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ANALYTIC COMBINATORICS

Analytic combinatorics aims to enable precise quantitative predictions of the proper-
ties of large combinatorial structures. The theory has emerged over recent decades
as essential both for the analysis of algorithms and for the study of scientific models
in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combination of symbolic enumera-
tion methods and complex analysis, drawing heavily on generating functions, results
of sweeping generality emerge that can be applied in particular to fundamental struc-
tures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.

This account is the definitive treatment of the topic. In order to make it self-
contained, the authors give full coverage of the underlying mathematics and give a
thorough treatment of both classical and modern applications of the theory. The text is
complemented with exercises, examples, appendices and notes throughout the book to
aid understanding. The book can be used as a reference for researchers, as a textbook
for an advanced undergraduate or a graduate course on the subject, or for self-study.
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Preface

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of study of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions: these make their first appearance as
purely formal algebraic objects. Next, generating functions are interpreted as analytic
objects, that is, as mappings of the complex plane into itself. Singularities determine
a function’s coefficients in asymptotic form and lead to precise estimates for counting
sequences. This chain of reasoning applies to a large number of problems of discrete
mathematics relative to words, compositions, partitions, trees, permutations, graphs,
mappings, planar configurations, and so on. A suitable adaptation of the methods also
opens the way to the quantitative analysis of characteristic parameters of large random
structures, via a perturbational approach.

THE APPROACH to quantitative problems of discrete mathematics provided by
analytic combinatorics can be viewed as an operational calculus for combinatorics
organized around three components.

Symbolic methods develops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions that exactly encode counting sequences.
Complex asymptotics elaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complex domain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random structures concerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

The present book expounds this view by means of a very large number of examples
concerning classical objects of discrete mathematics and combinatorics. The eventual
goal is an effective way of quantifying metric properties of large random structures.

ix
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Given its capacity of quantifying properties of large discrete structures, Analytic
Combinatorics is susceptible to many applications, not only within combinatorics it-
self, but, perhaps more importantly, within other areas of science where discrete prob-
abilistic models recurrently surface, like statistical physics, computational biology,
electrical engineering, and information theory. Last but not least, the analysis of al-
gorithms and data structures in computer science has served and still serves as an
important incentive for the development of the theory.

� � � � � �

Part A: Symbolic methods. This part specifically develops Symbolic methods, which
constitute a unified algebraic theory dedicated to setting up functional relations be-
tween counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinatorial
constructions and operations on generating functions. This translation process is a
purely formal one. In fact, with regard to basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then form Part A: Chapter I deals
with unlabelled objects; Chapter II develops labelled objects in a parallel way; Chap-
ter III treats multivariate aspects of the theory suitable for the analysis of parameters
of combinatorial structures.

� � � � � �

Part B: Complex asymptotics. This part specifically expounds Complex asymptotics,
which is a unified analytic theory dedicated to the process of extracting asymptotic in-
formation from counting generating functions. A collection of general (and simple)
theorems now provide a systematic translation mechanism between generating func-
tions and asymptotic forms of coefficients. Five chapters form this part. Chapter IV
serves as an introduction to complex-analytic methods and proceeds with the treatment
of meromorphic functions, that is, functions whose singularities are poles, rational
functions being the simplest case. Chapter V develops applications of rational and
meromorphic asymptotics of generating functions, with numerous applications related
to words and languages, walks and graphs, as well as permutations. Chapter VI devel-
ops a general theory of singularity analysis that applies to a wide variety of singular-
ity types, such as square-root or logarithmic, and has consequences regarding trees as
well as other recursively-defined combinatorial classes. Chapter VII presents appli-
cations of singularity analysis to 2–regular graphs and polynomials, trees of various
sorts, mappings, context-free languages, walks, and maps. It contains in particular a
discussion of the analysis of coefficients of algebraic functions. Chapter VIII explores
saddle-point methods, which are instrumental in analysing functions with a violent
growth at a singularity, as well as many functions with a singularity only at infinity
(i.e., entire functions).

� � � � � �
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Part C: Random structures. This part is comprised of Chapter IX, which is dedi-
cated to the analysis of multivariate generating functions viewed as deformation and
perturbation of simple (univariate) functions. Many known laws of probability theory,
either discrete or continuous, from Poisson to Gaussian and stable distributions, are
found to arise in combinatorics, by a process combining symbolic methods, complex
asymptotics, and perturbation methods. As a consequence, many important character-
istics of classical combinatorial structures can be precisely quantified in distribution.

� � � � � �

Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, among others. Appendix B recapitulates the necessary background
in complex analysis. It may be viewed as a self-contained minicourse on the subject,
with entries relative to analytic functions, the Gamma function, the implicit function
theorem, and Mellin transforms. Appendix C recalls some of the basic notions of
probability theory that are useful in analytic combinatorics.

� � � � � �

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concrete Examples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offering a complete treatment of
a specific problem. These are borrowed not only from combinatorics itself but also
from neighbouring areas of science. With a view to addressing not only mathemati-
cians of varied profiles but also scientists of other disciplines, Analytic Combinatorics
is self-contained, including ample appendices that recapitulate the necessary back-
ground in combinatorics, complex function theory, and probability. A rich set of short
Notes—there are more than 450 of them—are inserted in the text2 and can provide
exercises meant for self-study or for student practice, as well as introductions to the
vast body of literature that is available. We have also made every effort to focus on
core ideas rather than technical details, supposing a certain amount of mathematical
maturity but only basic prerequisites on the part of our gentle readers. The book is
also meant to be strongly problem-oriented, and indeed it can be regarded as a man-
ual, or even a huge algorithm, guiding the reader to the solution of a very large variety
of problems regarding discrete mathematical models of varied origins. In this spirit,
many of our developments connect nicely with computer algebra and symbolic ma-
nipulation systems.

COURSES can be (and indeed have been) based on the book in various ways.
Chapters I–III on Symbolic methods serve as a systematic yet accessible introduc-
tion to the formal side of combinatorial enumeration. As such it organizes trans-
parently some of the rich material found in treatises3 such as those of Bergeron–
Labelle–Leroux, Comtet, Goulden–Jackson, and Stanley. Chapters IV–VIII relative to
Complex asymptotics provide a large set of concrete examples illustrating the power

1Examples are marked by “Example · · · �”.
2Notes are indicated by � · · · �.
3References are to be found in the bibliography section at the end of the book.
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of classical complex analysis and of asymptotic analysis outside of their traditional
range of applications. This material can thus be used in courses of either pure or
applied mathematics, providing a wealth of non-classical examples. In addition, the
quiet but ubiquitous presence of symbolic manipulation systems provides a number of
illustrations of the power of these systems while making it possible to test and con-
cretely experiment with a great many combinatorial models. Symbolic systems allow
for instance for fast random generation, close examination of non-asymptotic regimes,
efficient experimentation with analytic expansions and singularities, and so on.

Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, Mahmoud, and Szpankowski, in
the survey by Vitter–Flajolet, as well as in our earlier Introduction to the Analysis of
Algorithms published in 1996. This book, Analytic Combinatorics, can then be used
as a systematic presentation of methods that have proved immensely useful in this
area; see in particular the Art of Computer Programming by Knuth for background.
Studies in statistical physics (van Rensburg, and others), statistics (e.g., David and
Barton) and probability theory (e.g., Billingsley, Feller), mathematical logic (Burris’
book), analytic number theory (e.g., Tenenbaum), computational biology (Waterman’s
textbook), as well as information theory (e.g., the books by Cover–Thomas, MacKay,
and Szpankowski) point to many startling connections with yet other areas of science.
The book may thus be useful as a supplementary reference on methods and applica-
tions in courses on statistics, probability theory, statistical physics, finite model the-
ory, analytic number theory, information theory, computer algebra, complex analysis,
or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less informative
without Neil Sloane’s Encyclopedia of Integer Sequences, Steve Finch’s Mathematical Con-
stants, Eric Weisstein’s MathWorld, and the MacTutor History of Mathematics site hosted at
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invaluable to us. We also thank students in courses at Barcelona, Berkeley (MSRI), Bordeaux,
Caen, Graz, Paris (École Polytechnique, École Normale Supérieure, University), Princeton,
Santiago de Chile, Udine, and Vienna whose reactions have greatly helped us prepare a better
book. Thanks finally to numerous colleagues for their contributions to this book project. In
particular, we wish to acknowledge the support, help, and interaction provided at a high level
by members of the Analysis of Algorithms (AofA) community, with a special mention for Nico-
las Broutin, Michael Drmota, Éric Fusy, Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy
Louchard, Andrew Odlyzko, Daniel Panario, Carine Pivoteau, Helmut Prodinger, Bruno Salvy,
Michèle Soria, Wojtek Szpankowski, Brigitte Vallée, Mark Daniel Ward, and Mark Wilson. In
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— PLATO, The Timaeus1

ANALYTIC COMBINATORICS is primarily a book about combinatorics, that is, the
study of finite structures built according to a finite set of rules. Analytic in the title
means that we concern ourselves with methods from mathematical analysis, in par-
ticular complex and asymptotic analysis. The two fields, combinatorial enumeration
and complex analysis, are organized into a coherent set of methods for the first time
in this book. Our broad objective is to discover how the continuous may help us to
understand the discrete and to quantify its properties.

COMBINATORICS is, as told by its name, the science of combinations. Given
basic rules for assembling simple components, what are the properties of the resulting
objects? Here, our goal is to develop methods dedicated to quantitative properties
of combinatorial structures. In other words, we want to measure things. Say that
we have n different items like cards or balls of different colours. In how many ways
can we lay them on a table, all in one row? You certainly recognize this counting
problem—finding the number of permutations of n elements. The answer is of course
the factorial number

n ! = 1 · 2 · . . . · n.

This is a good start, and, equipped with patience or a calculator, we soon determine
that if n = 31, say, then the number of permutations is the rather large quantity

31 ! = 8222838654177922817725562880000000, .

an integer with 34 decimal digits. The factorials solve an enumeration problem, one
that took mankind some time to sort out, because the sense of the “· · · ” in the formula
for n! is not that easily grasped. In his book The Art of Computer Programming

1“So their combinations with themselves and with each other give rise to endless complexities, which
anyone who is to give a likely account of reality must survey.” Plato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

1
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4 5↗ ↘ ↗ ↘
3 1 2

5

4 2

3 1

Figure 0.1. An example of the correspondence between an alternating permutation
(top) and a decreasing binary tree (bottom): each binary node has two descendants,
which bear smaller labels. Such constructions, which give access to generating func-
tions and eventually provide solutions to counting problems, are the main subject of
Part A.

(vol III, p. 23), Donald Knuth traces the discovery to the Hebrew Book of Creation
(c. AD 400) and the Indian classic Anuyogadvāra-sutra (c. AD 500).

Here is another more subtle problem. Assume that you are interested in permuta-
tions such that the first element is smaller than the second, the second is larger than the
third, itself smaller than the fourth, and so on. The permutations go up and down and
they are diversely known as up-and-down or zigzag permutations, the more dignified
name being alternating permutations. Say that n = 2m + 1 is odd. An example is for
n = 9:

8 7 9 3↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘
4 6 5 1 2

The number of alternating permutations for n = 1, 3, 5, . . . , 15 turns out to be

1, 2, 16, 272, 7936, 353792, 22368256, 1903757312.

What are these numbers and how do they relate to the total number of permutations of
corresponding size? A glance at the corresponding figures, that is, 1!, 3!, 5!, . . . , 15!,
or

1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000,

suggests that the factorials grow somewhat faster—just compare the lengths of the last
two displayed lines. But how and by how much? This is the prototypical question we
are addressing in this book.

Let us now examine the counting of alternating permutations. In 1881, the French
mathematician Désiré André made a startling discovery. Look at the first terms of the
Taylor expansion of the trigonometric function tan z:

tan z = 1
z

1!
+ 2

z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ 7936

z9

9!
+ 353792

z11

11!
+ · · · .

The counting sequence for alternating permutations, 1, 2, 16, . . ., curiously surfaces.
We say that the function on the left is a generating function for the numerical se-
quence (precisely, a generating function of the exponential type, due to the presence
of factorials in the denominators).
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André’s derivation may nowadays be viewed very simply as reflecting the con-
struction of permutations by means of certain labelled binary trees (Figure 0.1 and
p. 143): given a permutation σ a tree can be obtained once σ has been decomposed as
a triple 〈σL ,max, σR〉, by taking the maximum element as the root, and appending, as
left and right subtrees, the trees recursively constructed from σL and σR . Part A of this
book develops at length symbolic methods by which the construction of the class T of
all such trees,

T = 1 ∪ (T ,max , T ) ,
translates into an equation relating generating functions,

T (z) = z +
∫ z

0
T (w)2 dw.

In this equation, T (z) := ∑
n Tnzn/n! is the exponential generating function of the

sequence (Tn), where Tn is the number of alternating permutations of (odd) length n.
There is a compelling formal analogy between the combinatorial specification and
its generating function: Unions (∪) give rise to sums (+), max-placement gives an
integral (

∫
), forming a pair of trees corresponds to taking a square ([·]2).

At this stage, we know that T (z) must solve the differential equation

d

dz
T (z) = 1 + T (z)2, T (0) = 0,

which, by classical manipulations2, yields the explicit form

T (z) = tan z.

The generating function then provides a simple algorithm to compute the coefficients
recurrently. Indeed, the formula,

tan z = sin z

cos z
= z − z3

3! + z5

5! − · · ·
1 − z2

2! + z4

4! − · · ·
,

implies, for n odd, the relation (extract the coefficient of zn in T (z) cos z = sin z)

Tn −
(

n

2

)
Tn−2 +

(
n

4

)
Tn−4 − · · · = (−1)(n−1)/2, where

(
a

b

)
= a!

b!(a − b)!

is the conventional notation for binomial coefficients. Now, the exact enumeration
problem may be regarded as solved since a very simple algorithm is available for
determining the counting sequence, while the generating function admits an explicit
expression in terms of well-known mathematical objects.

ANALYSIS, by which we mean mathematical analysis, is often described as the
art and science of approximation. How fast do the factorial and the tangent number
sequences grow? What about comparing their growths? These are typical problems
of analysis.

2We have T ′/(1 + T 2) = 1, hence arctan(T ) = z and T = tan z.
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z
K6 K4 K2 0 2 4 6

K4

K2

2

4

Figure 0.2. Two views of the function z 	→ tan z. Left: a plot for real values of z ∈
[−6, 6]. Right: the modulus | tan z| when z = x + iy (with i = √−1) is assigned
complex values in the square ±6 ± 6i . As developed at length in Part B, it is the
nature of singularities in the complex domain that matters.

First, consider the number of permutations, n!. Quantifying its growth, as n gets
large, takes us to the realm of asymptotic analysis. The way to express factorial num-
bers in terms of elementary functions is known as Stirling’s formula3

n! ∼ nne−n
√

2πn,

where the ∼ sign means “approximately equal” (in the precise sense that the ratio of
both terms tends to 1 as n gets large). This beautiful formula, associated with the
name of the Scottish mathematician James Stirling (1692–1770), curiously involves
both the basis e of natural logarithms and the perimeter 2π of the circle. Certainly,
you cannot get such a thing without analysis. As a first step, there is an estimate

log n! =
n∑

j=1

log j ∼
∫ n

1
log x dx ∼ n log

(n

e

)
,

explaining at least the nne−n term, but already requiring a certain amount of elemen-
tary calculus. (Stirling’s formula precisely came a few decades after the fundamental
bases of calculus had been laid by Newton and Leibniz.) Note the utility of Stirling’s
formula: it tells us almost instantly that 100! has 158 digits, while 1000! borders the
astronomical 102568.

We are now left with estimating the growth of the sequence of tangent numbers,
Tn . The analysis leading to the derivation of the generating function tan(z) has been
so far essentially algebraic or “formal”. Well, we can plot the graph of the tangent
function, for real values of its argument and see that the function becomes infinite at
the points ±π

2 , ±3π2 , and so on (Figure 0.2). Such points where a function ceases to be

3In this book, we shall encounter five different proofs of Stirling’s formula, each of interest for its
own sake: (i) by singularity analysis of the Cayley tree function (p. 407); (i i) by singularity analysis of
polylogarithms (p. 410); (i i i) by the saddle-point method (p. 555); (iv) by Laplace’s method (p. 760);
(v) by the Mellin transform method applied to the logarithm of the Gamma function (p. 766).
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“smooth” (differentiable) are called singularities. By methods amply developed in this
book, it is the local nature of a generating function at its “dominant” singularities (i.e.,
the ones closest to the origin) that determines the asymptotic growth of the sequence of
coefficients. From this perspective, the basic fact that tan z has dominant singularities
at ±π

2 enables us to reason as follows: first approximate the generating function tan z
near its two dominant singularities, namely,

tan(z) ∼
z→±π/2

8z

π2 − 4z2
;

then extract coefficients of this approximation; finally, get in this way a valid approx-
imation of coefficients:

Tn

n!
∼

n→∞ 2 ·
(

2

π

)n+1

(n odd).

With present day technology, we also have available symbolic manipulation sys-
tems (also called “computer algebra” systems) and it is not difficult to verify the ac-
curacy of our estimates. Here is a small pyramid for n = 3, 5, . . . , 21,

2 1
16 1 5

272 27 1
7936 793 5

353792 35379 1
22368256 2236825 1

1903757312 1903757 267
209865342976 20986534 2434

29088885112832 290888851 04489
4951498053124096 495149805 2966307

(Tn) (T �
n )

comparing the exact values of Tn against the approximations T �
n , where (n odd)

T �
n :=

⌊
2 · n!

(
2

π

)n+1
⌋
,

and discrepant digits of the approximation are displayed in bold. For n = 21, the error
is only of the order of one in a billion. Asymptotic analysis (p. 269) is in this case
wonderfully accurate.

In the foregoing discussion, we have played down a fact—one that is important.
When investigating generating functions from an analytic standpoint, one should gen-
erally assign complex values to arguments not just real ones. It is singularities in the
complex plane that matter and complex analysis is needed in drawing conclusions re-
garding the asymptotic form of coefficients of a generating function. Thus, a large
portion of this book relies on a complex analysis technology, which starts to be de-
veloped in Part B dedicated to Complex asymptotics. This approach to combinatorial
enumeration parallels what happened in the nineteenth century, when Riemann first
recognized the deep relation between complex analytic properties of the zeta function,
ζ(s) := ∑

1/ns , and the distribution of primes, eventually leading to the long-sought
proof of the Prime Number Theorem by Hadamard and de la Vallée-Poussin in 1896.
Fortunately, relatively elementary complex analysis suffices for our purposes, and we
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Figure 0.3. The collection of binary trees with n = 0, 1, 2, 3 binary nodes, with
respective cardinalities 1, 1, 2, 5.

can include in this book a complete treatment of the fragment of the theory needed to
develop the fundamentals of analytic combinatorics.

Here is yet another example illustrating the close interplay between combina-
torics and analysis. When discussing alternating permutations, we have enumerated
binary trees bearing distinct integer labels that satisfy a constraint—to decrease along
branches. What about the simpler problem of determining the number of possible
shapes of binary trees? Let Cn be the number of binary trees that have n binary
branching nodes, hence n + 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values of n (Figure 0.3), from which we determine that

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

These numbers are probably the most famous ones of combinatorics. They have come
to be known as the Catalan numbers as a tribute to the Franco-Belgian mathemati-
cian Eugène Charles Catalan (1814–1894), but they already appear in the works of
Euler and Segner in the second half of the eighteenth century (see p. 20). In his refer-
ence treatise Enumerative Combinatorics, Stanley, over 20 pages, lists a collection of
some 66 different types of combinatorial structures that are enumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very much in the style of what has
been done earlier, but without labels:

C = � ∪ (C, • , C) .
(Here, the �–symbol represents an external node.) With symbolic methods, it is easy
to see that the ordinary generating function of the Catalan numbers, defined as

C(z) :=
∑
n≥0

Cnzn,

satisfies an equation that is a direct reflection of the combinatorial definition, namely,

C(z) = 1 + z C(z)2.

This is a quadratic equation whose solution is

C(z) = 1 −√
1 − 4z

2z
.
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Figure 0.4. Left: the real values of the Catalan generating function, which has a
square-root singularity at z = 1

4 . Right: the ratio Cn/(4nn−3/2) plotted together
with its asymptote at 1/

√
π

.= 0.56418. The correspondence between singularities
and asymptotic forms of coefficients is the central theme of Part B.

Then, by means of Newton’s theorem relative to the expansion of (1 + x)α , one finds
easily (x = −4z, α = 1

2 ) the closed form expression

Cn = 1

n + 1

(
2n

n

)
.

Stirling’s asymptotic formula now comes to the rescue: it implies

Cn ∼ C�
n where C�

n := 4n

√
πn3

.

This last approximation is quite usable4: it gives C�
1
.= 2.25 (whereas C1 = 1), which

is off by a factor of 2, but the error drops to 10% already for n = 10, and it appears to
be less than 1% for any n ≥ 100.

A plot of the generating function C(z) in Figure 0.4 illustrates the fact that C(z)
has a singularity at z = 1

4 as it ceases to be differentiable (its derivative becomes infi-
nite). That singularity is quite different from a pole and for natural reasons it is known
as a square-root singularity. As we shall see repeatedly, under suitable conditions
in the complex plane, a square root singularity for a function at a point ρ invariably
entails an asymptotic form ρ−nn−3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in order to deduce an asymptotic
approximation of its coefficients. This correspondence is a major theme of the book,
one that motivates the five central chapters (Chapters IV to VIII).

A consequence of the complex analytic vision of combinatorics is the detection of
universality phenomena in large random structures. (The term is originally borrowed
from statistical physics and is nowadays finding increasing use in areas of mathema-
tics such as probability theory.) By universality is meant here that many quantitative

4We use α
.= d to represent a numerical approximation of the real α by the decimal d, with the last

digit of d being at most ±1 from its actual value.
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properties of combinatorial structures only depend on a few global features of their
definitions, not on details. For instance a growth in the counting sequence of the form

K · Ann−3/2,

arising from a square-root singularity, will be shown to be universal across all varieties
of trees determined by a finite set of allowed node degrees—this includes unary–
binary trees, ternary trees, 0–11–13 trees, as well as many variations such as non-plane
trees and labelled trees. Even though generating functions may become arbitrarily
complicated—as in an algebraic function of a very high degree or even the solution to
an infinite functional equation—it is still possible to extract with relative ease global
asymptotic laws governing counting sequences.

RANDOMNESS is another ingredient in our story. How useful is it to determine,
exactly or approximately, counts that may be so large as to require hundreds if not
thousands of digits in order to be written down? Take again the example of alter-
nating permutations. When estimating their number, we have indeed quantified the
proportion of these among all permutations. In other words, we have been predicting
the probability that a random permutation of some size n is alternating. Results of
this sort are of interest in all branches of science. For instance, biologists routinely
deal with genomic sequences of length 105, and the interpretation of data requires de-
veloping enumerative or probabilistic models where the number of possibilities is of
the order of 4105

. The language of probability theory then proves of great convenience
when discussing characteristic parameters of discrete structures, since we can interpret
exact or asymptotic enumeration results as saying something concrete about the like-
lihood of values that such parameters assume. Equally important of course are results
from several areas of probability theory: as demonstrated in the last chapter of this
book, such results merge extremely well with the analytic–combinatorial framework.

Say we are now interested in runs in permutations. These are the longest frag-
ments of a permutation that already appear in (increasing) sorted order. Here is a
permutation with 4 runs, separated by vertical bars:

2 5 8 | 3 9 | 1 4 7 | 6 .

Runs naturally present in a permutation are for instance exploited by a sorting algo-
rithm called “natural list mergesort”, which builds longer and longer runs, starting
from the original ones and merging them until the permutation is eventually sorted.
For our understanding of this algorithm, it is then of obvious interest to quantify how
many runs a permutation is likely to have.

Let Pn,k be the number of permutations of size n having k runs. Then, the problem
is once more best approached by generating functions and one finds that the coefficient
of uk zn inside the bivariate generating function,

P(z, u) ≡ 1 − u

1 − uez(1−u)
= 1 + zu + z2

2!
u(u + 1)+ z3

3!
u(u2 + 4u + 1)+ · · · ,

gives the desired numbers Pn,k/n!. (A simple way of establishing the last formula
bases itself on the tree decomposition of permutations and on the symbolic method;
the numbers Pn,k , whose importance seems to have been first recognized by Euler,
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Figure 0.5. Left: A partial plot of the real values of the Eulerian generating function
z 	→ P(z, u) for z ∈ [0, 5

4 ], illustrates the presence of a movable pole for A as u

varies between 0 and 5
4 . Right: A suitable superposition of the histograms of the

distribution of the number of runs, for n = 2, . . . , 60, reveals the convergence to a
Gaussian distribution (p. 695). Part C relates systematically the analysis of such a
collection of singular behaviours to limit distributions.

are related to the Eulerian numbers, p. 210.) From here, we can easily determine
effectively the mean, variance, and even the higher moments of the number of runs
that a random permutation has: it suffices to expand blindly, or even better with the
help of a computer, the bivariate generating function above as u → 1:

1

1 − z
+ 1

2

z (2 − z)

(1 − z)2
(u − 1)+ 1

2

z2
(
6 − 4 z + z2

)
(1 − z)3

(u − 1)2 + · · · .

When u = 1, we just enumerate all permutations: this is the constant term 1/(1 − z)
equal to the exponential generating function of all permutations. The coefficient of
the term u − 1 gives the generating function of the mean number of runs, the next one
provides the second moment, and so on. In this way, we discover the expectation and
standard deviation of the number of runs in a permutation of size n:

μn = n + 1

2
, σn =

√
n + 1

12
.

Then, by easy analytic–probabilistic inequalities (Chebyshev inequalities) that other-
wise form the basis of what is known as the second moment method, we learn that the
distribution of the number of runs is concentrated around its mean: in all likelihood,
if one takes a random permutation, the number of its runs is going to be very close to
its mean. The effects of such quantitative laws are quite tangible. It suffices to draw a
sample of one element for n = 30 to get, for instance:

13, 22, 29|12, 15, 23|8, 28|18|6, 26|4, 10, 16|1, 5, 27|3, 14, 17, 20|2, 21, 30|25|11, 19|9|7, 24.

For n = 30, the mean is 15 1
2 , and this sample comes rather close as it has 13 runs.

We shall furthermore see in Chapter IX that even for moderately large permutations
of size 10 000 and beyond, the probability for the number of observed runs to deviate
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Figure 0.6. Left: The bivariate generating function z 	→ C(z, u) enumerating binary
trees by size and number of leaves exhibits consistently a square-root singularity, for
several values of u. Right: a binary tree of size 300 drawn uniformly at random has
69 leaves. As shown in Part C, singularity perturbation properties are at the origin of
many randomness properties of combinatorial structures.

by more than 10% from the mean is less than 10−65. As witnessed by this example,
much regularity accompanies properties of large combinatorial structures.

More refined methods combine the observation of singularities with analytic re-
sults from probability theory (e.g., continuity theorems for characteristic functions). In
the case of runs in permutations, the quantity P(z, u) viewed as a function of z when u
is fixed appears to have a pole: this fact is suggested by Figure 0.5 [left]. Then we are
confronted with a fairly regular deformation of the generating function of all permu-
tations. A parameterized version (with parameter u) of singularity analysis then gives
access to a description of the asymptotic behaviour of the Eulerian numbers Pn,k . This
enables us to describe very precisely what goes on: in a random permutation of large
size n, once it has been centred by its mean and scaled by its standard deviation, the
distribution of the number of runs is asymptotically Gaussian; see Figure 0.5 [right].

A somewhat similar type of situation prevails for binary trees. Say we are inter-
ested in leaves (also sometimes figuratively known as “cherries”) in trees: these are bi-
nary nodes that are attached to two external nodes (�). Let Cn,k be the number of trees
of size n having k leaves. The bivariate generating function C(z, u) := ∑

n,k Cn,k znuk

encodes all the information relative to leaf statistics in random binary trees. A mod-
ification of previously seen symbolic arguments shows that C(z, u) still satisfies a
quadratic equation resulting in the explicit form,

C(z, u) = 1 −
√

1 − 4z + 4z2(1 − u)

2z
.

This reduces to C(z) for u = 1, as it should, and the bivariate generating func-
tion C(z, u) is a deformation of C(z) as u varies. In fact, the network of curves of
Figure 0.6 for several fixed values of u illustrates the presence of a smoothly varying
square-root singularity (the aspect of each curve is similar to that of Figure 0.4). It is
possible to analyse the perturbation induced by varying values of u, to the effect that
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Figure 0.7. The logical structure of Analytic Combinatorics.

C(z, u) is of the global analytic type√
1 − z

ρ(u)
,

for some analytic ρ(u). The already evoked process of singularity analysis then shows
that the probability generating function of the number of leaves in a tree of size n is of
the rough form (

ρ(1)

ρ(u)

)n

(1 + o(1)) .

This is known as a “quasi-powers” approximation. It resembles very much the
probability generating function of a sum of n independent random variables, a sit-
uation that gives rise to the classical Central Limit Theorem of probability theory.
Accordingly, one gets that the limit distribution of the number of leaves in a large
random binary tree is Gaussian. In abstract terms, the deformation induced by the
secondary parameter (here, the number of leaves, previously, the number of runs) is
susceptible to a perturbation analysis, to the effect that a singularity gets smoothly
displaced without changing its nature (here, a square root singularity, earlier a pole)
and a limit law systematically results. Again some of the conclusions can be verified
even by very small samples: the single tree of size 300 drawn at random and dis-
played in Figure 0.6 (right) has 69 leaves, whereas the expected value of this number
is
.= 75.375 and the standard deviation is a little over 4. In a large number of cases of

which this one is typical, we find metric laws of combinatorial structures that govern
large structures with high probability and eventually make them highly predictable.

Such randomness properties form the subject of Part C of this book dedicated to
random structures. As our earlier description implies, there is an extreme degree of
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generality in this analytic approach to combinatorial parameters, and after reading this
book, the reader will be able to recognize by herself dozens of such cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEW of combinatorics emerges from the previous discus-
sion; see Figure 0.7. A combinatorial class, as regards its enumerative properties, can
be viewed as a surface in four-dimensional real space: this is the graph of its gener-
ating function, considered as a function from the set C ∼= R2 of complex numbers to
itself, and is otherwise known as a Riemann surface. This surface has “cracks”, that is,
singularities, which determine the asymptotic behaviour of the counting sequence. A
combinatorial construction (such as those freely forming sequences, sets, and so on)
can then be examined through the effect it has on singularities. In this way, seemingly
different types of combinatorial structures appear to be subject to common laws gov-
erning not only counting but also finer characteristics of combinatorial structures. For
the already discussed case of universality in tree enumerations, additional universal
laws valid across many tree varieties constrain for instance height (which, with high
probability, is proportional to the square root of size) and the number of leaves (which
is invariably normal in the asymptotic limit).

What happens regarding probabilistic properties of combinatorial parameters is
this. A parameter of a combinatorial class is fully determined by a bivariate generating
function, which is a deformation of the basic counting generating function of the class
(in the sense that setting the secondary variable u to 1 erases the information relative
to the parameter and leads back to the univariate counting generating function). Then,
the asymptotic distribution of a parameter of interest is characterized by a collection
of surfaces, each having its own singularities. The way the singularities’ locations
move or their nature changes under deformation encodes all the necessary informa-
tion regarding the distribution of the parameter under consideration. Limit laws for
combinatorial parameters can then be obtained and the corresponding phenomena can
be organized into broad categories, called schemas. It would be inconceivable to attain
such a far-reaching classification of metric properties of combinatorial structures by
elementary real analysis alone.

Objects on which we are going to inflict the treatments just described include
many of the most important ones of discrete mathematics, as well as the ones that sur-
face recurrently in several branches of the applied sciences. We shall thus encounter
words and sequences, trees and lattice paths, graphs of various sorts, mappings, al-
locations, permutations, integer partitions and compositions, polyominoes and pla-
nar maps, to name but a few. In most cases, their principal characteristics will be
finely quantified by the methods of analytic combinatorics. This book indeed devel-
ops a coherent theory of random combinatorial structures based on a powerful analytic
methodology. Literally dozens of quite diverse combinatorial types can then be treated
by a logically transparent chain. You will not find ready-made answers to all questions
in this book, but, hopefully, methods that can be successfully used to address a great
many of them.

