roots)

predicted: 12.5
     actual: 9

BGF 4(a, \) = exp
�
ln

�
� � \*(a)

�
=

�
� � \*(a)

*(a) � � �
�
�
�
� � La

*(a)
(� � *(a))�

� �
�

�
� � La

Stirling

5! �
�
��5

�5
L

�5

�
�
�5/�

=
�
�
5!L5

55

� 5!

55 [a5]
�
�

�
� � La

Expected # nodes on cycles
5!

55 [a5]
�

�\
4(a, \)|\=� =

5!

55 [a5]
*(a)

(� � *(a))�

page 462
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Schema example 4: Implicit tree-like classes

39

page 467

Definition. A combinatorial class whose enumeration GF satisfies F(z) = Φ (z, F(z)) is said to 
be an implicit tree-like class with characteristic function G. 

unlabelled case: number of structures is [a5]-(a)

F = CONSTRUCT(Z, F)
where CONSTRUCT is an arbitrary
composition of +, ×, and SEQ

labelled case: number of structures is 5![a5]-(a)

F = CONSTRUCT(Z, F)

where CONSTRUCT is an arbitrary
composition of +, ★, SEQ, SET, and CYC

immediate via 
symbolic transfer

F(z) = Φ (z, F(z))

-(a) = a�(-(a))

Example: Simple varieties of trees �(a,^) = a�(^)



Construction Example: "phylogenetic trees"
                [details to follow] L = Z + SET≥2( L )

Smooth-implicit-function tree-like classes

Definition.  Smooth-implicit-function tree-like classes.

A tree-like class F = CONSTRUCT(F) with enumerating GF  F(z) = Φ (z, F(z))  is said to be 
smooth-implicit(r, s) if its characteristic function Φ (z, w) satisfies the following conditions: 

• Φ (z, w) is analytic at 0 and in a domain |z|< R and |w|< S for some R, S >0.

• [zNwk]Φ (z, w) ≥ 0 and >0 for some N and some k > 2, with Φ (0, 0) ≠ 0.

• There exist positive reals r < R and s < S  such that Φ (r, s) = s and Φ w (r, s) = 1.

40

smooth implicit function: A technical condition that enables us to unify the analysis of tree-like classes.

  Φ (z, w) = w

Φ w (z, w) = 1
"characteristic system"

OGF equation 3(a) = a + L3(a) � � � 3(a)

Characteristic system a+ L^ � � �^ = ^

L^ � � = �

Characteristic function �(a,^) = a� � + L^ �^

r = 2ln 2 − 1
s = ln 2

solution

phylogenetic trees are smooth-implicit(2ln 2 − 1, ln 2)



Construction Example: binary trees
                   (alternate) B = ● + ● × SEQ0,2( B )

Transfer theorem for implicit tree-like classes

Theorem. Asymptotics of implicit tree-like classes. 

Suppose that F is an implicit tree-like class with characteristic function Φ (z, w ) and 

aperiodic and smooth-implicit(r, s)  GF F(z) = Φ (z, F(z)), so that Φ(r, s) = s and Φw (r, s) = 1.  

Then F(z) converges at z = r where it has a square-root singularity with

                                  and                                           where                                .

41

OGF equation )(a) = a + a)(a)�

Characteristic function �(a,^) = a+^�

Characteristic system a+^� = ^

�^ = �

Z = �/�

Y = �/�

�a(a,^) = �

�^(a,^) = �^

�^^(a,^) = �

� = �
Coefficient asyptotics [a5])(a) � ��

�
�55�/�

� =

�
�Y�a(Y, Z)
�^^(Y, Z)

-(a) � Z � �
�

� � a/Y [a5]-(a) � �

�
�
�

��
Y

�5
5��/�



Example 8. Bracketings

42

Applications

•Parenthesizations.

•Series-parallel networks.

•Schröder’s 2nd problem 

page 69

Def. A bracketing of N items is a tree with N leaves and no unary nodes

internal node
degree 2 or greater leaf



Example 8: Bracketings

Q. How many bracketings with N leaves?

S2 = 1

43

All nodes of degree 0 (leaves) or >1 (internal nodes)

size: number of leaves

S3 = 3

S4  = 11

S1 = 1



Example 8: Bracketings

Q. How many parenthesizations of N items?

S2 = 1

S3 = 3

S4  = 11

S1 = 1

(a b c d)

((a b c) d) (a (b c d))

((a b) (c d))

(a b c)

((a b) c) (a (b c))

((a b) c d) (a (b c) d) ((a b) c d)

(((a b) c) d)

((a (b c)) d)

(a ((b c) d))
(((a b) c) d)(a b)a



Example 8: Bracketings

45

Three additional equivalent structures.

and-or trees

a

b c

d

e f

g h

i j

k l m

series-parallel networks

⋀

⋁ ⋁ ⋁

⋀ ⋀

⋁ ⋁

b

c

e

f
d

g

h

k

i j
l

m
a

and-or conjunctive
propositions a ⋀ ( ( b ⋁ c ) ⋀ d ⋀ ( e ⋁ f ) ⋁ g ) ⋀ ( h ⋁ ( i ⋀ j ) ⋁ k ) ⋀ ( l ⋁ m )



Example 8: Bracketings

46

Speci!cation

S = Z + SEQ >1( S )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

[ details left for exercise ]

S = Z + SEQ >1( S )

 S, the class of all bracketings

S = Z + SEQ >1( S )

:(a) = a +
�

� � :(a)
� � � :(a)

Note that the specification is the most succinct of all the descriptions

[a5]:(a) �
�

Y

�
�
��

��
Y

�5
5��/�

^P[O Y = � � �
�
�
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Applications

•Classification.

