ANALYTIC COMBINATORICS

PART TWO

Analytic

Combinatorics 7. Applicqﬁons Of
st Sin gu lari ty Ana |), sis

http://ac.cs.princeton.edu



Analytic combinatorics overview

specification

A. SYMBOLIC METHOD
1. OGFs
2. EGFs
3. MGFs

B. COMPLEX ASYMPTOTICS

. . asymptotic
4. Rational & Meromorphic estimate
5. Applications of R&M ,
COMPLEX ASYMPTOTICS
6. Singularity Analysis iotic -
. . Combinatorics desired
=) 7. Applications of SA result !

Philippe Flajoletand ———
Robert Sedgewick S
:
8. Saddle point
Camsmince kg



ANALYTIC COMBINATORICS

PART TWO

Sin l Analysis

ons o

= Analytic E Srietie
y 2l , 1

: : or trees
Combinatorics

Philippe Flajolet and
Robert Sedgewick

II.7a.SAapps.Sets



Transfer theorem for invertible tree classes [from Lecture 6]

Theorem. If a simple variety of trees F =Z [ x or x] SEQ«(F)
is A-invertible where the GF satisfies F(z) = z¢(F(z)) and
is the positive real root of () = \¢’(\) then

1
MF(z) ~ '(NNNT32
Cm NeTTIO IOV >

applications

general trees

binary trees
and F(z) ~ XA — /26N /6" (M1 — 28/ (V) w
unary-binary
Important note: Singularity analysis gives both trees
 Coefficient asymptotics.
. . . . . Clz‘__g‘_'“/uﬁlo
« Asymptotic estimate of GF near dominant singularity. N o G
ymp 9 4 Cayley trees & ;\l\ T
‘\\ S~ ~—14)

[and many, many more...]



Example 1: Rooted ordered trees

Q. How many trees with N nodes?

A
QMO

y I A . l .
Gi=1
G=1
([
How many trees with N nodes? L
Symbolic method
Combinatorial class G, the class of all trees
. "a tree is a node and
Construction C=exSEQC) +—m "
a sequence of trees
OGF equation Gz) = 2(1 + G(2) + G(2)* + G(2)* +...) = ———
1-G(2)
G(z) - G(2)* =z
1+vVT-4
Quadratic equation G(z) = %
Classic next steps 5
- 1 3 ;
Binomial theorem Gl2)=~-5 (_;,)( 4z)N
SNz Y
Extract coefficients oo 1 1) oy (2N _7> 1 (2,\!)
=2 \W)! - N(N 1) TaN—2\N) T detailed
Stirli R 1 ( J— PR calculations
tirling’s approximation ~ exp(2NIn(2N) — 2N + In vV4aN — 2(NIn(N) — N + In v2zN)) omitted
4N
gN-1 /
. . Gn ~
Simplify N VNG CS=] 4



G, the class of rooted
ordered trees

G =127 x SEQ(G))

4
C@)=1¢cw
simple variety
of trees
1
CN ~ 4/\//\/3 /2

4y/1

Theorem. If a simple variety of trees F=2Z [ x or x] SEQ«(F)
is A\-invertible where the GF satisfies F(z) = z¢(F(z)) and
is the positive real root of $(\) = A¢’(\) then

ZNF(z) ~ L (NN
Q e amroren >

o) = 3— : N A=1)2
/ T $(A) =2
A (- SV
&' (u) = 1 #"(\) =16




Example 2: Binary trees

s with N nodes?

How many binary tree

330??4

(Gl
R

L&KL

s



B, the class of binary trees

B=ex(E+B)X(E+ B)

AN

Expecting B = e + & X SEQo,2(B)? Stay tuned.

Theorem. If a simple variety of trees F=Z [ x or x] SEQ4(F)

. 2 is A-invertible where the GF satisfies F(z) = z¢(F(z)) and
B(Z) o 2(1 ™ B(Z)) is the positive real root of #(\) = A¢’'()) then
1 N -
[ZN]F(z) ~ ¢'(A\)°N 3/2>
2np” (A A
simple variety < \/ mg" (V)76
of trees
! o) = (1 + 7 s
P =201+u) (TN’ =220+ g\ _,
§(w) =2 o
[ZN]B(Z) - 1—4/\//\/3/2 ¢"(A) =2

NG



Example 3: Unary-binary trees

Q. How many unary-binary trees with N nodes?

‘ ! N

I I |
SR |

Ms= 4

degrees of all nodes O, 1, or 2



M, the class of all
unary-binary trees

M=2Z x SEQo,12(M)