Bienvenue! Welcome!
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Combinatorial Structures and
Ordinary Generating Functions

Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series

and put it to great use to solve a variety of combinatorial problems.

— GIAN–CARLO ROTA [518]

I. 1. Symbolic enumeration methods 16
I. 2. Admissible constructions and specifications 24
I. 3. Integer compositions and partitions 39
I. 4. Words and regular languages 49
I. 5. Tree structures 64
I. 6. Additional constructions 83
I. 7. Perspective 92

This chapter and the next are devoted to enumeration, where the problem is to deter-
mine the number of combinatorial configurations described by finite rules, and do so
for all possible sizes. For instance, how many different words are there of length 17?
Of length n, for general n? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? The solutions are exactly
encoded by generating functions, and, as we shall see, generating functions are the
central mathematical object of combinatorial analysis. We examine here a framework
that, contrary to traditional treatments based on recurrences, explains the surprising
efficiency of generating functions in the solution of combinatorial enumeration prob-
lems.

This chapter serves to introduce the symbolic approach to combinatorial enumer-
ations. The principle is that many general set-theoretic constructions admit a direct
translation as operations over generating functions. This principle is made concrete by
means of a dictionary that includes a collection of core constructions, namely the op-
erations of union, cartesian product, sequence, set, multiset, and cycle. Supplementary
operations such as pointing and substitution can also be similarly translated. In this
way, a language describing elementary combinatorial classes is defined. The problem
of enumerating a class of combinatorial structures then simply reduces to finding a
proper specification, a sort of computer program for the class expressed in terms of
the basic constructions. The translation into generating functions becomes, after this,
a purely mechanical symbolic process.

We show here how to describe in such a context integer partitions and compo-
sitions, as well as many word and tree enumeration problems, by means of ordinary

15
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generating functions. A parallel approach, developed in Chapter II, applies to labelled
objects—in contrast the plain structures considered in this chapter are called unla-
belled. The methodology is susceptible to multivariate extensions with which many
characteristic parameters of combinatorial objects can also be analysed in a unified
manner: this is to be examined in Chapter III. The symbolic method also has the great
merit of connecting nicely with complex asymptotic methods that exploit analyticity
properties and singularities, to the effect that precise asymptotic estimates are usually
available whenever the symbolic method applies—a systematic treatment of these as-
pects forms the basis of Part B of this book Complex asymptotics (Chapters IV–VIII).

I. 1. Symbolic enumeration methods

First and foremost, combinatorics deals with discrete objects, that is, objects that
can be finitely described by construction rules. Examples are words, trees, graphs,
permutations, allocations, functions from a finite set into itself, topological configu-
rations, and so on. A major question is to enumerate such objects according to some
characteristic parameter(s).

Definition I.1. A combinatorial class, or simply a class, is a finite or denumerable set
on which a size function is defined, satisfying the following conditions:

(i) the size of an element is a non-negative integer;
(i i) the number of elements of any given size is finite.

If A is a class, the size of an element α ∈ A is denoted by |α|, or |α|A in the few cases
where the underlying class needs to be made explicit. Given a class A, we consistently
denote by An the set of objects in A that have size n and use the same group of letters
for the counts An = card(An) (alternatively, also an = card(An)). An axiomatic
presentation is then as follows: a combinatorial class is a pair (A, | · |) where A is at
most denumerable and the mapping | · | ∈ (A 	→ Z≥0) is such that the inverse image
of any integer is finite.

Definition I.2. The counting sequence of a combinatorial class is the sequence of
integers (An)n≥0 where An = card(An) is the number of objects in class A that have
size n.

Example I.1. Binary words. Consider first the set W of binary words, which are sequences of
elements taken from the binary alphabet A = {0,1},

W := {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , 1001101, . . . },
with ε the empty word. Define size to be the number of letters that a word comprises. There are
two possibilities for each letter and possibilities multiply, so that the counting sequence (Wn)

satisfies

Wn = 2n .

(This sequence has a well-known legend associated with the invention of the game of chess: the
inventor was promised by his king one grain of rice for the first square of the chessboard, two
for the second, four for the third, and so on. The king naturally could not deliver the promised
264 − 1 grains!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Figure I.1. The collection T of all triangulations of regular polygons (with size de-
fined as the number of triangles) is a combinatorial class, whose counting sequence
starts as T0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

Example I.2. Permutations. A permutation of size n is by definition a bijective mapping of the
integer interval1 In := [1 . . n]. It is thus representable by an array,(

1 2 n
σ1 σ2 · · · σn

)
,

or equivalently by the sequence σ1σ2 · · · σn of its distinct elements. The set P of permutations
is

P = {. . . , 12, 21, 123, 132, 213, 231, 312, 321, 1234, . . . , 532614, . . . },
For a permutation written as a sequence of n distinct numbers, there are n places where one can
accommodate n, then n − 1 remaining places for n − 1, and so on. Therefore, the number Pn
of permutations of size n satisfies

Pn = n! = 1 · 2 · . . . · n .

As indicated in our Invitation chapter (p. 2), this formula has been known for at least fifteen
centuries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example I.3. Triangulations. The class T of triangulations comprises triangulations of con-
vex polygonal domains which are decompositions into non-overlapping triangles (taken up to
smooth deformations of the plane). We define the size of a triangulation to be the number of tri-
angles it is composed of. For instance, a convex quadrilateral ABC D can be decomposed into
two triangles in two ways (by means of either the diagonal AC or the diagonal B D); similarly,
there are five different ways to dissect a convex pentagon into three triangles: see Figure I.1.
Agreeing that T0 = 1, we then find

T0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

It is a non-trivial combinatorial result due to Euler and Segner [146, 196, 197] around 1750 that
the number Tn of triangulations is

(1) Tn = 1

n + 1

(
2n

n

)
= (2n)!

(n + 1)! n!
,

a central quantity of combinatorial analysis known as a Catalan number: see our Invitation,
p. 7, the historical synopsis on p. 20, the discussion on p. 35, and Subsection I. 5.3, p. 73.

1We borrow from computer science the convenient practice of denoting an integer interval by 1 . . n or
[1 . . n], whereas [0, n] represents a real interval.
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Following Euler [196], the counting of triangulations is best approached by generating
functions: see again Figure I.2, p. 20 for historical context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Although the previous three examples are simple enough, it is generally a good
idea, when confronted with a combinatorial enumeration problem, to determine the
initial values of counting sequences, either by hand or better with the help of a com-
puter, somehow. Here, we find:

(2)

n 0 1 2 3 4 5 6 7 8 9 10

Wn 1 2 4 8 16 32 64 128 256 512 1024

Pn 1 1 2 6 24 120 720 5040 40320 362880 3628800

Tn 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identify sequences. For instance,
had we not known the formula (1) for triangulations, observing unusual factorizations
such as

T40 = 22 · 5 · 72 · 11 · 23 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79,

which contains all prime numbers from 43 to 79 and no prime larger than 80, would
quickly put us on the track of the right formula. There even exists nowadays a huge
On-line Encyclopedia of Integer Sequences (EIS) due to Sloane that is available in
electronic form [543] (see also an earlier book by Sloane and Plouffe [544]) and con-
tains more than 100 000 sequences. Indeed, the three sequences (Wn), (Pn), and (Tn)

are respectively identified2 as EIS A000079, EIS A000142, and EIS A000108.
� I.1. Necklaces. How many different types of necklace designs can you form with n beads,
each having one of two colours, ◦ and •, where it is postulated that orientation matters? Here
are the possibilities for n = 1, 2, 3,

.

This is equivalent to enumerating circular arrangements of two letters and an exhaustive listing
program can be based on the smallest lexicographical representation of each word, as suggested
by (20), p. 26. The counting sequence starts as 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352 and
constitutes EIS A000031. [An explicit formula appears later in this chapter (p. 64).] What if
two necklace designs that are mirror images of one another are identified? �

� I.2. Unimodal permutations. Such a permutation has exactly one local maximum. In other
words it is of the form σ1 · · · σn with σ1 < σ2 < · · · < σk = n and σk = n > σk+1 > · · · > σn ,
for some k ≥ 1. How many such permutations are there of size n? For n = 5, the number is 16:
the permutations are 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their
reversals. [Due to Jon Perry, see EIS A000079.] �

It is also of interest to note that words and permutations may be enumerated using
the most elementary counting principles, namely, for finite sets B and C

(3)

⎧⎨⎩ card(B ∪ C) = card(B)+ card(C) (provided B ∩ C = ∅)

card(B × C) = card(B) · card(C).

2Throughout this book, a reference such EIS Axxx points to Sloane’s Encyclopedia of Integer Se-
quences [543]. The database contains more than 100 000 entries.
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We shall see soon that these principles, which lie at the basis of our very concept of
number, admit a powerful generalization (Equation (19), p. 23, below).

Next, for combinatorial enumeration purposes, it proves convenient to identify
combinatorial classes that are merely variants of one another.

Definition I.3. Two combinatorial classes A and B are said to be (combinatorially)
isomorphic, which is written A ∼= B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection from A to B that preserves size,
and one also says that A and B are bijectively equivalent.

We normally identify isomorphic classes and accordingly employ a plain equality
sign (A = B). We then confine the notation A ∼= B to stress cases where combinato-
rial isomorphism results from some non-trivial transformation.

Definition I.4. The ordinary generating function (OGF) of a sequence (An) is the
formal power series

(7) A(z) =
∞∑

n=0

Anzn .

The ordinary generating function (OGF) of a combinatorial class A is the generating
function of the numbers An = card(An). Equivalently, the OGF of class A admits the
combinatorial form

(8) A(z) =
∑
α∈A

z|α|.

It is also said that the variable z marks size in the generating function.

The combinatorial form of an OGF in (8) results straightforwardly from observing
that the term zn occurs as many times as there are objects in A having size n. We stress
the fact that, at this stage and throughout Part A, generating functions are manipulated
algebraically as formal sums; that is, they are considered as formal power series (see
the framework of Appendix A.5: Formal power series, p. 730)

Naming convention. We adhere to a systematic naming convention: classes, their
counting sequences, and their generating functions are systematically denoted by the
same groups of letters: for instance, A for a class, {An} (or {an}) for the counting
sequence, and A(z) (or a(z)) for its OGF.

Coefficient extraction. We let generally [zn] f (z) denote the operation of extract-
ing the coefficient of zn in the formal power series f (z) = ∑

fnzn , so that

(9) [zn]

⎛⎝∑
n≥0

fnzn

⎞⎠ = fn .

(The coefficient extractor [zn] f (z) reads as “coefficient of zn in f (z)”.)
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1. On September 4, 1751, Euler writes to his friend Goldbach [196]:
Ich bin neulich auf eine Betrachtung gefallen,
welche mir nicht wenig merkwürdig vorkam.
Dieselbe betrifft, auf wie vielerley Arten ein
gegebenes polygonum durch Diagonallinien in
triangula zerchnitten werden könne.

I have recently encountered a question, which
appears to me rather noteworthy. It concerns
the number of ways in which a given [convex]
polygon can be decomposed into triangles by
diagonal lines.

Euler then describes the problem (for an n–gon, i.e., (n − 2) triangles) and concludes:
Setze ich nun die Anzahl dieser verschiedenen
Arten = x [. . . ]. Hieraus habe ich nun den
Schluss gemacht, dass generaliter sey

x = 2.6.10.14....(4n − 10)

2.3.4.5....(n − 1)

[. . . ] Ueber die Progression der Zahlen
1, 2, 5, 14, 42, 132, etc. habe ich auch diese
Eigenschaft angemerket, dass 1 + 2a + 5a2 +
14a3 + 42a4 + 132a5 + etc. = 1−2a−√

1−4a
2aa .

Let me now denote by x this number of ways
[. . . ]. I have then reached the conclusion that
in all generality

x = 2.6.10.14....(4n − 10)

2.3.4.5....(n − 1)

[. . . ] Regarding the progression of the numbers
1, 2, 5, 14, 42, 132, and so on, I have also ob-
served the following property: 1+ 2a + 5a2 +
14a3 + 42a4 + 132a5 + etc. = 1−2a−√

1−4a
2aa .

Thus, as early as 1751, Euler knew the solution as well as the associated generating function.
From his writing, it is however unclear whether he had found complete proofs.

2. In the course of the 1750s, Euler communicated the problem, together with initial elements
of the counting sequence, to Segner, who writes in his publication [146] dated 1758: “The
great Euler has benevolently communicated these numbers to me; the way in which he found
them, and the law of their progression having remained hidden to me” [“quos numeros mecum
beneuolus communicauit summus Eulerus; modo, quo eos reperit, atque progressionis ordine,
celatis”]. Segner develops a recurrence approach to Catalan numbers. By a root decomposition
analogous to ours, on p. 35, he proves (in our notation, for decompositions into n triangles)

(4) Tn =
n−1∑
k=0

Tk Tn−1−k , T0 = 1,

a recurrence by which the Catalan numbers can be computed to any desired order. (Segner’s
work was to be reviewed in [197], anonymously, but most probably, by Euler.)

3. During the 1830s, Liouville circulated the problem and wrote to Lamé, who answered the
next day(!) with a proof [399] based on recurrences similar to (4) of the explicit expression:

(5) Tn = 1

n + 1

(
2n

n

)
.

Interestingly enough, Lamé’s three-page note [399] appeared in the 1838 issue of the Jour-
nal de mathématiques pures et appliquées (“Journal de Liouville”), immediately followed by
a longer study by Catalan [106], who also observed that the Tn intervene in the number of
ways of multiplying n numbers (this book, §I. 5.3, p. 73). Catalan would then return to these
problems [107, 108], and the numbers 1, 1, 2, 5, 14, 42, . . . eventually became known as the
Catalan numbers. In [107], Catalan finally proves the validity of Euler’s generating function:

(6) T (z) :=
∑

n
Tnzn = 1 −√

1 − 4z

2z
.

4. Nowadays, symbolic methods directly yield the generating function (6), from which both the
recurrence (4) and the explicit form (5) follow easily; see pp. 6 and 35.

Figure I.2. The prehistory of Catalan numbers.
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Figure I.3. A molecule, methylpyrrolidinyl-pyridine (nicotine), is a complex as-
sembly whose description can be reduced to a single formula corresponding here to a
total of 26 atoms.

The OGFs corresponding to our three examples W,P, T are then

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (z) =
∞∑

n=0

2nzn = 1

1 − 2z

P(z) =
∞∑

n=0

n! zn

T (z) =
∞∑

n=0

1

n + 1

(
2n

n

)
zn = 1 −√

1 − 4z

2z
.

The first expression relative to W (z) is immediate as it is the sum of a geometric
progression. The second generating function P(z) is not clearly related to simple
functions of analysis. (Note that the expression still makes sense within the strict
framework of formal power series.) The third expression relative to T (z) is equivalent
to the explicit form of Tn via Newton’s expansion of (1 + x)1/2 (pp. 7 and 35 as well
as Figure I.2). The OGFs W (z) and T (z) can then be interpreted as standard analytic
objects, upon assigning values in the complex domain C to the formal variable z.
In effect, the series W (z) and T (z) converge in a neighbourhood of 0 and represent
complex functions that are well defined near the origin, namely when |z| < 1

2 for W (z)

and |z| < 1
4 for T (z). The OGF P(z) is a purely formal power series (its radius of

convergence is 0) that can nonetheless be subjected to the usual algebraic operations
of power series. (Permutation enumeration is most conveniently approached by the
exponential generating functions developed in Chapter II.)

Combinatorial form of generating functions (GFs). The combinatorial form (8)
shows that generating functions are nothing but a reduced representation of the com-
binatorial class, where internal structures are destroyed and elements contributing to
size (atoms) are replaced by the variable z. In a sense, this is analogous to what
chemists do by writing linear reduced (“molecular”) formulae for complex molecules
(Figure I.3). Great use of this observation was made by Schützenberger as early as the
1950s and 1960s. It explains the many formal similarities that are observed between
combinatorial structures and generating functions.
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H =

zzzz zz zzz zzzz z zzzz zzz

+ z4 + z2 + z3 + z4 + z + z4 + z3

H(z) = z + z2 + 2z3 + 3z4

Figure I.4. A finite family of graphs and its eventual reduction to a generating function.

Figure I.4 provides a combinatorial illustration: start with a (finite) family of
graphs H, with size taken as the number of vertices. Each vertex in each graph is
replaced by the variable z and the graph structure is “forgotten”; then the monomials
corresponding to each graph are formed and the generating function is finally obtained
by gathering all the monomials.

For instance, there are 3 graphs of size 4 in H, in agreement with the fact that
[z4]H(z) = 3. If size had been instead defined by number of edges, another generating
function would have resulted, namely, with y marking the new size: 1+ y+ y2+2y3+
y4+y6. If both number of vertices and number of edges are of interest, then a bivariate
generating function is obtained: H(z, y) = z+z2 y+z3 y2+z3 y3+z4 y3+z4 y4+z4 y6;
such multivariate generating functions are developed systematically in Chapter III.

A path often taken in the literature is to decompose the structures to be enumer-
ated into smaller structures either of the same type or of simpler types, and then extract
from such a decomposition recurrence relations that are satisfied by the {An}. In this
context, the recurrence relations are either solved directly—whenever they are simple
enough—or by means of ad hoc generating functions, introduced as mere technical
artifices.

By contrast, in the framework of this book, classes of combinatorial structures
are built directly in terms of simpler classes by means of a collection of elementary
combinatorial constructions. This closely resembles the description of formal lan-
guages by means of grammars, as well as the construction of structured data types in
programming languages. The approach developed here has been termed symbolic, as
it relies on a formal specification language for combinatorial structures. Specifically,
it is based on so–called admissible constructions that permit direct translations into
generating functions.

Definition I.5. Let 	 be an m–ary construction that associates to any collection of
classes B(1), . . .B(m) a new class

A = 	[B(1), . . . ,B(m)].

The construction 	 is admissible iff the counting sequence (An) of A only depends on
the counting sequences (B(1)

n ), . . . , (B(m)
n ) of B(1), . . . ,B(m).
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For such an admissible construction, there then exists a well-defined operator 

acting on the corresponding ordinary generating functions:

A(z) = 
[B(1)(z), . . . , B(m)],

and it is this basic fact about admissibility that will be used throughout the book.

As an introductory example, take the construction of cartesian product, which is
the usual one enriched with a natural notion of size.

Definition I.6. The cartesian product construction applied to two classes B and C
forms ordered pairs,

(11) A = B × C iff A = {α = (β, γ ) | β ∈ B, γ ∈ C },
with the size of a pair α = (β, γ ) being defined by

(12) |α|A = |β|B + |γ |C .
By considering all possibilities, it is immediately seen that the counting sequences

corresponding to A,B, C are related by the convolution relation

(13) An =
n∑

k=0

BkCn−k,

which means admissibility. Furthermore, we recognize here the formula for a product
of two power series:

(14) A(z) = B(z) · C(z).

In summary: the cartesian product is admissible and it translates as a product of
OGFs.

Similarly, let A,B, C be combinatorial classes satisfying

(15) A = B ∪ C, with B ∩ C = ∅,
with size defined in a consistent manner: for ω ∈ A,

(16) |ω|A =
⎧⎨⎩ |ω|B if ω ∈ B

|ω|C if ω ∈ C.
One has

(17) An = Bn + Cn,

which, at generating function level, means

(18) A(z) = B(z)+ C(z).

Thus, the union of disjoint sets is admissible and it translates as a sum of generating
functions. (A more formal version of this statement is given in the next section.)

The correspondences provided by (11)–(14) and (15)–(18) are summarized by the
strikingly simple dictionary

(19)

⎧⎨⎩ A = B ∪ C �⇒ A(z) = B(z)+ C(z) (provided B ∩ C = ∅)

A = B × C �⇒ A(z) = B(z) · C(z),
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to be compared with the plain arithmetic case of (3), p. 18. The merit of such rela-
tions is that they can be stated as general purpose translation rules that only need to
be established once and for all. As soon as the problem of counting elements of a
union of disjoint sets or a cartesian product is recognized, it becomes possible to dis-
pense altogether with the intermediate stages of writing explicitly coefficient relations
or recurrences as in (13) or (17). This is the spirit of the symbolic method for com-
binatorial enumerations. Its interest lies in the fact that several powerful set-theoretic
constructions are amenable to such a treatment, as we see in the next section.
� I.3. Continuity, Lipschitz and Hölder conditions. An admissible construction is said to be
continuous if it is a continuous function on the space of formal power series equipped with its
standard ultrametric distance (Appendix A.5: Formal power series, p. 730). Continuity captures
the desirable property that constructions depend on their arguments in a finitary way. For all
the constructions of this book, there furthermore exists a function ϑ(n), such that (An) only

depends on the first ϑ(n) elements of the (B(1)k ), . . . , (B(m)k ), with ϑ(n) ≤ K n + L (Hölder

condition) or ϑ(n) ≤ n + L (Lipschitz condition). For instance, the functional f (z) 	→ f (z2)
is Hölder; the functional f (z) 	→ ∂z f (z) is Lipschitz. �

I. 2. Admissible constructions and specifications

The main goal of this section is to introduce formally the basic constructions that
constitute the core of a specification language for combinatorial structures. This core
is based on disjoint unions, also known as combinatorial sums, and on cartesian prod-
ucts that we have just discussed. We shall augment it by the constructions of sequence,
cycle, multiset, and powerset. A class is constructible or specifiable if it can be de-
fined from primal elements by means of these constructions. The generating function
of any such class satisfies functional equations that can be transcribed systematically
from a specification; see Theorems I.1 (p. 27) and I.2 (p. 33), as well as Figure I.18
(p. 93) at the end of this chapter for a summary.

I. 2.1. Basic constructions. First, we assume we are given a class E called the
neutral class that consists of a single object of size 0; any such object of size 0 is
called a neutral object and is usually denoted by symbols such as ε or 1. The reason
for this terminology becomes clear if one considers the combinatorial isomorphism

A ∼= E ×A ∼= A× E .
We also assume as given an atomic class Z comprising a single element of size 1;

any such element is called an atom; an atom may be used to describe a generic node
in a tree or graph, in which case it may be represented by a circle (• or ◦), but also a
generic letter in a word, in which case it may be instantiated as a,b, c, . . . . Distinct
copies of the neutral or atomic class may also be subscripted by indices in various
ways. Thus, for instance, we may use the classes Za = {a}, Zb = {b} (with a,b
of size 1) to build up binary words over the alphabet {a,b}, or Z• = {•}, Z◦ = {◦}
(with •, ◦ taken to be of size 1) to build trees with nodes of two colours. Similarly,
we may introduce E�, E1, E2 to denote a class comprising the neutral objects �, ε1, ε2
respectively.

Clearly, the generating functions of a neutral class E and an atomic class Z are

E(z) = 1, Z(z) = z,
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corresponding to the unit 1, and the variable z, of generating functions.

Combinatorial sum (disjoint union). The intent of combinatorial sum also known
as disjoint union is to capture the idea of a union of disjoint sets, but without any ex-
traneous condition (disjointness) being imposed on the arguments of the construction.
To do so, we formalize the (combinatorial) sum of two classes B and C as the union
(in the standard set-theoretic sense) of two disjoint copies, say B� and C�, of B and
C. A picturesque way to view the construction is as follows: first choose two distinct
colours and repaint the elements of B with the first colour and the elements of C with
the second colour. This is made precise by introducing two distinct “markers”, say �

and �, each a neutral object (i.e., of size zero); the disjoint union B+C of B, C is then
defined as a standard set-theoretic union:

B + C := ({�} × B) ∪ ({�} × C) .
The size of an object in a disjoint union A = B + C is by definition inherited from its
size in its class of origin, as in Equation (16). One good reason behind the definition
adopted here is that the combinatorial sum of two classes is always well defined, no
matter whether or not the classes intersect. Furthermore, disjoint union is equivalent
to a standard union whenever it is applied to disjoint sets.

Because of disjointness of the copies, one has the implication

A = B + C �⇒ An = Bn + Cn and A(z) = B(z)+ C(z),

so that disjoint union is admissible. Note that, in contrast, standard set-theoretic union
is not an admissible construction since

card(Bn ∪ Cn) = card(Bn)+ card(Cn)− card(Bn ∩ Cn),

and information on the internal structure of B and C (i.e., the nature of their intersec-
tion) is needed in order to be able to enumerate the elements of their union.

Cartesian product. This construction A = B×C forms all possible ordered pairs
in accordance with Definition I.6. The size of a pair is obtained additively from the
size of components in accordance with (12).

Next, we introduce a few fundamental constructions that build upon set-theoretic
union and product, and form sequences, sets, and cycles. These powerful construc-
tions suffice to define a broad variety of combinatorial structures.

Sequence construction. If B is a class then the sequence class SEQ(B) is defined
as the infinite sum

SEQ(B) = {ε} + B + (B × B)+ (B × B × B)+ · · ·
with ε being a neutral structure (of size 0). In other words, we have

A = {
(β1, . . . , β�)

∣∣ � ≥ 0, β j ∈ B
}
,

which matches our intuition as to what sequences should be. (The neutral structure in
this context corresponds to � = 0; it plays a rôle similar to that of the “empty” word in
formal language theory.) It is then readily checked that the construction A = SEQ(B)
defines a proper class satisfying the finiteness condition for sizes if and only if B
contains no object of size 0. From the definition of size for sums and products, it
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follows that the size of an object α ∈ A is to be taken as the sum of the sizes of its
components:

α = (β1, . . . , β�) �⇒ |α| = |β1| + · · · + |β�|.
Cycle construction. Sequences taken up to a circular shift of their components

define cycles, the notation being CYC(B). In precise terms, one has3

CYC(B) := (SEQ(B) \ {ε}) /S,

where S is the equivalence relation between sequences defined by

(β1, . . . , βr )S (β ′
1, . . . , β

′
r )

iff there exists some circular shift τ of [1 . . r ] such that for all j , β ′
j = βτ( j); in other

words, for some d, one has β ′
j = β1+( j−1+d) mod r . Here is, for instance, a depiction

of the cycles formed from the 8 and 16 sequences of lengths 3 and 4 over two types of
objects (a, b): the number of cycles is 4 (for n = 3) and 6 (for n = 4). Sequences are
grouped into equivalence classes according to the relation S:

(20) 3–cycles :

{ aaa
aab aba baa
abb bba bab

bbb
, 4–cycles :

⎧⎪⎪⎨⎪⎪⎩
aaaa

aaab aaba abaa baaa
aabb abba bbaa baab

abab baba
abbb bbba bbab babb

bbbb

.

According to the definition, this construction corresponds to the formation of directed
cycles (see also the necklaces of Note I.1, p. 18). We make only a limited use of it
for unlabelled objects; however, its counterpart plays a rather important rôle in the
context of labelled structures and exponential generating functions of Chapter II.

Multiset construction. Following common mathematical terminology, multisets
are like finite sets (that is the order between elements does not count), but arbitrary
repetitions of elements are allowed. The notation is A = MSET(B) when A is ob-
tained by forming all finite multisets of elements from B. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation of sequences being defined by (α1, . . . , αr )R (β1, . . . , βr ) iff
there exists some arbitrary permutation σ of [1 . . r ] such that for all j , β j = ασ( j).

Powerset construction. The powerset class (or set class) A = PSET(B) is de-
fined as the class consisting of all finite subsets of class B, or equivalently, as the class
PSET(B) ⊂ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function is defined when such
constructions are performed: as for products and sequences, the size of a composite
object—set, multiset, or cycle—is defined to be the sum of the sizes of its components.
� I.4. The semi-ring of combinatorial classes. Under the convention of identifying isomor-
phic classes, sum and product acquire pleasant algebraic properties: combinatorial sums and
cartesian products become commutative and associative operations, e.g.,

(A+ B)+ C = A+ (B + C), A× (B × C) = (A× B)× C,
while distributivity holds, (A+ B)× C = (A× C)+ (B × C). �

3By convention, there are no “empty” cycles.
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� I.5. Natural numbers. Let Z := {•} with • an atom (of size 1). Then I = SEQ(Z) \
{ε} is a way of describing positive integers in unary notation: I = {•, • •, •••, . . .}. The
corresponding OGF is I (z) = z/(1 − z) = z + z2 + z3 + · · · . �

� I.6. Interval coverings. Let Z := {•} be as before. Then A = Z + (Z × Z) is a set of two
elements, • and (•, •), which we choose to draw as {•, •–•}. Then C = SEQ(A) contains

•, • •, •–•, • •–•, •–• •, •–• •–•, • • • •, . . .
With the notion of size adopted, the objects of size n in C = SEQ(Z+(Z×Z)) are (isomorphic
to) the coverings of [0, n] by intervals (matches) of length either 1 or 2. The OGF

C(z) = 1 + z + 2 z2 + 3 z3 + 5 z4 + 8 z5 + 13 z6 + 21 z7 + 34 z8 + 55 z9 + · · · ,
is, as we shall see shortly (p. 42), the OGF of Fibonacci numbers. �

I. 2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for the constructions that we have
introduced. The final implication is that any specification of a constructible class
translates directly into generating function equations. The translation of the cycle
construction involves the Euler totient function ϕ(k) defined as the number of integers
in [1, k] that are relatively prime to k (Appendix A.1: Arithmetical functions, p. 721).

Theorem I.1 (Basic admissibility, unlabelled universe). The constructions of union,
cartesian product, sequence, powerset, multiset, and cycle are all admissible. The
associated operators are as follows.

Sum: A = B + C �⇒ A(z) = B(z)+ C(z)

Cartesian product: A = B × C �⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) �⇒ A(z) = 1

1 − B(z)

Powerset: A = PSET(B) �⇒ A(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
n≥1

(1 + zn)Bn

exp

( ∞∑
k=1

(−1)k−1

k
B(zk)

)

Multiset: A = MSET(B) �⇒ A(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
n≥1

(1 − zn)−Bn

exp

( ∞∑
k=1

1

k
B(zk)

)

Cycle: A = CYC(B) �⇒ A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1 − B(zk)
.

For the sequence, powerset, multiset, and cycle translations, it is assumed that B0 = ∅.
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The class E = {ε} consisting of the neutral object only, and the class Z consisting of
a single “atomic” object (node, letter) of size 1 have OGFs

E(z) = 1 and Z(z) = z.

Proof. The proof proceeds case by case, building upon what we have just seen regard-
ing unions and products.

Combinatorial sum (disjoint union). Let A = B+C. Since the union is disjoint,
and the size of an A–element coincides with its size in B or C, one has An = Bn +Cn

and A(z) = B(z)+ C(z), as discussed earlier. The rule also follows directly from the
combinatorial form of generating functions as expressed by (8), p. 19:

A(z) =
∑
α∈A

z|α| =
∑
α∈B

z|α| +
∑
α∈C

z|α| = B(z)+ C(z).

Cartesian product. The admissibility result for A = B × C was considered as
an example for Definition I.6, the convolution equation (13) leading to the relation
A(z) = B(z) · C(z). We can also offer a direct derivation based on the combinatorial
form of generating functions (8), p. 19,

A(z) =
∑
α∈A

z|α| =
∑

(β,γ )∈(B×C)
z|β|+|γ | =

⎛⎝∑
β∈B

z|β|
⎞⎠×

⎛⎝∑
γ∈C

z|γ |
⎞⎠ = B(z) · C(z),

as follows from distributing products over sums. This derivation readily extends to an
arbitrary number of factors.

Sequence construction. Admissibility for A = SEQ(B) (with B0 = ∅) follows
from the union and product relations. One has

A = {ε} + B + (B × B)+ (B × B × B)+ · · · ,
so that

A(z) = 1 + B(z)+ B(z)2 + B(z)3 + · · · = 1

1 − B(z)
,

where the geometric sum converges in the sense of formal power series since [z0]B(z) =
0, by assumption.

