ANALYTIC COMBINATORICS

PART TWO

7. Applications of Singularity Analysis

Analytic combinatorics overview

Transfer theorem for invertible tree classes

Theorem. If a simple variety of trees $\mathbf{F} = \mathbf{Z} [\times \text{ or } \star] \text{ SEQ}_{\Phi}(\mathbf{F})$ is λ -invertible where the GF satisfies $F(z) = z\phi(F(z))$ and is the positive real root of $\phi(\lambda) = \lambda \phi'(\lambda)$ then

$$[z^{N}]F(z) \sim \frac{1}{\sqrt{2\pi\phi''(\lambda)/\phi(\lambda)}}\phi'(\lambda)^{N}N^{-3/2}$$

and
$$F(z) \sim \lambda - \sqrt{2\phi(\lambda)/\phi''(\lambda)}\sqrt{1 - z\phi'(\lambda)}$$

Important note: Singularity analysis gives both

- Coefficient asymptotics.
- •Asymptotic estimate of GF near dominant singularity.

Example 1: Rooted ordered trees

Example 1: Rooted ordered trees

Theorem. If a simple variety of trees $\mathbf{F} = \mathbf{Z} [\times \text{ or } \star] \text{ SEQ}_{\Phi}(\mathbf{F})$ is λ -invertible where the GF satisfies $F(z) = z\phi(F(z))$ and is the positive real root of $\phi(\lambda) = \lambda \phi'(\lambda)$ then

$$[z^{N}]F(z) \sim \frac{1}{\sqrt{2\pi\phi''(\lambda)/\phi(\lambda)}}\phi'(\lambda)^{N}N^{-3/2}$$

$$\phi(u) = \frac{1}{1-u}$$

$$\phi'(u) = \frac{1}{(1-u)^2}$$

$$\frac{1}{1-\lambda} = \frac{\lambda}{(1-\lambda)^2}$$

$$\phi''(\lambda) = 4$$

$$\phi''(\lambda) = 16$$

$$\lambda = 1/2$$

$$\phi(\lambda) = 2$$

$$\phi'(\lambda) = 4$$

$$\phi''(\lambda) = 16$$

Example 2: Binary trees

How many binary trees with *N* nodes?

 $T_4 = 14$

Example 2: Binary trees

Example 3: Unary-binary trees

Example 3: Unary-binary trees

Theorem. If a simple variety of trees $\mathbf{F} = \mathbf{Z} [\times \text{ or } \star] \text{ SEQ}_{\Phi}(\mathbf{F})$ is λ -invertible where the GF satisfies $F(z) = z\phi(F(z))$ and is the positive real root of $\phi(\lambda) = \lambda \phi'(\lambda)$ then

$$[z^{N}]F(z) \sim \frac{1}{\sqrt{2\pi\phi''(\lambda)/\phi(\lambda)}}\phi'(\lambda)^{N}N^{-3/2}$$

$$\begin{aligned} \phi(u) &= 1 + u + u^2 \\ \phi'(u) &= 1 + 2u \\ \phi''(u) &= 2 \end{aligned} \qquad \begin{aligned} \lambda &= 1 \\ 1 + \lambda + \lambda^2 &= \lambda + 2\lambda \\ \phi'(\lambda) &= 3 \\ \phi''(\lambda) &= 2 \end{aligned}$$

Example 4: Cayley trees

Q. How many different labelled rooted *unordered* trees of size N?

A. N^{N-1} . (See EGF lecture.)

Example 4: Cayley trees (exact, from EGF lecture)

$$Class C, \text{ the class of labelled rooted unordered trees}}$$

$$EGF C(z) = \sum_{c \in C} \frac{z^{|c|}}{|c|!} \equiv \sum_{N \ge 0} C_N \frac{z^N}{N!}$$

$$EGF C(z) = \sum_{c \in C} \frac{z^{|c|}}{|c|!} \equiv \sum_{N \ge 0} C_N \frac{z^N}{N!}$$

$$Construction C = Z \star (SET(C)) \leftarrow \text{"a tree is a root connected to a set of trees"}$$

