
7. Applications of

Singularity Analysis

Analytic combinatorics overview
A. SYMBOLIC METHOD

1. OGFs
2. EGFs
3. MGFs
B. COMPLEX ASYMPTOTICS
4. Rational \& Meromorphic
5. Applications of R\&M
6. Singularity Analysis
7. Applications of SA
8. Saddle point
specification




Transfer theorem for invertible tree classes

Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}\left[\times\right.$ or $\star$ ] SEQ ${ }_{\Phi}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

$$
\left[z^{N}\right] F(z) \sim \frac{1}{\sqrt{2 \pi \phi^{\prime \prime}(\lambda) / \phi(\lambda)}} \phi^{\prime}(\lambda)^{N} N^{-3 / 2}
$$

and $F(z) \sim \lambda-\sqrt{2 \phi(\lambda) / \phi^{\prime \prime}(\lambda)} \sqrt{1-z \phi^{\prime}(\lambda)}$

Important note: Singularity analysis gives both

- Coefficient asymptotics.
- Asymptotic estimate of GF near dominant singularity.
applications



## Example 1: Rooted ordered trees

Q. How many trees with $N$ nodes?


## Example 1: Rooted ordered trees



## G, the class of rooted ordered trees

$\mathbf{G}=\mathbf{Z} \times \operatorname{SEQ}(\mathbf{G}))$


$$
G(z)=\frac{z}{1-G(z)}
$$

simple variety of trees
$G_{N} \sim \frac{1}{4 \sqrt{\pi}} 4^{N} N^{3 / 2}$


Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}[\times$ or $\star] \operatorname{SEQ}_{\phi}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

$$
\left[z^{N}\right] F(z) \sim \frac{1}{\sqrt{2 \pi \phi^{\prime \prime}(\lambda) / \phi(\lambda)}} \phi^{\prime}(\lambda)^{N} N^{-3 / 2}
$$

$$
\begin{aligned}
& \phi(u)=\frac{1}{1-u} \\
& \phi^{\prime}(u)=\frac{1}{(1-u)^{2}} \\
& \frac{1}{1-\lambda}=\frac{\lambda}{(1-\lambda)^{2}} \\
& \lambda=1 / 2 \\
& \phi^{\prime \prime}(u)=\frac{1}{(1-u)^{3}} \\
& \begin{aligned}
\phi(\lambda) & =2 \\
\phi^{\prime}(\lambda) & =4
\end{aligned} \\
& \phi^{\prime \prime}(\lambda)=16
\end{aligned}
$$

## Example 2: Binary trees

How many binary trees with $N$ nodes?


## Example 2: Binary trees



## B, the class of binary trees

$$
B=\cdot \times(E+B) \times(E+B)
$$



Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}[\times$ or $\star] \operatorname{SEQ}_{\phi}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

$$
\left[z^{N}\right] F(z) \sim \frac{1}{\sqrt{2 \pi \phi^{\prime \prime}(\lambda) / \phi(\lambda)}} \phi^{\prime}(\lambda)^{N} N^{-3 / 2}
$$

## Example 3: Unary-binary trees

Q. How many unary-binary trees with $N$ nodes?


## Example 3: Unary-binary trees

$\mathbf{M}$, the class of all unary-binary trees
$\mathbf{M}=\mathbf{Z} \times S E Q_{0,1,2}(\mathbf{M})$


Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}[\times$ or $\boldsymbol{\star}] \operatorname{SEQ}_{\boldsymbol{\phi}}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

$$
\left[z^{N}\right] F(z) \sim \frac{1}{\sqrt{2 \pi \phi^{\prime \prime}(\lambda) / \phi(\lambda)}} \phi^{\prime}(\lambda)^{N} N^{-3 / 2}
$$

$$
\begin{aligned}
& \phi(u)=1+u+u^{2} \\
& \lambda=1 \\
& \phi^{\prime}(u)=1+2 u \quad 1+\lambda+\lambda^{2}=\lambda+2 \lambda \\
& \phi(\lambda)=3 \\
& \phi^{\prime \prime}(u)=2 \\
& \phi^{\prime}(\lambda)=3 \\
& \phi^{\prime \prime}(\lambda)=2
\end{aligned}
$$