Powerset construction. Let A = PSET(B) and first take B to be finite. Then, the
class A of all the finite subsets of B is isomorphic to a product,

(21) PSET(B) ∼=
∏
β∈B

({ε} + {β}),

with ε a neutral structure of size 0. Indeed, distributing the products in all possible
ways forms all the possible combinations (sets with no repetition allowed) of elements
of B; the reasoning is the same as what leads to an identity such as

(1 + a)(1 + b)(1 + c) = 1 + [a + b + c] + [ab + bc + ac] + abc,

where all combinations of variables appear in monomials. Then, directly from the
combinatorial form of generating functions and the sum and product rules, we find

(22) A(z) =
∏
β∈B

(1 + z|β|) =
∏

n

(1 + zn)Bn .
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The exp–log transformation A(z) = exp(log A(z)) then yields

(23)

A(z) = exp

( ∞∑
n=1

Bn log(1 + zn)

)
= exp

( ∞∑
n=1

Bn ·
∞∑

k=1

(−1)k−1 znk

k

)
= exp

(
B(z)

1
− B(z2)

2
+ B(z3)

3
− · · ·

)
,

where the second line results from expanding the logarithm,

log(1 + u) = u

1
− u2

2
+ u3

3
− · · · ,

and the third line results from exchanging the order of summations.
The proof finally extends to the case of B being infinite by noting that each An

depends only on those B j for which j ≤ n, to which the relations given above for the
finite case apply. Precisely, let B(≤m) = ∑m

k=1 B j and A(≤m) = PSET(B(≤m)). Then,
with O(zm+1) denoting any series that has no term of degree ≤ m, one has

A(z) = A(≤m)(z)+ O(zm+1) and B(z) = B(≤m)(z)+ O(zm+1).

On the other hand, A(≤m)(z) and B(≤m)(z) are connected by the fundamental expo-
nential relation (23) , since B(≤m) is finite. Letting m tend to infinity, there follows in
the limit

A(z) = exp

(
B(z)

1
− B(z2)

2
+ B(z3)

3
− · · ·

)
.

(See Appendix A.5: Formal power series, p. 730 for the notion of formal conver-
gence.)

Multiset construction. First for finite B (with B0 = ∅), the multiset class A =
MSET(B) is definable by

(24) MSET(B) ∼=
∏
β∈B

SEQ({β}).

In words, any multiset can be sorted, in which case it can be viewed as formed of a
sequence of repeated elements β1, followed by a sequence of repeated elements β2,
where β1, β2, . . . is a canonical listing of the elements of B. The relation translates
into generating functions by the product and sequence rules,

(25)

A(z) =
∏
β∈B

(1 − z|β|)−1 =
∞∏

n=1

(1 − zn)−Bn

= exp

( ∞∑
n=1

Bn log(1 − zn)−1
)

= exp

(
B(z)

1
+ B(z2)

2
+ B(z3)

3
+ · · ·

)
,
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where the exponential form results from the exp–log transformation. The case of an
infinite class B follows by a limit argument analogous the one used for powersets.

Cycle construction. The translation of the cycle relation A = CYC(B) turns out
to be

A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1 − B(zk)
,

where ϕ(k) is the Euler totient function. The first terms, with Lk(z) := log(1 −
B(zk))−1 are

A(z) = 1

1
L1(z)+ 1

2
L2(z)+ 2

3
L3(z)+ 2

4
L4(z)+ 4

5
L5(z)+ 2

6
L6(z)+ · · · .

We reserve the proof to Appendix A.4: Cycle construction, p. 729, since it relies in
part on multivariate generating functions to be officially introduced in Chapter III. �

The results for sets, multisets, and cycles are particular cases of the well-known
Pólya theory that deals more generally with the enumeration of objects under group
symmetry actions; for Pólya’s original and its edited version, see [488, 491]. This
theory is described in many textbooks, for instance, those of Comtet [129] and Harary
and Palmer [129, 319]; Notes I.58–I.60, pp. 85–86, distil its most basic aspects. The
approach adopted here amounts to considering simultaneously all possible values of
the number of components by means of bivariate generating functions. Powerful gen-
eralizations within Joyal’s elegant theory of species [359] are presented in the book
by Bergeron, Labelle, and Leroux [50].
� I.7. Vallée’s identity. Let M = MSET(C), P = PSET(C). One has combinatorially:

M(z) = P(z)M(z2).

(Hint: a multiset contains elements of either odd or even multiplicity.) Accordingly, one can
deduce the translation of powersets from the formula for multisets. Iterating the relation above
yields M(z) = P(z)P(z2)P(z4)P(z8) · · · : this is closely related to the binary representation
of numbers and to Euler’s identity (p. 49). It is used for instance in Note I.66 p. 91. �

Restricted constructions. In order to increase the descriptive power of the frame-
work of constructions, we ought to be able to allow restrictions on the number of
components in sequences, sets, multisets, and cycles. Let K be a metasymbol rep-
resenting any of SEQ,CYC,MSET, PSET and let � be a predicate over the integers;
then K�(A) will represent the class of objects constructed by K, with a number of
components constrained to satisfy �. For instance, the notation

(26) SEQ=k (or simply SEQk), SEQ>k, SEQ1 . . k

refers to sequences whose number of components are exactly k, larger than k, or in
the interval 1 . . k respectively. In particular,

SEQk(B) :=
k times︷ ︸︸ ︷

B × · · · × B ≡ Bk, SEQ≥k(B) =
∑
j≥k

B j ∼= Bk × SEQ(B),

MSETk(B) := SEQk(B)/R.

Similarly, SEQodd, SEQeven will denote sequences with an odd or even number of com-
ponents, and so on.
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Translations for such restricted constructions are available, as shown generally
in Subsection I. 6.1, p. 83. Suffice it to note for the moment that the construction
A = SEQk(B) is really an abbreviation for a k-fold product, hence it admits the
translation into OGFs

(27) A = SEQk(B) �⇒ A(z) = B(z)k .

I. 2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (specifications) of a broad variety of
combinatorial classes. Since we restrict attention to admissible constructions, we can
immediately derive OGFs for these classes. Put differently, the task of enumerating a
combinatorial class is reduced to programming a specification for it in the language of
admissible constructions. In this subsection, we first discuss the expressive power of
the language of constructions, then summarize the symbolic method (for unlabelled
classes and OGFs) by Theorem I.2.

First, in the framework just introduced, the class of all binary words is described
by

W = SEQ(A), where A = {a, b} ∼= Z + Z,
the ground alphabet, comprises two elements (letters) of size 1. The size of a binary
word then coincides with its length (the number of letters it contains). In other terms,
we start from basic atomic elements and build up words by forming freely all the ob-
jects determined by the sequence construction. Such a combinatorial description of a
class that only involves a composition of basic constructions applied to initial classes
E,Z is said to be an iterative (or non-recursive) specification. Other examples al-
ready encountered include binary necklaces (Note I.1, p. 18) and the positive integers
(Note I.5, p. 27) respectively defined by

N = CYC(Z + Z) and I = SEQ≥1(Z).
From this, one can construct ever more complicated objects. For instance,

P = MSET(I) ≡ MSET(SEQ≥1(Z))
means the class of multisets of positive integers, which is isomorphic to the class of
integer partitions (see Section I. 3 below for a detailed discussion). As such examples
demonstrate, a specification that is iterative can be represented as a single term built on
E,Z and the constructions +,×, SEQ,CYC,MSET, PSET. An iterative specification
can be equivalently listed by naming some of the subterms (for instance, partitions in
terms of natural integers I, themselves defined as sequences of atoms Z).

Semantics of recursion. We next turn our attention to recursive specifications,
starting with trees (cf also Appendix A.9: Tree concepts, p. 737, for basic definitions).
In graph theory, a tree is classically defined as an undirected graph that is connected
and acyclic. Additionally, a tree is rooted if a particular vertex is specified (this vertex
is then kown as the root). Computer scientists commonly make use of trees called
plane4 that are rooted but also embedded in the plane, so that the ordering of subtrees

4 The alternative terminology “planar tree” is also often used, but it is frowned upon by some as
incorrect (all trees are planar graphs). We have thus opted for the expression “plane tree”, which parallels
the phrase “plane curve”.
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attached to any node matters. Here, we will give the name of general plane trees to
such rooted plane trees and call G their class, where size is the number of vertices;
see, e.g., reference [538]. (The term “general” refers to the fact that all nodes degrees
are allowed.) For instance, a general tree of size 16, drawn with the root on top, is:

τ =
.

As a consequence of the definition, if one interchanges, say, the second and third root
subtrees, then a different tree results—the original tree and its variant are not equiva-
lent under a smooth deformation of the plane. (General trees are thus comparable to
graphical renderings of genealogies where children are ordered by age.). Although we
have introduced plane trees as two-dimensional diagrams, it is obvious that any tree
also admits a linear representation: a tree τ with root ζ and root subtrees τ1, . . . , τr

(in that order) can be seen as the object ζ τ1, . . . , τr , where the box encloses similar
representations of subtrees. Typographically, a box · may be reduced to a matching
pair of parentheses, “(·)”, and one gets in this way a linear description that illustrates
the correspondence between trees viewed as plane diagrams and functional terms of
mathematical logic and computer science.

Trees are best described recursively. A plane tree is a root to which is attached
a (possibly empty) sequence of trees. In other words, the class G of general trees is
definable by the recursive equation

(28) G = Z × SEQ(G),
where Z comprises a single atom written “•” that represents a generic node.

Although such recursive definitions are familiar to computer scientists, the speci-
fication (28) may look dangerously circular to some. One way of making good sense
of it is via an adaptation of the numerical technique of iteration. Start with G[0] = ∅,
the empty set, and define successively the classes

G[ j+1] = Z × SEQ(G[ j]).

For instance, G[1] = Z × SEQ(∅) = {(•, ε)} ∼= {•} describes the tree of size 1, and

G[2] = {• , • • , • • • , • • • • , . . .
}

G[3] =
{
• , • • , • • • , • • • • , . . . ,

• • • , • • • • , • • • • , • • • • • • , . . .

}
.

First, each G[ j] is well defined since it corresponds to a purely iterative specification.
Next, we have the inclusion G[ j] ⊂ G[ j+1] (a simple interpretation of G[ j] is the class
of all trees of height < j). We can therefore regard the complete class G as defined by
the limit of the G[ j]; that is, G := ⋃

j G[ j].

� I.8. Lim-sup of classes. Let {A[ j]} be any increasing sequence of combinatorial classes, in
the sense that A[ j] ⊂ A[ j+1], and the notions of size are compatible. If A[∞] = ⋃

j A[ j] is a
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combinatorial class (there are finitely many elements of size n, for each n), then the correspond-
ing OGFs satisfy A[∞](z) = lim j→∞ A[ j](z) in the formal topology (Appendix A.5: Formal
power series, p. 730). �

Definition I.7. A specification for an r–tuple �A = (A(1), . . . ,A(r)) of classes is a
collection of r equations,

(29)

⎧⎪⎨⎪⎩
A(1) = 	1(A(1), . . . ,A(r))

A(2) = 	2(A(1), . . . ,A(r))
· · ·

A(r) = 	r (A(1), . . . ,A(r))

where each 	i denotes a term built from the A using the constructions of disjoint
union, cartesian product, sequence, powerset, multiset, and cycle, as well as the initial
classes E (neutral) and Z (atomic).

We also say that the system is a specification of A(1). A specification for a com-
binatorial class is thus a sort of formal grammar defining that class. Formally, the sys-
tem (29) is an iterative or non-recursive specification if it is strictly upper-triangular,
that is, A(r) is defined solely in terms of initial classes Z, E ; the definition of A(r−1)

only involves A(r), and so on; in that case, by back substitutions, it is apparent that for
an iterative specification, A(1) can be equivalently described by a single term involv-
ing only the initial classes and the basic constructors. Otherwise, the system is said to
be recursive. In the latter case, the semantics of recursion is identical to the one intro-
duced in the case of trees: start with the “empty” vector of classes, �A[0] := (∅, . . . ,∅),
iterate �A[ j+1] = �	[ �A[ j]

]
, and finally take the limit.

There is an alternative and convenient way to visualize these notions. Given a
specification of the form (29), we can associate its dependency (di)graph � to it as
follows. The set of vertices of � is the set of indices {1, . . . , r}; for each equation
A(i) = �i (A(1), . . . ,A(r)) and for each j such that A( j) appears explicitly on the
right-hand side of the equation, place a directed edge (i → j) in �. It is then eas-
ily recognized that a class is iterative if the dependency graph of its specification is
acyclic; it is recursive is the dependency graph has a directed cycle. (This notion will
serve to define irreducible linear systems, p. 341, and irreducible polynomial systems,
p. 482, which enjoy strong asymptotic properties.)

Definition I.8. A class of combinatorial structures is said to be constructible or speci-
fiable iff it admits a (possibly recursive) specification in terms of sum, product, se-
quence, set, multiset, and cycle constructions.

At this stage, we have therefore available a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each
constructible class has by virtue of Theorem I.1 an ordinary generating function for
which functional equations can be produced systematically. (In fact, it is even possible
to use computer algebra systems in order to compute it automatically! See the article
by Flajolet, Salvy, and Zimmermann [255] for the description of such a system.)

Theorem I.2 (Symbolic method, unlabelled universe). The generating function of a
constructible class is a component of a system of functional equations whose terms
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are built from

1, z, + , × , Q , Exp , Exp ,Log,

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q[ f ] = 1

1 − f
, Log[ f ] =

∞∑
k=1

ϕ(k)

k
log

1

1 − f (zk)
,

Exp[ f ] = exp

( ∞∑
k=1

f (zk)

k

)
, Exp[ f ] = exp

( ∞∑
k=1

(−1)k−1 f (zk)

k

)
.

Pólya operators. The operator Q translating sequences (SEQ) is classically known
as the quasi-inverse. The operator Exp (multisets, MSET) is called the Pólya exponen-
tial5 and Exp (powersets, PSET) is the modified Pólya exponential. The operator Log
is the Pólya logarithm. They are named after Pólya who first developed the general
enumerative theory of objects under permutation groups (pp. 85–86).

The statement of Theorem I.2 signifies that iterative classes have explicit gen-
erating functions involving compositions of the basic operators only, while recursive
structures have OGFs that are accessible indirectly via systems of functional equa-
tions. As we shall see at various places in this chapter, the following classes are con-
structible: binary words, binary trees, general trees, integer partitions, integer com-
positions, non-plane trees, polynomials over finite fields, necklaces, and wheels. We
conclude this section with a few simple illustrations of the symbolic method expressed
by Theorem I.2.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + Z) �⇒ W (z) = 1

1 − 2z
,

whence the expected result, Wn = 2n . (Note: in our framework, if a, b are letters,
then Z + Z ∼= {a, b}.)

General trees. The recursive specification of general trees leads to an implicit
definition of their OGF,

G = Z × SEQ(G) �⇒ G(z) = z

1 − G(z)
.

From this point on, basic algebra6does the rest. First the original equation is equivalent
(in the ring of formal power series) to G − G2 − z = 0. Next, the quadratic equation

5It is a notable fact that, although the Pólya operators look algebraically “difficult” to compute with,
their treatment by complex asymptotic methods, as regards coefficient asymptotics, is comparatively “easy”.
We shall see many examples in Chapters IV–VII (e.g., pp. 252, 475).

6Methodological note: for simplicity, our computation is developed using the usual language of math-
ematics. However, analysis is not needed in this derivation, and operations such as solving quadratic equa-
tions and expanding fractional powers can all be cast within the purely algebraic framework of formal power
series (p. 730).
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is solvable by radicals, and one finds

G(z) = 1
2

(
1 −√

1 − 4z
)

= z + z2 + 2 z3 + 5 z4 + 14 z5 + 42 z6 + 132 z7 + 429 z8 + · · ·
=

∑
n≥1

1

n

(
2n − 2

n − 1

)
zn .

(The conjugate root is to be discarded since it involves a term z−1 as well as negative
coefficients.) The expansion then results from Newton’s binomial expansion,

(1 + x)α = 1 + α

1
x + α(α − 1)

2!
x2 + · · · ,

applied with α = 1
2 and x = −4z.

The numbers

(30) Cn = 1

n + 1

(
2n

n

)
= (2n)!

(n + 1)! n!
with OGF C(z) = 1 −√

1 − 4z

2z

are known as the Catalan numbers (EIS A000108) in the honour of Eugène Catalan,
the mathematician who first studied their properties in geat depth (pp. 6 and 20). In
summary, general trees are enumerated by Catalan numbers:

Gn = Cn−1 ≡ 1

n

(
2n − 2

n − 1

)
.

For this reason the term Catalan tree is often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n + 2 points arranged in anticlockwise order on a circle and
conventionally numbered from 0 to n + 1 (for instance the (n + 2)th roots of unity).
A triangulation is defined as a (maximal) decomposition of the convex (n + 2)-gon
defined by the points into n triangles (Figure I.1, p. 17). Triangulations are taken here
as abstract topological configurations defined up to continuous deformations of the
plane. The size of the triangulation is the number of triangles; that is, n. Given a
triangulation, we define its “root” as a triangle chosen in some conventional and un-
ambiguous manner (e.g., at the start, the triangle that contains the two smallest labels).
Then, a triangulation decomposes into its root triangle and two subtriangulations (that
may well be “empty”) appearing on the left and right sides of the root triangle; the
decomposition is illustrated by the following diagram:

= +

The class T of all triangulations can be specified recursively as

T = {ε} + (T ×∇ × T ) ,
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provided that we agree to consider a 2-gon (a segment) as giving rise to an “empty”
triangulation of size 0. (The subtriangulations are topologically and combinatorially
equivalent to standard ones, with vertices regularly spaced on a circle.) Consequently,
the OGF T (z) satisfies the equation

(31) T (z) = 1 + zT (z)2, so that T (z) = 1

2z

(
1 −√

1 − 4z
)
.

As a result of (30) and (31), triangulations are enumerated by Catalan numbers:

Tn = Cn ≡ 1

n + 1

(
2n

n

)
.

This particular result goes back to Euler and Segner, a century before Catalan; see
Figure I.1 on p. 17 for first values and p. 73 below for related bijections.
� I.9. A bijection. Since both general trees and triangulations are enumerated by Catalan
numbers, there must exist a size-preserving bijection between the two classes. Find one such
bijection. [Hint: the construction of triangulations is evocative of binary trees, while binary
trees are themselves in bijective correspondence with general trees (p. 73).] �

� I.10. A variant specification of triangulations. Consider the class U of “non-empty” triangu-
lations of the n-gon, that is, we exclude the 2-gon and the corresponding “empty” triangulation
of size 0. Then U = T \ {ε} admits the specification

U = ∇ + (∇ × U)+ (U ×∇)+ (U ×∇ × U)
which also leads to the Catalan numbers via U = z(1 + U )2, so that U (z) = (1 − 2z −√

1 − 4z)/(2z) ≡ T (z)− 1. �

I. 2.4. Exploiting generating functions and counting sequences. In this book
we are going to see altogether more than a hundred applications of the symbolic
method. Before engaging in technical developments, it is worth inserting a few com-
ments on the way generating functions and counting sequences can be put to good use
in order to solve combinatorial problems.

Explicit enumeration formulae. In a number of situations, generating functions
are explicit and can be expanded in such a way that explicit formulae result for their
coefficients. A prime example is the counting of general trees and of triangulations
above, where the quadratic equation satisfied by an OGF is amenable to an explicit
solution—the resulting OGF could then be expanded by means of Newton’s binomial
theorem. Similarly, we derive later in this chapter an explicit form for the number
of integer compositions by means of the symbolic method (the answer turns out to
be simply 2n−1) and obtain in this way, through OGFs, many related enumeration
results. In this book, we assume as known the elementary techniques from basic
calculus by which the Taylor expansion of an explicitly given function can be obtained.
(Elementary references on such aspects are Wilf’s Generatingfunctionology [608],
Graham, Knuth, and Patashnik’s Concrete Mathematics [307], and our book [538].)

Implicit enumeration formulae. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense explicit, but their form is such that
their coefficients are not clearly reducible to a closed form. It is then still possible to
obtain initial values of the corresponding counting sequence by means of a symbolic
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manipulation system. Furthermore, from generating functions, it is possible systemat-
ically to derive recurrences that lead to a procedure for computing an arbitrary number
of terms of the counting sequence in a reasonably efficient manner. A typical example
of this situation is the OGF of integer partitions,

∞∏
m=1

1

1 − zm
,

for which recurrences obtained from the OGF and associated to fast algorithms are
given in Note I.13 (p. 42) and Note I.19 (p. 49). An even more spectacular example
is the OGF of non-plane trees, which is proved below (p. 71) to satisfy the infinite
functional equation

H(z) = z exp

(
H(z)+ 1

2
H(z2)+ 1

3
H(z3)+ · · ·

)
,

and for which coefficients are computable in low complexity: see Note I.43, p. 72.
(The references [255, 264, 456] develop a systematic approach to such problems.)
The corresponding asymptotic analysis constitutes the main theme of Section VII. 5,
p. 475.

Asymptotic formulae. Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. From a quick glance at the
table of initial values of Wn (words), Pn (permutations), Tn (triangulations), as given
in (2), p. 18, it is apparent that Wn grows more slowly than Tn , which itself grows more
slowly than Pn . The classification of growth rates of counting sequences belongs prop-
erly to the asymptotic theory of combinatorial structures which neatly relates to the
symbolic method via complex analysis. A thorough treatment of this part of the the-
ory is presented in Chapters IV–VIII. Given the methods expounded there, it becomes
possible to estimate asymptotically the coefficients of virtually any generating func-
tion, however complicated, that is provided by the symbolic method; that is, implicit
enumerations in the sense above are well covered by complex asymptotic methods.

Here, we content ourselves with a few remarks based on elementary real analysis.
(The basic notations are described in Appendix A.2: Asymptotic notation, p. 722.)
The sequence Wn = 2n grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequence Pn = n! must grow
faster. But how fast? The answer is provided by Stirling’s formula, an important
approximation originally due to James Stirling (Invitation, p. 4):

(32) n! =
(n

e

)n √
2πn

(
1 + O

(
1

n

))
(n → +∞).

(Several proofs are given in this book, based on the method of Laplace, p. 760, Mellin
transforms, p. 766, singularity analysis, p. 407, and the saddle-point method, p 555.)
The ratios of the exact values to Stirling’s approximations

n 1 2 5 10 100 1 000
n!

nne−n
√

2πn
1.084437 1.042207 1.016783 1.008365 1.000833 1.000083
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Figure I.5. The growth
regimes of three sequences
f (n) = 2n, Tn, n! (from
bottom to top) rendered by a
plot of log10 f (n) versus n.

show an excellent quality of the asymptotic estimate: the error is only 8% for n = 1,
less than 1% for n = 10, and less than 1 per thousand for any n greater than 100.

Stirling’s formula provides in turn the asymptotic form of the Catalan numbers,
by means of a simple calculation:

Cn = 1

n + 1

(2n)!

(n!)2
∼ 1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
,

which simplifies to

(33) Cn ∼ 4n

√
πn3

.

Thus, the growth of Catalan numbers is roughly comparable to an exponential, 4n ,
modulated by a subexponential factor, here 1/

√
πn3. A surprising consequence of

this asymptotic estimate in the area of boolean function complexity appears in Exam-
ple I.17 below (p. 77).

Altogether, the asymptotic number of general trees and triangulations is well sum-
marized by a simple formula. Approximations become more and more accurate as n
becomes large. Figure I.5 illustrates the different growth regimes of our three ref-
erence sequences while Figure I.6 exemplifies the quality of the approximation with
subtler phenomena also apparent on the figures and well explained by asymptotic the-
ory. Such asymptotic formulae then make comparison between the growth rates of
sequences easy.

The interplay between combinatorial structure and asymptotic structure is indeed
the principal theme of this book. We shall see in Part B that the generating func-
tions provided by the symbolic method typically admit similarly simple asymptotic
coefficient estimates.
� I.11. The complexity of coding. A company specializing in computer-aided design has sold
to you a scheme that (they claim) can encode any triangulation of size n ≥ 100 using at most
1.5n bits of storage. After reading these pages, what do you do? [Hint: sue them!] See also
Note I.24 (p. 53) for related coding arguments. �
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n Cn C�
n C�

n/Cn

1 1 2.25 2.25675 83341 91025 14779 23178

10 16796 18707.89 1.11383 05127 524458̇9437 89064

100 0.89651 · 1057 0.90661 · 1057 1.01126 32841 24540 52257 13957

1 000 0.20461 · 10598 0.20484 · 10598 1.00112 51328 15424 16470 12827

10 000 0.22453 · 106015 0.22456 · 106015 1.00011 25013 28127 92913 51406

100 000 0.17805 · 1060199 0.17805 · 1060199 1.00001 12500 13281 25292 96322

1 000 000 0.55303 · 10602051 0.55303 · 10602051 1.00000 11250 00132 81250 29296

Figure I.6. The Catalan numbers Cn , their Stirling approximation C�
n = 4n/

√
πn3,

and the ratio C�
n/Cn .

� I.12. Experimental asymptotics. From the data of Figure I.6, guess the values7 of C�
107/C107

and of C�
5·106/C5·106 to 25D. (See, Figure VI.3, p. 384, as well as, e.g., [385] for related

asymptotic expansions and [80] for similar properties.) �

I. 3. Integer compositions and partitions

This section and the next few provide examples of counting via specifications in
classical areas of combinatorial theory. They illustrate the benefits of the symbolic
method: generating functions are obtained with hardly any computation, and at the
same time, many counting refinements follow from a basic combinatorial construc-
tion. The most direct applications described here relate to the additive decomposition
of integers into summands with the classical combinatorial–arithmetic structures of
partitions and compositions. The specifications are iterative and simply combine two
levels of constructions of type SEQ,MSET,CYC, PSET.

I. 3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

Definition I.9. A composition of an integer n is a sequence (x1, x2, . . . , xk) of integers
(for some k) such that

n = x1 + x2 + · · · + xk, x j ≥ 1.

A partition of an integer n is a sequence (x1, x2, . . . , xk) of integers (for some k) such
that

n = x1 + x2 + · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk ≥ 1.

In both cases, the xi are called the summands or the parts and the quantity n is called
the size.

By representing summands in unary using small discs (“•”), we can render graph-
ically a composition by drawing bars between some of the balls; if we arrange sum-
mands vertically, compositions appear as ragged landscapes. In contrast, partitions
appear as staircases, also known as Ferrers diagrams [129, p. 100]; see Figure I.7. We

7In this book, we abbreviate a phrase such as “25 decimal places” by “25D”.
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Figure I.7. Graphical representations of compositions and partitions: (left) the com-
position 1+ 3+ 1+ 4+ 2+ 3 = 14 with its “ragged landscape” and “balls-and-bars”
models; (right) the partition 8 + 8 + 6 + 5 + 4 + 4 + 4 + 2 + 1 + 1 = 43 with its
staircase (Ferrers diagram) model.

let C and P denote the class of all compositions and all partitions, respectively. Since
a set can always be presented in sorted order, the difference between compositions and
partitions lies in the fact that the order of summands does or does not matter. This is
reflected by the use of a sequence construction (for C) against a multiset construction
(for P). From this perspective, it proves convenient to regard 0 as obtained by the
empty sequence of summands (k = 0), and we shall do so from now on.

Integers, as a combinatorial class. Let I = {1, 2, . . .} denote the combinatorial
class of all integers at least 1 (the summands), and let the size of each integer be its
value. Then, the OGF of I is

(34) I (z) =
∑
n≥1

zn = z

1 − z
,

since In = 1 for n ≥ 1, corresponding to the fact that there is exactly one object in I
for each size n ≥ 1. If integers are represented in unary, say by small balls, one has

(35) I = {1, 2, 3, . . .} ∼= {•, • •, • • •, . . .} = SEQ≥1{•},
which constitutes a direct way to visualize the equality I (z) = z/(1 − z).

Compositions. First, the specification of compositions as sequences admits, by
Theorem I.1, a direct translation into OGF:

(36) C = SEQ(I) �⇒ C(z) = 1

1 − I (z)
.

The collection of equations (34), (36) thus fully determines C(z):

C(z) = 1

1 − z
1−z

= 1 − z

1 − 2z

= 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + · · · .
From here, the counting problem for compositions is solved by a straightforward ex-
pansion of the OGF: one has

C(z) =
⎛⎝∑

n≥0

2nzn

⎞⎠−
⎛⎝∑

n≥0

2nzn+1

⎞⎠ ,
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0 1 1
10 1024 42
20 1048576 627
30 1073741824 5604
40 1099511627776 37338
50 1125899906842624 204226
60 1152921504606846976 966467
70 1180591620717411303424 4087968
80 1208925819614629174706176 15796476
90 1237940039285380274899124224 56634173

100 1267650600228229401496703205376 190569292
110 1298074214633706907132624082305024 607163746
120 1329227995784915872903807060280344576 1844349560
130 1361129467683753853853498429727072845824 5371315400
140 1393796574908163946345982392040522594123776 15065878135
150 1427247692705959881058285969449495136382746624 40853235313
160 1461501637330902918203684832716283019655932542976 107438159466
170 1496577676626844588240573268701473812127674924007424 274768617130
180 1532495540865888858358347027150309183618739122183602176 684957390936
190 1569275433846670190958947355801916604025588861116008628224 1667727404093
200 1606938044258990275541962092341162602522202993782792835301376 3972999029388
210 1645504557321206042154969182557350504982735865633579863348609024 9275102575355
220 1684996666696914987166688442938726917102321526408785780068975640576 21248279009367
230 1725436586697640946858688965569256363112777243042596638790631055949824 47826239745920
240 1766847064778384329583297500742918515827483896875618958121606201292619776 105882246722733
250 1809251394333065553493296640760748560207343510400633813116524750123642650624 230793554364681

Figure I.8. For n = 0, 10, 20, . . . , 250 (left), the number of compositions Cn (mid-
dle) and the number of partitions Pn (right). The figure illustrates the difference in
growth between Cn = 2n−1 and Pn = eO(

√
n).

implying C0 = 1 and Cn = 2n − 2n−1 for n ≥ 1; that is,

(37) Cn = 2n−1, n ≥ 1.

This agrees with basic combinatorics since a composition of n can be viewed as the
placement of separation bars at a subset of the n − 1 existing places in between n
aligned balls (the “balls-and-bars” model of Figure I.7), of which there are clearly
2n−1 possibilities.

Partitions. For partitions specified as multisets, the general translation mechan-
ism of Theorem I.1, p. 27, provides

(38) P = MSET(I) �⇒ P(z) = exp

(
I (z)+ 1

2
I (z2)+ 1

3
I (z3)+ · · ·

)
,

together with the product form corresponding to (25), p. 29,

(39)

P(z) =
∞∏

m=1

1

1 − zm

= (
1 + z + z2 + · · · ) (1 + z2 + z4 + · · · ) (1 + z3 + z6 + · · · ) · · ·

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + 15z7 + 22z8 + · · ·
(the counting sequence is EIS A000041). Contrary to compositions that are counted
by the explicit formula 2n−1, no simple form exists for Pn . Asymptotic analysis of
the OGF (38) based on the saddle-point method (Chapter VIII, p. 574) shows that
Pn = eO(

√
n). In fact an extremely famous theorem of Hardy and Ramanujan later

improved by Rademacher (see Andrews’ book [14] and Chapter VIII) provides a full
expansion of which the asymptotically dominant term is

(40) Pn ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.
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There are consequently appreciably fewer partitions than compositions (Figure I.8).
� I.13. A recurrence for the partition numbers. Logarithmic differentiation gives

z
P ′(z)
P(z)

=
∞∑

n=1

nzn

1 − zn implying n Pn =
n∑

j=1

σ( j)Pn− j ,

where σ(n) is the sum of the divisors of n (e.g., σ(6) = 1 + 2 + 3 + 6 = 12). Conse-
quently, P1, . . . , PN can be computed in O(N 2) integer-arithmetic operations. (The technique
is generally applicable to powersets and multisets; see Note I.43 (p. 72) for another application.
Note I.19 (p. 49) further lowers the bound to O(N

√
N ), in the case of partitions.) �

By varying (36) and (38), we can use the symbolic method to derive a number of
counting results in a straightforward manner. First, we state the following proposition.