$$EGF \text{ equation}$$

$$C(z) = ze^{C(z)}$$

$$Extract coefficients$$

$$by \text{ Lagrange inversion}$$

$$with f(u) = u/e^u$$

$$[z^N]C(z) = \frac{1}{N}[u^{N-1}](\frac{u}{u/e^u})^N$$

$$Ia C = \frac{1}{N}[u^{N-1}]e^{UN} = \frac{N^{N-1}}{N!}$$

$$C_N = N![z^N]C(z) = (N^{N-1}) \checkmark$$

Example 4: Cayley trees

Theorem. If a simple variety of trees $\mathbf{F} = \mathbf{Z} [\times \text{ or } \star] \text{ SEQ}_{\Phi}(\mathbf{F})$ is λ -invertible where the GF satisfies $F(z) = z\phi(F(z))$ and is the positive real root of $\phi(\lambda) = \lambda \phi'(\lambda)$ then

$$[z^{N}]F(z) \sim \frac{1}{\sqrt{2\pi\phi''(\lambda)/\phi(\lambda)}}\phi'(\lambda)^{N}N^{-3/2}$$

$$\phi(u) = e^{u}$$

$$\phi'(u) = e^{u}$$

$$\phi''(u) = e^{u}$$

$$\phi''(u) = e^{u}$$

$$\phi''(\lambda) = e$$

$$\phi''(\lambda) = e$$

Aside: Stirling's formula via Cayley tree enumeration

Approximate, via singularity analysis

Transfer theorem for exp-log labelled set classes

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class $\mathbf{F} = \text{SET}_{\Phi}(\mathbf{G})$ is exp-log(α, β, ρ) with $G(z) \sim \alpha \log \frac{1}{1 - z/\rho} + \beta$. Then $F(z) \sim e^{\beta} \left(\frac{1}{1 - z/\rho}\right)^{\alpha}$ and $[z^N]F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)} \left(\frac{1}{\rho}\right)^N N^{1-\alpha}$

Corollary. The expected number of *G*-components in a random *F*-object of size *N* is $\sim \alpha \ln N$.

and is concentrated there

Example 5: Cycles in permutations

Q. How many permutations of *N* elements?

Q. How many cycles in a random permutation of *N* elements?

avg. # cycles: 2.08333

Example 5: Cycles in permutations

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class $\mathbf{F} = \text{SET}_{\Phi}(\mathbf{G})$ is $\exp-\log(\alpha, \beta, \rho)$ with $G(z) \sim \alpha \log \frac{1}{1 - z/\rho} + \beta$. Then $F(z) \sim e^{\beta} \left(\frac{1}{1 - z/\rho}\right)^{\alpha}$ and $[z^N]F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)} \left(\frac{1}{\rho}\right)^N N^{1-\alpha}$

$$\ln \frac{1}{1-z} = \alpha \log \frac{1}{1-z/\rho} + \beta$$

for $\alpha = 1, \beta = 0$, and $\rho = 1$

Corollary. The expected number of *G*-components in a random *F*-object of size *N* is $\sim \alpha \ln N$.

and is concentrated there

Example 6: Cycles in derangements

Q. How many derangements of *N* elements?

Q. How many cycles in a random derangement of *N* elements?

Example 6: Cycles in derangements

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class $\mathbf{F} = \text{SET}_{\Phi}(\mathbf{G})$ is $\exp-\log(\alpha, \beta, \rho)$ with $G(z) \sim \alpha \log \frac{1}{1 - z/\rho} + \beta$. Then $F(z) \sim e^{\beta} \left(\frac{1}{1 - z/\rho}\right)^{\alpha}$ and $(z^N)F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)} \left(\frac{1}{\rho}\right)^N N^{1-\alpha}$

Corollary. The expected number of *G*-components in a random *F*-object of size *N* is $\sim \alpha \ln N$.

and is concentrated there

Example 6: Cycles in generalized derangements

Example 7: 2-regular graphs

Example 7: 2-regular graphs

[from Lecture 2]

Example 7: Mappings

Def. A *mapping* is a function from the set of integers from 1 to N onto itself.