## Example 4: Cayley trees

Q. How many different labelled rooted unordered trees of size $N$ ?

A. $N^{N-1}$. (See EGF lecture.)

## Example 4: Cayley trees (exact, from EGF lecture)

EGF

Class $\quad$, the class of labelled rooted unordered trees

$$
C(z)=\sum_{c \in \mathcal{C}} \frac{z^{|c|}}{|c|!} \equiv \sum_{N \geq 0} C_{N} \frac{z^{N}}{N!}
$$

## Example

$\begin{array}{llllllll}6 & 2 & 1 & 1 & 2 & 2 & 5 & 1\end{array}$


Construction

$$
C=Z \star(S E T(C)) \quad \longleftarrow \text { "a tree is a root connected to a set of trees" }
$$

EGF equation

$$
C(z)=z e^{C(z)}
$$

Extract coefficients
by Lagrange inversion with $f(u)=u / e^{u}$

$$
\begin{aligned}
{\left[z^{N}\right] C(z) } & =\frac{1}{N}\left[u^{N-1}\right]\left(\frac{u}{u / e^{u}}\right)^{N} \\
& =\frac{1}{N}\left[u^{N-1}\right] e^{u N}=\frac{N^{N-1}}{N!} \\
C_{N} & =N!\left[z^{N}\right] C(z)=N^{N-1}
\end{aligned}
$$

## Example 4: Cayley trees



C, the class of all labelled rooted unordered trees
$\mathbf{C}=\mathbf{Z} \star \operatorname{SET}(\mathbf{C})$


Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}[\times$ or $\star] \mathrm{SEQ}_{\phi}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

$$
\left[z^{N}\right] F(z) \sim \frac{1}{\sqrt{2 \pi \phi^{\prime \prime}(\lambda) / \phi(\lambda)}} \phi^{\prime}(\lambda)^{N} N^{-3 / 2}
$$

$$
\begin{aligned}
& \phi(u)=e^{u} \\
& \phi^{\prime}(u)=e^{u} \\
& \phi^{\prime \prime}(u)=e^{u} \\
& \lambda=1 \\
& \phi(\lambda)=e \\
& \phi^{\prime}(\lambda)=e \\
& \phi^{\prime \prime}(\lambda)=e
\end{aligned}
$$

## Aside: Stirling's formula via Cayley tree enumeration

Exact, via Lagrange inversion


Approximate, via singularity analysis
Example 4: Cayley trees

Theorem. $N!\sim \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N} \longleftarrow$ Stirling's formula



## Transfer theorem for exp-log labelled set classes

Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class $\mathbf{F}=\operatorname{SET}_{\phi}(\mathbf{G})$ is $\exp -\log (\alpha, \beta, \rho)$
with $G(z) \sim \alpha \log \frac{1}{1-z / \rho}+\beta$. Then $F(z) \sim e^{\beta}\left(\frac{1}{1-z / \rho}\right)^{\alpha}$
and

$$
\left[z^{N}\right] F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)}\left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}
$$

Corollary. The expected number of $G$-components in a random $F$-object of size $N$ is $\sim \alpha \ln N$.
and is concentrated there