Theorem. If a simple variety of trees F =1Z [ x or x] SEQ4(F)
is A-invertible where the GF satisfies F(z) = z¢(F(z)) and
M(Z) _ 2(1 4 /\//(Z) + /\/I(z)2) is the positive real root of ®(A) = A¢'(A) then

ZMF(z) ~ L '(A)VNT32
Q e amroren >

simple variety

of trees _
p(u) =1+ u+ A=
Ser) = 1+ 2u T+A+X =2+2)2  ¢(A) =3
\ 4 ¢/I(U) _ Qb/()‘) =3
: ¢"(A) =2

INN—3/2

M ~
N \/A4n/3



Example 4: Cayley trees

Q. How many different labelled rooted unordered trees of size N?

1 way
to label

to label

A. NN-1_ (See EGF lecture.)

<«— 24 ways to label



Example 4: Cayley trees (exact, from EGF lecture)

Class C, the class of labelled rooted unordered trees SN C@)‘ C)‘ <>
6 2 1 12 2 5 1 G

|C| 7N
EGF ‘ " Z CNW e
ceC N>0 é
Construction C=/x% (SET(C)) <— "atree is a root connected to a set of trees"
. C
EGF equation C(z) = ze )
Lagrange Inversion Theorem.
Extract coefficients 1 u N
by Lagrange inversion [ZN]C(Z) _ N [UN—1 ] ( u) Ifa GF g(z ;g 2" satisfies the equ?tlon z=1(g (2)
1 U \"
Wlth f(bl)= u/e“ U/e with f(0) =0 and f '(0) # O then gn—n[ _](%) c
= o1V =
N

— NJ!
Cy = N[z @/



C, the class of all labelled rooted (__'
unordered trees 4—@‘/@ @

\@

@ é

C=Z % SET(C)

Theorem. If a simple variety of trees F=2Z [ x or %] SEQ«(F)
. C(2) is A\-invertible where the GF satisfies F(z) = z¢(F(z)) and
C(Z) = Z¢€ is the positive real root of #(\) = A¢'(\) then

ZNF(z) ~ 1 'NVN3/2
Q e~ marem” >

simple variety

of trees
" A=1
555) e i Ay Se
1 M) = gl ¢'(\) =e
[ZN]C(Z) _ eNN—3/2 ¢"(u) 5\ = e

V21



Aside: Stirling’s formula via Cayley tree enumeration

Exact, via Lagrange inversion

Example 5: Cayley trees (exact, from EGF lecture)

Approximate, via singularity analysis

Class

ceC

Construction

ECF equation

Extract coefficients
by Lagrange inversion
with f(u) = u/ev

C, the class of labelled rooted unordered trees

Zld 2
EGF C(z) = Z W = Z CNm

N>0

C = Z+ (SET(C))

C(z)

[2]C(2) =

— ZGC(Z)

[ N— 1](

N
u/e”)

_ 1 Liuv-1euN = NN*
N

— NI2C() —

Example (@ 2 u—(s —{ 7
5
62112251 AN
J*‘Q@
NG
) W
3)

<— "atree is a root connected to a set of trees"

Lagrange Inversion Theorem.
1faGF g(z) = Zg 2" satisfies the eoual ion z= f(g (2))

wllhl(O)-OandI (0) # Othen 8 = [u ](,‘u')"

Example 4: Cayley trees

C, the class of all labelled rooted
unordered trees

C=2Z % SET(C)

o

16

Theorem. If a simple variety of trees F = Z [ x or ] SEQs(F)
is A-invertible where the GF satisfies F(z) = zo(F(z)) and
is the positive real root of ¢(\) = A¢'(\) then

N N 1 SN2
Qz IH0) ~ s (N )

C(z) = ze“®

A=1
4 o(u) =e" B

] ¢'(u) =e" e = et :i; ; :

[2"]C(2) = Von eNNTI2 S ‘W=

NN=T ~ NI

Theorem.

eN

V21N3

N
/\/!N\/ZRN( )N «———— Stirling's formula

e
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Transfer theorem for exp-log labelled set classes

[from Lecture 6]

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«+(G) is exp-log(x, B, p)