Proposition I.1. Let T ⊆ I be a subset of the positive integers. The OGFs of the
classes CT := SEQ(SEQT (Z)) and PT := MSET(SEQT (Z)) of compositions and
partitions having summands restricted to T ⊂ Z≥1 are given by

CT (z) = 1

1 −∑
n∈T zn

= 1

1 − T (z)
, PT (z) =

∏
n∈T

1

1 − zn
.

Proof. A direct consequence of the specifications and Theorem I.1, p. 27. �

This proposition permits us to enumerate compositions and partitions with re-
stricted summands, as well as with a fixed number of parts.

Example I.4. Compositions with restricted summands. In order to enumerate the class C{1,2}
of compositions of n whose parts are only allowed to be taken from the set {1, 2}, simply write

C{1,2} = SEQ(I{1,2}) with I{1,2} = {1, 2}.
Thus, in terms of generating functions, one has

C{1,2}(z) = 1

1 − I {1,2}(z)
with I {1,2}(z) = z + z2.

This formula implies

C{1,2}(z) = 1

1 − z − z2
= 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + · · · ,

and the number of compositions of n in this class is expressed by a Fibonacci number,

C{1,2}
n = Fn+1 where Fn = 1√

5

[(
1 +√

5

2

)n

−
(

1 −√
5

2

)n]
,

of daisy–artichoke–rabbit fame In particular, the rate of growth is of the exponential type ϕn ,

where ϕ := 1 +√
5

2
is the golden ratio.

Similarly, compositions all of whose summands lie in the set {1, 2, . . . , r} have generating
function

(41) C{1,...,r}(z) = 1

1 − z − z2 − · · · zr
= 1

1 − z 1−zr

1−z

= 1 − z

1 − 2z + zr+1
,
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and the corresponding counts are generalized Fibonacci numbers. A double combinatorial sum
expresses these counts

(42) C{1,...,r}
n = [zn]

∑
j

(
z(1 − zr )

(1 − z)

) j
=

∑
j,k

(−1)k
(

j

k

)(
n − rk − 1

j − 1

)
.

This result is perhaps not too useful for grasping the rate of growth of the sequence when n gets
large, so that asymptotic analysis is called for. Asymptotically, for any fixed r ≥ 2, there is a
unique root ρr of the denominator 1 − 2z + zr+1 in ( 1

2 , 1), this root dominates all the other
roots and is simple. Methods amply developed in Chapter IV and Example V.4 (p. 308) imply
that, for some constant cr > 0,

(43) C{1,...,r}
n ∼ crρ

−n
r for fixed r as n → ∞.

The quantity ρr plays a rôle similar to that of the golden ratio when r = 2. . . . . . . . . . . . . . . . �

� I.14. Compositions into primes. The additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether every even number is the sum
of two primes (Goldbach’s conjecture). However, the number of compositions of n into prime
summands (any number of summands is permitted) is Bn = [zn]B(z) where

B(z) =
⎛⎝1 −

∑
p prime

z p

⎞⎠−1

=
(

1 − z2 − z3 − z5 − z7 − z11 − · · ·
)−1

= 1 + z2 + z3 + z4 + 3 z5 + 2 z6 + 6 z7 + 6 z8 + 10 z9 + 16 z10 + · · ·
(EIS A023360), and complex asymptotic methods make it easy to determine the asymptotic
form Bn ∼ 0.30365 · 1.47622n ; see Example V.2, p. 297. �

Example I.5. Partitions with restricted summands (denumerants). Whenever summands are
restricted to a finite set, the special partitions that result are called denumerants. A denumerant
problem popularized by Pólya [493, §3] consists in finding the number of ways of giving change
of 99 cents using coins that are pennies (1 cent), nickels (5 cents), dimes (10 cents) and quarters
(25 cents). (The order in which the coins are taken does not matter and repetitions are allowed.)
For the case of a finite T , we predict from Proposition I.1 that PT (z) is always a rational
function with poles that are at roots of unity; also the PT

n satisfy a linear recurrence related to
the structure of T . The solution to the original coin change problem is found to be

[z99]
1

(1 − z)(1 − z5)(1 − z10)(1 − z25)
= 213.

In the same vein, one proves that

P{1,2}
n =

⌈
2n + 3

4

⌋
P{1,2,3}

n =
⌈
(n + 3)2

12

⌋
;

here �x� ≡ �x + 1
2� denotes the integer closest to the real number x . Such results are typically

obtained by the two-step process: (i) decompose the rational generating function into simple
fractions; (i i) compute the coefficients of each simple fraction and combine them to get the
final result [129, p. 108].

The general argument also gives the generating function of partitions whose summands lie
in the set {1, 2, . . . , r} as

(44) P{1,...,r}(z) =
r∏

m=1

1

1 − zm .



“book” — 2008/10/3 — 16:05 — page 44 — #58

44 I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

In other words, we are enumerating partitions according to the value of the largest summand.
One then finds by looking at the poles (Theorem IV.9, p. 256):

(45) P{1,...,r}
n ∼ cr nr−1 with cr = 1

r !(r − 1)!
.

A similar argument provides the asymptotic form of PT
n when T is an arbitrary finite set:

PT
n ∼ 1

τ

nr−1

(r − 1)!
with τ :=

∏
n∈T

n, r := card(T ).

This last estimate, originally due to Schur, is proved in Proposition IV.2, p. 258. . . . . . . . . . . �

We next examine compositions and partitions with a fixed number of summands.

Example I.6. Compositions with a fixed number of parts. Let C(k) denote the class of
compositions made of k summands, k a fixed integer ≥ 1. One has

C(k) = SEQk(I) ≡ I × I × · · · × I,

where the number of terms in the cartesian product is k. From here, the corresponding generat-
ing function is found to be

C(k)(z) = (
I (z)

)k with I (z) = z

1 − z
.

The number of compositions of n having k parts is thus

C(k)
n = [zn]

zk

(1 − z)k
=

(
n − 1

k − 1

)
,

a result which constitutes a combinatorial refinement of Cn = 2n−1. (Note that the formula
C(k)

n = (n−1
k−1

)
also results easily from the balls-and-bars model of compositions (Figure I.7)).

In such a case, the asymptotic estimate C(k)
n ∼ nk−1/(k − 1)! results immediately from the

polynomial form of the binomial coefficient
(n−1
k−1

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example I.7. Partitions with a fixed number of parts. Let P(≤k) be the class of integer
partitions with at most k summands. With our notation for restricted constructions (p. 30), this
class is specified as

P(≤k) = MSET≤k(I).
It would be possible to appeal to the admissibility of such restricted compositions as developed
in Subsection I. 6.1 below, but the following direct argument suffices in the case at hand. Geo-
metrically, partitions, are represented as collections of points: this is the staircase model of
Figure I.7, p. 40. A symmetry around the main diagonal (also known in the specialized literature
as conjugation) exchanges number of summands and value of largest summand; one then has
(with earlier notations)

P(≤k) ∼= P{1, . . k} �⇒ P(≤k)(z) = P{1, . . k}(z),
so that, by (44),

(46) P(≤k)(z) ≡ P{1,...,k} =
k∏

m=1

1

1 − zm .
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As a consequence, the OGF of partitions with exactly k summands, P(k)(z) = P(≤k)(z) −
P(≤k−1)(z), evaluates to

P(k)(z) = zk

(1 − z)(1 − z2) · · · (1 − zk)
.

Given the equivalence between number of parts and largest part in partitions, the asymptotic
estimate (45) applies verbatim here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� I.15. Compositions with summands bounded in number and size. The number of composi-
tions of size n with k summands each at most r is expressible as

[zn]

(
z

1 − zr

1 − z

)k
,

which reduces to a simple binomial convolution (the calculation is similar to (42), p. 43). �

� I.16. Partitions with summands bounded in number and size. The number of partitions of
size n with at most k summands each at most � is

[zn]
(1 − z)(1 − z2) · · · (1 − zk+�)(

(1 − z)(1 − z2) · · · (1 − zk)
) · ((1 − z)(1 − z2) · · · (1 − z�)

) .
(Verifying this by recurrence is easy.) The GF reduces to the binomial coefficient

(k+�
k

)
as

z → 1; it is known as a Gaussian binomial coefficient, denoted
(k+�

k
)
z , or a “q–analogue” of

the binomial coefficient [14, 129]. �

The last example of this section illustrates the close interplay between combi-
natorial decompositions and special function identities, which constitutes a recurrent
theme of classical combinatorial analysis.

Example I.8. The Durfee square of partitions and stack polyominoes. The diagram of any
partition contains a uniquely determined square (known as the Durfee square) that is maximal,
as exemplified by the following diagram:

=

This decomposition is expressed in terms of partition GFs as

P ∼=
⋃
h≥0

(
Zh2 × P(≤h) × P{1,...,h}) ,

It gives automatically, via (44) and (46), a non-trivial identity, which is nothing but a formal
rewriting of the geometric decomposition:

∞∏
n=1

1

1 − zn =
∑
h≥0

zh2(
(1 − z) · · · (1 − zh)

)2

(h is the size of the Durfee square, known to manic bibliometricians as the “H-index”).
Stack polyominoes. Here is a similar case illustrating the direct correspondence between

geometric diagrams and generating functions, as afforded by the symbolic method. A stack
polyomino is the diagram of a composition such that for some j, �, one has 1 ≤ x1 ≤ x2 ≤
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· · · ≤ x j ≥ x j+1 ≥ · · · ≥ x� ≥ 1 (see [552, §2.5] for further properties). The diagram
representation of stack polyominoes

k ←→ P{1,...,k−1} ×Zk × P{1,...,k}

translates immediately into the OGF

S(z) =
∑
k≥1

zk

1 − zk

1(
(1 − z)(1 − z2) · · · (1 − zk−1)

)2
,

once use is made of the partition GFs P{1,...,k}(z) of (44). This last relation provides a bona fide
algorithm for computing the initial values of the number of stack polyominoes (EIS A001523):

S(z) = z + 2 z2 + 4 z3 + 8 z4 + 15 z5 + 27 z6 + 47 z7 + 79 z8 + · · · .

The book of van Rensburg [592] describes many such constructions and their relation to models
of statistical physics, especially polyominoes. For instance, related “q–Bessel” functions appear
in the enumeration of parallelogram polyominoes (Example IX.14, p. 660). . . . . . . . . . . . . . . �

� I.17. Systems of linear diophantine inequalities. Consider the class F of compositions of
integers into four summands (x1, x2, x3, x4) such that

x1 ≥ 0, x2 ≥ 2x1, x3 ≥ 2x2, x4 ≥ 2x3,

where the x j are in Z≥0. The OGF is

F(z) = 1

(1 − z)(1 − z3)(1 − z7)(1 − z15)
.

Generalize to r ≥ 4 summands (in Z≥0) and a similar system of inequalities. (Related GFs
appear on p. 200.) Work out elementarily the OGFs corresponding to the following systems of
inequalities:

{x1 + x2 ≤ x3}, {x1 + x2 ≥ x3}, {x1 + x2 ≤ x3 + x4}, {x1 ≤ x2, x2 ≥ x3, x3 ≤ x4}.
More generally, the OGF of compositions into a fixed number of summands (in Z≥0), con-
strained to satisfy a linear system of equations and inequalities with coefficients in Z, is ration-
al; its denominator is a product of factors of the form (1 − z j ). (Caution: this generalization is
non-trivial: see Stanley’s treatment in [552, §4.6].) �

Figure I.9 summarizes what has been learned regarding compositions and parti-
tions. The way several combinatorial problems are solved effortlessly by the symbolic
method is worth noting.

I. 3.2. Related constructions. It is also natural to consider the two constructions
of cycle and powerset when these are applied to the set of integers I.
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Specification OGF coefficients

Compositions:

all SEQ(SEQ≥1(Z))
1 − z

1 − 2z
2n−1 (p. 40)

parts ≤ r SEQ(SEQ1 . . r (Z))
1 − z

1 − 2z + zr+2
∼ crρ

−n
r (pp. 42, 308)

k parts SEQk(SEQ≥1(Z))
zk

(1 − z)k
∼ nk−1

(k − 1)!
(p. 44)

cyclic CYC(SEQ≥1(Z)) Eq. (48) ∼ 2n

n
(p. 48)

Partitions:

all MSET(SEQ≥1(Z))
∞∏

m=1

(1 − zm)−1 ∼ 1

4n
√

3
e
π

√
2n
3 (pp. 41, 574)

parts ≤ r MSET(SEQ1 . . r (Z))
r∏

m=1

(1 − zm)−1 ∼ nr−1

r !(r − 1)!
(pp. 43, 258)

≤ k parts ∼= MSET(SEQ1 . . k(Z))
k∏

m=1

(1 − zm)−1 ∼ nk−1

k!(k − 1)!
(pp. 44, 258)

distinct parts PSET(SEQ≥1(Z))
∞∏

m=1

(1 + zm) ∼ 33/4

12n3/4
eπ

√
n/3 (pp. 48, 579)

Figure I.9. Partitions and compositions: specifications, generating functions, and
coefficients (in exact or asymptotic form).

Cyclic compositions (wheels). The class D = CYC(I) comprises compositions
defined up to circular shift of the summands; so, for instance 2 + 3 + 1 + 2 + 5,
3 + 1 + 2 + 5 + 2, etc, are identified. Alternatively, we may view elements of D as
“wheels” composed of circular arrangements of rows of balls (taken up to rotation):

a “wheel” (cyclic composition)

By the translation of the cycle construction, the OGF is

(47)
D(z) =

∞∑
k=1

ϕ(k)

k
log

(
1 − zk

1 − zk

)−1

= z + 2 z2 + 3 z3 + 5 z4 + 7 z5 + 13 z6 + 19 z7 + 35 z8 + · · · .



“book” — 2008/10/3 — 16:05 — page 48 — #62

48 I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

The coefficients are thus (EIS A008965)

(48) Dn = 1

n

∑
k | n

ϕ(k)(2n/k − 1) ≡ −1 + 1

n

∑
k | n

ϕ(k)2n/k ∼ 2n

n
,

where the condition “k | n” indicates a sum over the integers k dividing n. Notice that
Dn is of the same asymptotic order as 1

n Cn , which is suggested by circular symmetry
of wheels, but there is a factor: Dn ∼ 2Cn/n.

Partitions into distinct summands. The class Q = PSET(I) is the subclass
of P = MSET(I) corresponding to partitions determined as in Definition I.9, but
with the strict inequalities xk > · · · > x1, so that the OGF is

(49) Q(z) =
∏
n≥1

(1 + zn) = 1 + z + z2 + 2z3 + 2z4 + 3z5 + 4z6 + 5z7 + · · · .

The coefficients (EIS A000009) are not expressible in closed form. However, the
saddle-point method (Section VIII. 6, p. 574) yields the approximation:

(50) Qn ∼ 33/4

12n3/4
exp

(
π

√
n

3

)
,

which has a shape similar to that of Pn in (40), p. 41.
� I.18. Odd versus distinct summands. The partitions of n into odd summands (On) and the
ones into distinct summands (Qn) are equinumerous. Indeed, one has

Q(z) =
∞∏

m=1

(1 + zm), O(z) =
∞∏
j=0

(1 − z2 j+1)−1.

Equality results from substituting (1 + a) = (1 − a2)/(1 − a) with a = zm ,

Q(z) = 1 − z2

1 − z

1 − z4

1 − z2
1 − z6

1 − z3

1 − z8

1 − z4
1 − z10

1 − z5
· · · = 1

1 − z

1

1 − z3

1

1 − z5
· · · ,

and simplification of the numerators with half of the denominators (in boldface). �

Partitions into powers. Let Ipow = {1, 2, 4, 8, . . .} be the set of powers of 2. The
corresponding P and Q partitions have OGFs

Ppow(z) =
∞∏
j=0

1

1 − z2 j

= 1 + z + 2z2 + 2z3 + 4z4 + 4z5 + 6z6 + 6z7 + 10z8 + · · ·

Qpow(z) =
∞∏
j=0

(1 + z2 j
)

= 1 + z + z2 + z3 + z4 + z5 + · · · .
The first sequence 1, 1, 2, 2, . . . is the “binary partition sequence” (EIS A018819); the
difficult asymptotic analysis was performed by de Bruijn [141] who obtained an esti-
mate that involves subtle fluctuations and is of the global form eO(log2 n). The function
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Qpow(z) reduces to (1−z)−1 since every number has a unique additive decomposition
into powers of 2. Accordingly, the identity

1

1 − z
=

∞∏
j=0

(1 + z2 j
),

first observed by Euler is sometimes nicknamed the “computer scientist’s identity” as
it reflects the property that every number admits a unique binary representation.

There exists a rich set of identities satisfied by partition generating functions—
this fact is down to deep connections with elliptic functions, modular forms, and
q–analogues of special functions on the one hand, basic combinatorics and number
theory on the other hand. See [14, 129] for introductions to this fascinating subject.
� I.19. Euler’s pentagonal number theorem. This famous identity expresses 1/P(z) as∏

n≥1

(1 − zn) =
∑
k∈Z

(−1)k zk(3k+1)/2.

It is proved formally and combinatorially in Comtet’s reference [129, p. 105] and it serves to
illustrate “proofs from THE BOOK” in the splendid exposition of Aigner and Ziegler [7, §29].
Consequently, the numbers {Pj }N

j=0 can be determined in O(N
√

N ) integer operations. �

� I.20. A digital surprise. Define the constant

ϕ := 9

10

99

100

999

1000

9999

10000
· · · .

Is it a surprise that it evaluates numerically to

ϕ
.= 0.8900100999989990000001000099999999899999000000000010 · · · ,

that is, its decimal representation involves only the digits 0, 1, 8, 9? [This is suggested by a note
of S. Ramanujan, “Some definite integrals”, Messenger of Math. XLIV, 1915, pp. 10–18.] �

� I.21. Lattice points. The number of lattice points with integer coordinates that belong to the
closed ball of radius n in d-dimensional Euclidean space is

[zn2
]

1

1 − z
(�(z))d where �(z) = 1 + 2

∞∑
n=1

zn2
.

Estimates may be obtained via the saddle-point method (Note VIII.35, p. 589). �

I. 4. Words and regular languages

Fix a finite alphabet A whose elements are called letters. Each letter is taken to
have size 1; i.e., it is an atom. A word8 is any finite sequence of letters, usually written
without separators. So, for us, with the choice of the Latin alphabet (A = {a,. . . ,z}),
sequences such as ygololihp, philology, zgrmblglps are words. We denote
the set of all words (often written as A� in formal linguistics) by W . Following a
well-established tradition in theoretical computer science and formal linguistics, any
subset of W is called a language (or formal language, when the distinction with natural
languages has to be made).

8An alternative to the term “word” sometimes preferred by computer scientists is “string”; biologists
often refer to words as “sequences”.
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OGF coefficients

Words:
1

1 − mz
mn (p. 50)

a–runs < k
1 − zk

1 − mz + (m − 1)zk+1
∼ ckρ

−n
k (pp. 51, 308)

exclude subseq. p Eq. (55) ≈ (m − 1)nn|p|−1 (p. 54)

exclude factor p
cp(z)

z|p| + (1 − mz)cp(z)
∼ cpρ

−n
p (pp. 61, 271)

circular Eq. (64) ∼ mn/n (p. 64)

regular language [rational] ≈ C · Annk (pp. 56, 302, 342)

context-free lang. [algebraic] ≈ C · Ann p/q (pp. 80, 501)

Figure I.10. Words over an m–ary alphabet: generating functions and coefficients.

From the definition of the set of words W , one has

(51) W ∼= SEQ(A) �⇒ W (z) = 1

1 − mz
,

where m is the cardinality of the alphabet, i.e., the number of letters. The generating
function gives us the counting result

Wn = mn .

This result is elementary, but, as is usual with symbolic methods, many enumerative
consequences result from a given construction. It is precisely the purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each have great expressive
power for describing languages. The first one is iterative (i.e., non-recursive) and
it bases itself on “regular specifications” that only involve the constructions of sum,
product, and sequence; the other one, which is recursive (but of a very simple form),
is best conceived of in terms of finite automata and is equivalent to linear systems of
equations. Both frameworks turn out to be logically equivalent in the sense that they
determine the same family of languages, the regular languages, though the equiva-
lence is non-trivial (Appendix A.7: Regular languages, p. 733), and each particular
problem usually admits a preferred representation. The resulting OGFs are invariably
rational functions, a fact to be systematically exploited from an asymptotic standpoint
in Chapter V. Figure I.10 recapitulates some of the major word problems studied in
this chapter, together with corresponding approximations9.

9In this book, we reserve “∼” for the technical sense of “asymptotically equivalent” defined in Ap-
pendix A.2: Asymptotic notations, p. 722; we reserve the symbol “≈” to mean “approximately equal” in
a vaguer sense, where formulae have been simplified by omitting constant factors or terms of secondary
importance (in context).
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I. 4.1. Regular specifications. Consider words (or strings) over the binary al-
phabet A = {a, b}. There is an alternative way to construct binary strings. It is based
on the observation that, with a minor adjustment at the beginning, a string decomposes
into a succession of “blocks” each formed with a single b followed by an arbitrary
(possibly empty) sequence of as. For instance aaabaababaabbabbaaa decomposes
as

[aaa] baa | ba | baa | b | ba | b | baaa.

Omitting redundant10 symbols, we have the alternative decomposition:

(52) W ∼= SEQ(a)× SEQ(b SEQ(a)) �⇒ W (z) = 1

1 − z

1

1 − z 1
1−z

.

This last expression reduces to (1 − 2z)−1 as it should.
Longest runs. The interest of the construction just seen is to take into account

various meaningful properties, for example longest runs. Abbreviate by a<k :=
SEQ<k(a) the collection of all words formed with the letter a only and whose length is
between 0 and k −1; the corresponding OGF is 1+ z+· · ·+ zk−1 = (1− zk)/(1− z).
The collection W〈k〉 of words which do not have k consecutive as is described by an
amended form of (52):

W〈k〉 = a<k SEQ(ba<k) �⇒ W 〈k〉(z) = 1 − zk

1 − z
· 1

1 − z 1−zk

1−z

= 1 − zk

1 − 2z + zk+1
.

The OGF is in principle amenable to expansion, but the resulting coefficients expres-
sions are complicated and, in such a case, asymptotic estimates tend to be more usable.
From the analysis developed in Example V.4 (p. 308), it can indeed be deduced that
the longest run of a’s in a random binary string of length n is on average asymptotic
to log2 n.
� I.22. Runs in arbitrary alphabets. For an alphabet of cardinality m, the quantity

1 − zk

1 − mz + (m − 1)zk+1

is the OGF of words without k consecutive occurrences of a designated letter. �

The case of longest runs exemplifies the utility of nested constructions involving
sequences. We set:

Definition I.10. An iterative specification that only involves atoms (e.g., letters of a
finite alphabet A) together with combinatorial sums, cartesian products, and sequence
constructions is said to be a regular specification.

A language L is said to be S–regular (“specification–regular”) if there exists a
class M described by a regular specification such that L and M are combinatorially
isomorphic: L ∼= M.

An equivalent way of expressing the definition is as follows: a language is S–
regular if it can be described unambiguously by a regular expression (Appendix A.7:

10When dealing with words, especially, we freely omit redundant braces “{, }” and cartesian products
“×”, for readability. For instance, SEQ(a + b) and a b are shorthand for SEQ({a} + {b}) and {a} × {b}.
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Regular languages, p. 733). The definition of a regular specification and the basic
admissibility theorem (p. 27) imply immediately:

Proposition I.2. Any S–regular language has an OGF that is a rational function.
This OGF is obtained from a regular specification of the language by translating each
letter into the variable z, disjoint unions into sums, cartesian products into products,
and sequences into quasi-inverses, (1 − ·)−1.

This result is technically shallow but its importance derives from the fact that
regular languages have great expressive power devolving from their rich closure prop-
erties (Appendix A.7: Regular languages, p. 733) as well as their relation to finite
automata discussed in the next subsection. Examples I.9 and I.10 below make use of
Proposition I.2 and treat two problems closely related to longest runs.

Example I.9. Combinations and spacings. A regular specification describes the set L of words
that contain exactly k occurrences of the letter b, from which the OGF automatically follows:

(53) L = SEQ(a) (b SEQ(a))k �⇒ L(z) = zk/(1 − z)k+1.

Hence the number of words in the language satisfies Ln = (n
k
)
. This is otherwise combinat-

orially evident, since each word of length n is characterized by the positions of its letters b; that
is, the choice of k positions among n possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let
(n
k
)
<d be the number of combinations of k elements among [1, n] with constrained

spacings: no element can be at distance d or more from its successor. The refinement of (53)

L[d] = SEQ(a) (b SEQ<d (a))
k−1 (b SEQ(a)) �⇒

∑
n≥0

(
n

k

)
<d

zn = zk(1 − zd )k−1

(1 − z)k+1
,

leads to a binomial convolution expression,(
n

k

)
<d

=
∑

j

(−1) j
(

k − 1

j

)(
n − d j

k

)
.

(This problem is analogous to compositions with bounded summands in (42), p. 43.) What we
have just analysed is the largest spacing (constrained to be at most d) in subsets. A parallel
analysis yields information regarding the smallest spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example I.10. Double run statistics. By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W ∼= SEQ(b) SEQ(a SEQ(a) b SEQ(b)) SEQ(a).

Let W〈α,β〉 be the class of all words that have at most α consecutive as and β consecutive bs.
The specification of W induces a specification of W〈α,β〉, upon replacing SEQ(a), SEQ(b) by
SEQ<α(a), SEQ<β(b) internally, and by SEQ≤α(a), SEQ≤β(b) externally. In particular, the
OGF of binary words that never have more than r consecutive identical letters is found to be
(set α = β = r )

(54) W 〈r,r〉 = 1 − zr+1

1 − 2z + zr+1
= 1 + z + · · · + zr

1 − z − · · · − zr ,

after simplification. (This result can be extended to an arbitrary alphabet by means of “Smirnov
words”, Example III.24, p. 204.)

Révész in [508] tells the following amusing story attributed to T. Varga: “A class of high
school children is divided into two sections. In one of the sections, each child is given a coin
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which he throws two hundred times, recording the resulting head and tail sequence on a piece
of paper. In the other section, the children do not receive coins, but are told instead that they
should try to write down a ‘random’ head and tail sequence of length two hundred. Collecting
these slips of paper, [a statistician] then tries to subdivide them into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the maximum length
of runs of consecutive letters in a random binary word of length n (here n = 200). The prob-
ability that this parameter equals k is

1

2n

(
W 〈k,k〉

n − W 〈k−1,k−1〉
n

)
and is fully determined by (54). The probabilities are then easily computed using any symbolic
package: for n = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12

P(k) 6.54 10−8 7.07 10−4 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226

Thus, in a randomly produced sequence of length 200, there are usually runs of length 6 or
more: the probability of the event turns out to be close to 97% (and there is still a probability of
about 8% to have a run of length 11 or more). On the other hand most children (and adults) are
usually afraid of writing down runs longer than 4 or 5 as this is felt as strongly “non-random”.
The statistician simply selects the slips that contain runs of length 6 or more as the true random
ones. Voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� I.23. Alice, Bob, and coding bounds. Alice wants to communicate n bits of information to
Bob over a channel (a wire, an optic fibre) that transmits 0,1-bits but is such that any occurrence
of 11 terminates the transmission. Thus, she can only send on the channel an encoded version
of her message (where the code is of some length � ≥ n) that does not contain the pattern 11.

Here is a first coding scheme: given the message m = m1m2 · · ·mn , where m j ∈ {0,1},
apply the substitution: 0 	→ 00 and 1 	→ 10; terminate the transmission by sending 11. This
scheme has � = 2n + O(1), and we say that its rate is 2. Can one design codes with better
rates? with rates arbitrarily close to 1, asymptotically?

Let C be the class of allowed code words. For words of length n, a code of length L ≡
L(n) is achievable only if there exists a one-to-one mapping from {0, 1}n into

⋃L
j=0 C j , i.e.,

2n ≤ ∑L
j=0 C j . Working out the OGF of C, one finds that necessarily

L(n) ≥ λn + O(1), λ = 1

log2 ϕ

.= 1.440420, ϕ = 1 +√
5

2
.

Thus no code can achieve a rate better than 1.44; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [427, Ch. 17].) �

� I.24. Coding without long runs. Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than four consecutive 0s or more than
four consecutive 1s. We seek a coding scheme that transforms an arbitrary binary string into a
string obeying this constraint.

From the OGF, one finds [z11]W 〈4,4〉(z) = 1546 > 210 = 1024. Consequently, a substi-
tution can be built that translates an original 10-bit word into an 11-bit block that does not have
five consecutive equal letters. When 11-bit blocks are concatenated, this may however give rise
to forbidden sequences of identical consecutive letters at the junction of two blocks. It then
suffices to use “separators” and replace a substituted block of the form α · X · β by the longer
block αα · X · ββ, where 0 = 1 and 1 = 0. The resulting code has rate 13

10 .
Extensions of this method show that the rate 1.057 is achievable (theoretically). On the

other hand, by the principles of the previous note, any acceptable code must use asymptotically
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at least 1.056n bits to encode strings of n bits. (Hint: let α be the root near 1
2 of 1−2α+α5 = 0,

which is a pole of W 〈4,4〉. One has 1/ log2(1/α)
.= 1.05621.) �

Patterns. There are many situations in the sciences where it is of interest to de-
termine whether the appearance of a certain pattern in long sequences of observations
is significant. In a genomic sequence of length 100 000 (the alphabet is A,G,C,T), is
it or is it not meaningful to detect three occurrences of the pattern TAGATAA, where
the letters appear consecutively and in the prescribed order? In computer network
security, certain attacks can be detected by some well-defined alarming sequences of
events, although these events may be separated by perfectly legitimate actions. On
another register, data mining aims at broadly categorizing electronic documents in an
automatic way, and in this context the observation of well-chosen patterns can provide
highly discriminating criteria. These various applications require determining which
patterns are, with high probability, bound to occur (these are not significant) and which
are very unlikely to arise, so that actually observing them carries useful information.
Quantifying the corresponding probabilistic phenomena reduces to an enumerative
problem—the case of double runs in Example I.10 (p. 52) is in this respect typical.

The notion of pattern can be formalized in several ways. In this book, we shall
principally consider two of them.

(a) Subsequence pattern: such a pattern is defined by the fact that its letters
must appear in the right order, but not necessarily contiguously [263]. Sub-
sequence patterns are also known as “hidden patterns”.

(b) Factor pattern: such a pattern is defined by the fact that its letter must appear
in the right order and contiguously [312, 564]. Factor patterns are also called
“block patterns” or simply “patterns” when the context is clear.

For a given notion of pattern, there are then two related categories of problems. First,
one may aim at determining the probability that a random word contains (or dually,
excludes) a pattern; this problem is equivalently formulated as an existence problem—
enumerate all words in which the pattern exists (i.e., occurs) independently of the
number of occurrences. Second, one may aim at determining the expectation (or even
the distribution) of the number of occurrences of a pattern in a random text; this prob-
lem involves enumerating enriched words, each with one occurrence of the pattern
distinguished.

Such questions are amenable to methods of analytic combinatorics and in partic-
ular to the theory of regular specifications and automata: see Example I.11 below for
a first attempt at analysing hidden patterns (to be continued in Chapter V, p. 315) and
Example I.12 for an analysis of factor patterns (to be further extended in Chapters III,
p. 211, IV, p. 271, and IX, p. 659).

