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Analytic combinatorics overview

A. SYMBOLIC METHOD

1. OGFs

2. EGFs

3. MGFs

B. COMPLEX ASYMPTOTICS

4. Rational & Meromorphic

5. Applications of R&M

6. Singularity Analysis
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8. Saddle point
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Warmup: 2D absolute value plots

4

Consider 2D plots of functions:  all points (x, |f (x)| ) in a Cartesian plot.

�_ |�_| �/_ |�/_|

_(_ � �)� |_(_ � �)�|

sin _

| sin _|� � _� |� � _�|



Welcome to absolute-value-land!

5

Consider 3D versions of our plots of analytic functions.
    A modulus surface is a plot of (x, y, |f (z)| ) where z = x + yi .

Q. Can a modulus surface assume any shape ? 

A. No.  

A. (A surprise.) Only four types of points. 

3D version

zero

saddle point

ordinary point

pole
2D version

Example: � + �a�

� � �a�



Modulus surface points type I: zeros 

6

A zero is a point where f (z ) = 0 and f ' (z ) ≠ 0.
Ex. f (z) = 2z = 2rei

 
θ, | f (z)| = 2r

same for all θ  2r

r

A zero of order p is a point where f (k)(z ) = 0 for 0≤k<p and f (p)(z ) ≠ 0.

� � a�

zero of order 2

a� + a�

zero (order 1)

a�

zero of order 3

� ��(a � �)� �(a + �)

Key point: All zeros have the same local behavior.

M(a) = M(a�) + M �(a�)(a � a�) +
M ��(a�)
�!

(a � a�)� + . . . � M �(a�)(a � a�)

� � a� � � a�



Modulus surface points type II: poles 

7

A pole is a point z0 where

By definition, all poles have the same local behavior.

same for all θ  
�

� � aM(a) � J
a � a�

A pole of order p is a point z0 where M(a) � J
(a � a�)W



Quick in-class exercise

8

Q. What function is this?

A. 
a

� � a zero

pole



Modulus surface points type III: ordinary points 

9

All ordinary points have the same local behavior.

An ordinary point is a point where f (z ) ≠ 0 and f ' (z ) ≠ 0.

M(a) = M(a�) + M �(a�)(a � a�) +
M ��(a�)
�!

(a � a�)� + . . . � J



Modulus surface points type III: saddle points 

10

All saddle points have the same local behavior.

A saddle point is a point where f (z ) ≠ 0 and f ' (z ) = 0. �
(� � a)(� � a)

M(a) = M(a�) + M �(a�)(a � a�) +
M ��(a�)
�!

(a � a�)� + . . . � J(a � a�)�

Basic characteristic
•Downwards-oriented parabola at one angle
•Upwards-oriented parabola at perpendicular angle 



Modulus surface points: summary

11

f(z) f '(z) local behavior

simple zero 0 not 0 ~ c (z − z0)

zero of order p > 1 0 0 ~ c (z − z0)p

saddle point not 0 0 ~ c (z − z0)2

ordinary point not 0 not 0 ~ c 

simple pole ~ c / (z − z0)

Maximum modulus principle: There are no other possibilities (!)

poles at
0 + i/2 and 0 − i/2

saddle point at 0 + 0i

simple zeros at
1/2 + 0i and −1/2 + 0i

Example: No local maxima

�� � �a�

� + �a�
��

=
��a(� + �a�) � (� � �a�)�a

(� + �a�)�

= � ��a
(� � �a�)�

� � �a�

� + �a�



Quick in-class exercise

12

Q. Where are the saddle points?

� + a + a� + a�

A. Where                             , or � + �a + �a� = � a = ��
�

± P
�
�

�

bottom view

zeros ( −1, −i, +i)
saddle points



Modulus surface plots for familiar AC GFs

13

L−a−a�/�−a�/�−a�/�−a�/�

�− a

�+ a+ a� + a� + a�

�− a− a� − a� − a� − a�

�
� � La
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Cauchy coefficient formula

Saddle-point bound for GFs: basic idea

Saddle point bound:
•Saddle point at ζ
•Use circle of radius ζ 
• Integrand is ≤ G(ζ)/ζN+1 everywhere on circle

16

[a5].(a) =
�
��P

�

*
.(a)

Ka
a5+�

La/a�Example:

"zeta"

Note: ζ is the solution to 
�.(a)
a5+�

��
= �

.�(a)
a5+� � (5+ �)

.(a)
a5+� = �

a.�(a)/.(a) = 5+ � "saddle point equation"

ζ



Saddle-point bounds for GFs

Theorem. Saddle point bounds for GFs. 