1 o
with G(z) ~ alog =2/ + 8. Then F(z) ~ 66(1 —z/p)
and N B 1N 1
ZV|F(z) ~ —) N ™¢
q FD) ~ s () >
Corollary. The expected number of G-components ©)
in a random F-object of size Nis ~x In N. (5 (4)
| No%

and is concentrated there

N

®

Bl

R



Example 5: Cycles in permutations

Q. How many permutations of N elements?

Q. How many cycles in a random permutation of N elements?
000 0000 @
9 o
OO
@@ O oo
- BB88
1 @@ 2 > >
® @ 5 @ ®@@ Slo¥e @

© ©
Pr=1 ©
avg. # cycles: 1 Py= 2 é@\' @® @ (3) @

@% @@@ ooe @

o o] 02 0% B

avg. # cycles: 1.8333

avg. # cycles: 1.5

P4=24
avg. # cycles: 2.08333



P, the class of all permutations

P = SET(CYC(2))

1
11—z

P(z) = exp(In )

exp-log

[ZMP(2) ~ 1

~ N!
~ In N

# permutations:

avg # cycles:

Qoo

Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)

1 @
: F(z) ~ €”
1—z/p+‘6 Then F(z) ~ e (1—z/p)
N

and N B 1 o
QZ o~ py ) N >

1 1
In-—— =alog ———
"1 aog1_z/p—|—6

fora=1,8=0, and p =1

with G(z) ~ alog

Corollary. The expected number of G-components
in a random F-object of size Nis ~x In N.

I

and is concentrated there



Example 6: Cycles in derangements

Q. How many derangements of N elements?

Q. How many cycles in a random derangement of N elements?

SIS
Siclele

Di=0

avg. # cycles: 0 D> =1 @\
avg. # cycles: 1 ék,@
o¥e

D=2

avg. # cycles: 1 D=9

avg. # cycles: 1.33333



D, the class of all derangements

D = SET(CYC »0(2))

D(z) = exp(In

1 1—2@)

exp-log

ZNMD(z) ~ D

# derangements: ~ N!/e

avg # cycles: ~InN

38

Theorem. Asymptotics of exp-log labelled sets.
Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)

1 @
: F(z) ~ e”
1—z/p+ﬁ Then F(z) ~ e (1—z/p)
N

and N B 1 o
QZ o~ py ) N >

1 1
1111 _Z@—alogm—l-ﬁ
fora=1,6=—-1, and p=1

with G(z) ~ alog

Corollary. The expected number of G-components
in a random F-object of size Nis ~x In N.

I

and is concentrated there

21



Example 6: Cycles in generalized derangements

D, the class of all permutations
having no cycles of length w1, wa, ... wt

D = SET(CYC +wi(Z))

1 7z 7zt
D(z) = exp(In — — = ) :
-z W Wi In — 1 =alog + 8
1—z 1—2z/p
exp-log foroz:1,ﬁ=—L—...—1—
W1 Wi
1 1 dp=1
N and p
ZV|D(z) = —— = —
D) = exp( - o)

# derangements: ~ N!/e!/wit-+1/w

avg # cycles: ~InN

22



Example 7: 2-regular graphs

undirected graphs with
Q. How many labelled 2-regular graphs of N elements? «—— ", nodesgdegpree >

Q. How many components in a random 2-regular graph of N elements?

1 way to label 3 ways to label T :
12 ways to label

Rs =1 R4 =3

L

R5 — '| 2 60 ways to label 360 ways to label

WN R R
[
A DA WN

A i
A A

&

105 ways to label

D
w w N
w N =
[ |
A WA N

Re =70 Rz = 465
avg. # components: avg. # components:
(1-60+2-10)/70 = 1.143 (1-360 + 2-105)/465 = 1.226

NN R R
[
AW bW

23



R, the class of 2-regular graphs

R = SET(UCYC:2(2))

—3/4

e
] .~ N
# 2-regular graphs: NETN
1

avg # components: ~ 5 InN

Analytic

Combinatorics

L I3

page 133
page 449

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)

1
~ ef «
1_Z/p+ﬂ.ThenF(Z) e (1 —Z/[))
N

and B
@]F(Z) g N19

1
G(Z) NQIOgm—Fﬁ

fora=1/2,=3/4, and p =1

with G(z) ~ alog

Corollary. The expected number of G-components
in a random F-object of size Nis ~x In N.

I

and is concentrated there

24
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Example 7: Mappings [from Lecture 2]

Def. A mapping is a function from the set of integers from 1 to N onto itself.