## Example 5: Cycles in permutations

Q. How many permutations of $N$ elements?
Q. How many cycles in a random permutation of $N$ elements?


## Example 5: Cycles in permutations



## P, the class of all permutations

            \(\mathbf{P}=\operatorname{SET}(\mathrm{CYC}(\mathbf{Z}))\)
            \(\downarrow\)
    $P(z)=\exp \left(\ln \frac{1}{1-z}\right)$

$$
\underset{\left[z^{N}\right] P(z) \sim 1}{\downarrow \text { exp-log }}
$$

\# permutations: ~N! avg \# cycles: $\sim \ln N$


Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class $\mathbf{F}=\operatorname{SET}_{\phi}(\mathbf{G})$ is $\exp -\log (\alpha, \beta, \rho)$ with $G(z) \sim \alpha \log \frac{1}{1-z / \rho}+\beta$. Then $F(z) \sim e^{\beta}\left(\frac{1}{1-z / \rho}\right)^{\alpha}$ and $\left[z^{N}\right] F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)}\left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}$

$$
\begin{aligned}
& \ln \frac{1}{1-z}=\alpha \log \frac{1}{1-z / \rho}+\beta \\
& \quad \text { for } \alpha=1, \beta=0, \text { and } \rho=1
\end{aligned}
$$

Corollary. The expected number of $G$-components in a random F-object of size $N$ is $\sim \alpha \ln N$.

## Example 6: Cycles in derangements

Q. How many derangements of $N$ elements?
Q. How many cycles in a random derangement of $N$ elements?


## Example 6: Cycles in derangements



## D, the class of all derangements

$$
\begin{gathered}
\mathbf{D}=\operatorname{SET}\left(\mathrm{CYC}_{>0}(\mathbf{Z})\right) \\
D(z)=\exp \left(\ln \frac{1}{1-z}-1\right) \\
\downarrow \text { exp-log } \\
\downarrow \\
\left.\left[z^{N}\right] D(z) \sim e-1\right) \\
\text { \# derangements: } \sim N!/ e \\
\text { avg \# cycles: } \sim \ln N
\end{gathered}
$$



Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class $\mathbf{F}=\operatorname{SET}_{\phi}(\mathbf{G})$ is $\exp -\log (\alpha, \beta, \rho)$ with $G(z) \sim \alpha \log \frac{1}{1-z / \rho}+\beta$. Then $F(z) \sim e^{\beta}\left(\frac{1}{1-z / \rho}\right)^{\alpha}$ and $\left[z^{N}\right] F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)}\left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}$

$$
\begin{aligned}
& \ln \frac{1}{1-z}-1=\alpha \log \frac{1}{1-z / \rho}+\beta \\
& \quad \text { for } \alpha=1, \beta=-1, \text { and } \rho=1
\end{aligned}
$$

Corollary. The expected number of $G$-components in a random $F$-object of size $N$ is $\sim \alpha \ln N$.

## Example 6: Cycles in generalized derangements



## Example 7: 2-regular graphs

Q. How many labelled 2-regular graphs of $N$ elements?
 undirected graphs with all nodes degree 2
Q. How many components in a random 2-regular graph of $N$ elements?



$$
R_{6}=70
$$

avg. \# components:
$(1 \cdot 60+2 \cdot 10) / 70 \doteq \mathbf{1 . 1 4 3} \quad(1 \cdot 360+2 \cdot 105) / 465 \doteq \mathbf{1 . 2 2 6}$

$R_{7}=465$
avg. \# components:

## Example 7: 2-regular graphs


$\mathbf{R}$, the class of 2-regular graphs

$$
\begin{gathered}
\mathbf{R}=\operatorname{SET}\left(\mathrm{UCYC}_{>2}(\mathbf{Z})\right) \\
R(z)=\exp \left(\frac{1}{2} \ln \frac{1}{1-z}-\frac{z}{2}-\frac{z^{2}}{4}\right) \\
\downarrow \text { exp-log } \\
{\left[z^{N}\right] R(z) \sim \frac{e^{-3 / 4}}{\sqrt{\pi N}}}
\end{gathered}
$$