6

Example

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

 9
 12
 29
 33
 5
 20
 13
 8
 2
 33
 29
 2
 35
 37
 33
 9
 35
 21
 18
 2
 25
 1
 20
 33
 23
 18
 29
 5
 5
 9
 11
 5
 11

Every mapping corresponds to a digraph

- N vertices, N edges
- Outdegrees: all 1
- Indegrees: between 0 and N

Natural questions about random mappings

- · How many connected components ?
- How many nodes are on cycles ?

Mappings

[from Lecture 2]

Q. How many *mappings* of length *N*?

A. N^N, by correspondence with N-words, but internal structure is of interest.

Combinatorial class	<i>C</i> , the class of Cayley trees	← labelled, rooted, unordered
Construction	$C = Z \star (SET(C)) \longleftarrow$	- "a tree is a root connected to a set of trees"
EGF equation	$C(z) = z e^{C(z)}$	
Combinatorial class	<i>Y</i> , the class of mapping cor	nponents
Construction	$Y = CYC(C)$ \leftarrow	- "a mapping component is a cycle of trees"
EGF equation	$Y(z) = \ln \frac{1}{1 - C(z)}$	
Combinet vial dese		
Complinatorial class	<i>M</i> , the class of mappings	
Construction	$M = SET(CYC(C)) \leftarrow$	- "a mapping is a set of components"
EGF equation $M($	$(z) = \exp\left(\ln\frac{1}{1 - C(z)}\right) = \frac{1}{1 - C(z)}$	$\frac{1}{-C(z)}$

Example 4: Cayley trees

[from earlier in this lecture]

Cycles of Cayley trees

Mappings

Theorem. Asymptotics of exp-log labelled sets.

Suppose that a labelled set class **F** = SET_{ϕ}(**G**) is exp-log(α , β , ρ) with $G(z) \sim \alpha \log \frac{1}{1 - z/\rho} + \beta$. Then $F(z) \sim e^{\beta} \left(\frac{1}{1 - z/\rho}\right)^{\alpha}$ $\left([z^N]F(z) \sim \frac{\mathrm{e}^{\beta}}{\Gamma(\alpha)} \left(\frac{1}{\rho}\right)^N N^{1-\alpha}\right)$

$$\frac{1}{2}\ln\frac{1}{1-ez} = \alpha\log\frac{1}{1-z/\rho} + \beta$$

for $\alpha = 1/2, \beta = -\ln\sqrt{2}$, and $\rho = 1/e$

Mappings overview

Mapping parameters

Q. How many *components* in a random mapping of length *N*?

Q. How many *nodes on cycles* in a random mapping of length *N*?

avg. # nodes on cycles: $51/27 \doteq 1.889$

Components in mappings

Theorem. Asymptotics of exp-log labelled sets. Suppose that a labelled set class $\mathbf{F} = \text{SET}_{\Phi}(\mathbf{G})$ is exp-log(α, β, ρ) with $G(z) \sim \alpha \log \frac{1}{1 - z/\rho} + \beta$. Then $F(z) \sim e^{\beta} \left(\frac{1}{1 - z/\rho}\right)^{\alpha}$ and $\left[z^{N}]F(z) \sim \frac{e^{\beta}}{\Gamma(\alpha)} \left(\frac{1}{\rho}\right)^{N} N^{1-\alpha}\right]$

$$\frac{1}{2}\ln\frac{1}{1-ez} = \alpha\log\frac{1}{1-z/\rho} + \beta$$

for $\alpha = 1/2, \beta = -\ln\sqrt{2}$, and $\rho = 1/e$

Corollary. The expected number of *G*-components in a random *F*-object of size *N* is $\sim \alpha \ln N$.

and is concentrated there

predicted: 12.5 actual: 9

Schema example 4: Implicit tree-like classes

Definition. A combinatorial class whose enumeration GF satisfies $F(z) = \Phi(z, F(z))$ is said to be an *implicit tree-like class* with *characteristic function G*.