Example I.11. Subsequence (hidden) patterns in a text. A sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to be a “hidden pattern”.
For instance the pattern “combinatorics” is to be found hidden in Shakespeare’s Hamlet (Act I,
Scene 1)

Dared to the comb at; in which our v a lian t Hamlet–

F or so th i s side of our known world esteem’d him–

Did slay this Fortinbras; who by a seal’d c ompact,
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Well ratified by law and heraldry,
Did forfeit, with hi s life, all those his lands [. . . ]

Take a fixed finite alphabet A comprising m letters (m = 26 for English). First, let
us examine the language L of all words, also called “texts”, that contain a given word p =
p1 p2 · · · pk of length k as a subsequence. These words can be described unambiguously as
starting with a sequence of letters not containing p1 followed by the letter p1 followed by a
sequence not containing p2, and so on:

L = SEQ(A \ p1)p1 SEQ(A \ p2)p2 · · · SEQ(A \ pk)pk SEQ(A).
This is in a sense equivalent to parsing words unambiguously according to the left-most occur-
rence of p as a subsequence. The OGF is accordingly

(55) L(z) = zk

(1 − (m − 1)z)k
1

1 − mz
.

An easy analysis of the dominant simple pole at z = 1/m shows that

L(z) ∼
z→1/m

1

1 − mz
, so that Ln ∼

n→∞mn .

Thus, a proportion tending to 1 of all the words of length n do contain a fixed pattern p as a
subsequence. (Note I.25 below refines this estimate.)

Mean number of occurrences. A census (Note I.26, p. 56) shows that there are in fact
1.63 · 1039 occurrences of “combinatorics” as a subsequence hidden somewhere in the
text of Hamlet, whose length is 120 057 (this is the number of letters that constitute the text). Is
this the sign of a secret encouragement passed to us by the author of Hamlet?

To answer this somewhat frivolous question, here is an analysis of the expected number
of occurrences of a hidden pattern. It is based on enumerating enriched words, where an en-
riched word is a word together with a distinguished occurrence of the pattern as a subsequence.
Consider the regular specification

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) · · · SEQ(A) pk−1 SEQ(A) pk SEQ(A).
An element of O is a (2k + 1)–tuple whose first component is an arbitrary word, whose second
component is the letter p1, and so on, with letters of the pattern and free blocks alternating. In
other terms, any ω ∈ O represents precisely one possible occurrence of the hidden pattern p in
a text built over the alphabet A. The associated OGF is simply

O(z) = zk

(1 − mz)k+1
.

The ratio between the number of occurrences and the number of words of length n then equals

(56) �n = [zn]O(z)

mn = m−k
(

n

k

)
,

and this quantity represents the expectation of the number of occurrences of p in a random word
of length n, assuming all such words to be equally likely. For the parameters corresponding to
the text of Hamlet (n = 120 057) and the pattern “combinatorics” (k = 13), the quantity
�n evaluates to 6.96 · 1037. The number of hidden occurrences observed is thus 23 times
higher than what the uniform model predicts! However, similar methods make it possible to
take into account non-uniform letter probabilities (Subsection III. 6.1, p. 189): based on the
frequencies of letters in the English text itself, the expected number of occurrences is found to
be 1.71 · 1039—this is now only within 5% of what is observed. Thus, Shakespeare did not
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(probably) conceal any message relative to combinatorics—see Example V.7, p. 315, for more
on this topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� I.25. A refined analysis. Further consideration of the subdominant pole at z = 1/(m − 1)
yields, by the methods of Theorem IV.9 (p. 256), the refined estimate:

1 − Ln

mn = O

(
nk−1

(
1 − 1

m

)n)
.

Thus, the probability of not containing a given subsequence pattern is exponentially small. �

� I.26. Dynamic programming. The number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right and maintaining a running
count of the number of occurrences of the pattern as well as all its prefixes. �

I. 4.2. Finite automata. We begin with a simple device, the finite automaton,
that is widely used in the study of models of computation [189] and has wide descrip-
tive power with regard to structural properties of words. (A systematic treatment of
automata and paths in graphs, combining both algebraic and asymptotic aspects, is
given in Part B, Section V. 5, p. 336.)

Definition I.11. A finite automaton is a directed multigraph whose edges are labelled
by letters of the alphabet A. It is customary to refer to vertices as states and to denote
by Q the set of states. One designates an initial state q0 ∈ Q and a set of final states
Q ⊆ Q.

The automaton is said to be deterministic if for each pair (q, α) with q ∈ Q and
α ∈ A there exists at most one edge (one also says a transition) starting from q, which
is labelled by the letter α.

A finite automaton (Figure I.11) is able to process words, as we now explain.
A word w = w1 . . . wn is accepted by the automaton if there exists a path in the
multigraph connecting the initial state q0 to one of the final states of Q and whose
sequence of edge labels is precisely w1, . . . , wn . For a deterministic finite automaton,
it suffices to start from the initial state q0, scan the letters of the word from left to right,
and follow at each stage the only transition permitted; the word is accepted if the state
reached in this way after scanning the last letter of w is a final state. Schematically:

a b a b b a

Q

A finite automaton thus keeps only a finite memory of the past (hence its name) and
is in a sense a combinatorial counterpart of the notion of Markov chain in probability
theory. In this book, we shall only consider deterministic automata.

As an illustration, consider the class L of all words w that contain the pattern
abb as a factor (the letters of the pattern should appear contiguously). Such words are
recognized by a finite automaton with four states, q0, q1, q2, q3. The construction is
classical: state q j is interpreted as meaning “the first j characters of the pattern have
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a b b

a, bb a

a

0 1 2 3

Figure I.11. Words that contain the pattern abb are recognized by a four-state au-
tomaton with initial state q0 and final state q3.

just been scanned”, and the corresponding automaton appears in Figure I.11. The
initial state is q0, and there is a unique final state q3.

Definition I.12. A language is said to be A–regular (automaton regular) if it coincides
with the set of words accepted by a deterministic finite automaton. A class M is A–
regular if for some regular language L, one has M ∼= L.
� I.27. Congruence languages. The language of binary representations of numbers that are
congruent to 2 modulo 7 is A–regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions. �

� I.28. Binary representation of primes. The language of binary representations of prime num-
bers is neither A–regular nor S–regular. [Hint: use the Prime Number Theorem and asymptotic
methods of Chapter IV.] �

The following equivalence theorem is briefly discussed in Appendix A.7: Regular
languages, p. 733.

Equivalence theorem (Kleene–Rabin–Scott). A language is S–regular (specifica-
tion regular) if and only if it is A–regular (automaton regular).

These two equivalent notions also coincide with the notion of regularity in for-
mal language theory, where the latter is defined by means of (possibly ambiguous)
regular expressions and (possibly non-deterministic) finite automata [6, 189]. As al-
ready pointed out, the equivalences are non-trivial: they are given by algorithms that
transform one formalism into the other, but do not transparently preserve combina-
torial structure (in some cases, an exponential blow-up in the size of descriptions is
involved). For this reason, we have opted to develop independently the notions of
S–regularity and A–regularity.

We next examine the way generating functions can be obtained from a determin-
istic automaton. The process was first discovered in the late 1950s by Chomsky and
Schützenberger [119].

Proposition I.3. Suppose that G is a deterministic finite automaton with state set
Q = {q0, . . . , qs}, initial state q0, and set of final states Q = {qi1 , . . . , qi f }. The
generating function of the language L of all words accepted by the automaton is a
rational function that is determined under matrix form as

L(z) = u(I − zT )−1v.
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Here the transition matrix T is defined by

Tj,k = card
{
α ∈ A such that an edge (q j , qk) is labelled by α

} ;
the row vector u is the vector (1, 0, 0, . . . , 0) and the column vector v = (v0, . . . , vs)

t

is such that11 v j = [[q j ∈ Q]].

In particular, by Cramer’s rule, the OGF of a regular language is the quotient of two
(sparse) determinants whose structure directly reflects the automaton transitions.

Proof. The proof we present is based on a “first-letter decomposition”, which is
conceptually analogous to the Kolmogorov backward-equations of Markov chain the-
ory [93, p. 153]. (Note I.29 provides an alternative approach.) For j ∈ {0, . . . , s}, in-
troduce the class (language) L j of all words w such that the automaton, when started
in state q j , terminates in one of the final states of Q, after having read w. The follow-
ing relation holds for any j :

(57) L j ∼= � j +
(∑
α∈A

{α}L(q j◦α)

)
;

there � j is the class {ε} formed of the word of length 0 if q j is final and the empty
set (∅) otherwise; the notation (q j ◦ α) designates the state reached in one step from
state q j upon reading letter α. The justification is simple: a language L j contains the
word of length 0 only if the corresponding state q j is final; a word of length ≥ 1 that
is accepted starting from state q j has a first letter α followed by a word that must lead
to an accepting state, when starting from state q j ◦ α.

The translation of (57) is then immediate:

(58) L j (z) = [[q j ∈ Q]] + z
∑
α∈A

L(q j◦α)(z).

The collection of all the equations as j varies forms a linear system: with L(z) the
column vector (L0(z), . . . , Ls(z)), one has

L(z) = v + zT L(z),

where v and T are as described in the statement. The result follows by matrix inversion
upon observing that the OGF of the language L is L0(z). �
� I.29. The forward equations. Let Mk be the set of words, which lead to state qk , when the
automaton is started in state q0. By a “last-letter decomposition”, the Mk satisfy a system that
is a transposed version of (58). �

The pattern abb. Consider the automaton recognizing the pattern abb as given
in Figure I.11. The languages L j (where L j is the set of accepted words when starting
from state q j ) are connected by the system of equations

L0 = aL1 + bL0
L1 = aL1 + bL2
L2 = aL1 + bL3
L3 = aL3 + bL3 + ε,

11It proves convenient at this stage to introduce Iverson’s bracket notation: for a predicate P , the
quantity [[P]] has value 1 if P is true and 0 otherwise.
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which directly reflects the graph structure of the automaton. This gives rise to a set of
equations for the associated OGFs

L0 = zL1 + zL0
L1 = zL1 + zL2
L2 = zL1 + zL3
L3 = zL3 + zL3 + 1.

Solving the system, we find the OGF of all words containing the pattern abb: it is
L0(z) since the initial state of the automaton is q0, and

(59) L0(z) = z3

(1 − z)(1 − 2z)(1 − z − z2)
.

The partial fraction decomposition

L0(z) = 1

1 − 2z
− 2 + z

1 − z − z2
+ 1

1 − z
,

then yields

L0,n = 2n − Fn+3 +1,

with Fn a Fibonacci number (p. 42). In particular the number of words of length n that
do not contain abb is Fn+3 −1, a quantity that grows at an exponential rate of ϕn , with
ϕ = (1 +√

5)/2 the golden ratio. Thus, all but an exponentially vanishing proportion
of the strings of length n contain the given pattern abb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, from Note I.32, p. 61, a random
word contains a large number, about ∼ n/8, of occurrences of the pattern abb.)
� I.30. Regular specification for pattern abb. The pattern abb is simple enough that one can
come up with an equivalent regular expression describing L0, whose existence is otherwise
granted by the Kleene–Rabin–Scott Theorem. An accepting path in the automaton of Fig-
ure I.11 loops around state 0 with a sequence of b, then reads an a, loops around state 1 with
a sequence of a’s and moves to state 2 upon reading a b; then there should be letters making
the automaton passs through states 1-2-1-2-· · · -1-2 and finally a b followed by an arbitrary
sequence of as and bs at state 3. This corresponds to the specification (with X� abbreviating
SEQ(X))

L0 = (b)� a(a)�b (a(a)�b)� b(a + b)� �⇒ L0(z) =
z3

(1 − z)2(1 − z2

1−z )(1 − 2z)
,

which gives back a form equivalent to (59). �

Example I.12. Words containing or excluding a pattern. Fix an arbitrary pattern p =
p1 p2 · · · pk and let L be the language of words containing at least one occurrence of p as
a factor. Automata theory implies that the set of words containing a pattern as a factor is A–
regular, hence admits a rational generating function. Indeed, the construction given for p = abb
generalizes in an easy manner: there exists a deterministic finite automaton with k + 1 states
that recognizes L, the states memorizing the largest prefix of the pattern p just seen. As a con-
sequence: the OGF of the language of words containing a given factor pattern of length k is a
rational function of degree at most k + 1. (The corresponding automaton is in fact known as a
Knuth–Morris–Pratt automaton [382].) The automaton construction however provides the OGF
L(z) in determinantal form, so that the relation between this rational form and the structure of
the pattern is not transparent.
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Autocorrelations. An explicit construction due to Guibas and Odlyzko [313] nicely cir-
cumvents this problem. It is based on an “equational” specification that yields an alternative
linear system. The fundamental notion is that of an autocorrelation vector. For a given p, this
vector of bits c = (c0, . . . , ck−1) is most conveniently defined in terms of Iverson’s bracket as

ci = [[pi+1 pi+2 · · · pk = p1 p2 · · · pk−i ]].

In other words, the bit ci is determined by shifting p right by i positions and putting a 1 if
the remaining letters match the original p. Graphically, ci = 1 if the two framed factors of p

coincide in

p ≡ p1 · · · pi pi+1 · · · pk

p1 · · · pk−i pk−i+1 · · · pk ≡ p.

For instance, with p = aabbaa, one has

a a b b a a

a a b b a a 1
a a b b a a 0

a a b b a a 0
a a b b a a 0

a a b b a a 1
a a b b a a 1 .

The autocorrelation is then c = (1, 0, 0, 0, 1, 1). The autocorrelation polynomial is defined as

c(z) :=
k−1∑
j=0

c j z j .

For the example pattern, this gives c(z) = 1 + z4 + z5.
Let S be the language of words with no occurrence of p and T the language of words that

end with p but have no other occurrence of p. First, by appending a letter to a word of S, one
finds a non-empty word either in S or T , so that

(60) S + T = {ε} + S ×A.

Next, appending a copy of the word p to a word in S may only give words that contain p at or
“near” the end. In precise terms, the decomposition based on the left-most occurrence of p in
Sp is

(61) S × {p} = T ×
∑
ci  =0

{pk−i+1 pk−i+2 · · · pk},

corresponding to the configurations

S ///////p//////

//////p//////︸ ︷︷ ︸
T

pk−i+1 · · · pk

The translation of the system (60), (61) into OGFs then gives a system of two equations in the
two unknowns S, T ,

S + T = 1 + mzS, S · zk = T c(z),

which is then readily solved.
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Proposition I.4. The OGF of words not containing the pattern p as a factor is

(62) S(z) = c(z)

zk + (1 − mz)c(z)
,

where m is the alphabet cardinality, k = |p| the pattern length, and c(z) the autocorrelation
polynomial of p.

A bivariate generating function based on the autocorrelation polynomial is derived in
Chapter III, p. 212, from which is deduced, in Proposition IX.10, p. 660, the existence of a
limiting Gaussian law for the number of occurrences of any pattern. . . . . . . . . . . . . . . . . . . . . . �
� I.31. At least once. The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

L(z) = zk

(1 − mz)(zk + (1 − mz)c(z))
, T (z) = zk

zk + (1 − mz)c(z)
,

respectively. �

� I.32. Expected number of occurrences of a pattern. For the mean number of occurrences
of a factor pattern, calculations similar to those employed for the number of occurrences of
a subsequence (even simpler) can be based on regular specifications. All the occurrences
(contexts) of p = p1 p2 · · · pk as a factor are described by

Ô = SEQ(A) (p1 p2 · · · pk) SEQ(A), �⇒ Ô(z) = zk

(1 − mz)2
.

Consequently, the expected number of such contiguous occurrences satisfies

(63) �̂n = m−k(n − k + 1) ∼ n

mk
.

Thus, the mean number of occurrences is proportional to n. �

� I.33. Waiting times in strings. Let L ⊂ SEQ{a, b} be a language and S = {a, b}∞ be the set
of infinite strings with the product probability induced by P(a) = P(b) = 1

2 . The probability
that a random string ω ∈ S starts with a word of L is L̂(1/2), where L̂(z) is the OGF of the
“prefix language” of L, that is, the set of words w ∈ L that have no strict prefix belonging to L.
The GF L̂(z) serves to express the expected time at which a word in L is first encountered: this
is 1

2 L̂ ′( 1
2 ). For a regular language, this quantity must be a rational number. �

� I.34. A probabilistic paradox on strings. In a random infinite sequence, a pattern p of length k
first occurs on average at time 2kc(1/2), where c(z) is the autocorrelation polynomial. For
instance, the pattern p = abb tends to occur “sooner” (at average position 8) than p′ = aaa (at
average position 14). See [313] for a thorough discussion. Here are for instance the epochs at
which p and p′ are first found in a sample of 20 runs:

p : 3, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 9, 9, 10, 11, 14, 15, 15, 16, 21

p′ : 3, 4, 8, 8, 9, 10, 11, 11, 11, 12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expected number of occurrences,
which is puzzling. Is analytic combinatorics contradictory? (Hint. The catch is that, due to
overlaps of p′ with itself, occurrences of p′ tend to occur in clusters, but, then, clusters tend to
be separated by wider gaps than for p; eventually, there is no contradiction.) �

� I.35. Borges’s Theorem. Take any fixed finite set � of patterns. A random text of length n
contains all the patterns of the set � (as factors) with probability tending to 1 exponentially
fast as n → ∞. Reason: the rational functions S(z/2) with S(z) as in (62) have no pole
in |z| ≤ 1; see also Chapters III (p. 213), IV(p. 271), V(p. 308). This property is sometimes
called “Borges’s Theorem” as a tribute to the famous Argentinian writer Jorge Luis Borges
(1899–1986) who, in his essay “The Library of Babel”, describes a library so huge as to contain:
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“Everything: the minutely detailed history of the future, the archangels’ autobiogra-
phies, the faithful catalogues of the Library, thousands and thousands of false cat-
alogues, the demonstration of the fallacy of those catalogues, the demonstration of
the fallacy of the true catalogue, the Gnostic gospel of Basilides, the commentary
on that gospel, the commentary on the commentary on that gospel, the true story of
your death, the translation of every book in all languages, the interpolations of every
book in all books.”

Strong versions of Borges’s Theorem, including the existence of limit Gaussian laws, hold for
many random combinatorial structures, including trees, permutations, and planar maps (see
Chapter IX, p. 659 and pp. 680–684). �

� I.36. Variable length codes. A finite set F ⊂ W , where W = SEQ(A) is called a code if any
word of W decomposes in at most one manner into factors that belong to F (with repetitions
allowed). For instance F = {a, ab, bb} is a code and aaabbb = a|a|ab|bb has a unique
decomposition; F ′ = {a, aa, b} is not a code since aaa = a|aa = aa|a = a|a|a. The OGF of
the set SF of all words that admit a decomposition into factors all in F is a computable rational
function, irrespective of whether F is a code. (Hint: use an “Aho–Corasick” automaton [5].) A
finite set F is a code iff SF (z) = (1 − F(z))−1. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by Berstel and Perrin [55]
develops systematically the theory of such variable-length codes. �

In general, automata are useful in establishing a priori the rational character of
generating functions. They are also surrounded by interesting analytic properties (e.g.,
Perron–Frobenius theory, Section V. 5, p. 336, that characterizes the dominant poles)
and by asymptotic probability distributions of associated parameters that are normally
Gaussian. They are most conveniently used for proving existence theorems, then sup-
plemented when possible by regular specifications, which are likely to lead to more
tractable expressions.

I. 4.3. Related constructions. Words can, at least in principle, encode any com-
binatorial structure. We detail here one situation that demonstrates the utility of such
encodings: it is relative to set partitions and Stirling numbers. The point to be made is
that some amount of “combinatorial preprocessing” is sometimes necessary in order
to bring combinatorial structures into the orbit of symbolic methods.

Set partitions and Stirling partition numbers. A set partition is a partition of a
finite domain into a certain number of non-empty sets, also called blocks. For instance,
if the domain is D = {α, β, γ, δ}, there are 15 ways to partition it (Figure I.12). Let
S(r)n denote the collection of all partitions of the set [1 . . n] into r non-empty blocks
and S(r)n = card(S(r)n ) the corresponding cardinality. The basic object under consid-
eration here is a set partition (not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions in S(r)n of an n-set into r blocks by
words over a r letter alphabet, B = {b1, b2, . . . , br } as follows. Consider a set partition
� that is formed of r blocks. Identify each block by its smallest element called the
block leader; then sort the block leaders into increasing order. Define the index of
a block as the rank of its leader among all the r leaders, with ranks conventionally
starting at 1. Scan the elements 1 to n in order and produce sequentially n letters from
the alphabet B: for an element belonging to the block of index j , produce the letter b j .
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α β γ δ

α β | γ δ
α γ |β δ
α δ |β γ
α |β γ δ
β |α γ δ
γ |α β δ
δ |α β γ

α |β | γ δ
α | γ |β δ
α |δ |β γ
β | γ |α δ
β | δ |α γ
γ | δ |α β

α |β | γ | δ

Figure I.12. The 15 ways of partitioning a four-element domain into blocks corres-

pond to S(1)4 = 1, S(2)4 = 7, S(3)4 = 6, S(4)4 = 1.

For instance for n = 6, r = 3, the set partition � = {{6, 4}, {5, 1, 2}, {3, 7, 8}},
is reorganized by putting leaders in first position of the blocks and sorting them,

� = {
b1︷ ︸︸ ︷

{1, 2, 5},
b2︷ ︸︸ ︷

{3, 7, 8},
b3︷ ︸︸ ︷

{4, 6}},
so that the encoding is (

1 2 3 4 5 6 7 8
b1 b1 b2 b3 b1 b3 b2 b2

)
.

In this way, a partition is encoded as a word of length n over B with the additional
properties that: (i) all r letters occur; (i i) the first occurrence of b1 precedes the first
occurrence of b2, which itself precedes the first occurrence of b3, etc. Graphically,
this correspondence can be rendered by an “irregular staircase” representation, such
as

4 − 6 − −
3 − − − 7 8

1 2 − − 5 − − −
where the staircase has length n and height r , each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

From the foregoing discussion, S(r)n is mapped into words of length n in the lan-
guage

b1 SEQ(b1) ·b2 SEQ(b1 +b2) ·b3 SEQ(b1 +b2 +b3) · · · br SEQ(b1 +b2 +· · ·+br ).

The language specification immediately gives the OGF

S(r)(z) = zr

(1 − z)(1 − 2z)(1 − 3z) · · · (1 − r z)
.

The partial fraction expansion of S(r)(z) is then readily computed,

S(r)(z) = 1

r !

r∑
j=0

(
r

j

)
(−1)r− j

1 − j z
, so that S(r)n = 1

r !

r∑
j=1

(−1)r− j
(

r

j

)
jn .
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In particular, one has

S(1)n = 1, S(2)n = 1

2!
(2n − 2), S(3)n = 1

3!
(3n − 3 · 2n + 3).

These numbers are known as the Stirling numbers of the second kind, or better, as
the Stirling partition numbers, and the S(r)n are nowadays usually denoted by

{n
r

}
;

see Appendix A.8: Stirling numbers, p. 735.
The counting of set partitions could eventually be done successfully thanks to an

encoding into words, and the corresponding language forms a constructible class of
combinatorial structures (indeed, a regular language). In the next chapter, we shall
examine a flexible approach to the counting of set partitions that is based on labelled
structures and exponential generating functions (Subsection II. 3.1, p. 106).

Circular words (necklaces). Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The class of circular words or necklaces (Note I.1,
p. 18, and Equation (20), p. 26) is defined by a CYC composition:

(64) N = CYC(A) �⇒ N (z) =
∞∑

k=1

ϕ(k)

k
log

1

1 − 2zk
.

The series starts as (EIS A000031)

N (z) = 2z + 3z2 + 4z3 + 6z4 + 8z5 + 14z6 + 20z7 + 36z8 + 60z9 + · · · ,
and the OGF can be expanded:

(65) Nn = 1

n

∑
k | n

ϕ(k)2n/k .

It turns out that Nn = Dn + 1 where Dn is the wheel count, p. 47. [The connection is
easily explained combinatorially: start from a wheel and repaint in white all the nodes
that are not on the basic circle; then fold them onto the circle.] The same argument
proves that the number of necklaces over an m–ary alphabet is obtained by replacing 2
by m in (65).
� I.37. Finite languages. Viewed as a combinatorial object, a finite language λ is a set of
distinct words, with size being the total number of letters of all words in λ. For a binary alphabet,
the class of all finite languages is thus

FL = PSET(SEQ≥1(A)) �⇒ F L(z) = exp

⎛⎝∑
k≥1

(−1)k−1

k

2zk

1 − 2zk

⎞⎠ .

The series is (EIS A102866) 1 + 2z + 5z2 + 16z3 + 42z4 + 116z5 + 310z6 + · · · . �

I. 5. Tree structures

This section is concerned with basic tree enumerations. Trees are, as we saw
already, the prototypical recursive structure. The corresponding specifications nor-
mally lead to nonlinear equations (and systems of such) over generating functions, the
Lagrange inversion theorem being exactly suited to solving the simplest category of
problems. The functional equations furnished by the symbolic method can then con-
veniently be exploited by the asymptotic theory of Chapter VII (pp. 452–482). As we
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Specification OGF coefficient

Trees:

plane general G = Z × SEQ(G) 1

2
(1 −√

1 − 4z)
1

n

(
2n − 2

n − 1

)
∼ 4n−1

√
πn3

— binary B = 1 +Z × B × B 1

2z
(1 −√

1 − 4z)
1

n + 1

(
2n

n

)
∼ 4n

√
πn3

— simple T = Z × SEQ�(T ) T (z) = zφ(T (z)) ∼ cρ−nn−3/2

non-plane gen. H = Z × MSET(H) H(z) = z Exp(H(z)) ∼ λ · βn/n3/2

— binary U = Z + MSET2(U) Eq. (76), p. 72 ∼ λ2 · βn
2 /n3/2

— simple V = Z MSET�(V) Eq. (73), p. 71 ∼ c̄ρ̄−nn−3/2

Figure I.13. Rooted trees of type either plane or non-plane and asymptotic forms.
There, λ

.= 0.43992, β
.= 2.95576; λ2

.= 0.31877, β2
.= 2.48325. References for

asymptotics are pp. 452–482 of Chapter VII.

shall see there, a certain type of analytic behaviour appears to be “universal” in trees,
namely the occurrence of a

√
-singularity; accordingly, most tree families arising in

the combinatorial world have counting sequences obeying a universal asymptotic form
C Ann−3/2, which widely extends what we obtained elementarily for Catalan numbers
on p. 38. A synopsis of what awaits us in this section is given in Figure I.13.

I. 5.1. Plane trees. Trees are commonly defined as undirected acyclic connected
graphs. In addition, the trees considered in this book are, unless otherwise specified,
rooted (Appendix A.9: Tree concepts, p. 737 and [377, §2.3]). In this subsection, we
focus attention on plane trees, also sometimes called ordered trees, where subtrees
dangling from a node are ordered between themselves. Alternatively, these trees may
be viewed as abstract graph structures accompanied by an embedding into the plane.
They are precisely described in terms of a sequence construction.

First, consider the class G of general plane trees where all node degrees are al-
lowed (this repeats material on p. 35): we have

(66) G = Z × SEQ(G) �⇒ G(z) = z

1 − G(z)
,

and, accordingly, G(z) = 1 −√
1 − 4z

2
, so that the number of general trees of size n

is a shifted Catalan number:

(67) Gn = Cn−1 = 1

n

(
2n − 2

n − 1

)
.

Many classes of trees defined by all sorts of constraints on properties of nodes
appear to be of interest in combinatorics and in related areas such as formal logic and
computer science. Let � be a subset of the integers that contains 0. Define the class
T � of �–restricted trees as formed of trees such that the outdegrees of nodes are
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constrained to lie in �. In what follows, an essential rôle is played by a characteristic
function that encapsulates �,

φ(u) :=
∑
ω∈�

uω.

Thus, � = {0, 2} determines binary trees, where each node has either 0 or 2 descen-
dants, so that φ(u) = 1 + u2; the choices � = {0, 1, 2} and � = {0, 3} determine,
respectively, unary–binary trees (φ(u) = 1+u+u2) and ternary trees (φ(u) = 1+u3);
the case of general trees corresponds to � = Z≥0 and φ(u) = (1 − u)−1.

Proposition I.5. The ordinary generating function T�(z) of the class T � of �–
restricted trees is determined implicitly by the equation

T�(z) = z φ(T�(z)),

where φ is the characteristic of �, namely φ(u) := ∑
ω∈� uω. The tree counts are

given by

(68) T�
n ≡ [zn]T�(z) = 1

n
[un−1]φ(u)n .

A class of trees whose generating function satisfies an equation of the form y =
zφ(y(z)) is also called a simple variety of trees. The study of such families (in the
unlabelled and labelled cases alike) is one of the recurrent themes of this book.

Proof. Clearly, for �–restricted sequences, we have

A = SEQ�(B) �⇒ A(z) = φ(B(z)),

so
T � = Z × SEQ�(T �) �⇒ T�(z) = zφ(T�(z)).

This shows that T ≡ T� is related to z by functional inversion:

z = T

φ(T )
.

The Lagrange Inversion Theorem precisely provides expressions for such a case (see Ap-
pendix A.6: Lagrange Inversion, p. 732 for an analytic proof and Note I.47, p. 75, for
combinatorial aspects):

Lagrange Inversion Theorem. The coefficients of an inverse function and of all its
powers are determined by coefficients of powers of the direct function: if z = T/φ(T ),
then one has (with any k ∈ Z≥0):

(69) [zn]T (z) = 1

n
[wn−1]φ(w)n, [zn]T (z)k = k

n
[wn−k]φ(w)n .

The theorem immediately implies (68). �
The form relative to powers T k in (69) is known as “Bürmannn’s form” of La-

grange inversion; it yields the counting of (ordered) k–forests, which are k–sequences
of trees. Furthermore, the statement of Proposition I.5 extends trivially to the case
where � is a multiset; that is, a set of integers with repetitions allowed. For instance,
� = {0, 1, 1, 3} corresponds to unary–ternary trees with two types of unary nodes,
say, having one of two colours; in this case, the characteristic is φ(u) = u0+2u1+u3.
The theorem gives back the enumeration of general trees, where φ(u) = (1−u)−1, by
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Figure I.14. A general tree of G51 (left) and a binary tree of T {0,2}
51

∼= B25 (right)
drawn uniformly at random among the C50 and C25 possible trees, respectively, with
Cn = 1

n+1

(2n
n
)
, the nth Catalan number.

way of the binomial theorem applied to (1 − u)−n . In general, it implies that, when-
ever � comprises r elements, � = {ω1, . . . , ωr }, the tree counts are expressed as an
(r − 1)-fold summation of binomial coefficients (use the multinomial expansion). An
important special case detailed in the next two examples below is when � has only
two elements.

Example I.13. Binary trees and Catalan numbers. A binary tree is a rooted plane tree, in
which every node has either 0 or 2 successors (Figure I.14). In this case, it is customary to
consider size to be the number of internal “branching” nodes, and we shall do so in most of the
analyses to come. (By elementary combinatorics, if such a tree has ν internal nodes, it has ν+1
external nodes, hence it comprises 2ν + 1 nodes in total.) The specification and OGF of the
class B of binary trees are then

B = 1 + (Z × B × B) �⇒ B(z) = 1 + zB(z)2

(observe the structural analogy with triangulations in (31), p. 36), so that

B(z) = 1 −√
1 − 4z

2z
and Bn = 1

n + 1

(
2n

n

)
,

again a Catalan number (with a shift of index when compared to (67)). In summary:

The number Bn of plane binary trees having n internal nodes, i.e., (n + 1) external nodes
and (2n + 1) nodes in total, is the Catalan number Bn = Cn ≡ 1

n+1

(2n
n
)
.

If one considers all nodes, internal and external alike, as contributing to size, the corres-
ponding specification and OGF become

B̂ = Z + (Z × B̂ × B̂) �⇒ B̂(z) = z
(

1 + B̂(z)2
)
,

and the Lagrangean form is recovered (as well as B̂2n+1 = Bn), with φ(u) = (1 + u2).
Alternatively, consider the class B of pruned binary trees, which are binary trees stripped

of their external nodes (Appendix A.9: Tree concepts, p. 737), where only trees in B \ B0 are
taken. The corresponding class B satisfies (upon distinguishing left- and right-branching unary
nodes of the pruned tree)

B = Z + (Z × B)+ (Z × B)+ (Z × B × B) �⇒ B(z) = z
(
1 + B(z)

)2

which is now Lagrangean with φ(u) = (1 + u)2. These calculations, all with a strongly similar
flavour, are explained by natural bijections in Subsection I. 5.3, p. 73. . . . . . . . . . . . . . . . . . . . . �
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� I.38. Forests. Consider ordered k–forests of trees defined by F = SEQk(T ). The general
form of Lagrange inversion implies

[zn]F(z) ≡ [zn]T (z)k = k

n
[un−k ] φ(u)n .