\# 2-regular graphs: $\sim N!\frac{e^{-3 / 4}}{\sqrt{\pi N}}$ avg \# components: $\sim \frac{1}{2} \ln N$

page 133 page 449

Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class $\mathbf{F}=\operatorname{SET}_{\phi}(\mathbf{G})$ is $\exp -\log (\alpha, \beta, \rho)$ with $G(z) \sim \alpha \log \frac{1}{1-z / \rho}+\beta$. Then $F(z) \sim e^{\beta}\left(\frac{1}{1-z / \rho}\right)^{\alpha}$
and $\left[z^{N}\right] F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)}\left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}$

$$
\begin{aligned}
& G(z) \sim \alpha \log \frac{1}{1-z / \rho}+\beta \\
& \quad \text { for } \alpha=1 / 2, \beta=3 / 4, \text { and } \rho=1
\end{aligned}
$$

Corollary. The expected number of $G$-components in a random $F$-object of size $N$ is $\sim \alpha \ln N$.


Def. A mapping is a function from the set of integers from 1 to $N$ onto itself.

## Example




Every mapping corresponds to a digraph

- $N$ vertices, $N$ edges
- Outdegrees: all 1
- Indegrees: between 0 and $N$

Natural questions about random mappings

- How many connected components ?
- How many nodes are on cycles ?



## Mappings

Q. How many mappings of length $N$ ?

A. $N^{N}$, by correspondence with $N$-words, but internal structure is of interest.

## Mapping EGFs

Combinatorial class $\quad C$, the class of Cayley trees $\longleftarrow$ labelled, rooted, unordered

$$
\begin{array}{ll}
\text { Construction } & C=Z \star(S E T(C)) \longleftarrow \text { "a tree is a root connected to a set of trees" } \\
\text { EGF equation } & C(z)=z e^{C(z)}
\end{array}
$$

Combinatorial class $\quad Y$, the class of mapping components
Construction
EGF equation

$$
Y=C Y C(C)
$$

$\longleftarrow$ "a mapping component is a cycle of trees"

Combinatorial class
$M$, the class of mappings
Construction

$$
\begin{aligned}
& \text { Construction } \quad M=\operatorname{SET}(C Y C(C)) \longleftarrow \text { "a mapping is a set of components" } \\
& \text { EGF equation }
\end{aligned} \quad M(z)=\exp \left(\ln \frac{1}{1-C(z)}\right)=\frac{1}{1-C(z)}
$$



C, the class of all labelled rooted unordered trees $\mathbf{C}=\mathbf{Z} \star \operatorname{SET}(\mathbf{C})$


$$
C(z)=z e^{C(z)}
$$

$$
C(z) \sim 1-\sqrt{2} \sqrt{1-e z}
$$

$$
\begin{gathered}
{\left[Z^{N}\right] C(z)=\frac{1}{\sqrt{2 \pi}} e^{N} N^{-3 / 2}}
\end{gathered}
$$



Theorem. If a simple variety of trees $\mathbf{F}=\mathbf{Z}[\times$ or $\star] \mathrm{SEQ}_{\phi}(\mathbf{F})$ is $\lambda$-invertible where the GF satisfies $F(z)=z \phi(F(z))$ and is the positive real root of $\phi(\lambda)=\lambda \phi^{\prime}(\lambda)$ then

and $F(z) \sim \lambda-\sqrt{2 \phi(\lambda) / \phi^{\prime \prime}(\lambda)} \sqrt{1-z \phi^{\prime}(\lambda)}$

$$
\begin{aligned}
& \phi(u)=e^{u} \\
& \phi^{\prime}(u)=e^{u} \\
& \phi^{\prime \prime}(u)=e^{u} \\
& \begin{aligned}
\lambda & =1 \\
\phi(\lambda) & =e \\
\phi^{\prime}(\lambda) & =e \\
\phi^{\prime \prime}(\lambda) & =e
\end{aligned}
\end{aligned}
$$

## Cycles of Cayley trees



## Mappings



## Mappings overview



## Mapping parameters

Q. How many components in a random mapping of length $N$ ?
Q. How many nodes on cycles in a random mapping of length $N$ ?