Smooth-implicit-function tree-like classes

smooth implicit function: A technical condition that enables us to unify the analysis of tree-like classes.

Definition. Smooth-implicit-function tree-like classes.

A tree-like class $\mathbf{F} = \text{CONSTRUCT}(\mathbf{F})$ with enumerating GF $F(z) = \Phi(z, F(z))$ is said to be *smooth-implicit*(*r*, *s*) if its characteristic function $\Phi(z, w)$ satisfies the following conditions:

- $\Phi(z, w)$ is analytic at 0 and in a domain |z| < R and |w| < S for some R, S > 0.
- $[z^N w^k] \Phi(z, w) \ge 0$ and >0 for some N and some k > 2, with $\Phi(0, 0) \ne 0$.
- There exist positive reals r < R and s < S such that $\Phi(r, s) = s$ and $\Phi_w(r, s) = 1$. $\Phi(z, w) = w$

Example: "phylogenetic trees" [details to follow]	Construction OGF equation Characteristic function	$\mathbf{L} = \mathbf{Z} + SET_{\geq 2}(\mathbf{L})$ $L(z) = z + e^{L(z)} - 1 - L(z)$ $\Phi(z, w) = z - 1 + e^{w} - w$		$\mathbf{\Phi}_{w}(z, w) = 1$ <i>acteristic system</i> "
	Characteristic system	$z + e^w - 1 - w = w$ $e^w - 1 = 1$	— solution	$r = 2 \ln 2 - 1$ $s = \ln 2$

phylogenetic trees are smooth-implicit($2 \ln 2 - 1$, $\ln 2$)

Transfer theorem for implicit tree-like classes

Theorem. Asymptotics of implicit tree-like classes.

Suppose that **F** is an implicit tree-like class with characteristic function $\Phi(z, w)$ and aperiodic and smooth-implicit(r, s) GF $F(z) = \Phi(z, F(z))$, so that $\Phi(r, s) = s$ and $\Phi_w(r, s) = 1$. Then F(z) converges at z = r where it has a square-root singularity with

$$F(z) \sim s - \alpha \sqrt{1 - z/r} \text{ and } [z^N] F(z) \sim \frac{\alpha}{2\sqrt{\pi}} (\frac{1}{r})^N N^{-3/2} \text{ where } \alpha = \sqrt{\frac{2r\Phi_z(r,s)}{\Phi_{WW}(r,s)}} .$$

Example: binary trees	Construction	$\mathbf{B} = \mathbf{\bullet} + \mathbf{\bullet} \times \text{SEO}_{0,2}(\mathbf{B})$	
(alternate)	OGF equation	$B(z) = z + zB(z)^2$	s = 1/2
	Characteristic function	$\Phi(z,w) = z + w^2$	$r = 1/4$ $\Phi_z(z, w) = 1$
	Characteristic system	$z + w^2 = w$ $2w = 1$	$\Phi_w(z,w) = 2w$ $\Phi_{ww}(z,w) = 2$
	Coefficient asyptotics	$[z^N]B(z) \sim \frac{1}{\sqrt{2}} 4^N N^{3/2}$	$\alpha = 2$
		$\sqrt{\pi}$	

Def. A *bracketing* of *N* items is a tree with *N* leaves and no unary nodes

Applications

- Parenthesizations.
- •Series-parallel networks.
- •Schröder's 2nd problem

All nodes of degree 0 (leaves) or >1 (internal nodes) size: number of leaves

Three additional equivalent structures.

Example 9. Labelled hierarchies (phylogenetic trees)

Def. A *labelled hierarchy* of *N* items is a tree with N labelled leaves and no unary nodes

Applications

- Classification.
- Evolution of genetically related organisms.
- •Schröder's 4th problem

Example 9. Labelled hierarchies (phylogenetic trees)

Q. How many different *labelled hierarchies* of *N* nodes?

Example 9. Labelled hierarchies (phylogenetic trees)