In particular, one has for forests of general trees (φ(u) = (1 − u)−1):

[zn]

(
1 −√

1 − 4z

2

)k

= k

n

(
2n − k − 1

n − 1

)
;

the coefficients are also known as “ballot numbers”. �

Example I.14. “Regular” (t–ary) trees. A tree is said to be t–regular or t–ary if � consists
only of the elements {0, t} (the case t = 2 gives back binary trees). In other words, all internal
nodes have degree t exactly. Let A := T {0,t}. In this case, the characteristic is φ(u) = 1 + ut

and the binomial theorem combined with the Lagrange inversion formula gives

An = 1

n
[un−1] (1 + ut )n

= 1

n

(
n

n−1
t

)
provided n ≡ 1 mod t .

As the formula shows, only trees of total size of the form n = tν + 1 exist (a well-known fact
otherwise easily checked by induction), and

(70) Atν+1 = 1

tν + 1

(
tν + 1

ν

)
= 1

(t − 1)ν + 1

(
tν

ν

)
.

As in the binary case, there is a variant of the determination of (70) that avoids congruence
restrictions. Define the class A of “pruned” trees as trees of A \ A0 deprived of all their
external nodes. The trees in A now have nodes that are of degree at most t . In order to make
A bijectively equivalent to A , it suffices to regard trees of A as having

( t
j
)

possible types of

nodes of degree j , for any j ∈ [0, t]: each node type in A plainly encodes which of the original
t − j subtrees have been pruned. With � now being a multiset, we find φ(u) = (1 + u)t and
A(z) = zφ(A(z)), so that, by Lagrange inversion,

Aν = 1

ν

(
tν

ν − 1

)
= 1

(t − 1)ν + 1

(
tν

ν

)
,

yet another form of (70), since Aν = Atν+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� I.39. Unary–binary trees and Motzkin numbers. Let M be the class of unary–binary trees:

M = Z × SEQ≤2(M) �⇒ M(z) = 1 − z −
√

1 − 2z − 3z2

2z
.

One has M(z) = z + z2 + 2 z3 + 4 z4 + 9 z5 + 21 z6 + 51 z7 + · · · . The coefficients Mn =
[zn]M(z), known as Motzkin numbers (EIS A001006), are given by

Mn = 1

n

∑
k

(
n

k

)(
n − k

k − 1

)
,

as a consequence of the Lagrange Inversion Theorem. �

� I.40. Yet another variant of t–ary trees. Let Ã be the class of t–ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

Ã = Z + SEQt (Ã).
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The binomial form of Ãn follows from Lagrange inversion, since Ã = z/(1 − Ãt−1). Can this
last relation be interpreted combinatorially? �

Example I.15. Hipparchus of Rhodes and Schröder. In 1870, the German mathematician Ernst
Schröder (1841–1902) published a paper entitled Vier combinatorische Probleme. The paper
had to do with the number of terms that can be built out of n variables using non-associative
operations. In particular, the second of his four problems asks for the number of ways a string
of n identical letters, say x , can be “bracketed”. The rule is best stated recursively: x itself is a
bracketing and if σ1, σ2, . . . , σk with k ≥ 2 are bracketed expressions, then the k–ary product
(σ1σ2 · · · σk) is a bracketing. For instance: (((x x)x(x xx))((x x)(x x)x)).

Let S denote the class of all bracketings, where size is taken to be the number of variable
instances. Then, the recursive definition is readily translated into the formal specification (with
Z representing x) and the OGF equation:

(71) S = Z + SEQ≥2(S) �⇒ S(z) = z + S(z)2

1 − S(z)
.

Indeed, to each bracketing of size n is associated a tree whose external nodes contain the vari-
able x (and determine size), with internal nodes corresponding to bracketings and having degree
at least 2 (while not contributing to size).

The functional equation satisfied by the OGF is not a priori of the type correspond-
ing to Proposition I.5, because not all nodes contribute to size in this particular application.
Note I.41 provides a reduction to Lagrangean form; however, in a simple case like this, the
quadratic equation induced by (71) is readily solved, giving

S(z) = 1

4

(
1 + z −

√
1 − 6z + z2

)
= z + z2 + 3z3 + 11z4 + 45z5 + 197z6 + 903z7 + 4279z8 + 20793z9

+ 103049z10 + 518859z11 + · · · ,
where the coefficients are EIS A001003. (These numbers also count series–parallel networks of
a specified type (e.g., serial in Figure I.15, bottom), where placement in the plane matters.)

In an instructive paper, Stanley [553] discusses a page of Plutarch’s Moralia where there
appears the following statement:

“Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this
by showing that on the affirmative side there are 103 049 compound statements, and
on the negative side 310 952.)”

It is notable that the tenth number of Hipparchus of Rhodes12 (c. 190–120BC) is precisely
S10 = 103 049. This is, for instance, the number of logical formulae that can be formed from
ten boolean variables x1, . . . , x10 (used once each and in this order) using and–or connectives in
alternation (no “negation”), upon starting from the top in some conventional fashion13, e.g, with

12This was first observed by David Hough in 1994; see [553]. In [315], Habsieger et al. further note
that 1

2 (S10 + S11) = 310 954, and suggest a related interpretation (based on negated variables) for the other

count given by Hipparchus.
13Any functional term admits a unique tree representation. Here, as soon as the root type has been

fixed (e.g., an ∧ connective), the others are determined by level parity. The constraint of node degrees ≥ 2
in the tree means that no superfluous connectives are used. Finally, any monotone boolean expression can
be represented by a series–parallel network: the x j are viewed as switches with the true and false values
being associated with closed and open circuits, respectively.
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(x1) ∧ (x2 ∨ (x3 ∧ x4 ∧ x5) ∨ x6) ∧ ((x7 ∧ x8) ∨ (x9 ∧ x10))

∧

x1 ∨ ∨

x2 ∧ x6

x3 x4 x5

∧ ∧

x7 x8 x9 x10

x1 x3 x4 x5

x2

x6

x7 x8

x9 x10

Figure I.15. An and–or positive proposition of the conjunctive type (top), its associ-
ated tree (middle), and an equivalent planar series–parallel network of the serial type
(bottom).

an and-clause; see Figure I.15. Hipparchus was naturally not cognizant of generating functions,
but with the technology of the time (and a rather remarkable mind!), he would still be able to
discover a recurrence equivalent to (71),

(72) Sn = [[n ≥ 2]]

⎛⎝ ∑
n1+···+nk=n

Sn1 Sn2 · · · Snk

⎞⎠+ [[n = 1]],

where the sum has only 42 essentially different terms for n = 10 (see [553] for a discussion),
and finally determine S10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� I.41. The Lagrangean form of Schröder’s GF. The generating function S(z) admits the form

S(z) = zφ(S(z)) where φ(y) = 1 − y

1 − 2y

is the OGF of compositions. Consequently, one has

Sn = 1

n
[un−1]

(
1 − u

1 − 2u

)n

= (−1)n−1

n

∑
k

(−2)k
(

n

k + 1

)(
n + k − 1

k

)
= 1

n

n−2∑
k=0

(
2n − k − 2

n − 1

)(
n − 2

k

)
.

Is there a direct combinatorial relation to compositions? �

� I.42. Faster determination of Schröder numbers. By forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n + 2)Sn+2 − 3(2n + 1)Sn+1 + (n − 1)Sn = 0, n ≥ 1,

that entails a fast determination, in linear time, of the Sn . (This technique, which originates
with Euler [199], is applicable to any algebraic function; see Appendix B.4: Holonomic func-
tions, p. 748.) In contrast, Hipparchus’s recurrence (72) implies an algorithm of complexity
exp(O(

√
n)) in the number of arithmetic operations involved. �
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I. 5.2. Non-plane trees. An unordered tree, also called non-plane tree, is just
a tree in the general graph-theoretic sense, so that there is no order between subtrees
emanating from a common node. The unordered trees considered here are furthermore
rooted, meaning that one of the nodes is distinguished as the root. Accordingly, in the
language of constructions, a rooted unordered tree is a root node linked to a multiset
of trees. Thus, the class H of all unordered trees, admits the recursive specification:

(73) H = Z × MSET(H) �⇒

⎧⎪⎪⎨⎪⎪⎩
H(z) = z

∞∏
m=1

(1 − zm)−Hm

= z exp
(

H(z)+ 1
2 H(z2)+ · · ·

)
.

The first form of the OGF was given by Cayley in 1857 [67, p. 43]; it does not admit
a closed form solution, although the equation permits one to determine all the Hn

recursively (EIS A000081):

H(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + · · · .
The enumeration of the class of trees defined by an arbitrary set � of node degrees
immediately results from the translation of sets of fixed cardinality.

Proposition I.6. Let � ⊂ N be a finite set of integers containing 0. The OGF U (z) of
non-plane trees with degrees constrained to lie in � satisfies a functional equation of
the form

(74) U (z) = z	(U (z),U (z2),U (z3), . . .),

for some computable polynomial 	.

Proof. The class of trees satisfies the combinatorial equation,

U = Z × MSET�(U)
(

MSET�(U) ≡
∑
ω∈�

MSETω(U)
)
,

where the multiset construction reflects non-planarity, since subtrees stemming from
a node can be freely rearranged between themselves and may appear repeated. An-
ticipating on what we shall see later, we note that Theorem I.3 (p. 84) provides the
translation of MSETk(U):

	(U (z),U (z2),U (z3), . . .) =
∑
ω∈�

[
uω

]
exp

(
u

1
U (z)+ u2

2
U (z2)+ · · ·

)
.

The statement then follows immediately. �
In the area of non-plane tree enumerations, there are no explicit formulae but only

functional equations implicitly determining the generating functions. However, as we
shall see in Section VII. 5 (p. 475), the equations may be used to analyse the dominant
singularity of U (z). We shall find that a “universal” law governs the singularities of
simple tree generating functions, either plane or non-plane (Figure I.13): the singu-
larities are of the general type

√
1 − z/ρ, which, by singularity analysis, translates
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into

(75) U�
n ∼ λ�

(β�)
n

√
n3

.

Many of these questions have their origin in enumerative combinatorial chemistry, a
subject started by Cayley in the nineteenth century [67, Ch. 4]. Pólya re-examined
these questions, and, in his important paper [488] published in 1937, he developed
at the same time a general theory of combinatorial enumerations under group actions
and systematic methods giving rise to estimates such as (75). See the book by Harary
and Palmer [319] for more on this topic or Read’s edition of Pólya’s paper [491].

� I.43. Fast determination of the Cayley–Pólya numbers. Logarithmic differentiation of H(z)
provides for the Hn a recurrence by which one computes Hn in time polynomial in n. (Note: a
similar technique applies to the partition numbers Pn ; see p. 42.) �

� I.44. Binary non-plane trees. Unordered binary trees V , with size measured by the number
of external nodes, are described by the equation V = Z + MSET2(V). The functional equation
determining V (z) is

(76) V (z) = z + 1

2
V (z)2 + 1

2
V (z2); V (z) = z + z2 + z3 + 2z4 + 3z5 + · · · .

The asymptotic analysis of the coefficients (EIS A001190) was carried out by Otter [466] who
established an estimate of type (75). The quantity Vn is also the number of structurally distinct
products of n elements under a commutative non-associative binary operation. �

� I.45. Hierarchies. Define the class K of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. We have (Cayley 1857, see [67, p.43])

K = Z + MSET≥2(K) �⇒ K (z) = 1

2
z + 1

2

[
exp

(
K (z)+ 1

2
K (z2)+ · · ·

)
− 1

]
,

from which the first values are found (EIS A000669)

K (z) = z + z2 + 2z3 + 5z4 + 12z5 + 33z6 + 90z7 + 261z8 + 766z9 + 2312z10 + · · · .
These numbers also enumerate hierarchies in statistical classification theory [585]. They are the
non-planar analogues of the Hipparchus–Schröder numbers on p. 69. �

� I.46. Non-plane series–parallel networks. Consider the class SP of series–parallel networks
as previously considered in relation to the Hipparchus example, p. 69, but ignoring planar em-
beddings: all parallel arrangements of the (serial) networks s1, . . . , sk are considered equiva-
lent, while the linear arrangement in each serial network matters. For instance, for n = 2, 3:

Thus, S P2 = 2 and S P3 = 5. This is modelled by the grammar:

S = Z + SEQ≥2(P), P = Z + MSET≥2(S),

and, avoiding to count networks of one element twice,

S P(z) = S(z)+ P(z)− z = z + 2z2 + 5z3 + 15z4 + 48z5 + 167z6 + 602z7 + 2256z8 + · · · ,
(EIS A003430). These objects are usually described as networks of electric resistors. �
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I. 5.3. Related constructions. Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalan numbers, Cn = 1

n+1

(2n
n

)
count

general trees (G) of size n + 1, binary trees (B) of size n (if size is defined as the
number of internal nodes), as well as triangulations (T ) comprised of n triangles.
The combinatorialist John Riordan even coined the name Catalan domain for the area
within combinatorics that deals with objects enumerated by Catalan numbers, and
Stanley’s book contains an exercise [554, Ex. 6.19] whose statement alone spans ten
full pages, with a list of 66 types of object(!) belonging to the Catalan domain. We
shall illustrate the importance of Catalan numbers by describing a few fundamental
correspondences (combinatorial isomorphisms, bijections) that explain the occurrence
of Catalan numbers in several areas of combinatorics.

Rotation of trees. The combinatorial isomorphism relating G and B (albeit with
a shift in size) coincides with a classical technique of computer science [377, §2.3.2].
To wit, a general tree can be represented in such a way that every node has two types
of links, one pointing to the left-most child, the other to the next sibling in left-to-right
order. Under this representation, if the root of the general tree is put aside, then every
node is linked to two other (possibly empty) subtrees. In other words, general trees
with n nodes are equinumerous with pruned binary trees with n − 1 nodes:

Gn ∼= Bn−1.

Graphically, this is illustrated as follows:

The right-most tree is a binary tree drawn in a conventional manner, following a 45◦
tilt. This justifies the name of “rotation correspondence” often given to this transfor-
mation.

Tree decomposition of triangulations. The relation between binary trees B and
triangulations T is equally simple: draw a triangulation; define the root triangle as
the one that contains the edge connecting two designated vertices (for instance, the
vertices numbered 0 and 1); associate to the root triangle the root of a binary tree;
next, associate recursively to the subtriangulation on the left of the root triangle a left
subtree; do similarly for the right subtriangulation giving rise to a right subtree.
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Under this correspondence, tree nodes correspond to triangle faces, while edges con-
nect adjacent triangles. What this correspondence proves is the combinatorial isomor-
phism

Tn ∼= Bn .

We turn next to another type of objects that are in correspondence with trees.
These can be interpreted as words encoding tree traversals and, geometrically, as paths
in the discrete plane Z × Z.

Tree codes and Łukasiewicz words. Any plane tree can be traversed starting from
the root, proceeding depth-first and left-to-right, and backtracking upwards once a
subtree has been completely traversed. For instance, in the tree

(77) τ =

a

b c

d e f g

h i j

the first visits to nodes take place in the following order

a, b, d, h, e, f, c, g, i, j .

(Note: the tags a, b, . . ., added for convenience in order to distinguish between nodes,
have no special meaning; only the abstract tree shape matters here.) This order is
known as preorder or prefix order since a node is preferentially visited before its
children.

Given a tree, the listing of the outdegrees of nodes in prefix order is called the
preorder degree sequence. For the tree of (77), this is

σ = (2, 3, 1, 0, 0, 0, 1, 2, 0, 0).

It is a fact that the degree sequence determines the tree unambiguously. Indeed, given
the degree sequence, the tree is reconstructed step by step, adding nodes one after the
other at the left-most available place. For σ , the first steps are then

+2 +3 +1 +0 +0

.Next, if one represents degree j by a “symbol” f j , then the degree sequence becomes
a word over the infinite alphabet F = { f0, f1, . . .}, for instance,

σ � f2 f3 f1 f0 f0 f0 f1 f2 f0 f0.

This can be interpreted in the language of logic as a denotation for a functional term
built out of symbols from F , where f j represents a function of degree (or “arity”)
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j . The correspondence even becomes obvious if superfluous parentheses are added at
appropriate places to delimit scope:

σ � f2( f3( f1( f0), f0, f0), f1( f2( f0, f0))).

Such codes are known as Łukasiewicz codes14, in recognition of the work of the Polish
logician with that name. Jan Łukasiewicz (1878–1956) introduced them in order to
completely specify the syntax of terms in various logical calculi; they prove nowadays
basic in the development of parsers and compilers in computer science.

Finally, a tree code can be rendered as a walk over the discrete lattice Z × Z.
Associate to any f j (i.e., any node of outdegree j) the displacement (1, j−1) ∈ Z×Z,
and plot the sequence of moves starting from the origin. In our example we find:

f2 f3 f1 f0 f0 f0 f1 f2 f0 f0

1 2 0 −1 −1 −1 0 1 −1 −1 .

There, the last line represents the vertical displacements. The resulting paths are
known as Łukasiewicz paths. Such a walk is then characterized by two conditions:
the vertical displacements are in the set {−1, 0, 1, 2, . . .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Łukasiewicz paths with n steps is the
shifted Catalan number, 1

n

(2n−2
n−1

)
.

� I.47. Conjugacy principle and cycle lemma. Let L be the class of all Łukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at level −1 but is otherwise allowed
to include arbitrary negative points; let M be the corresponding class. Then, each relaxed path
can be cut-and-pasted uniquely after its left-most minimum as described here:

This associates to every relaxed path of length ν a unique standard path. A bit of combinatorial
reasoning shows that correspondence is 1-to-ν (each element of L has exactly ν preimages.)
One thus has Mν = νLν . This correspondence preserves the number of steps of each type
( f0, f1, . . .), so that the number of Łukasiewicz paths with ν j steps of type f j is

1

ν
[x−1uν0

0 uν1
1 · · · ]

(
x−1u0 + u1 + xu2 + x2u3 + · · ·

)ν = 1

ν

(
ν

ν0, ν1, . . .

)
,

14A less dignified name is “Polish prefix notation”. The “reverse Polish notation” is a variant based
on postorder that has been used in some calculators since the 1970s.
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under the necessary condition (−1)ν0 + 0ν1 + 1ν2 + 2ν3 + · · · = −1. This combinatorial way
of obtaining refined Catalan statistics is known as the conjugacy principle [503] or the cycle
lemma [129, 155, 184]. It is logically equivalent to the Lagrange Inversion Theorem, as shown
by Raney [503]. Dvoretzky & Motzkin [184] have employed this technique to solve a number
of counting problems related to circular arrangements. �

Example I.16. Binary tree codes and Dyck paths. Walks associated with binary trees have
a very special form since the vertical displacements can only be +1 or −1. The paths result-
ing from the Łukasiewicz correspondence are then equivalently characterized as sequences of
numbers x = (x0, x1, . . . , x2n, x2n+1) satisfying the conditions

(78) x0 = 0; x j ≥ 0 for 1 ≤ j ≤ 2n; ∣∣x j+1 − x j
∣∣ = 1; x2n+1 = −1.

These coincide with “gambler ruin sequences”, a familiar object from probability theory: a
player plays head and tails. He starts with no capital (x0 = 0) at time 0; his total gain is x j at
time j ; he is allowed no credit (x j ≥ 0) and loses at the very end of the game x2n+1 = −1; his
gains are ±1 depending on the outcome of the coin tosses (

∣∣x j+1 − x j
∣∣ = 1).

It is customary to drop the final step and consider “excursions’ that take place in the upper
half-plane. The resulting objects defined as sequences (x0 = 0, x1, . . . , x2n−1, x2n = 0)
satisfying the first three conditions of (78) are known in combinatorics as Dyck paths15. By
construction, Dyck paths of length 2n correspond bijectively to binary trees with n internal
nodes and are consequently enumerated by Catalan numbers. Let D be the combinatorial class
of Dyck paths, with size defined as length. This property can also be checked directly: the
quadratic decomposition

(79)
= +

(ε)
D D

D

D = {ε} + (↗ D ↘)×D

�⇒ D(z) = 1 + (zD(z)z) D(z).

From this OGF, the Catalan numbers are found (as expected): D2n = 1
n+1

(2n
n
)
. The decom-

position (79) is known as the “first passage” decomposition as it is based on the first time the
accumulated gain in the coin-tossing game passes through the value zero.

Dyck paths also arise in connection will well-parenthesized expressions. These are recog-
nized by keeping a counter that records at each stage the excess of the number of opening
brackets “(” over closing brackets “)”. Finally, one of the origins of the Dyck path is the famous
ballot problem, which goes back to the nineteenth century [423]: there are two candidates A
and B that stand for election, 2n voters, and the election eventually results in a tie; what is the
probability that A is always ahead of or tied with B when the ballots are counted? The answer is

D2n(2n
n
) = 1

n + 1
,

since there are
(2n

n
)

possibilities in total, of which the number of favourable cases is D2n , a Cata-
lan number. The central rôle of Dyck paths and Catalan numbers in problems coming from such
diverse areas is quite remarkable. Section V. 4, p. 318 presents refined counting results regarding
lattice paths (e.g., the analysis of height) and Subsection VII. 8.1, p. 506 introduces exact and as-
ymptotic results in the harder case of an arbitrary finite collection of step types (not just ±1). �

15Dyck paths are closely associated with free groups on one generator and are named after the German
mathematician Walther (von) Dyck (1856–1934) who introduced free groups around 1880.
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� I.48. Dyck paths, parenthesis systems, and general trees. The class of Dyck paths admits an
alternative sequence decomposition

(80)
=

D D
DD

D = SEQ(Z ×D × Z),
which again leads to the Catalan GF. The decomposition (80) is known as the “arch decom-
position” (see Subsection V. 4.1, p. 319, for more). It can also be directly related to traversal
sequences of general trees, but with the directions of edge traversals being recorded (instead of
traversals based on node degrees): for a general tree τ , define its encoding κ(τ) over the binary
alphabet {↗,↘} recursively by the rules:

κ(τ) = ε, κ(•(τ1, . . . , τr )) =↗ κ(τ1) · · · κ(τr ) ↘ .

This is the classical representation of trees by a parenthesis system (interpret “↗” and “↘” as
“(” and “)”, respectively), which associates to a tree of n nodes a path of length 2n − 2. �

� I.49. Random generation of Dyck paths. Dyck paths of length 2n can be generated uniformly
at random in time linear in n. (Hint: By Note I.47, it suffices to generate uniformly a sequence
of n as and (n + 1) bs, then reorganize it according to the conjugacy principle.) �

� I.50. Excursions, bridges, and meanders. Adapting a terminology from probability theory,
one sets the following definitions: (i) a meander (M) is a word over {−1,+1}, such that the
sum of the values of any of its prefixes is always a non-negative integer; (i i) a bridge (B) is a
word whose values of letters sum to 0. Thus a meander represents a walk that wanders in the
first quadrant; a bridge, regarded as a walk, may wander above and below the horizontal line,
but its final altitude is constrained to be 0; an excursion is both a meander and a bridge. Simple
decompositions provide

M(z) = D(z)

1 − zD(z)
, B(z) = 1

1 − 2z2 D(z)
,

implying Mn = ( n
�n/2�

)
[EIS A001405] and B2n = (2n

n
)

[EIS A000984]. �

� I.51. Motzkin paths and unary–binary trees. Motzkin paths are defined by changing the
third condition of (78) defining Dyck paths into

∣∣x j+1 − x j
∣∣ ≤ 1. They appear as codes for

unary–binary trees and are enumerated by the Motzkin numbers of Note I.39, p. 68. �

Example I.17. The complexity of boolean functions. Complexity theory provides many
surprising applications of enumerative combinatorics and asymptotic estimates. In general,
one starts with a finite set of abstract mathematical objects � and a combinatorial class D
of concrete descriptions. By assumption, to every element of δ ∈ D is associated an object
μ(δ) ∈ �, its “meaning”; conversely any object of � admits at least one description in D
(that is, the function μ is surjective). It is then of interest to quantify properties of the shortest
description function defined for ω ∈ � as

σ(ω) := min
{|δ|D ∣∣ μ(δ) = ω

}
,

and called the complexity of the element ω ∈ � (with respect to D).
We take here � to be the class of all boolean functions on m variables. Their number is

||�|| = 22m
. As descriptions, we adopt the class of logical expressions involving the logical

connectives ∨,∧ and pure or negated variables. Equivalently, D is the class of binary trees,
where internal nodes are tagged by a logical disjunction (“∨”) or a conjunction (“∧”), and each
external node is tagged by either a boolean variable of {x1, . . . , xm} or a negated variable of
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{¬x1, . . . ,¬xm}. Define the size of a tree description as the number of internal nodes; that is,
the number of logical operators. Then, one has

(81) Dn =
(

1

n + 1

(
2n

n

))
· 2n · (2m)n+1,

as seen by counting tree shapes and possibilities for internal as well as external node tags.
The crux of the matter is that if the inequality

(82)
ν∑

j=0

D j < ||�||,

holds, then there are not enough descriptions of size ≤ ν to exhaust �. (This is analogous to the
coding argument of Note I.23, p. 53.) In other terms, there must exist at least one object in �
whose complexity exceeds ν. If the left side of (82) is much smaller than the right side, then it
must even be the case that “most” �–objects have a complexity that exceeds ν.

In the case of boolean functions and tree descriptions, the asymptotic form (33) is available.
From (81) it can be seen that, for n, ν getting large, one has

Dn = O(16nmnn−3/2),

ν∑
j=0

D j = O(16νmνν−3/2).

Choose ν such that the second expression is o(||�||), which is ensured for instance by taking for
ν the value

ν(m) := 2m

4 + log2 m
.

With this choice, one has the following suggestive statement:

A fraction tending to 1 (as m → ∞) of boolean functions in m variables have tree complexity
at least 2m/(4 + log2 m).

Regarding upper bounds on boolean function complexity, a function always has a tree
complexity that is at most 2m+1 − 3. To see this, note that for m = 1, the four functions are

0 ≡ (x1 ∧ ¬x1), 1 ≡ (x1 ∨ ¬x1), x1, ¬x1.

Next, a function of m variables is representable by a technique known as the binary decision
tree (BDT),

f (x1, . . . , xm−1, xm) =
(¬xm ∧ f (x1, . . . , xm−1, 0)

) ∨ (
xm ∧ f (x1, . . . , xm−1, 1)

)
,

which provides the basis of the induction as it reduces the representation of an m–ary func-
tion to the representation of two (m − 1)–ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boolean functions have a
tree-complexity (2m/ log m) that is fairly close to the maximum possible, namely, O(2m). A
similar result has been established by Shannon for the measure called circuit complexity: cir-
cuits are more powerful than trees, but Shannon’s result states that almost all boolean functions
of m variables have circuit complexity O(2m/m). See the chapter by Li and Vitányi in [591]
and Gardy’s survey [283] on random boolean expressions for a discussion of such counting
techniques within the framework of complexity theory and logic. We resume this thread in Ex-
ample VII.17, p. 487, where we quantify the probability that a large random boolean expression
computes a fixed function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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I. 5.4. Context-free specifications and languages. Many of the combinatorial
examples encountered so far in this section can be organized into a common frame-
work, which is fundamental in formal linguistics and theoretical computer science.

Definition I.13. A class C is said to be context-free if it coincides with the first com-
ponent (T = S1) of a system of equations

(83)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1 = F1(Z,S1, . . . ,Sr )

...
...

...

Sr = Fr (Z,S1, . . . ,Sr ),

where each F j is a constructor that only involves the operations of combinatorial sum
(+) and cartesian product (×), as well as the neutral class, E = {ε}.

A language L is said to be an unambiguous context-free language if it is combi-
natorially isomorphic to a context-free class of trees: C ∼= T .

The classes of general trees (G) and binary trees (B) are context-free, since they
are specifiable as⎧⎨⎩ G = Z × F

F = {ε} + (G × F), B = Z + (B × B);
here F designates ordered forests of general trees. Context-free specifications may
be used to describe all sorts of combinatorial objects. For instance, the class U =
T \ T0 of non-empty triangulations of convex polygons (Note 10, p. 36) is specified
symbolically by

(84) U = ∇ + (∇ × U)+ (U ×∇)+ (U ×∇ × U),
where ∇ ∼= Z represents a generic triangle. The Łukasiewicz language and the set of
Dyck paths are context-free classes since they are bijectively equivalent to G and U .

The term “context-free” comes from linguistics: it stresses the fact that objects
can be “freely” generated by the rules of (83), this without any constraints imposed
by an outside context16 . There, one classically defines a context-free language as
the language formed with words that are obtained as sequences of leaf tags (read in
left-to-right order) of a context-free variety of trees. In formal linguistics, the one-to-
one mapping between trees and words is not generally imposed; when it is satisfied,
the context-free language is said to be unambiguous; in such cases, words and trees
determine each other uniquely, cf Note I.54 below.

An immediate consequence of the admissibility theorems is the following propo-
sition first encountered by Chomsky and Schützenberger [119] in the course of their
research relating formal languages and formal power series.

16Formal language theory also defines context-sensitive grammars where each rule (called a produc-
tion) is applied only if it is enabled by some external context. Context-sensitive grammars have greater
expressive power than context-free ones, but they depart significantly from decomposability and are sur-
rounded by strong undecidability properties. Accordingly, context-sensitive grammars cannot be associated
with any global generating function formalism.
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Figure I.16. A directed animal, its tilted version, (after a +π/4 rotation), and three
of its equivalent representations as a heap of dimers.

Proposition I.7. A combinatorial class C that is context-free admits an OGF that is
an algebraic function. In other words, there exists a (non-null) bivariate polynomial
P(z, y) ∈ C[z, y] such that

P(z,C(z)) = 0.

Proof. By the basic sum and product rules, the context-free system (83) translates into
a system of OGF equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1(z) = 	1(z, S1(z), . . . , Sr (z))
...

...
...

Sr (z) = 	r (z, S1(z), . . . , Sr (z)),

where the 	 j are the polynomials translating the constructions F j .
It is then well known that algebraic elimination is possible in polynomial sys-

tems. Here, it is possible to eliminate the auxiliary variables S2, . . . , Sr , one by one,
preserving the polynomial character of the system at each stage. The end result is
then a single polynomial equation satisfied by C(z) ≡ S1(z). (Methods for effec-
tively performing polynomial elimination include a repeated use of resultants as well
as Gröbner basis algorithms; see Appendix B.1: Algebraic elimination, p. 739 for a
brief discussion and references.) �

Proposition I.7 is a counterpart of Proposition I.3 (p. 57) according to which ratio-
nal generating functions arise from finite state devices, and it justifies the importance
of algebraic functions in enumeration theory. We shall encounter applications of such
algebraic generating functions to planar non-crossing configurations (p. 485) walks
(p. 506) and planar maps (p. 513), when we develop a general asymptotic theory of
their coefficients in Chapter VII, based on singularity theory. The example below
shows the way certain lattice configurations can be modelled by a context-free speci-
fication.

Example I.18. Directed animals. Consider the square lattice Z2. A directed animal with a
compact source of size k is a finite set of points α of the lattice such that: (i) for 0 ≤ i < k, the
points (−i, i), called source points, belong to α; (i i) all other points in α can be reached from
one of the source points by a path made of North and East steps and having all its vertices in α.
(The animal in Figure I.16 has one source.) Such lattice configurations have been introduced
by statistical physicists Dhar et al. [162], since they provide a tractable model of 2-dimensional
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percolation. Our discussion follows Bousquet-Mélou’s insightful presentation in [84], itself
based on Viennot’s elegant theory of heaps of pieces [597].