avg. \# components: $38 / 27 \doteq 1.407$
avg. \# nodes on cycles: 51/27 $\doteq 1.889$

## Components in mappings




Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class $\mathbf{F}=\operatorname{SET}_{\phi}(\mathbf{G})$ is $\exp -\log (\alpha, \beta, \rho)$


$$
\begin{aligned}
& \qquad \frac{1}{2} \ln \frac{1}{1-e z}=\alpha \log \frac{1}{1-z / \rho}+\beta \\
& \text { for } \alpha=1 / 2, \beta=-\ln \sqrt{2} \text {, and } \rho=1 / \mathrm{e} \\
& \text { Corollary. The expected number of } G \text {-components } \\
& \text { in a random } F \text {-object of size } N \text { is } \sim \alpha \ln N \text {. } \\
& \text { and is concentrated there }
\end{aligned}
$$

## Nodes on cycles in mappings

## Combinatorial class

Parameter
Construction

BGF
M, the class of mappings
the number of nodes on cycles (tree roots)

$$
\mathbf{M}=\operatorname{SET}(C Y C(u \mathbf{C}))
$$

$$
M(z, u)=\exp \left(\ln \frac{1}{1-u C(z)}\right)=\frac{1}{1-u C(z)}
$$

$$
\left.\frac{N!}{N^{N}}\left[z^{N}\right] \frac{\partial}{\partial u} M(z, u)\right|_{u=1}=\frac{N!}{N^{N}}\left[z^{N}\right] \frac{C(z)}{(1-C(z))^{2}}
$$

$$
\sim \frac{N!}{N^{N}}\left[z^{N}\right] \frac{1}{2} \frac{1}{1-e z}
$$

$$
=\frac{1}{2} \frac{N!e^{N}}{N^{N}}
$$

$$
\sim \sqrt{\pi N / 2}
$$

$$
\begin{aligned}
& C(z) \sim 1-\sqrt{2} \sqrt{1-e z} \\
& \frac{C(z)}{(1-C(z))^{2}} \sim \frac{1}{2} \frac{1}{1-e z} \\
& \text { Stirling } \\
& \quad N!\sim \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}
\end{aligned}
$$

predicted: 12.5

Schema example 4: Implicit tree-like classes

Definition. A combinatorial class whose enumeration GF satisfies $F(z)=\boldsymbol{\Phi}(z, F(z))$ is said to be an implicit tree-like class with characteristic function $G$.
unlabelled case: number of structures is $\left[Z^{N}\right] F(z)$

labelled case: number of structures is $N!\left[z^{N}\right] F(z)$
$\mathbf{F}=\operatorname{CONSTRUCT}(\mathbf{Z}, \mathbf{F})$
where CONSTRUCT is an arbitrary composition of + , $\star$, SEQ, SET, and CYC

Example: Simple varieties of trees

$$
\begin{aligned}
\Phi(z, w) & =z \phi(w) \\
F(z) & =z \phi(F(z))
\end{aligned}
$$

## Smooth-implicit-function tree-like classes

smooth implicit function: A technical condition that enables us to unify the analysis of tree-like classes.

Definition. Smooth-implicit-function tree-like classes.
A tree-like class $\mathbf{F}=\operatorname{CONSTRUCT}(F)$ with enumerating GF $F(z)=\boldsymbol{\Phi}(z, F(z))$ is said to be smooth-implicit $(r, s)$ if its characteristic function $\boldsymbol{\Phi}(z, w)$ satisfies the following conditions:

- $\Phi(z, w)$ is analytic at 0 and in a domain $|z|<R$ and $|w|<S$ for some $R, S>0$.
- $\left[z^{N} w^{k}\right] \Phi(z, w) \geq 0$ and $>0$ for some $N$ and some $k>2$, with $\Phi(0,0) \neq 0$.
- There exist positive reals $r<R$ and $s<S$ such that $\boldsymbol{\Phi}(r, s)=s$ and $\boldsymbol{\Phi}_{w}(r, s)=1$.