Let G(z ), not a polynomial, be analytic at the origin with finite radius of convergence R.

If G has nonnegative coefficients, then                                       where ζ is the saddle point 

closest to the origin, the unique real root of the saddle point equation                                    . 

Proof (sketch).  By Cauchy coefficient formula

17

[a5].(a) =
�
��P

�

*
.(a)

Ka
a5+�

� .(�)

�5 G(z) ≤ G(ζ)/ζN+1 on C

Take C to be a 
circle of radius ζ 
and change to 

polar coordinates

=
�

��

� ��

�
.(a)

K�

a5+�

[a5].(a) � .(�)/�5

�.�(�)/.(�) = 5+ �

Example: La/a�[a�]La

.(a) = La

.�(a) = La

� = �

[a5]La =
�
�!

� L�

��

≐ .008333 ≐ .009498



.(a) = La
La/a�

Saddle point GF bound example I: factorial/exponential

18

Goal. Estimate
�
5!

= [a5]La

� = 5+ �Saddle point

�
� +

�
5

�5 � L� L5

55

Bound is too high by only a factor of          ,  since 
�
��5

�
5!

� L5

55
�
��5

Saddle point equation a
La

La
= 5+ � a

.�(a)

.(a)
= 5+ �

Saddle point equation

Saddle point bound [a5]La =
�
5!

� L5+�

(5+ �)5 [a5].(a) � .(�)/�5

Saddle point bound



(� + a)��/a�

.(a) = (� + a)�5

Saddle point GF bound example II: Catalan/central binomial

19

Goal. Estimate

�
�5
5

�
= [a5](� + a)�5

Saddle point equation
a
.�(a)
.(a)

= 5+ �

Saddle point equation

�5a = (5+ �)(� + a)
a
�5(� + a)�5��

(� + a)�5
= 5+ �

Saddle point � =
5+ �
5� �

Saddle point bound [a5].(a) � .(�)/�5

Saddle point bound�
�5
5

�
�

�
�5
5��

��5
�
5+�
5��

�5 =
� �5�

5� � �

�5

� �5

Bound is too high by only a factor of          ,  since 
�
�5
5

�
� �5�

�5

�
�5
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Cauchy coefficient formula

Saddle-point method for GFs: basic idea

Saddle point bound:
•Saddle point at ζ
•Use circle of radius ζ 
• Integrand is ≤ G(ζ)/ζN+1 everywhere on circle

22

[a5].(a) =
�
��P

�

*
.(a)

Ka
a5+�

Saddle point method:
•Focus on path near saddle point
•Bound “tail” contribution
•Use Laplace’s method

La/a� (� + a)��/a�



Saddle-point susceptibility

23

susceptibility : Technical conditions that enable us to unify saddle-point approximations.

Definition.  Saddle-point susceptible contour integrals.

The contour integral              with                 is susceptible to the saddle point approximation if 

C passes through a saddle point ζ, the unique real root of the saddle point equation

(or                )  and C can be split into two parts T and Q such that 

• Tails are negligable:

• A central quadratic approximation holds uniformly along Q:

• Tails can be completed back [details omitted].

�

;
-(a)Ka = V

��

*
-(a)Ka

�

M(a) � M(�) +
�
�
M ��(�)(a � �)�

�

*
-(a)Ka -(a) = LM(a)

- �(a) = �

M �(a) = �

Q

T

ζ to be expected unless 
multiple saddle point 

since f '(ζ)= 0     



Saddle-point transfer theorem

24

Theorem.  If a contour integral                with                  is susceptible to the 

saddle point approximation, then

Proof.  