The best way to visualize an animal is as follows (Figure I.16): rotate the lattice by +π/4
and associate to each vertex of the animal a horizontal piece, also called a dimer. The length of
a piece is taken to be slightly less than the diagonal of a mesh of the original lattice. Pieces are
allowed to slide vertically (up or down) in their column, but not to jump over each other. One
can then think of an animal as being a heap of pieces, where pieces take their places naturally,
under the effect of gravity, and each one stops as soon as it is blocked by a piece immediately
below. (The heap associated to an animal satisfies the additional property that no two pieces in
a column can be immediately adjacent to one another.)

Define a pyramid to be a one-source animal and a half-pyramid to be a pyramid that has
no vertex strictly to the left of its source point, in the tilted representation. Let P and H be
respectively the class of pyramids and half-pyramids, viewed as heaps. By a corner decomposi-
tion (Note I.52), pyramids and half-pyramids can be constructed as suggested by the following
diagram:

(85)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P H H

P

= +

H = + H + H

H

.

The pictorial description (85) is equivalent to a context-free specification:⎧⎨⎩ P = H+ P ×H

H = Z +Z ×H+Z ×H× P
�⇒

⎧⎨⎩ P = H + P H

H = z + zH + zH2,

in which the second equation, a quadratic, is readily solved to provide H , which in turn gives
P , by the first equation. One finds:

(86)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(z) = 1

2

(√
1 + z

1 − 3z
− 1

)
= z + 2 z2 + 5 z3 + 13 z4 + 35 z5 + · · ·

H(z) = 1 − z −√
(1 + z)(1 − 3z)

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

corresponding respectively to EIS A005773 and EIS A001006 (Motzkin numbers, cf Notes I.39,
p. 68 and I.51, p. 77). See Example VI.3 and Note VI.11, p. 396, for relevant asymptotics.

Similar constructions permit us to decompose compact-source directed animals, whose
class we denote by A. For instance:

A = P H H H

Compact-source animals with k sources are then specified by P × SEQk−1(H), and we have

(87) A ∼= P × SEQ(H) �⇒ A(z) = P(z)

1 − H(z)
= z

1 − 3z
,
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where the last form results from basic algebraic simplifications. A consequence of (87) is the
surpringly simple (but non-trivial) result that there are 3n−1 compact-source animals of size n.
The papers [61, 87] develop further aspects of the rich counting theory of animals. . . . . . . . . �

� I.52. Understanding animals. In the first equation of (85), a pyramid π that is not a half-
pyramid has a unique dimer which is of lowest altitude and immediately to the left of the source.
Take that dimer and push it upwards, in the direction of imaginary infinity; it will then carry with
it a group of dimers that constitute, by construction, a pyramid ω. What remains has no dimer
to the left of its source, and hence forms a half-pyramid χ . The following diagram illustrates
the decomposition, with the dimers of ω equipped with an upward-pointing arrow:

.

↑

π =
�⇒

ω =

χ =

Conversely, given a pair (ω, χ) ∈ P ×H, attach first χ to the base; then, let ω fall down from
imaginary infinity. The dimers of ω will take their place above the dimers of χ , blocked in
various manners on their way down, the whole set eventually forming a pyramid. A moment
of reflection convinces one that the original pyramid π is recovered in this way; that is, the
transformation π → (ω, χ) is bijective. �

� I.53.“Tree-like” structures. A context-free specification can always be regarded as defining
a class of trees. Indeed, if the j th term in the construction Fi of (83) is “coloured” with the
pair (i, j), it is seen that a context-free system yields a class of trees whose nodes are tagged by
pairs (i, j) in a way consistent with the system’s rules. However, despite this correspondence,
it is often convenient to preserve the possibility of operating directly with objects when the tree
aspect may be unnatural. (Some authors have developed a parallel notion of “object grammars”;
see for instance [183], itself inspired by techniques of polyomino surgery in [150].) By a termi-
nology borrowed from the theory of syntax analysis in computer science, such trees are referred
to as “parse trees” or “syntax trees”. �

� I.54. Context-free languages. Let A be a fixed finite alphabet whose elements are called
letters. A grammar G is a collection of equations

(88) G :

⎧⎪⎪⎨⎪⎪⎩
L1 = F1(a,L1, . . . ,Lm)

...
...

Lm = Fm(a,L1, . . . ,Lm),

where each F j involves only the operations of union (∪) and concatenation product ( · ) with a
the vector of letters in A. For instance,

F1(a,L1,L2,L3) = a2 · L2 · L3 ∪ a3 ∪ L3 · a2 · L1.

A solution to (88) is an m–tuple of languages over the alphabet A that satisfies the system. By
convention, one declares that the grammar G defines the first component, L1.

To each grammar (88), one can associate a context-free specification (60) by transforming
unions into disjoint union, “∪ 	→ +”, and catenation into cartesian products, “ · 	→ ×”. Let
Ĝ be the specification associated in this way to the grammar G. The objects described by Ĝ
appear in this perspective to be trees (see the discussion above regarding parse trees). Let h
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be the transformation from trees of Ĝ to languages of G that lists letters in infix (i.e., left-to-
right) order: we call such an h the erasing transformation since it “forgets” all the structural
information contained in the parse tree and only preserves the succession of letters. Clearly,
application of h to the combinatorial specifications determined by Ĝ yields languages that obey
the grammar G. For a grammar G and a word w ∈ A�, the number of parse trees t ∈ Ĝ such
that h(t) = w is called the ambiguity coefficient of w with respect to the grammar G.

A grammar G is unambiguous if all the corresponding ambiguity coefficients are either 0
or 1. This means that there is a bijection between parse trees of Ĝ and words of the language
described by G: each word generated is uniquely “parsable” according to the grammar. One has,
from Proposition I.7: The OGF of an unambiguous context-free language satisfies a polynomial
system of the form (61), and is consequently an algebraic function. �

� I.55. Extended context-free specifications. If A,B are context-free specifications then:
(i) the sequence class C = SEQ(A) is context-free; (i i) the substitution class D = A[b 	→ B],
formally defined in the next section, is also context-free. �

I. 6. Additional constructions

This section is devoted to the constructions of sequences, sets, and cycles in the
presence of restrictions on the number of components as well as to mechanisms that
enrich the framework of core constructions; namely, pointing, substitution, and the
use of implicit combinatorial definitions.

I. 6.1. Restricted constructions. An immediate formula for OGFs is that of the
diagonal � of a cartesian product B × B defined as

A ≡ �(B × B) := {(β, β) | β ∈ B}.
Then, one has the relation A(z) = B(z2), as shown by the combinatorial derivation

A(z) =
∑
(β,β)

z2|β| = B(z2),

or by the equally obvious observation that A2n = Bn .
The diagonal construction permits us to access the class of all unordered pairs of

(distinct) elements of B, which is A = PSET2(B). A direct argument then runs as
follows: the unordered pair {α, β} is associated to the two ordered pairs (α, β) and
(β, α) except when α = β, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET2(B)+ PSET2(B)+�(B × B) ∼= B × B,
meaning that

2A(z)+ B(z2) = B(z)2.

This gives the translation of PSET2, and, by a similar argument for MSET2 and CYC2
(observe also that CYC2 ∼= MSET2), one has:

A = PSET2(B) �⇒ A(z) = 1
2 B(z)2 − 1

2 B(z2)

A = MSET2(B) �⇒ A(z) = 1
2 B(z)2 + 1

2 B(z2)

A = CYC2(B) �⇒ A(z) = 1
2 B(z)2 + 1

2 B(z2).
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This type of direct reasoning could in principle be extended to treat triples, and so
on, but the computations easily grow out of control. The classical treatment of these
questions relies on what is known as Pólya theory, of which we offer a glimpse in
Notes I.58–I.60. We follow instead here an easier global approach, based on multi-
variate generating functions, that suffices to generate simultaneously all cardinality-
restricted constructions of our standard collection.

Theorem I.3 (Component-restricted constructions). The OGF of sequences with k
components A = SEQk(B) satisfies

A(z) = B(z)k .

The OGF of sets, A = PSETk(B), is a polynomial in the quantities B(z), . . . , B(zk),

A(z) = [uk] exp

(
u

1
B(z)− u2

2
B(z2)+ u3

3
B(z3)− · · ·

)
.

The OGF of multisets, A = MSETk(B), is

A(z) = [uk] exp

(
u

1
B(z)+ u2

2
B(z2)+ u3

3
B(z3)+ · · ·

)
.

The OGF of cycles, A = CYCk(B), is, with ϕ the Euler totient function (p. 721)

A(z) = [uk]
∞∑
�=1

ϕ(�)

�
log

1

1 − u�B(z�)
.

The explicit forms for small values of k are summarized in Figure I.18, p. 93.

Proof. The result for sequences is obvious since SEQk(B) means B × · · · × B (k
times). For the other constructions, the proof makes use of the techniques of Theo-
rem I.1, p. 27, but it is best based on bivariate generating functions that are otherwise
developed fully in Chapter III to which we refer for details (p. 171). The idea consists
in describing all composite objects and introducing a supplementary marking variable
to keep track of the number of components.

Take K to be a construction among SEQ,CYC,MSET, PSET. Consider the rela-
tion A = K(B), and let χ(α) for α ∈ A be the parameter “number of B–components”.
Define the multivariate quantities

An,k := card
{
α ∈ A

∣∣ |α| = n, χ(α) = k
}

A(z, u) :=
∑
n,k

An,kuk zn =
∑
α∈A

z|α|uχ(α).

For instance, a direct calculation shows that, for sequences,

A(z, u) =
∑
k≥0

uk B(z)k = 1

1 − u B(z)
.

For multisets and powersets, a simple adaptation of the already seen argument gives
A(z, u) as

A(z, u) =
∏

n

(1 − uzn)−Bn , A(z, u) =
∏

n

(1 + uzn)Bn ,
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respectively. The result follows from here by the exp–log transformation upon ex-
tracting [uk]A(z, u). The case of cycles results from the bivariate generating function
derived in Appendix A.4: Cycle construction, p. 729 (alternatively use Note I.60). �
� I.56. Aperiodic words. An aperiodic word is a primitive sequence of letters (in the sense
of Appendix A.4: Cycle construction, p. 729); that is, the word w is aperiodic provided it is
not obtained by repetition of a proper factor: w  = u · · · u. The number of aperiodic words of
length n over an m–ary alphabet is (with μ(k) the Möbius function, p. 721)

PW (m)
n =

∑
d | n

μ(d)mn/d .

For m = 2, the sequence starts as 2, 2, 6, 12, 30, 54, 126, 240, 504, 990 (EIS A027375). �

� I.57. Around the cycle construction. A calculation with arithmetical functions (APPENDIX A,
p. 721) yields the OGFs of multisets of cycles and multisets of aperiodic cycles as∏

k≥1

1

1 − A(zk)
and

1

1 − A(z)
,

respectively [144]. (The latter fact corresponds to the combinatorial property that any word can
be written as a decreasing product of Lyndon words; notably, it serves to construct bases of free
Lie algebras [413, Ch. 5].) �

� I.58. Pólya theory I: the cycle indicator. Consider a finite set M of cardinality m and a
group G of permutations of M. Whenever convenient, the set M can be identified with the
interval [1 . .m]. The cycle indicator (“Zyklenzeiger”) of G is, by definition, the multivariate
polynomial

Z(G) ≡ Z(G; x1, . . . , xm) = 1

card(G)

∑
g∈G

x j1(g)
1 · · · x jm(g)

m ,

where jk(g) is the number of cycles of length k in the permutation g. For instance, if Im =
{Id} is the group reduced to the identity permutation, Sm is the group of all permutations of
size m, and Rm is the group consisting of the identity permutation and the “mirror-reflection”
permutation

(1 ··· m
m ···1

)
, then

(89)

Z(Im) = xm
1 ; Z(Sm) =

∑
j1,..., jm≥0

x j1
1 · · · x jm

m

j1! 1 j1 · · · jm ! m jm
;

Z(Rm) =
⎧⎨⎩

1
2 xν2 + 1

2 x2ν
1 if m = 2ν is even

1
2 x1xν2 + 1

2 x2ν+1
1 if m = 2ν + 1 is odd.

(For the case of Sm , see Equation (40), Chapter III, p. 188.) �

� I.59. Pólya theory II: the fundamental theorem. Let B be a combinatorial class and M a
finite set on which the group G acts. Consider the set BM of all mappings from M into B.
Two mappings φ1, φ2 ∈ BM are declared to be equivalent if there exists a g ∈ G such that
φ1 ◦ g = φ2, and we let (BM/G) be the set of equivalence classes. The problem is to enumer-
ate (BM/G), given the data B, M, and the “symmetry group” G.

Letw be a weight function that assigns to any β ∈ B a weightw(β); the weight is extended
multiplicatively to any φ ∈ BM, hence to (BM/G), byw(φ) := ∏

k∈M w(φ(k)). The Pólya–
Redfield Theorem expresses the identity

(90)
∑

φ∈(BM/G)

w(φ) = Z

⎛⎝G;
∑
β∈B

w(β), . . . ,
∑
β∈B

w(β)m

⎞⎠ .
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In particular, we can choose w(β) = z|β| with z a formal parameter; the Pólya–Redfield
Theorem (90) then provides the OGF of objects of BM up to symmetries by G:

(91)
∑

φ∈(BM/G)

z|φ| = Z
(
G; B(z), . . . , B(zm)

)
.

(There are many excellent presentations of this classic theory, starting with Pólya himself [488,
491]; see for instance Comtet [129, §6.6], De Bruijn [142], and Harary–Palmer [319, Ch. 2].
The proof relies on orbit counting and Burnside’s lemma.) �

� I.60. Pólya theory III: basic constructions. Say we want to obtain the OGF of A =
MSET3(B). We view A as the set of triples BM, with M = [1 . . 3], taken up to S3, the
set of all permutations of three elements. The cycle indicator is given by (89), from which
the translation of MSET3 results (see Figure I.18, p. 93, for the outcome); the calculation ex-
tends to all MSETm , providing an alternative approach to Theorem I.3. The translation of the
CYCm construction can be obtained in this way via the cycle index of the group Cm of all cyclic
permutations; namely,

Z(Cm) = 1

m

∑
d | m

ϕ(d)xn/d
d ,

where ϕ(k) is the Euler totient function. The use of the groups Rm gives rise to the undirected
sequence construction,

A = USEQ(B) �⇒ A(z) = 1

2

1

1 − B(z)
+ 1

2

1 + B(z)

1 − B(z2)
,

where a sequence and its mirror image are identified. Similar principles give rise to the undi-
rected cycle construction UCYC, generated by cyclic permutations and mirror reflection. (The
approach taken in the text can be seen, in the perspective of Pólya theory, as a direct deter-
mination of

∑
m≥0 Z(Gm), for an entire family of symmetry groups {Gm}, where Gm =

Cm ,Sm , . . .) �

� I.61. Sets with distinct component sizes. Let A be the class of the finite sets of elements from
B, with the additional constraint that no two elements in a set have the same size. One has

A(z) =
∞∏

n=1

(1 + Bnzn).

Similar identities serve in the analysis of polynomial factorization algorithms [236]. �

� I.62. Sequences without repeated components. The generating function is formally∫ ∞

0
exp

⎛⎝∑
j≥1

(−1) j−1 u j

j
B(z j )

⎞⎠ e−u du.

(This representation is based on the Eulerian integral: k! = ∫∞
0 e−uuk du.) �

I. 6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating functions. Combinatorial structures
are viewed as always as formed of atoms (letters, nodes, etc), which determine their
sizes. Pointing means “pointing at a distinguished atom”; substitution, written B ◦ C
or B[C], means “substitute elements of C for atoms of B”.

Definition I.14. Let {ε1, ε2, . . .} be a fixed collection of distinct neutral objects of
size 0. The pointing of a class B, denoted A = �B, is formally defined as

�B :=
∑
n≥0

Bn × {ε1, . . . , εn}.
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The substitution of C into B (also known as composition of B and C), noted B ◦ C
or B[C], is formally defined as

B ◦ C ≡ B[C] :=
∑
k≥0

Bk × SEQk(C).

With Bn the number of B structures of size n, the quantity nBn can be interpreted
as counting pointed structures where one of the n atoms composing a B–structure has
been distinguished (here by a special “pointer” of size 0 attached to it). Elements of
B ◦ C may also be viewed as obtained by selecting in all possible ways an element
β ∈ B and replacing each of its atoms by an arbitrary element of C, while preserving
the underlying structure of β.

The interpretations above rely (silently) on the fact that atoms in an object can
be eventually distinguished from each other. This can be obtained by “canonicaliz-
ing”17 the representations of objects: first define inductively the lexicographic order-
ing for products and sequences; next represent powersets and multisets as increasing
sequences with the induced lexicographic ordering (more complicated rules can also
canonicalize cycles). In this way, any constructible object admits a unique “rigid”
representation in which each particular atom is determined by its place. Such a canon-
icalization thus reconciles the abstract definitions of Definition I.14 with the intuitive
interpretation of pointing and substitution.

Theorem I.4 (Pointing and substitution). The constructions of pointing and substitu-
tion are admissible18:

A = �B �⇒ A(z) = z∂z B(z) ∂z := d

dz
A = B ◦ C �⇒ A(z) = B(C(z))

Proof. By the definition of pointing, one has

An = n · Bn, so that A(z) = z∂z B(z).

The definition of substitution implies, by the sum and product rules,

A(z) =
∑
k≥0

Bk · (C(z))k = B(C(z)),

and the proof is completed. �

17Such canonicalization techniques also serve to develop fast algorithms for the exhaustive listing
of objects of a given size as well as for the range of problems known as “ranking” and “unranking”, with
implications in fast random generation. See, for instance, [430, 456, 607] for the general theory as well
as [500, 623] for particular cases such as necklaces and trees.

18In this book, we borrow from differential algebra the convenient notation ∂z := d
dz to represent

derivatives.



“book” — 2008/10/3 — 16:05 — page 88 — #102

88 I. COMBINATORIAL STRUCTURES AND ORDINARY GENERATING FUNCTIONS

Permutations as pointed objects. As an example of pointing, consider the class P
of all permutations written as words over integers starting from 1. One can go from a
permutation of size n − 1 to a permutation of size n by selecting a “gap” and inserting
the value n. When this is done in all possible ways, it gives rise to the combinatorial
relation

P = E +�(Z × P), E = {ε}, �⇒ P(z) = 1 + z
d

dz
(z P(z)).

The OGF satisfies an ordinary differential equation whose formal solution is P(z) =∑
n≥0 n!zn , since it is equivalent to the recurrence Pn = n Pn−1.

Unary–binary trees as substituted objects. As an example of substitution, con-
sider the class B of (plane–rooted) binary trees, where all nodes contribute to size. If
at each node a linear chain of nodes (linked by edges placed on top of the node) is
substituted, one forms an element of the class M of unary–binary trees; in symbols:

M = B ◦ SEQ≥1(Z) �⇒ M(z) = B

(
z

1 − z

)
.

Thus from the known OGF, B(z) = (1 −√
1 − 4z2)/(2z), one derives

M(z) = 1 −
√

1 − 4z2(1 − z)−2

2z(1 − z)−1
= 1 − z −√

1 − 2z − 3z2

2z
,

which matches the direct derivation on p. 68 (Motzkin numbers).
� I.63. Combinatorics of derivatives. The combinatorial operation D of “erasing–pointing”
points to an atom in an object and replaces it by a neutral object, otherwise preserving the
overall structure of the object. The translation of D on OGFs is then simply ∂ := ∂z . Classical
identities of analysis then receive transparent combinatorial interpretations: for instance,

∂(A × B) = (A × ∂B)+ (∂A × B)

as well as Leibniz’s identity, ∂m( f · g) = ∑
j
(m

j
)
(∂ j f ) · (∂m− j g), also follow from basic

logic. Similarly, for the “chain rule” ∂( f ◦ g) = ((∂ f ) ◦ g) · ∂g. (Example VII.25, p. 529,
illustrates the use of these methods for analytically solving many urn processes.) �

� I.64. The combinatorics of Newton–Raphson iteration. Given a real function f , the iter-
ation scheme of Newton–Raphson finds (conditionally) a root of the equation f (y) = 0 by
repeated use of the transformation α� = α − f (α)/ f ′(α), starting for instance from α = 0.
(For sufficiently smooth functions, this scheme is quadratically convergent.) The application of
Newton–Raphson iteration to the equation y = zφ(y) associated with a simple variety of trees
in the sense of Proposition I.5, p. 66, leads to the scheme:

αm+1 = αm + zφ(αm)− αm

1 − zφ′(αm)
; α0 = 0.

It can be seen, analytically and combinatorially, that αm has a contact of order at least 2m − 1
with y(z). The interesting combinatorics is due to Décoste, Labelle, and Leroux [147]; it in-
volves a notion of “heavy” trees (such that at least one of the root subtrees is large enough, in a
suitable sense); see [50, §3.3] and [485] for further developments. �

I. 6.3. Implicit structures. There are many cases where a combinatorial class X
is determined by a relation A = B+X , where A and B are known. (An instance of this
is the equational technique of Subsection I. 4.2, p. 56 for enumerating words that do
contain a given pattern p.) Less trivial examples involve inverting cartesian products
as well as sequences and multisets (examples below).
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Theorem I.5 (Implicit specifications). The generating functions associated to the im-
plicit equations with unknown X

A = B + X , A = B × X , A = SEQ(X ),
are, respectively,

X (z) = A(z)− B(z), X (z) = A(z)

B(z)
, X (z) = 1 − 1

A(z)
.

For the implicit construction A = MSET(X ), one has

X (z) =
∑
k≥1

μ(k)

k
log A(zk),

where μ(k) is the Möbius function19.

Proof. The first two cases result from kindergarten algebra, since in terms of OGFs
one has A = B + X and A = B X , respectively. For sequences, the relation A(z) =
(1 − X (z))−1 is readily inverted as stated. For multisets, start from the fundamental
relation of Theorem I.1 (p. 27) and take logarithms:

log(A(z)) =
∞∑

k=1

1

k
X (zk).

Let L = log A and Ln = [zn]L(z). One has

nLn =
∑
d | n

(d Xd),

to which it suffices to apply Möbius inversion (p. 721). �

Example I.19. Indecomposable permutations. A permutation σ = σ1 · · · σn (written here as a
word of distinct letters) is said to be decomposable if, for some k < n, σ1 · · · σk is a permutation
of {1, . . . , k}; i.e., a strict prefix of the permutation (in word form) is itself a permutation.
Any permutation decomposes uniquely as a concatenation of indecomposable permutations, as
shown in Figure I.17.

As a consequence of our definitions, the class P of all permutations and the class I of
indecomposable ones are related by

P = SEQ(I).
This determines I (z) implicitly, and Theorem I.5 gives

I (z) = 1 − 1

P(z)
where P(z) =

∑
n≥0

n! zn .

This example illustrates the utility of implicit constructions, and at the same time the pos-
sibility of bona fide algebraic calculations with power series even in cases where they are diver-
gent (Appendix A.5: Formal power series, p. 730). One finds

I (z) = z + z2 + 3 z3 + 13 z4 + 71 z5 + 461 z6 + 3447 z7 + · · · ,
19The Möbius function μ(n) is μ(n) = (−1)r if n is the product of r distinct primes and μ(n) = 0

otherwise (Appendix A.1: Arithmetical functions, p. 721).
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1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

σ = 2 5 4 1 3 6 8 10 7 9

Figure I.17. The decomposition of a permutation (σ ).

where the coefficients (EIS A003319) are

In = n! −
∑

n1+n2=n
n1,n2≥1

(n1!n2!)+
∑

n1+n2+n3=n
n1,n2,n3≥1

(n1!n2!n3!)− · · · .

From this, simple majorizations of the terms imply that In ∼ n!, so that almost all permutations
are indecomposable [129, p. 262]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
� I.65. Two-dimensional wanderings. A drunkard starts from the origin in the Z×Z plane and,
at each second, he makes a step in either one of the four directions, NW, NE, SW, SE. The steps
are thus ↖,↗,↙,↘. Consider the class L of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. The GF of L is (EIS A002894)

L(z) = 1 − 1∑∞
n=0

(2n
n
)2

z2n
= 4 z2 + 20 z4 + 176 z6 + 1876 z8 + · · · .

(Hint: a walk is determined by its projections on the horizontal and vertical axes; one-dimensional
walks that return to the origin in 2n steps are enumerated by

(2n
n
)
.) In particular [z2n]L(z/4) is

the probability that the random walk first returns to the origin in 2n steps.
Such problems largely originate with Pólya and implicit constructions were well-mastered

by him [490]; see also [85] for certain multidimensional extensions. The first-return problem
is analysed asymptotically in Chapter VI, p. 425, based on singularity theory and Hadamard
closure properties. �

Example I.20. Irreducible polynomials over finite fields. Objects not obviously of a combina-
torial nature can sometimes be enumerated by symbolic methods. Here is an indirect construc-
tion relative to polynomials over finite fields. We fix a prime number p and consider the base
field Fp of integers taken modulo p. The polynomial ring Fp[X ] is the ring of polynomials
in X with coefficients in Fp .

For all practical purposes, one may restrict attention to polynomials that are monic; that
is, ones whose leading coefficient is 1. We regard the set P of monic polynomials in Fp[X ]
as a combinatorial class, with the size of a polynomial being identified to its degree. Since a
polynomial is specified by the sequence of its coefficients, one has, with A the “alphabet” of
coefficients, A = Fp treated as a collection of atomic objects,

(92) P = SEQ(A) �⇒ P(z) = 1

1 − pz
,
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in agreement with the fact that there are pn monic polynomials of degree n.
Polynomials are a unique factorization domain, since they can be subjected to Euclidean

division. A polynomial that has no proper non-constant divisor is termed irreducible—irreducibles
are thus the analogues of the primes in the integer realm. For instance, over F3, one has

X10 + X8 + 1 = (X + 1)2(X + 2)2(X6 + 2X2 + 1).

Let I be the set of monic irreducible polynomials. The unique factorization property implies
that the collection of all polynomials is combinatorially isomorphic to the multiset class (there
may be repeated factors) of the collection of irreducibles:

(93) P ∼= MSET(I) �⇒ P(z) = exp

(
I (z)+ 1

2
I (z2)+ 1

3
I (z3)+ · · ·

)
.

The irreducibles are thus determined implicitly from the class of all polynomials whose
OGF is known by (92). Theorem I.5 then implies the identity

(94) I (z) =
∑
k≥1

μ(k)

k
log

1

1 − pzk
and In = 1

n

∑
k | n

μ(k)pn/k .

In particular, In is asymptotic to pn/n. This estimate constitutes the density theorem for irre-
ducible polynomials, a result already known to Gauss (see the scholarly notes of von zur Gathen
and Gerhard in [599, p. 396]):

The fraction of irreducible polynomials among all polynomials of degree n over the finite field
Fp is asymptotic to 1

n .

This property is analogous to the Prime Number Theorem (which however lies much deeper,
see [22, 138]), according to which the proportion of prime numbers in the interval [1, n] is
asymptotic to 1/log n. Indeed, a polynomial of degree n appears to be roughly comparable to
a number written in base p having n digits. (On the basis of such properties, Knopfmacher
has further developed in [370] an abstract theory of statistical properties of arithmetical semi-
groups.) We pursue this thread further in the book: we shall prove that the number of factors
in a random polynomial of degree n is on average ∼ log n (Example VII.4, p. 449) and that the
corresponding distribution is asymptotically Gaussian (Example IX.21, p. 672). . . . . . . . . . . �

� I.66. Square-free polynomials. Let Q be the class of monic square-free polynomials (i.e.,
polynomials not divisible by the square of a polynomial). One has by “Vallée’s identity” (p. 30)
Q(z) = P(z)/P(z2), hence

Q(z) = 1 − pz2

1 − pz
and Qn = pn − pn−1 (n ≥ 2).

Berlekamp’s book [51] discusses such facts together with relations to error correcting codes. �

� I.67. Balanced trees. The class E of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that all leaves are at the same distance from
the root. Only leaves contribute to size. Such trees, which are particular cases of B–trees, are a
useful data structure for implementing dynamic dictionaries [378, 537]. Balanced trees satisfy
an implicit equation based on combinatorial substitution:

E = Z + E ◦ [(Z ×Z)+ (Z ×Z × Z)] �⇒ E(z) = z + E(z2 + z3).

The expansion starts as (EIS A014535)

E(z) = z + z2 + z3 + z4 + 2 z5 + 2 z6 + 3 z7 + 4 z8 + 5 z9 + 8 z10 + · · · .
Odlyzko [459] has determined the growth of En to be roughly as ϕn/n, where ϕ = (1+√

5)/2
is the golden ratio. See Subsection IV. 7.2, p. 280 for an analysis. �
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I. 7. Perspective

This chapter and the next amount to a survey of elementary combinatorial enu-
merations, organized in a coherent manner and summarized in Figure I.18, in the case
of the unlabelled universe that is considered here. We refer to the process of specify-
ing combinatorial classes using these constructions and then automatically having ac-
cess to the corresponding generating functions as the symbolic method. The symbolic
method is the “combinatorics” in analytic combinatorics: it allows us to structure clas-
sical results in combinatorics with a unifying overall approach, to derive new results
that generalize and extend classical problems, and to address new classes of problems
that are arising in computer science, computational biology, statistical physics, and
other scientific disciplines.

More importantly, the symbolic method leaves us with generating functions that
we can handle with the “analytic” part of analytic combinatorics. A full treatment of
this feature of the approach is premature, but a brief discussion may help place the rest
of the book in context.

For a given family of problems, the symbolic method typically leads to a natural
class of functions in which the corresponding generating functions lie. Even though
the symbolic method is completely formal, we can often successfully proceed by using
classical techniques from complex and asymptotic analysis. For example, denumer-
ants with a finite set of coin denominations always lead to rational generating functions
with poles on the unit circle. Such an observation is useful as a common strategy for
coefficient extraction can then be applied (partial fraction expansion, in the case of
denumerants with fixed coin denominations). In the same vein, run statistics consti-
tute a particular case of the general theorem of Chomsky and Schützenberger to the
effect that the generating function of a regular language is necessarily a rational func-
tion. Similarly, context-free structures are attached to generating functions that are
invariably algebraic. Theorems of this sort establish a bridge between combinatorial
analysis and special functions.

Not all applications of the symbolic method are automatic (although that is cer-
tainly one goal underlying the approach). The example of counting set partitions
shows that application of the symbolic method may require finding an adequate pre-
sentation of the combinatorial structures to be counted. In this way, bijective combi-
natorics enters the game in a non-trivial fashion.

Our introductory examples of compositions and partitions correspond to classes
of combinatorial structures with explicit “iterative” definitions, a fact leading in turn
to explicit generating function expressions. The tree examples then introduce recur-
sively defined structures. In that case, the recursive definition translates into a func-
tional equation that only determines the generating function implicitly. In simpler
situations (such as binary or general trees), the generating function equations can be
solved and explicit counting results often follow. In other cases (such as non-plane
trees) one can usually conduct an analysis of singularities directly from the functional
equations and obtain very precise asymptotic estimates: Chapters IV–VIII of Part B
offer an abundance of illustrations of this paradigm. The further development on a
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1. The main constructions of disjoint union (combinatorial sum), product, sequence, powerset,
multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF

Union A = B + C A(z) = B(z)+ C(z)

Product A = B × C A(z) = B(z) · C(z)

Sequence A = SEQ(B) A(z) = 1

1 − B(z)

Powerset A = PSET(B) A(z) = exp

(
B(z)− 1

2
B(z2)+ · · ·

)
Multiset A = MSET(B) A(z) = exp

(
B(z)+ 1

2
B(z2)+ · · ·

)
Cycle A = CYC(B) A(z) = log

1

1 − B(z)
+ 1

2
log

1

1 − B(z2)
+ · · ·

2. The translation for sequences, powersets, multisets, and cycles constrained by the number of
components (Theorem I.3, p. 84).