Example: "phylogenetic trees" [details to follow]

Construction
OGF equation
Characteristic function

Characteristic system

$$
\left.\begin{array}{cc}
\text { that } \boldsymbol{\Phi}(r, S)=s \text { and } \boldsymbol{\Phi} w(r, S)=1 . & \begin{array}{c}
\boldsymbol{\Phi}(z, w)=w \\
\mathbf{\Phi}(z, w)=1
\end{array} \\
\mathbf{L}=\mathbf{Z}+S E T_{\geq 2}(\mathbf{L}) & \\
L(z)=z+e^{L(z)}-1-L(z) & \text { "characteristic system" } \\
\Phi(z, w)=z-1+e^{w}-w \\
z+e^{w}-1-w=w \\
e^{w}-1=1
\end{array} \longleftarrow \text { solution } \begin{array}{l}
r=2 \ln 2-1 \\
s=\ln 2
\end{array}\right] .
$$

phylogenetic trees are smooth-implicit( $2 \ln 2-1, \ln 2)$

## Transfer theorem for implicit tree-like classes

Theorem. Asymptotics of implicit tree-like classes.
Suppose that $\mathbf{F}$ is an implicit tree-like class with characteristic function $\Phi(z, w)$ and aperiodic and smooth-implicit $(r, s)$ GF $F(z)=\boldsymbol{\Phi}(z, F(z))$, so that $\boldsymbol{\Phi}(r, s)=s$ and $\boldsymbol{\Phi}_{w}(r, s)=1$. Then $F(z)$ converges at $z=r$ where it has a square-root singularity with

$$
F(z) \sim s-\alpha \sqrt{1-z / r} \text { and }\left[z^{N}\right] F(z) \sim \frac{\alpha}{2 \sqrt{\pi}}\left(\frac{1}{r}\right)^{N} N^{-3 / 2} \text { where } \alpha=\sqrt{\frac{2 r \Phi_{z}(r, s)}{\Phi_{w w}(r, s)}}
$$

Example: binary trees (alternate)
Construction
OGF equation

Characteristic function
Characteristic system

Coefficient asyptotics

$$
\begin{gathered}
\mathrm{B}=\bullet+\bullet \times \mathrm{SEQ}_{0,2}(\mathrm{~B}) \\
B(z)=z+z B(z)^{2} \\
\Phi(z, w)=z+w^{2} \\
z+w^{2}=w \\
2 w=1 \\
{\left[z^{N}\right] B(z) \sim \frac{1}{\sqrt{\pi}} 4^{N} N^{3 / 2}}
\end{gathered}
$$

$$
\begin{gathered}
s=1 / 2 \\
r=1 / 4 \\
\Phi_{z}(z, w)=1 \\
\Phi_{w}(z, w)=2 w \\
\Phi_{w w}(z, w)=2 \\
\alpha=2
\end{gathered}
$$

## Example 8. Bracketings

Def. A bracketing of $N$ items is a tree with $N$ leaves and no unary nodes

page 69

Applications

- Parenthesizations.
- Series-parallel networks.
-Schröder's 2nd problem


## Example 8: Bracketings

Q. How many bracketings with $N$ leaves?


All nodes of degree 0 (leaves) or $>1$ (internal nodes)
size: number of leaves

$S_{4}=11$

## Example 8: Bracketings

Q. How many parenthesizations of $N$ items?


## Example 8: Bracketings

Three additional equivalent structures.

$$
\underset{\text { propositions }}{\underset{\text { and-or conjunctive }}{\text { and }}} \quad a \wedge((b \vee c) \wedge d \wedge(e \vee f) \vee g) \wedge(h \vee(i \wedge j) \vee k) \wedge(1 \vee m)
$$

and-or trees

series-parallel networks


## Example 8: Bracketings



S, the class of all bracketings


Note that the specification is the most succinct of all the descriptions

Theorem. Asymptotics of implicit tree-like classes.
Suppose that $\mathbf{F}$ is an implicit tree-like class with characteristic function $\boldsymbol{\Phi}(z, w)$ and aperiodic and smooth-implicit $(r, s) G F F(z)=\boldsymbol{\Phi}(z, F(z))$, so that $\boldsymbol{\Phi}(r, s)=s$ and $\boldsymbol{\Phi}_{w}(r, s)=1$.