C 1	•.	· ·		r	1	• .•
Sinaula	ritv an	alvsis:	examples	ot	appl	Ications
•				•••	~~~~	

	construction	generating function	coefficient asymptotics
rooted ordered trees	$G = Z \times SEQ(G)$	$G(z) = \frac{z}{1 - G(z)}$	$\frac{1}{4\sqrt{\pi}}4^N N^{3/2}$
binary trees	$B = \bullet \times (E + B) \times (E + B)$ $B = \bullet + \bullet \times SEQ_{0,2}(B)$	$B(z) = z(1 + B(z)^2)$ $B(z) = z + zB(z)^2)$	$\frac{1}{\sqrt{\pi}}4^{N}N^{3/2}$
unary-binary trees	$M = \bullet \times SEQ_{0,1,2}(M)$	$M(z) = z(1 + M(z) + M(z)^2)$	$\frac{1}{\sqrt{4\pi/3}}3^{N}N^{-3/2}$
Cayley trees	$C = Z \star SET(C)$	$C(z) = z e^{C(z)}$	$N! \frac{1}{\sqrt{2\pi}} e^N N^{-3/2} = N^{N-1}$
mapping components	K = CYC(C)	$K(z) = \ln \frac{1}{1 - C(z)}$	$\sim N! rac{\mathrm{e}^N}{2N} \sim \sqrt{rac{\pi}{2N}} N^N$
mappings	M = SET(K)	$M(z) = e^{K(z)} = \frac{1}{1 - C(z)}$	$\sim N! \frac{e^N}{\sqrt{2\pi N}} \sim N^N$
2-regular graphs	$R = SET(UCYC_{>2} (Z))$	$R(z) = \frac{e^{-z/2 - z^2/4}}{\sqrt{1 - z}}$	$\sim N! rac{\mathrm{e}^{-3/4}}{\sqrt{\pi N}}$
labelled hierarchies	$L = Z + SET_{\geq 2}(L)$	$L(z) = z + e^{L(z)} - 1 - L(z)$	$\frac{\sqrt{2\ln 2 - 1}}{2\sqrt{\pi N^3}} \frac{N!}{(2\ln 2 - 1)^N}$

"If you can specify it, you can analyze it"

Singularity analysis is an effective approach for analytic transfer from GF equations to coefficient asymptotics for classes *with GFs that are not meromorphic*.

Schema can unify the analysis for entire families of classes.

schema	technical condition	construction	coefficient asymptotics
Labelled set	exp-log	$\mathbf{F} = SET(\mathbf{G})$	$\frac{\mathrm{e}^{\beta}}{\Gamma(\alpha)} \big(\frac{1}{\rho}\big)^{N} N^{1-\alpha}$
Simple variety of trees	/ invertible	$\mathbf{F} = \mathbf{Z} \times SEQ(\mathbf{F})$ $\mathbf{F} = \mathbf{Z} \star SEQ(\mathbf{F})$	$\frac{1}{\sqrt{\alpha\pi}} \left(\frac{1}{\rho}\right)^N N^{-3/2}$
Context-free	irreducible	Family of (+, ×) constructs	$\frac{1}{\sqrt{\alpha\pi}} \left(\frac{1}{\rho}\right)^N N^{-3/2}$
Implicit tree-lil	ke smooth implicit function	$\mathbf{F} = CONSTRUCT(\mathbf{F})$	$\frac{\alpha}{2\sqrt{\pi}} \left(\frac{1}{r}\right)^N N^{-3/2}$

Next: GFs with no singularities.

Web Exercise VII.1

Bracketings (Schröder's 2nd problem)

Web Exercise VII.1. Use the tree-like schema to develop an asymptotic expression for the number of bracketings with *N* leaves (see Example 1.15 on page 69 and Note VII.19 on page 474).

Assignments

1. Read pages 439-540 (*Applications of Singularity Analysis*) in text. Usual caveat: Try to get a feeling for what's there, not understand every detail.

- 2. Write up a solutions to Web Exercise VII.1.
- 3. Programming exercise.

Program VII.1. Do *r*- and θ -plots of the GF for bracketings (see Web Exercise VII.1).

ANALYTIC COMBINATORICS

PART TWO

7. Applications of Singularity Analysis