        [ Similar to proof for SP bound; see text ]

�

*
-(a)Ka -(a) = LM(a)

a general technique for contour integration (not just for asymptotics)

�
��P

�

*
-(a)Ka � -(�)�

��M ��(�)



Saddle-point transfer theorem

25

Theorem.  If a contour integral                with                  is susceptible to the 

saddle point approximation, then

�

*
-(a)Ka -(a) = LM(a)

�
��P

�

*
-(a)Ka � -(a)�

��M ��(�)

Proof.  Take F(z) = G(z)/zN+1.

Saddle-point transfer.  Given a GF G (z ), if the contour integral of G(z)/zN+1                       

along a path C is susceptible to the saddle point approximation, then

where g (z ) = lnG (z ) − (N + 1)ln z and ζ is the unique positive real root of 
the saddle point equation g' (z ) = 0.

[a5].(a) =
�
��P

�

*
.(a)

Ka
a5+� � L N(�)

�
��N ��(�)

.(�)

�5+�
�

��N ��(�)

.�(a)

.(a)
=
5+ �
a

SP approximation

SP equation

Equivalent forms



.(a) = La

Saddle point transfer example I: factorial/exponential

26

Goal. Estimate
�
5!

= [a5]La

� = 5+ �Saddle point

M(a) = ln.(a) � (5+ �) ln a

= a� (5+ �) ln a

M �(a) = � � 5+ �
a

M ��(a) =
5+ �
a�

Saddle point equation

M �(a) = �

Saddle point
approximation [a5]La =

�
5!

� L5+�

(5 + �)5+�
�

��/(5+ �)
�
� +

�
5

�5 � L� L5

55
�
��5

✓

Important note: Need to check susceptibility, or use bound and sacrifice              factor.
�
��5

tails are negligible, a central approximation holds, and tails can be completed back

Saddle point approx

[a5].(a) � .(�)

�5+�
�

��M ��(�)



Saddle point method example I (susceptibility to saddle point)

Contour integral

Note: Slightly shifting saddle point (from N+1 to N ) simplifies calculations.
27

a = 5LP�

CN

N�
5!

= [a5]La =
�
��P

�

*5

La
Ka
a5+� =

�
��P

�

*5

La�(5+�) ln aKa

Switch to polar coordinates =
� L
5

�5 �
��

� ��

�
L5(LP����P�)K�

Neglect tails �
5!

� �
��

L5

5585

Split into central and tail contours

θ0

GN

TN;5 =

� �����

��

L5(LP����P�)K�

=
�
��

� L
5

�5
(85 + ;5)

85 =

� +��

���

L5(LP����P�)K�

exponentially small for
θ0 = Nα with α > −1/2 [see text]



Saddle point method example I (susceptibility to saddle point)

28

.5 =

� +��

���

L5(LP����P�)K�

Approximate integrand =

� +��

���

L�5��/�K�
�
� +6(5���)

�
(LP� � � � P�) = ���/� + 6(��)

Change of variable � ��
5

� +��
�
5

���
�
5

L�[�/�K[
� = [/

�
5

K� = K[/
�
5

Collect restrictions �
�

��/5 MVY �� = 5�/�
� �

5�/���

L�[�/�K[ = 6(L�5����

)

Finish ✓
�
5!

� �
��

� L
5

�5
.5 =

� L
5

�5 ��
��5

Restrict θ0 to drop O-term �
� +��

���

L�5��/�K� MVY �� = 5� ^P[O � < ��/�

Restrict θ0 to complete tails � ��
5

� +�

��
L�[�/�K[ MVY �� = 5� ^P[O � > ��/�



Saddle-point asymptotics

Q.                               .   Aren’t we touching on N needing to be in the  “galactic” range?

A.   Methods extend to derive full asymptotic series to any desired precision.

A.   Results are easy to validate numerically.

A.   Towards goal of general schema cover whole families of combinatorial classes.

29

5�/���/� = 5�/��

A.   Those estimates are in the exponent.
      Ex.                         ≐ .000335 when N is 230 (about 1 billion).L�5�/��

= L��

not relevant in this galaxy



.(a) = (� + a)�5

Saddle point transfer example II: Catalan/central binomial

30

Goal. Estimate

�
�5
5

�
= [a5](� + a)�5

Saddle point � =
5+ �
5� �

Saddle point approx

[a5].(a) � .(�)

�5+�
�

��M ��(�)

Note: Slight shift of saddle point often simplifies calcuations (see next slide).