Example

1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
9 122933 5 203037262013 8 2 3329 2 353733 9 352118 2 251 20332318295 5 9 11 5 11

Every mapping corresponds to a digraph e
* N vertices, N edges ( : )——-> @
» Outdegrees: all 1 @ o e @ o @
* Indegrees: between 0 and N @ @ e
N0 —)

Natural questions about random mappings o @ @
« How many connected components ? @ @
« How many nodes are on cycles ? o Q \@ ég)\gg
) () )

27



Mappings

[from Lecture 2]

Q. How many mappings of length N ?

aYale
123 O O O 121
122
0@ 213 O)@ 133
12 321 223
® 132 <Q 323
@)
() L1 211 112
R @) 2 2 212 Q> 131
232 <Q 221
M =1 311 233
331 6 313
2 1 @ 332 322

S

Il

N
w N
w N
w N =
w N
R oW
N R

M3 =27

A. NN, by correspondence with N-words, but internal structure is of interest.

7o

i
g
O

28



Mapping EGFs

[from Lecture 2]

Combinatorial class

Construction

EGF equation

Combinatorial class

Construction

EGF equation

Combinatorial class

Construction

EGF equation M(z) = exp (111

C, the class of Cayley trees <«—— labelled, rooted, unordered

C=Zx(SET(C)) <«— "atreeis aroot connected to a set of trees"

C(z) = ze*®

Y, the class of mapping components

Y = CYC(C) <— "a mapping component is a cycle of trees"
1
Y(z) =In ———
(2) ==

M, the class of mappings

M = SET(CYC(C)) <— "a mapping is a set of components”
LI
1-Cz)) 1-C(2)

29



Example 4: Cayley trees

[from earlier in this lecture]

C, the class of all labelled rooted
unordered trees

C=Z % SET(C)

C(z) = ze*®
C(z) ~1—=V2V1 —ez

simple variety
of trees

Le/\/N—3/2

21C(e) =

4_@4/@

\@

T é

Theorem. If a simple variety of trees F=2Z [ x or %] SEQ«(F)
is A\-invertible where the GF satisfies F(z) = z¢(F(z)) and
is the positive real root of $(\) = A¢’(\) then

SNE(7) ~ 1 rYNN—3/2
Q O~ e N >

and F(z) ~ A= /20(N)/¢" (N1 — z¢'(N)

P(u) = e" . . gb()\))\ Z ;
I
¢"(\) =e

30



Cycles of Cayley trees

Y, the class of cycles of trees %4_@@@

(mapping components)

Y =CYC(C)
Y(z) 1l 1
= 1N —-
1—C(2)
1
~ —In 1
2 1 —ez

B Q

é@

110 2 1 10 2 9 1 2 3 1

from previous slide

In\/2 C(z) ~1—=V2V1 —ez

standard scale

eN

N
Y(z) ~ —
MY(E) ~ o
e/\/
cycies or trees N

Stirling N
T N
= NN N!'~2aN(—
V55 V2rN(=)

31



Mappings

M, the class of all mappings

M= SET(Y)

T
A . .
.“}Ntﬁj\ j .. 44{ -

A
et S

. . ! '
from previous slide ‘ %4“

M(z) = ey(‘%
1 1

—Inv2
2 n1—ez n\/_

exp-log

eN
NIZVM(z) ~ /\/!\/m

~ NN

o ! .’r'}' 1 N
T
Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)

‘ 1 o
with G(z) ~ alog + /3. Then F(z) ~ e”( )

1—2z/p T—z/p
and N e 1N L
QZ O~ py ) N >
1 1 1
=1 = al
201 —ez aog1_z/p—|—5

fora =1/2,8=—Inv2, andp=1/e

32



Mappings overview

Example 4: Cayley trees

C, the class of all labelled rooted

Specification unordered trees _@/@
C=2 % SET(C) 1) D) (3)

! eo o
Symbolic transfer @ '\(D @
V

Theorem. If a simple variety of trees F = Z [ x or %] SEQe(F)
is \-invertible where the GF satisfies F(z) = z¢(F(z)) and

c
GF equation C(z) = 2 is the positive real root of 6(A) = A¢/(\) then
C(z) ~1—V2V1T —ez N N 1 N 4/3
l V@~ e W N

Analytic transfer simple variety ~\—
l ple var and F(z) ~ A —ay/T Cycles of Cayley trees

d(u) = e’ R Y, the class of cycles of trees o e <_<:>
¢(u) =e" ) mapping components,
Asymptotics o ; Spsuﬁmt/o/r/ (mapping p ) (510 o)