•Evolution of genetically related organisms.

•Schröder’s 4th problem page 128

Def. A labelled hierarchy of N items is a tree with N labelled leaves and no unary nodes

Irish Greek Armenian

Danish French Italian Lithuanian Persian Urdu Hindi

Polish RussianGerman English
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Q. How many different labelled hierarchies of N nodes? 

L3 = 4

1

3

1 2

2 3

2

1 3

1

2 3

L2 = 1

1 2

L4 = 26

1 2 3 4

1 2 3

4

1 2 4

3

1 3 4

2

2 3 4

1

1 2 3 4

1 3 2 4

1 4 2 3

1 2

3 4

x 6 3

1 2

4

3

1 2

4

x 12
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 L, the class of labelled hierarchies
Speci!cation

L = Z + SET≥2( L )

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

3(a) = a + L3(a) � � � 3(a)

a+ L^ � � �^ = ^

L^ � � = �
Y = � ln � � �

Z = ln �

�(a,^) = a� � + L^ �^

�a(a,^) = �

�^(a,^) = L^ � �

�^^(a,^) = L^

�a(Y, Z) = �

�^^(Y, Z) = �

� =
�
� ln � � �

implicit
tree-like

5![a5]3(a) �5!

�
Y

�
�
�5�

��
Y

�5
5�/�

^P[O Y = � ln � � �

11 2 12 4

9 3 13

10

14 7

8 5

1

6



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

7. Applications of Singularity Analysis
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II.7a.SAapps.Sets



A N A L Y T I C  C O M B I N A T O R I C S

P A R T  T W O 

OF

http://ac.cs.princeton.edu

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

7. Applications of Singularity Analysis

•Set schema
•Simple varieties of trees
•Mappings
•Tree-like classes
•Summary

II.7e.SAapps.Summary



Singularity analysis: examples of applications

construction generating function coefficient asymptotics

rooted ordered trees G = Z × SEQ(G )

binary trees
B = ● × (E + B) × (E + B)
B = ● + ● × SEQ0,2( B )

unary-binary trees M = ● × SEQ0,1,2( M )

Cayley trees C = Z ★ SET(C )

mapping components K = CYC(C )

mappings M = SET(K )

2-regular graphs R = SET( UCYC>2 (Z))

labelled hierarchies L = Z + SET≥2( L )

52

�
�
�
�
�55�/�.(a) =

a
� �.(a)

��
��/�

�55��/�
4(a) = a(� +4(a) +4(a)�)

5!
��
��

L55��/� = 55��*(a) = aL*(a)

� 5!
L5

�5
�

�
�
�5

552(a) = ln
�

� � *(a)

4(a) = L2(a) =
�

� � *(a)
� 5!

L5�
��5

� 55

� 5!
L��/�
�
�5

9(a) =
L�a/��a�/�
�
� � a

�
� ln � � �

�
�
�5�

5!

(� ln � � �)5
3(a) = a + L3(a) � � � 3(a)

��
�
�55�/�)(a) = a(� + )(a)�)

)(a) = a + a)(a)�)



"If you can specify it, you can analyze it"

53

Singularity analysis is an effective approach for analytic transfer from GF equations 
to coefficient asymptotics for classes with GFs that are not meromorphic.

Symbolic transfer

Analytic transfer

Speci!cation

GF equation

Asymptotics

schema technical condition construction coefficient asymptotics

Labelled set exp-log F = SET(G)

Simple variety
of trees invertible

F = Z × SEQ (F)
F = Z ★ SEQ (F)

Context-free irreducible Family of (+, ×) 
constructs

Implicit tree-like smooth implicit 
function F = CONSTRUCT (F)

Schema can unify the analysis for entire families of classes.

L�

�(�)

��
�

�5
5���

��
��

��
�

�5
5��/�

��
��

��
�

�5
5��/�

�

�
�
�

��
Y

�5
5��/�

Next: GFs with no singularities.
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Web Exercise VII.1

.

.

Bracketings (Schröder's 2nd problem)

56

Web Exercise VII.1. Use the tree-like schema to develop an 
asymptotic expression for the number of bracketings with N leaves 
(see Example I.15 on page 69 and Note VII.19 on page 474).



Assignments

Program VII.1. Do r- and θ-plots of the GF for bracketings 
(see Web Exercise VII.1).

1. Read pages 439-540 (Applications of Singularity Analysis) in text.
    Usual caveat: Try to get a feeling for what's there, not understand every detail.

3. Programming exercise.

2. Write up a solutions to Web Exercise VII.1.

57
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