Saddle point
approximation [a5](� + a)�5 =

�
�5
5

�
�

�
�5
5��

��5
�
5+�
5��

�5+�
�

��M ��(5+�
5�� )

Saddle point equation

M �(a) = �

M(a) = ln.(a) � (5+ �) ln a

= �5 ln(� + a) � (5+ �) ln a

M �(a) =
�5
� + a

� 5+ �
a

M ��(a) = � �5
(� + a)�

+
5+ �
a�



Saddle point transfer example II: Catalan/central binomial

31

Goal. Estimate

Saddle point

�
�5
5

�
= [a5](� + a)�5

.(a) = (� + a)�5

Saddle point equation

M �(a) = �

M(a) = ln.(a) � (5+ �) ln a

= �5 ln(� + a) � (5+ �) ln a

M �(a) =
�5
� + a

� 5+ �
a

M ��(a) = � �5
(� + a)�

+
5+ �
a�� =

5+ �
5� �

� �

Saddle point
approximation [a5](� + a)�5 =

�
�5
5

�
� �5�

�5

Saddle point approx

[a5].(a) � .(�)

�5+�
�

��M ��(�)

M ��(�) � 5/�

Important note: Need to check susceptibility, or use bound and sacrifice           factor.

tails are negligible, a central approximation holds, and tails can be completed back

�
�5
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Involutions

34

Q. How many different permutations of size N with no cycle lengths >2 ?

I1 = 1

I2 = 2

I3 = 4
I4 = 10



AC example with saddle-point asymptotics: Involutions

35

I, the class of involutions
Speci!cation

I = SET(CYC1,2( Z ))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

0(a) = La+a�/�

� = ��
�

+
�
�

�
� + �(5+ �)

�� + � � (5+ �) = �

�
�
5� �/� +6(�/

�
5)

N(a) = a+ a�/� � (5+ �) ln a

N �(a) = � + a� 5+ �
a

N ��(a) = � +
5+ �
a�

[a5]0(a) � L5/�+
�
5��/�

�55/�
�
�5

5![a5]0(a) � �
�
�
�L

�5
L

�5/�
L

�
5

Important note:  Need to check susceptibility.
• generally more difficult than for other transfer thms.

• option: use bound (sacrifice              factor.
�
��5

6

9

7

1

4
5 3

8

2



Set partitions

36

S1 = 1
S2 = 2

Q. How many ways to partition a set of size of N ?

{1} {2}

{1 2}{1}

S3 = 5

{1} {2} {3}

{1} {2 3}

{2} {1 3}

{3} {1 2}

{1} {2} {3}

S4 = 15

{1} {2} {3} {4}

{1} {2 3 4}

{2} {1 3 4}

{3} {1 2 4}

{4} {1 2 3}

{1 2} {3} {4}

{1 3} {2} {4}

{1 4} {2} {3}

{2 3} {1} {4}

{2 4} {1} {3}

{3 4} {1} {2}

{1 2} {3 4}

{1 3} {2 4}

{1 4} {2 3}

{1 2 3 4}



AC example with saddle-point asymptotics: Set partitions

37

S, the class of set partitions
Speci!cation

S = SET(SET>0( Z ))

GF equation

Symbolic transfer

Analytic transfer

Asymptotics

:(a) = LL
a��

{2 3} {5 7 9} {4} {1 8}

N(a) = La � � � (5 + �) ln a

N �(a) = La � 5+ �
a

N ��(a) = La +
5+ �
a�

�L� = 5+ �

� � ln5� ln ln5

[complex expression: use bound]

SP bound

[a5]:(a) � .(�)

�5
:5 � 5!