Symbolic transfer

( GF equatiolf

l, Y =CYC(C) e o
@

1102110291231

1
Cayley trees: simple variety

from previous slide

Mappings

M, the class of all mappings
Analytic transfer

Specification

l I M = SET(Y)
‘ Asymptotics ) Symbolic transfer from previous slide
. N
e P 7N
# cycles of trees: ~ NI~ ~ [ NN y =@
cycles of trees 2N 2N . M(z)=e Theorem. Asymptotics of exp-log labelled sets.
y - eq““m”; Y(z) N ;—ln 1 . ln\/z Suppose tha(alabelled1 set class F = SETs(G) is exp~log1(ox, B.p)
g —ez G(z2) ~alog ———+f. F(z) ~ e (——)"
Components: standard scale I opiite ey o)
M) ~ —— (=) N'-e
Analytic transfer :“p'log > NG
l N'[ZN]M(Z) 1 e 1 1 1
: N —In =alog———+p
/ V2N 2 1-— 1-
( Asymptotics * e z/p
\ NNJ fora:1/2,6:—ln\/5, andp=1/e

Mappings: exp-log



Mapping parameters

Q. How many components in a random mapping of length N ?

Q. How many nodes on cycles in a random mapping of length N ?

1s;

O

M, =4

avg. # components: 1.25
avg. # nodes on cycles: 1.5

12

=W

w w w NN

w N =

w N
N B

w wpPE wR =

NRFEPRENNPR

N =

w

N =

000
9
R
: ;

N
O 3

M3 =27

avg. # components:
avg. # nodes on cycles:

7o

NN W NN
w w wmN = W

N R W wR
N WWwWERE RN

w
=

v
&
s A

38/27 = 1.407
51/27 = 1.889

34



Components in mappings

Specification

v

Symbolic transfer

!

GF equation

Analytic transfer

!

M, the class of all mappings

M= SET(Y)

1
avg # components: —InN

2

.\.‘,.
¢

i

[ «® - /)‘1
v $ 1
L ‘ o/ .

eh1® b ¥ Y:'f

oo » I 1 4 .
L “‘g‘. é. J: . (/ o o
. M.
P .

e 4 LY e,

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class F = SET«(G) is exp-log(x, B, p)
1

with G(z) ~ alog 3. Then F(z) ~ e”( )
1—2z/p 1—2z/p
and , PN | N \
NF(z) ~ — NT—a )
: () “p
1 1 1 i
—In = alog + 3
1—ez 1—2z/p

fora =1/2,=—-Inv2, andp=1/e

Corollary. The expected number of G-components
in a random F-object of size Nis ~x In N.

I

and is concentrated there

35



Nodes on cycles in mappings

Combinatorial class M, the class of mappings

Parameter the number of nodes on cycles (tree roots)

Construction

M= SET(CYC(uC))

1 1
BGF M(z,u) = Q >:
c (2,u) = exp(In 1 —uC(2) 1 —uC(z)
N Ny O N! C(2)
Expected # nodes on cycles — 2] ==M(z,u)|u=1 = [N
g Y NN=“0u ’ Nk ](1 — C(2))?
NV T 1
. Y ~ W[Z ]51 — ez
Nl 5 rﬂ?‘ 1 NleN
R A T _ €
Tt Lp | Fee 2 NN
TN ~ r/TtN /2
", A /
g ]

predicted: 12.5
actual: 9

Analytic
Combinatorics

C(z) ~1—=V2V1 —ez

C(2) 1 1
(1-C2)2 " 21—ez

Stirling

N1 ~ v/2aN( )N

e

36
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Schema example 4: Implicit tree-like classes

Definition. A combinatorial class whose enumeration GF satisfies F(z) = ®(z, F(2)) is said to
be an implicit tree-like class with characteristic function G.

: N )
unlabelled case: number of structures is [Z ]F(Z) Analytic

Combinatorics
F = CONSTRUCT(Z, F)
where CONSTRUCT is an arbitrary

composition of +, X, and SEQ F(2) = ®(z, F(2)

labelled case: number of structures is N![z"V]F(z) AN
immediate via
F = CONSTRUCT(Z, F)

symbolic transfer

page 467

where CONSTRUCT is an arbitrary
composition of +, %, SEQ, SET, and CYC

Example: Simple varieties of trees ~ ®(z, w) = zp(w)

39



Smooth-implicit-function tree-like classes

smooth implicit function: A technical condition that enables us to unify the analysis of tree-like classes.

