
Errata group 1: Complex integration
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Errata group 1: Complex integration [correction]
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Theorem. (cf. Stein, Theorem 3.2 )  If a continuous function f has an 

antiderivative F and 𝛾 is a curve from w1 to w2 then

Much better approach. Complex integration works exactly as expected.  
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Errata group 1: Complex integration (continued)
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Errata group 1: Complex integration [improved]
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Ex 1. Integrate f (z) = z on a rectangle
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A new question was posted by Eric Neyman (April 2017).  

Residues Calculated Incorrectly 

I believe that every residue in the lectures is calculated incorrectly 
(off by a sign). The formula given for the residue is $$-\frac{f(\alpha)}
{g'(\alpha)}$$, but this is incorrect. It should be $$\frac{f(\alpha)}
{g'(\alpha)}$$. The error seems to be traceable back to Slide 59 of the 
Poles lecture slides, where instead of writing $$\frac{h_{-1}}{z - \alpha}
$$, $$\frac{h_{-1}}{\alpha - z}$$ was written. But in fact the way 
residues are defined in Slide 51 (as in $$\frac{h_{-1}}{z - z_0}$$). I 
think that the reason that the asymptotics in the examples are right is 
because the constant $$c$$, which is claimed to be $$\frac{h_{-1}}{\alpha}
$$, really should be $$(-1)^M \frac{h_{-1}}{\alpha}$$, and that these two 
mistakes cancel out. 

http://ac.cs.princeton.edu/online/slides/AC04-Poles.pdf


Errata group 2: Residues
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similar error on p. 256 in book

should be z-𝜶 everywhere✗
leads to numerous sign 
errors in later slides
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f(z) rational with a single dominant pole ↵

where � = 1/↵ and M is the multiplicity of ↵

Bottom line 1

[zN]f(z) =
βNNM−1

(M − 1)!αM
lim
z→α

(α − z)M f(z)

should be -n-r✗ should be 𝜶1-z✗
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where � = 1/↵ and M is the multiplicity of ↵

Bottom line 2

h(z) meromorphic with a single dominant pole ↵

[zN ]h(z) =
(�1)MMf(↵)

↵Mg(M)(↵)
�NNM�1