Then $F(z)$ converges at $z=r$ where it has a square-root singularity with
$F(z) \sim s-\alpha \sqrt{1-z / r}$ and $\left[z^{N}\right] F(z) \sim \frac{\alpha}{2 \sqrt{\pi}}\left(\frac{1}{r}\right)^{N} N^{-3 / 2}$ where $\alpha=\sqrt{\frac{2 r \Phi_{z}(r, s)}{\Phi_{w w}(r, s)}}$
[ details left for exercise ]

## Example 9. Labelled hierarchies (phylogenetic trees)

Def. A labelled hierarchy of $N$ items is a tree with $N$ labelled leaves and no unary nodes


Applications

- Classification.
- Evolution of genetically related organisms.
-Schröder's 4th problem

page 128


## Example 9. Labelled hierarchies (phylogenetic trees)

Q. How many different labelled hierarchies of $N$ nodes?


## Example 9. Labelled hierarchies (phylogenetic trees)



L, the class of labelled hierarchies



Theorem. Asymptotics of implicit tree-like classes.
Suppose that $\mathbf{F}$ is an implicit tree-like class with characteristic function $\Phi(z, w)$ and
aperiodic and smooth-implicit $(r, s)$ GF $F(z)=\boldsymbol{\Phi}\left(z, F(z)\right.$ ), so that $\boldsymbol{\Phi}(r, s)=s$ and $\boldsymbol{\Phi}_{w}(r, s)=1$. Then $F(z)$ converges at $z=r$ where it has a square-root singularity with

$$
\begin{array}{cc}
F(z) \sim s-\alpha \sqrt{1-z / r} \text { and } \underbrace{\left[z^{N}\right] F(z) \sim \frac{\alpha}{2 \sqrt{\pi}}\left(\frac{1}{r}\right)^{N} N^{-3 / 2}} \text { where } \alpha=\sqrt{\frac{2 r \Phi_{z}(r, s)}{\Phi_{w w}(r, s)}} \\
z+e^{w}-1-w=w & r=2 \ln 2-1 \\
e^{w}-1=1 & s=\ln 2 \\
\Phi(z, w)=z-1+e^{w}-w & \Phi_{z}(r, s)=1 \\
\Phi_{z}(z, w)=1 & \Phi_{w w}(r, s)=2 \\
\Phi_{w}(z, w)=e^{w}-1 & \alpha=\sqrt{2 \ln 2-1} \\
\Phi_{w w}(z, w)=e^{w} &
\end{array}
$$