Definition. Smooth-implicit-function tree-like classes.

A tree-like class F = CONSTRUCT(F) with enumerating GF F(z) = ®(z, F(2)) is said to be
smooth-implicit(r, s) if its characteristic function ® (z, w) satisfies the following conditions:

« ¢(z, w) is analytic at 0 and in a domain |z|< R and |w|< S for some R, S >0.
* [zNwK]#(z, w) = 0 and >0 for some N and some k> 2, with ®(0, 0) # O.

* There exist positive reals r < Rand s< S such that ®(r, s) = sand ®w(r, s) = 1.
Pz, w=w

Example: "phylogenetic trees" : Dz, w)=1
. Construction L=2Z + SET=2(L WA T
[details to follow] (L) “characteristic system"
OGF equation L(z)=z+4e"D -1 -1L(2)
Characteristic function ®(z,w)=z—-14+¢€e"—w
Characteristic system z+e"—1—-w=w _ r=2ln2-1
W <« solution
eV —1=1 s=1In?2

phylogenetic trees are smooth-implicit(2ln 2 — 1, In 2)
40



Transfer theorem for implicit tree-like classes

Theorem. Asymptotics of implicit tree-like classes.
Suppose that F is an implicit tree-like class with characteristic function ®(z, w) and
aperiodic and smooth-implicit(r, s) GF F(z) = ®(z, F(2)), so that ®(r, s) = s and ®u(r, s) = 1.

Then F(z) converges at z= r where it has a square-root singularity with

a 1 2r®,(r,s
F(z) ~s—ay/1—2z/r and [ZN]F<2) ~ —(_>N/\/_3/2 where o = ¢
2ymr Dy (r, )
Example: binary trees Construction - SEQua(B)
(alternate) = o + & X SEQo,2
OGF equation B(z) = z 4 zB(z)? s=1/2
r=1/4
Characteristic function ®(z,w) =z + w? o,(z,w) =1
_ P, (z,w) =2w
Characteristic system Z+w =w ( )
ow =1 Dy (z,w) =2
a=2

1
Coefficient asyptotics [ZMB(z) ~ ﬁ4

NN3/2



Example 8. Bracketings

Def. A bracketing of N items is a tree with N leaves and no unary nodes

Analytic
Combinatorics

(O
Q @ ()
() ()
internal node _— ‘ ‘
degree 2 or greater leaf
Applications

e Parenthesizations.
«Series-parallel networks.
*Schroder’s 2nd problem



Q. How many bracketings with N leaves?

All nodes of degree 0 (leaves) or >1 (internal nodes)

size: number of leaves

i B A
A5 RN
el

A TON

S4 =11
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Q. How many parenthesizations of N items?
(abcd

(@b) cd (@ oc)d ((ab)cd

(a b o
(@) d
a (& 12) (((a b) ©) d) ((a b) & d
S =1 P ((@ab) o (@ b ) (a ((b ©) d)
S$53=73

(@ b) (c d))

(@b o d (a (b c d))

S4 =11



Three additional equivalent structures.

and-or conjunctive

propositions an((bvec)adaCevf)vg)aChv(iajg)vk)a(lvm)

and-or trees

@

series-parallel networks —(@——

® (®
o 1e |, o o

@



S, the class of all bracketings

S=7+ SEQ>I(S)

AN

Note that the specification is the most succinct of all the descriptions

Theorem. Asymptotics of implicit tree-like classes.
1 Suppose that F is an implicit tree-like class with characteristic function ®(z, w) and
aperiodic and smooth-implicit(r, s) GF F(2) = ®(z, F(2)), so that ®(r, s) = sand ®w(r, s)=1.

Then F(2) converges at z= r where it has a square-root singularity with

F(z) ~s—ay/1—2z/r and@]F(Z) o zjﬁ(l)NN@Where o [2r®,(r,s)

(I)ww (I‘, 5)

T - [ details left for exercise ]
5@) ~ g ()N

withr =3 —2v2
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Example 9. Labelled hierarchies (phylogenetic trees)

Def. A labelled hierarchy of N items is a tree with N labelled leaves and no unary nodes

German) Grgis) (rotsh) (ussian

Applications Analytic

Combinatorics

«Classification.
«Evolution of genetically related organisms.
«Schroder’s 4th problem

47



Q. How many different labelled hierarchies of N nodes?

K,
D@03 ® OO®@ «xs
2 3
ORO

S
Cdrded

'\
w
I
N
()
©)

® @

,\
N
Il

26

09 x12
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L, the class of labelled hierarchies

L=27 + SET:2(L)

A\
L(z) =z+e® —1—1(2)

implicit
tree-like

N (2) ~ Vr TN 32
NI[ZN]L(z) N!NW(r) N

withr=2In2 — 1

Theorem. Asymptotics of implicit tree-like classes.