L5��

(ln5)5
�

� 5
ln5

�5�
��5/L

LL
a��/a�



Saddle point: summary of combinatorial applications

construction GF saddle point bound coefficient
asymptotics

urns U = SET( Z )

central binomial

involutions I = SET( CYC1,2( Z ))

set partitions S = SET( SET>0( Z ))

fragmented 
permutations F  = SET( SEQ>0( Z ))

integer partitions P = MSET( SEQ>0( Z ))

La
�
5!

� L5

55�
��5� L5

55

� L�
�

�5/�La/(��a)+a�/�(��a�)+... � L�
�

�5/�

�5
�
�

[a5](� + a)�5 � �5 � �5�
�5

LL
a�� � 5!

L5��

(ln5)5

La+a�/� � 5!
L5/�+

�
5��/�

�
�55/�

� 5!
L5/�+

�
5��/�

�55/���5

La/(��a) � 5!L�
�
5��/� � 5!

L�
�
5��/�

�
�
�5�/�

38

not for 
amateurs
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Analytic combinatorics overview

A. SYMBOLIC METHOD

1. OGFs

2. EGFs

3. MGFs

B. COMPLEX ASYMPTOTICS

4. Rational & Meromorphic

5. Applications of R&M

6. Singularity Analysis

7. Applications of SA

8. Saddle point

specification

GF
equation

desired 
 result !

asymptotic
estimate

41

SYMBOLIC METHOD

COMPLEX ASYMPTOTICS



Basic ideas of analytic combinatorics (summary)

42

2. The symbolic method transforms specifications to equations that define generating functions.

3. Complexification treats generating functions as analytic objects, giving estimates of coefficients.

Cauchy’s coefficient formula gives coefficient asymptotics when singularities are poles.

Singularity analysis provides a general approach to analyzing GFs with essential singularities.

Saddle-point asymptotics is effective for functions with no singularities.

1. Combinatorial specifications provide succinct definitions of a wide range of discrete structures.

4. Combinatorial classes fall into general schema that are governed by universal asymptotic laws.



Constructions and symbolic transfers

43



Explicit analytic transfers

44

meromorphic?

Meromorphic Transfer
(see Lecture 4)

Y

Standard Scale Transfer
(see Lecture 6)

Y

Singularity Analysis
(see Lecture 6)

Y

Saddle Point

Y

standard
scale?

N

square root?
logarithmic?

N

no singularities?

N



Schemas

45

Combinatorial problems can be organized into broad schemas, covering infinitely 

many combinatorial types and governed by simple asymptotic laws.

The discovery of such schemas and of the 

associated universality properties constitues 

the very essence of analytic combinatorics.



“If you can specify it, you can analyze it”

46

Speci!cation

GF equation

Symbolic transfer

Analytic transfer

Asymptotics



What is "Analytic combinatorics"?

47

Analytic combinatorics aims to enable precise quantitative predictions of the properties 

of large combinatorial structures. The theory has emerged over recent decades as 

essential both for the analysis of algorithms and for the study of scientific models in other 

discliplines, including statistical physics, computational biology, and information theory.

[ In case someone asks... ]



What’s next?
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Suggestions for further study in Analytic Combinatorics

• Additional constructions and associated symbolic transfers

• Applications to paths in lattices and many other types

• Details of SA proofs

• Periodicity, irreducibility, algebraic functions

• Additional schema

• Drmota-Llaley-Woods theorem

• Technical conditions for SP approximations

• Multivariate asymptotics and limit laws

• Applications, applications, applications, applications

For an overview of Flajolet's work and current research in AC, watch the lecture
             "If you can specify it you can analyze it": the lasting legacy of Philippe Flajolet

Available as "postscript" 
to this course



Shameless plugs
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Books Booksites Online courses

And, especially for students in this course . . .

a T-shirt! see AC booksite
for details



Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning. ”

                                                                                          — Winston Churchill, 1942
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Combinatorics

Philippe Flajolet and
Robert Sedgewick

CAMBRIDGE

8. Saddle-Point Asymptotics

•Modulus surfaces
•Saddle point bounds
•Saddle point asymptotics
•Applications
•AC wrapup

II.8e.Saddle.Summary
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