Singularity analysis: examples of applications

> construction generating function coefficient asymptotics

| rooted ordered trees | $\mathrm{G}=\mathrm{Z} \times$ SEQ(G) | $G(z)=\frac{z}{1-G(z)}$ | $\frac{1}{4 \sqrt{\pi}} 4^{N} N^{3 / 2}$ |
| :---: | :---: | :---: | :---: |
| binary trees | $\begin{gathered} B=\bullet \times(E+B) \times(E+B) \\ B=\bullet+\bullet \times \text { SEQ }_{0,2}(B) \end{gathered}$ | $\begin{aligned} & B(z)=z\left(1+B(z)^{2}\right) \\ & \left.B(z)=z+z B(z)^{2}\right) \end{aligned}$ | $\frac{1}{\sqrt{\pi}} 4^{N} N^{3 / 2}$ |
| unary-binary trees | $\mathrm{M}=\bullet \times \mathrm{SEQ}_{0,1,2}(\mathrm{M})$ | $M(z)=z\left(1+M(z)+M(z)^{2}\right)$ | $\frac{1}{\sqrt{4 \pi / 3}} 3^{N} N^{-3 / 2}$ |
| Cayley trees | $\mathrm{C}=\mathrm{Z}$ 太 SET(C) | $C(z)=z e^{C(z)}$ | $N!\frac{1}{\sqrt{2 \pi}} e^{N} N^{-3 / 2}=N^{N-1}$ |
| mapping components | $\mathrm{K}=\mathrm{CYC}(\mathrm{C} \mathrm{)}$ | $K(z)=\ln \frac{1}{1-C(z)}$ | $\sim N!\frac{e^{N}}{2 N} \sim \sqrt{\frac{\pi}{2 N}} N^{N}$ |
| mappings | $\mathrm{M}=\mathrm{SET}(\mathrm{K})$ | $M(z)=e^{K(z)}=\frac{1}{1-C(z)}$ | $\sim N!\frac{e^{N}}{\sqrt{2 \pi N}} \sim N^{N}$ |
| 2-regular graphs | $\mathrm{R}=\mathrm{SET}\left(\mathrm{UCYC}_{>2}(\mathrm{Z})\right.$ ) | $R(z)=\frac{e^{-z / 2-z^{2} / 4}}{\sqrt{1-z}}$ | $\sim N!\frac{e^{-3 / 4}}{\sqrt{\pi N}}$ |
| labelled hierarchies | $\mathrm{L}=\mathrm{Z}+\mathrm{SET}_{\geq 2}(\mathrm{~L})$ | $L(z)=z+e^{L(z)}-1-L(z)$ | $\frac{\sqrt{2 \ln 2-1}}{2 \sqrt{\pi N^{3}}} \frac{N!}{(2 \ln 2-1)^{N}}$ |

## "If you can specify it, you can analyze it"



Singularity analysis is an effective approach for analytic transfer from GF equations to coefficient asymptotics for classes with GFs that are not meromorphic.

Schema can unify the analysis for entire families of classes.

| schema | technical condition | construction | coefficient asymptotics |
| :---: | :---: | :---: | :---: |
| Labelled set | exp-log | $\mathbf{F}=\operatorname{SET}(\mathbf{G})$ | $\frac{e^{\beta}}{\Gamma(\alpha)}\left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}$ |
| Simple variety <br> of trees | invertible | $\mathbf{F}=\mathbf{Z} \times S E Q(F)$ <br> $\mathbf{F}=\mathbf{Z} \star \operatorname{SEQ}(\mathbf{F})$ | $\frac{1}{\sqrt{\alpha \pi}}\left(\frac{1}{\rho}\right)^{N} N^{-3 / 2}$ |
| Context-free | irreducible | Family of (+, X) <br> Constructs | $\frac{1}{\sqrt{\alpha \pi}}\left(\frac{1}{\rho}\right)^{N} N^{-3 / 2}$ |
| Implicit tree-like | smooth implicit <br> function | $\mathbf{F}=\operatorname{CONSTRUCT(F)}$ | $\frac{\alpha}{2 \sqrt{\pi}}\left(\frac{1}{r}\right)^{N} N^{-3 / 2}$ |

Next: GFs with no singularities.


## Web Exercise VII. 1

Bracketings (Schröder's 2nd problem)


Web Exercise VII.1. Use the tree-like schema to develop an asymptotic expression for the number of bracketings with $N$ leaves (see Example I. 15 on page 69 and Note VII. 19 on page 474).

## Assignments

1. Read pages 439-540 (Applications of Singularity Analysis) in text. Usual caveat: Try to get a feeling for what's there, not understand every detail.

2. Write up a solutions to Web Exercise VII. 1.
3. Programming exercise.


Program VII.1. Do $r$ - and $\theta$-plots of the GF for bracketings (see Web Exercise VII.1).



7. Applications of

Singularity Analysis