2w r

z+e" —1—-—w=w

e’ —1=1
zw)=z—1+e"—w
z,w) =1
z,w) =e" —1
z,w) =¢e"

F(z) ~s—ay/T—2z/r and@]F(z) ~ “(UW\/@where a=

Then F(2) converges at z= r where it has a square-root singularity with

Suppose that F is an implicit tree-like class with characteristic function ®(z, w) and

aperiodic and smooth-implicit(r, s) GF F(2) = ®(z, F(2)), so that ®(r, s) = sand ®u(r, s)=1.

2r®,(r, s)
(I)ww (I‘, 5)

r=2In2 —1
s=1n2
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Singularity analysis

: examples of applications

rooted ordered trees

binary trees

unary-binary trees

Cayley trees

mapping components

mappings

2-regular graphs

labelled hierarchies

construction
GC=7ZxSEQ(G)

B=ex (E+ B) X (E+ B)
B=e+ e x SEQo2(B)

M= e X SEQo,1,2( M)

C =7 SET(C)
K=CYC(C)
M = SET(K)

R =SET(UCYGs2 (2))

L=27Z+SET=2(L)

generating function

T 1-C(2)

B(z) = (1 + B(2)*)
B(z) = z + zB(z)?)

G(2)

M(z) = z(1 + M(2) + M(2)*)

C(z) = ze“®

1

K(z) = In

1—-C(z)

M(z) = @ = =
e—z/2—22/4
===

L(z)=z+e® —1-1(2)

coefficient asymptotics

1
4/\//\/3/2
4\/n

1
_4/\//\/3/2
Nz

1—3/\//\/—3/2
\A4n/3
1

NI——=eNN73/2 = NN
V2n

V2In2 —1 N!

2vaN3  (2In2 —T)V
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"If you can specify it, you can analyze it"

Singularity analysis is an effective approach for analytic transfer from GF equations

to coefficient asymptotics for classes with GFs that are not meromorphic.

Schema can unify the analysis for entire families of classes.

schema technical condition
Labelled set exp-log
Simple variety invertible
of trees
Context-free irreducible

smooth implicit

Implicit tree-like function

Next: GFs with no singularities.

construction

F = SET(G)
F=2Zx SEQ(F)
F=27Z% SEQ(F)

Family of (+, X)
constructs

F = CONSTRUCT (F)

coefficient asymptotics

eIB 1 N 1—«
[« ( ) N
1

(

> |

N—

)NN—3/2

-3
a
| =

)NN—3/2

(L

r

= 3
3
=

)NN—3/2

3
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Web Exercise VII.1

Bracketings (Schroder's 2nd problem)

Analytic
Combinatorics

Philippe Flajolet and
Robert Sedgewick

Web Exercise VII.1. Use the tree-like schema to develop an
asymptotic expression for the number of bracketings with N leaves
(see Example I.15 on page 69 and Note VII.19 on page 474).

56



Assignments

1. Read pages 439-540 (Applications of Singularity Analysis) in text.
Usual caveat: Try to get a feeling for what's there, not understand every detail.

Analytic
Combinatorics

2. Write up a solutions to Web Exercise VII.1.

Philippe Flajolet and
Robert Sedgewick

3. Programming exercise.

Program VIIL.1. Do r- and 0-plots of the GF for bracketings
(see Web Exercise VII.1).

57



ANALYTIC COMBINATORICS

PART TWO

ons o

Sin - Analysis

Analytic Z
=

Combinatorics = o
imple varieties of trees

Philippe Flajolet and Viappin g S

Robert Sedgewick "_’

ree-like classes

'ses

ITI.7f.SAapps.Exercises



ANALYTIC COMBINATORICS

PART TWO

Analytic

Combinatorics 7. Applicqﬁons Of
st Sin gu lari ty Ana |), sis

http://ac.cs.princeton.edu