SEQk(B) : B(z)k

PSET2(B) : B(z)2

2 − B(z2)
2

MSET2(B) : B(z)2

2 + B(z2)
2

CYC2(B) : B(z)2

2 + B(z2)
2

PSET3(B) : B(z)3

6 − B(z) B(z2)
2 + B(z3)

3

MSET3(B) : B(z)3

6 + B(z) B(z2)
2 + B(z3)

3

CYC3(B) : B(z)3

3 + 2B(z3)
3

PSET4(B) : B(z)4

24 − B(z)2 B(z2)
4 + B(z)B(z3)

3 + B(z2)2

8 − B(z4)
4

MSET4(B) : B(z)4

24 + B(z)2 B(z2)
4 + B(z)B(z3)

3 + B(z2)2

8 + B(z4)
4

CYC4(B) : B(z)4

4 + B(z2)2

4 + B(z4)
2 .

3. The additional constructions of pointing and substitution (Section I. 6).

Construction OGF

Pointing A = �B A(z) = z d
dz B(z)

Substitution A = B ◦ C A(z) = B(C(z))

Figure I.18. A dictionary of constructions applicable to unlabelled structures, to-
gether with their translation into ordinary generating functions (OGFs). (The labelled
counterpart of this table appears in Figure II.18, p. 148.)
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suitable perturbative theory will then lead us to systematic ways of quantifying pa-
rameters (not just counting sequences) of large combinatorial structures—this is the
subject of Chapter IX, in Part C of this book.

Bibliographic notes. Modern presentations of combinatorial analysis appear in the books of
Comtet [129] (a beautiful book largely example-driven), Stanley [552, 554] (a rich set with an
algebraic orientation), Wilf [608] (generating functions oriented), and Lando [400] (a neat mod-
ern introduction). An elementary but insightful presentation of the basic techniques appears in
Graham, Knuth, and Patashnik’s classic [307], a popular book with a highly original design. An
encyclopaedic reference is the book of Goulden & Jackson [303] whose descriptive approach
very much parallels ours.

The sources of the modern approaches to combinatorial analysis are hard to trace since
they are usually based on earlier traditions and informally stated mechanisms that were well-
mastered by practicing combinatorial analysts. (See for instance MacMahon’s book [428] Com-
binatory Analysis first published in 1917, the introduction of denumerant generating functions
by Pólya as presented in [489, 493], or the “domino theory” in [307, Sec. 7.1].) One source in re-
cent times is the Chomsky–Schützenberger theory of formal languages and enumerations [119].
Rota [518] and Stanley [550, 554] developed an approach which is largely based on partially
ordered sets. Bender and Goldman developed a theory of “prefabs” [42] whose purposes are
similar to the theory developed here. Joyal [359] proposed an especially elegant framework, the
“theory of species”, that addresses foundational issues in combinatorial theory and constitutes
the starting point of the superb exposition by Bergeron, Labelle, and Leroux [50]. Parallel (but
largely independent) developments by the “Russian School” are nicely synthesized in the books
by Sachkov [525, 526].

One of the reasons for the revival of interest in combinatorial enumerations and proper-
ties of random structures is the analysis of algorithms (a subject founded in modern times by
Knuth [381]), in which the goal is to model the performance of computer algorithms and pro-
grams. The symbolic ideas expounded here have been applied to the analysis of algorithms
in surveys [221, 598], with elements presented in our book [538]. Further implications of
the symbolic method in the area of the random generation of combinatorial structures appear
in [177, 228, 264, 456].

[. . . ] une propriété qui se traduit par une égalité |A| = |B| est mieux explicitée lorsque l’on
construit une bijection entre deux ensembles A et B, plutôt qu’en calculant les coefficients
d’un polynôme dont les variables n’ont pas de significations particulières. La méthode des
fonctions génératrices, qui a exercé ses ravages pendant un siècle, est tombée en désuétude

pour cette raison.

(“[. . . ] a property, which is translated by an equality |A| = |B|, is understood better, when one constructs

a bijection between the two sets A and B, than when one calculates the coefficients of a polynomial whose

variables have no particular meaning. The method of generating functions, which has had devastating
effects for a century, has fallen into obsolescence, for this reason.”)

—CLAUDE BERGE [48, p. 10]
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II

Labelled Structures and Exponential
Generating Functions

Cette approche évacue pratiquement tous les calculs1.

— DOMINIQUE FOATA &
MARCO SCHÜTZENBERGER [267]

II. 1. Labelled classes 96
II. 2. Admissible labelled constructions 100
II. 3. Surjections, set partitions, and words 106
II. 4. Alignments, permutations, and related structures 119
II. 5. Labelled trees, mappings, and graphs 125
II. 6. Additional constructions 136
II. 7. Perspective 147

Many objects of classical combinatorics present themselves naturally as labelled struc-
tures, where atoms of an object (typically nodes in a graph or a tree) are distinguish-
able from one another by the fact that they bear distinct labels. Without loss of gen-
erality, we may take the set from which labels are drawn to be the set of integers. For
instance, a permutation can be viewed as a linear arrangement of distinct integers, and
the classical cycle decomposition represents it as an unordered collection of circular
digraphs, whose vertices are themselves integers.

Operations on labelled structures are based on a special product: the labelled
product that distributes labels between components. This operation is a natural ana-
logue of the cartesian product for plain unlabelled objects. The labelled product in
turn leads to labelled analogues of the sequence, set, and cycle constructions.

Labelled constructions translate over exponential generating functions—the trans-
lation schemes turn out to be even simpler than in the unlabelled case. At the same
time, these constructions enable us to take into account structures that are in some
ways combinatorially richer than their unlabelled counterparts of Chapter I, in par-
ticular with regard to order properties. Labelled constructions constitute the second
pillar of the symbolic method for combinatorial enumeration.

In this chapter, we examine some of the most important classes of labelled objects,
including surjections, set partitions, permutations, as well as labelled graphs, trees,
and mappings from a finite set into itself. Certain aspects of words can also be treated

1“This approach eliminates virtually all calculations.” Foata and Schútzenberger refer here to a “geo-
metric” approach to combinatorics, much akin to ours, that permits one to relate combinatorial properties
and special function identities.

95
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by this theory, a fact which has important consequences not only in combinatorics
itself but also in probability and statistics. In particular, labelled constructions of
words provide an elegant solution to two classical problems, the birthday problem and
the coupon collector problem, as well as several of their variants that have numerous
applications in other fields, including the analysis of hashing algorithms in computer
science.

II. 1. Labelled classes

Throughout this chapter, we consider combinatorial classes in the sense of Def-
inition I.1, p. 16: we deal exclusively with finite objects; a combinatorial class A is
a set of objects, with a notion of size attached, so that the number of objects of each
size in A is finite. To these basic concepts, we now add that the objects are labelled,
by which we mean that each atom carries with it a distinctive colour, or equivalently
an integer label, in such a way that all the labels occurring in an object are distinct.
Precisely:

Definition II.1. A weakly labelled object of size n is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that the vertices bear labels, with
the implied condition that labels are distinct integers from Z. An object of size n is
said to be well-labelled, or, simply, labelled, if it is weakly labelled and, in addition,
its collection of labels is the complete integer interval [1 . . n]. A labelled class is a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. In fact, when the need
arises, we shall take “object” in a broad sense to mean any kind of discrete structure
enriched by integer labels. Virtually all labelled classes considered in this book can
eventually be encoded as graphs of sorts, so that this extended use of the notion of
a labelled class is a harmless convenience. (See Section II. 7, p. 147 for a brief dis-
cussion of alternative but logically equivalent frameworks for the notion of a labelled
class.)

Example II.1. Labelled graphs. By definition, a labelled graph is an undirected graph such that
distinct integer labels forming an interval of the form {1, 2, . . . , n} are supported by vertices. A
particular labelled graph of size 4 is for instance

g =
4 2

31
,

which represents a graph whose vertices bear the labels {1, 2, 3, 4} and whose set of edges is

{ {1, 3}, {2, 3}, {2, 4}, {1, 4} } .
Only the graph structure (as defined by its adjacency structure, i.e., its set of edges) counts, so
that this is the same abstract graph as in the alternative physical representations

g =
3 2

41
,

1 4

23
.

However, this graph is different from either of
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There are altogether G4 = 64 = 26 labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 105 for details): Gn = 2n(n−1)/2. The labelled
graphs can be grouped into equivalence classes up to arbitrary permutation of the labels, which
determines the Ĝ4 = 11 unlabelled graphs of size 4. Each unlabelled graph corresponds to a
variable number of labelled graphs: for instance, the totally disconnected graph (bottom, left)
and the complete graph (top right) correspond to 1 labelling only, while the line graph (top left)
admits 1

2 4! = 12 possible labellings.

Figure II.1. Labelled versus unlabelled graphs for size n = 4.

h =
3 2

14
, j =

4 2

13
,

since, for instance, 1 and 2 are adjacent in h and j , but not in g. Altogether, there are 3
different labelled graphs (namely, g, h, j), that have the same “shape”, corresponding to the
single unlabelled quadrangle graph

Q =
• •

••
.

Figure II.1 lists all the 64 labelled graphs of size 4 as well as their 11 unlabelled counterparts
viewed as equivalence classes of labelled graphs when labels are ignored. . . . . . . . . . . . . . . . . �

In order to count labelled objects, we appeal to exponential generating functions.

Definition II.2. The exponential generating function (EGF) of a sequence (An) is the
formal power series

(1) A(z) =
∑
n≥0

An
zn

n !
.
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The exponential generating function (EGF) of a class A is the exponential generating
function of the numbers An = card(An). Equivalently, the EGF of class A is

A(z) =
∑
n≥0

An
zn

n !
=

∑
α∈A

z|α|

|α| !
.

It is also said that the variable z marks size in the generating function.

With the standard notation for coefficients of series, the coefficient An in an exponen-
tial generating function is then recovered by2

An = n ! · [zn] A(z),

since [zn]A(z) = An/n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Equation (9), p. 19, in Chapter I.

Note that, as in the previous chapter, we adhere to a systematic naming convention
for generating functions of combinatorial structures. A labelled class A, its counting
sequence (An) (or (an)), and its exponential generating function A(z) (or a(z)) are all
denoted by the same group of letters. As usual, combinatorially isomorphic classes
(Definition I.3, p. 19) are freely identified.

Neutral and atomic classes. As in the unlabelled universe (p. 24), it proves useful
to introduce a neutral (empty, null) object ε that has size 0 and bears no label at all, and
consider it as a special labelled object; a neutral class E is then by definition E = {ε}
and is also denoted by boldface 1. The (labelled) atomic class Z = { 1 } is formed of a
unique object of size 1 that, being well-labelled, bears the integer label 1 . The EGFs
of the neutral class and the atomic class are, respectively,

E(z) = 1, Z(z) = z.

Permutations, urns, and circular graphs. These structures, described in Exam-
ples II.2–II.4, are undoubtedly the most fundamental ones for labelled enumeration.

Example II.2. Permutations. The class P of all permutations is prototypical of labelled classes.
Under the linear representation of permutations, where

σ =
(

1 2 · · · n
σ1 σ2 · · · σn

)
is represented as the sequence (σ1, σ2, . . . , σn), the class P is schematically

P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ε , 1 , 1 − 2

2 − 1
,

1 − 2 − 3
2 − 3 − 1
3 − 1 − 2
2 − 1 − 3
1 − 3 − 2
3 − 2 − 1

, . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

so that P0 = 1, P1 = 1, P2 = 2, P3 = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that the class P can be equivalently viewed as
the class of all labelled linear digraphs (with an implicit direction, from left to right, say, in the
representation). Accordingly, the class P of permutations has the counting sequence Pn = n!

2Some authors prefer the notation [ zn

n! ]A(z) to n![zn ]A(z), which we avoid in this book. Indeed,
Knuth [376] argues convincingly that the variant notation is not consistent with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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(argument: there are n choices of where to place the element 1, then (n − 1) possible positions
for 2, and so on). Thus the EGF of P is

P(z) =
∑
n≥0

n!
zn

n!
=

∑
n≥0

zn = 1

1 − z
.

Permutations, as they contain information relative to the ordering of their elements are essential
in many applications related to order statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example II.3. Urns. The class U of totally disconnected graphs starts as

U =

⎧⎪⎨⎪⎩ε , 1 , 1 2 ,
1 2

3
,

1 2

3 4
,

1 2
5

3 4

, . . .

⎫⎪⎬⎪⎭ .

The ordering between the labelled atoms does not matter, so that for each n, there is only one
possible arrangement and Un = 1. The class U can be regarded as the class of urns, where
an urn of size n contains n distinguishable balls in an unspecified (and irrelevant) order. The
corresponding EGF is

U (z) =
∑
n≥0

1
zn

n!
= exp(z) = ez .

(The fact that the EGF of the constant sequence (1)n≥0 is the exponential function explains the
term “exponential generating function”.) It also proves convenient, in several applications, to
represent elements of an urn in a sorted sequence, which leads to an equivalent representation
of urns as increasing linear graphs; for instance,

1 − 2 − 3 − 4 − 5

may be equivalently used to represent the urn of size 5. Though urns look trivial at first glance,
they are of particular importance as building blocks of complex labelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example II.4. Circular graphs. Finally, the class of circular graphs, in which cycles are
oriented in some conventional manner (say, positively here) is

C =
{

1 ,

1

2
,

1

2 3
,

1

3 2
, . . .

}
.

Circular graphs correspond bijectively to cyclic permutations. One has Cn = (n − 1)! (argu-
ment: a directed cycle is determined by the succession of elements that “follow” 1, hence by a
permutation of n − 1 elements). Thus, one has

C(z) =
∑
n≥1

(n − 1)!
zn

n!
=

∑
n≥1

zn

n
= log

1

1 − z
.

As we shall see in the next section, the logarithm is characteristic of circular arrangements of
labelled objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� II.1. Labelled trees. Let Un now be the number of labelled graphs with n vertices that are
connected and acyclic; equivalently, Un is the number of labelled unrooted non-plane trees. Let
Tn be the number of labelled rooted non-plane trees. The identity Tn = nUn is elementary,
since all vertices in a labelled tree are distinguished by their labels and a root can be chosen in n
ways. In Section II. 5, p. 125, we shall prove that Un = nn−2 and Tn = nn−1. �
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II. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it possible to build complex
labelled classes from simpler ones. Combinatorial sum, also known as disjoint union
is taken in the sense of Chapter I, p. 25: it is the union of disjoint copies. Next, in
order to define a product adapted to labelled structures, we cannot rely on the carte-
sian product, since a pair of two labelled objects is not well-labelled (for instance the
label 1 would invariably appear repeated twice). Instead, we define a new operation,
the labelled product, which translates naturally into exponential generating functions.
From here, simple translation rules follow for labelled sequences, sets, and cycles.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGFs. Let a(z), b(z), c(z) be
EGFs, with a(z) = ∑

n anzn/n!, and so on. The binomial convolution formula is:

(2) if a(z) = b(z) · c(z), then an =
n∑

k=0

(
n

k

)
bkcn−k,

where
(n

k

) = n!/(k! (n−k)!) represents, as usual, a binomial coefficient. This formula
results from the usual product of formal power series,

an

n!
=

n∑
k=0

bk

k!
· cn−k

(n − k)!
and

(
n

k

)
= n!

k! (n − k)!
.

In the same vein, if a(z) = b(1)(z) b(2)(z) · · · b(r)(z), then

(3) an =
∑

n1+n2+···+nr=n

(
n

n1, n2, . . . , nr

)
b(1)n1

b(2)n2
· · · b(r)nr

.

In Equation (3) there occurs the multinomial coefficient(
n

n1, n2, . . . , nr

)
= n!

n1!n2! · · · nr !
,

which counts the number of ways of splitting n elements into r distinguishable classes
of cardinalities n1, . . . , nr . This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II. 2.1. Labelled constructions. A labelled object may be relabelled. We only
consider consistent relabellings defined by the fact that they preserve the order rela-
tions among labels. Then two dual modes of relabellings prove important:

— Reduction: For a weakly labelled structure of size n, this operation reduces
its labels to the standard interval [1 . . n] while preserving the relative order
of labels. For instance, the sequence 〈7, 3, 9, 2〉 reduces to 〈3, 2, 4, 1〉. We
use ρ(α) to denote this canonical reduction of the structure α.

— Expansion: This operation is defined relative to a relabelling function e :
[1 . . n] 	→ Z that is assumed to be strictly increasing. To a well-labelled
object α of size n, it associates a weakly labelled object α̃, in which label j
of α is replaced by labelled e( j). For instance, 〈3, 2, 4, 1〉 may expand as
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Figure II.2. The 10 ≡ (5
2
)

elements in the labelled product of a triangle and a segment.

〈33, 22, 44, 11〉, 〈7, 3, 9, 2〉, and so on. We use e(α) to denote the result of
relabelling α by e.

These notions enable us to devise a product well suited to labelled objects, which was
originally formalized under the name of “partitional product” by Foata [265]. The
idea is simply to relabel objects, so as to avoid duplicate labels.

Given two labelled objects β ∈ B and γ ∈ C, their labelled product, or simply
product, denoted by β �γ , is a set comprised of the collection of well-labelled ordered
pairs (β ′, γ ′) that reduce to (β, γ ):

(4) β � γ := { (β ′, γ ′)
∣∣ (β ′, γ ′) is well-labelled, ρ(β ′) = β, ρ(γ ′) = γ }.

An equivalent form, via expansion of labels, is

(5) β�γ = { (e(β), f (γ )
∣∣ Im(e)∩Im( f ) = ∅, Im(e)∪Im( f ) = [ 1 . . |β| + |γ | ] },

where e, f are relabelling functions with ranges Im(e), Im( f ), respectively.
Note that elements of a labelled product are, by construction, well-labelled. The

labelled product (β � γ ) of two elements β, γ of respective sizes n1, n2 is a set whose
cardinality is, with n = n1 + n2, expressed as(

n1 + n2

n1, n2

)
≡

(
n

n1

)
,

since this quantity is the number of legal relabellings by expansion of the pair (β, γ ).
(Figure II.2 displays the

(5
2

) = 10 elements of the labelled product of a particular
object of size 3 with another object of size 2.) The labelled product of classes is then
defined by the natural extension of operations to sets.

Definition II.3. The labelled product of B and C, denoted B�C, is obtained by forming
ordered pairs from B × C and performing all possible order-consistent relabellings.
In symbols:

(6) B � C =
⋃

β∈B, γ∈C
(β � γ ).



“book” — 2008/10/3 — 16:05 — page 102 — #116

102 II. LABELLED STRUCTURES AND EGFS

Equipped with this notion, we can build sequences, sets, and cycles, in a way
much similar to the unlabelled case. We proceed to do so and, at the same time,
establish admissibility3 of the constructions.

Labelled product. When A = B � C, the corresponding counting sequences sat-
isfy the relation,

(7) An =
∑

|β|+|γ |=n

(|β| + |γ |
|β|, |γ |

)
B|β|C|γ | =

∑
n1+n2=n

(
n

n1, n2

)
Bn1Cn2 .

The product Bn1Cn2 keeps track of all the possibilities for the B and C components
and the binomial coefficient accounts for the number of possible relabellings, in accor-
dance with our earlier discussion. The binomial convolution property (7) then implies
admissibility

A = B � C �⇒ A(z) = B(z) · C(z),

with the labelled product simply translating into the product operation on EGFs.
� II.2. Multiple labelled products. The (binary) labelled product satisfies the associativity
property,

B � (C �D) ∼= (B � C) �D,
which serves to define B � C � D. The corresponding EGF is the product B(z) · C(z) · D(z).
This rule generalizes to r factors with coefficients given by a multinomial convolution (3). �

k–sequences and sequences. The kth (labelled) power of B is defined as (B �

B · · ·B), with k factors equal to B. It is denoted SEQk(B) as it corresponds to forming
k–sequences and performing all consistent relabellings. The (labelled) sequence class
of B is denoted by SEQ(B) and is defined by

SEQ(B) := {ε} + B + (B � B)+ (B � B � B)+ · · · =
⋃
k≥0

SEQk(B).

The product relation for EGFs extends to arbitrary products (Note II.2 above), so that⎧⎪⎪⎨⎪⎪⎩
A = SEQk(B) �⇒ A(z) = B(z)k

A = SEQ(B) �⇒ A(z) =
∞∑

k=0

B(z)k = 1

1 − B(z)
,

where the last equation requires B0 = ∅.

k–sets and sets. We denote by SETk(B) the class of k–sets formed from B. The
set class is defined formally, as in the case of the unlabelled multiset: it is the quotient
SETk(B) := SEQk(B)/R, where the equivalence relation R identifies two sequences
when the components of one are a permutation of the components of the other (p. 26).
A “set” is like a sequence, but the order between components is immaterial. The
(labelled) set construction applied to B, denoted SET(B), is then defined by

SET(B) := {ε} + B + SET2(B)+ · · · =
⋃
k≥0

SETk(B).

3We recall that a construction is admissible (Definition I.5, p. 22) if the counting sequence of the result
only depends on the counting sequences of the operands. An admissible construction therefore induces a
well-defined transformation over exponential generating functions.
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A labelled k–set is associated with exactly k! different sequences, since all its compo-
nents are distinguishable by their labels. Precisely, one may choose to identify each
component in a labelled set or sequence by its “leader”; that is, the value of its small-
est label. There is then a uniform k!–to–one correspondence between k–sequences
and k–sets, as illustrated in a particular case (k = 3) by the diagram below:

5

5

5

5

5

5

5

9

2

2
9

2
9

9
2

9
2

2
9

9
2

.

In figurative terms: the contents of a bag containing k different items can be laid on a
table in k! ways. Thus in terms of EGFs, one has, assuming B0 = ∅,⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = SETk(B) �⇒ A(z) = 1

k!
B(z)k

A = SET(B) �⇒ A(z) =
∞∑

k=0

1

k!
B(z)k = exp(B(z)).

In the unlabelled case, formulae are more complex, since components in multisets
are not necessarily different. Note also that the distinction between multisets and
powersets, which is meaningful for unlabelled structures is here immaterial, and we
have the unlabelled-to-labelled analogy: MSET, PSET � SET.

k–cycles and cycles. We also introduce the class of k–cycles, CYCk(B) and the
cycle class. The cycle class is defined formally, as in the unlabelled case, to be the
quotient CYCk(B) := SEQk(B)/S, where the equivalence relation S identifies two
sequences when the components of one are a cyclic permutation of the components
of the other (p. 26). A cycle is like a sequence whose components can be cyclically
shifted, so that there is now a uniform k–to–one correspondence between k–sequences
and k–cycles. In terms of EGFs, we have (assuming B0 = ∅ and k ≥ 1)⎧⎪⎪⎪⎨⎪⎪⎪⎩

A = CYCk(B) �⇒ A(z) = 1

k
B(z)k

A = CYC(B) �⇒ A(z) =
∞∑

k=1

1

k
B(z)k = log

1

1 − B(z)
,

since each cycle admits exactly k representations as a sequence. In summary:

Theorem II.1 (Basic admissibility, labelled universe). The constructions of combina-
torial sum, labelled product, sequence, set, and cycle are all admissible. Associated
operators on EGFs are:

Sum: A = B + C �⇒ A(z) = B(z)+ C(z),

Product: A = B � C �⇒ A(z) = B(z) · C(z),
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Sequence: A = SEQ(B) �⇒ A(z) = 1

1 − B(z)
,

— k components: A = SEQk(B) ≡ (B)�k �⇒ A(z) = B(z)k ,

Set: A = SET(B) �⇒ A(z) = exp(B(z)),

— k components: A = SETk(B) �⇒ A(z) = 1

k!
B(z)k ,

Cycle: A = CYC(B) �⇒ A(z) = log
1

1 − B(z)
,

— k components: A = CYCk(B) �⇒ A(z) = 1

k
B(z)k .

Constructible classes. As in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in terms of sums (disjoint unions),
the labelled constructions of product, sequence, set, cycle, and the initial classes de-
fined by the neutral structure of size 0 and the atomic class Z = { 1 }. Regarding the
elementary classes discussed in Section II. 1, it is immediately recognized that

P = SEQ(Z), U = SET(Z), C = CYC(Z),
specify permutations, urns, and circular graphs, respectively. These classes are basic
building blocks out of which more complex objects can be constructed. In particular,
as we shall explain shortly (Section II. 3 and Section II. 4), set partitions (S), surjec-
tions (R), permutations under their cycle decomposition (P), and alignments (O) are
constructible classes corresponding to

Surjections: R ∼= SEQ(SET≥1(Z)) (sequences-of-sets);
Set partitions: S ∼= SET(SET≥1(Z)) (sets-of-sets);
Alignments: O ∼= SEQ(CYC(Z)) (sequences-of-cycles);
Permutations: P ∼= SET(CYC(Z)), (sets-of-cycles).

An immediate consequence of Theorem II.1 is the fact that a functional equation
for the EGF of a constructible labelled class can be computed automatically.

Theorem II.2 (Symbolic method, labelled universe). The exponential generating func-
tion of a constructible class of labelled objects is a component of a system of generat-
ing function equations whose terms are built from 1 and z using the operators

+ , × , Q( f ) = 1

1 − f
, E( f ) = e f L( f ) = log

1

1 − f
.

When we further allow restrictions in composite constructions, the operators f k (for
SEQk), f k/k! (for SETk), and f k/k (for CYCk) are to be added to the list.

II. 2.2. Labelled versus unlabelled enumeration. Any labelled class A has an
unlabelled counterpart Â: objects in Â are obtained from objects of A by ignoring
the labels. This idea is formalized by identifying two labelled objects if there is an
arbitrary relabelling (not just an order-consistent one, as has been used so far) that
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transforms one into the other. For an object of size n, each equivalence class contains
a priori between 1 and n! elements. Thus:

Proposition II.1. The counts of a labelled class A and its unlabelled counterpart Â
are related by

(8) Ân ≤ An ≤ n! Ân or equivalently 1 ≤ An

Ân
≤ n!.

Example II.5. Labelled and unlabelled graphs. This phenomenon has been already encoun-
tered in our discussion of graphs (Figure II.1, p. 97). Let in general Gn and Ĝn be the number
of graphs of size n in the labelled and unlabelled case, respectively. One finds for n = 1 . . 15:

Ĝn (unlabelled) Gn (labelled)

1 1

2 2

4 8

11 64

34 1024

156 32768

1044 2097152

12346 268435456

274668 68719476736

12005168 35184372088832

1018997864 36028797018963968

165091172592 73786976294838206464

The sequence (Ĝn) constitutes EIS A000088, which can be obtained by an extension of methods
of Chapter I, p. 85, specifically by Pólya theory [319, Ch. 4]. The sequence (Gn) is determined
directly by the fact that a graph of n vertices can have each of the

(n
2
)

possible edges either
present or not, so that

Gn = 2(
n
2) = 2n(n−1)/2.

The sequence of labelled counts obviously grows much faster than its unlabelled counterpart.
We may then verify the inequality (8) in this particular case. The normalized ratios,

ρn := Gn/Ĝn, σn := Gn/(n!Ĝn),

are observed to be

n ρn = Gn/Ĝn σn = Gn/(n!Ĝn)

1 1.000000000 1.0000000000
2 1.000000000 0.5000000000
3 2.000000000 0.3333333333
4 5.818181818 0.2424242424
6 210.0512821 0.2917378918
8 21742.70663 0.5392536367

12 446946830.2 0.9330800361
16 0.2076885783 · 1014 0.9926428522

From these data, it is natural to conjecture that σn tends rapidly to 1 as n tends to infinity. This is
indeed a non-trivial fact originally established by Pólya (see Chapter 9 of Harary and Palmer’s
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book [319] dedicated to asymptotics of graph enumerations):

Ĝn ∼ 1

n!
2(

n
2) = Gn

n!
.

In other words, “almost all” graphs of size n should admit a number of labellings close to n!.
(Combinatorially, this corresponds to the fact that in a random unlabelled graph, with high
probability, all of the nodes can be distinguished via the adjacency structure of the graph; in
such a case, the graph has no non-trivial automorphism and the number of distinct labellings is
n! exactly.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

In contrast with the case of all graphs, where Ĝn ∼ Gn/n!, urns (totally discon-
nected graphs) illustrate the other extreme situation where

Ûn = Un = 1.

These examples indicate that, beyond the general bounds of Proposition II.1, there
is no automatic way to translate between labelled and unlabelled enumerations. But
at least, if the class A is constructible, its unlabelled counterpart Â can be obtained
by interpreting all the intervening constructions as unlabelled ones in the sense of
Chapter I (with SET 	→ MSET); both generating functions are computable, and their
coefficients can then be compared.
� II.3. Permutations and their unlabelled counterparts. The labelled class of permutations can
be specified by P = SEQ(Z); the unlabelled counterpart is the set P̂ of integers in unary nota-
tion, and P̂n ≡ 1, so that Pn = n!P̂n exactly. The specification P ′ = SET(CYC(Z)) describes
sets of cycles and, in the labelled universe, one has P ′ ∼= P; however, the unlabelled counter-
part of P ′ is the class P̂ ′  = P̂ of integer partitions examined in Chapter I. [In the unlabelled
universe, there are special combinatorial isomorphisms such as SEQ≥1(Z) ∼= MSET≥1(Z) ∼=
CYC(Z). In the labelled universe, the identity SET ◦ CYC ≡ SEQ holds.] �

II. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be termed level-two non-
recursive structures defined by the fact that they combine two constructions. In this
section, we discuss surjections and set partitions (Subsection II. 3.1), which constitute
labelled analogues of integer compositions and integer partitions in the unlabelled
universe. The symbolic method then extends naturally to words over a finite alpha-
bet, where it opens access to an analysis of the frequencies of letters composing words.
This in turn has useful consequences for the study of classical random allocation prob-
lems, of which the birthday paradox and the coupon collector problem stand out (Sub-
section II. 3.2). Figure II.3 summarizes some of the main enumeration results derived
in this section.

II. 3.1. Surjections and set partitions. We examine classes

R = SEQ(SET≥1(Z)) and S = SET(SET≥1(Z)),
corresponding to sequences-of-sets (R) and sets-of-sets (S), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract specifications model basic objects
of discrete mathematics, namely surjections (R) and set partitions (S)
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Specification EGF coefficient

Surjections: R = SEQ(SET≥1(Z))
1

2 − ez ∼ n!

2(log 2)n+1
(pp. 109, 259)

— r images R(r) = SEQr (SET≥1(Z)) (ez − 1)r r !

{
n

r

}
(p. 107)

Set partitions: S = SET(SET≥1(Z)) eez−1 ≈ n!

(log n)n
(pp. 109, 560)

— r blocks S(r) = SETr (SET≥1(Z))
1

r !
(ez − 1)r

{
n

r

}
(p. 108)

— blocks ≤ b S = SET(SET1 . . b(Z)) eeb(z)−1 ≈ nn(1−1/b) pp. 111, 568

Words: W = SEQr (SET(Z)) erz rn (p. 112)

Figure II.3. Major enumeration results relative to surjections, set partitions, and words.

Surjections with r images. In elementary mathematics, a surjection from a set A
to a set B is a function from A to B that assumes each value at least once (an onto
mapping). Fix some integer r ≥ 1 and let R(r)

n denote the class of all surjections from
the set [1 . . n] onto [1 . . r ] whose elements are also called r–surjections. A particular
object φ ∈ R(5)

9 is depicted in Figure II.4.

We set R(r) = ⋃
n R

(r)
n and proceed to compute the corresponding EGF, R(r)(z).

First, let us observe that an r–surjection φ ∈ R(r)
n is determined by the ordered r–

tuple formed with the collection of all preimage sets,
(
φ−1(1), φ−1(2), . . . , φ−1(r)

)
,

themselves disjoint non-empty sets of integers that cover the interval [1 . . n]. In the
case of the surjection φ of Figure II.4, this alternative representation is

φ : [ {2}, {1, 3}, {4, 6, 8}, {9}, {5, 7} ] .

One has the combinatorial specification and EGF relation:

(9) R(r) = SEQr (V), V = SET≥1(Z) �⇒ R(r)(z) = (ez − 1)r .

Here V ∼= U \ {ε} designates the class of urns (U) that are non-empty, with EGF
V (z) = ez−1. In words: “a surjection is a sequence of non-empty sets”. (Figure II.4).

Expression (9) does solve the counting problem for surjections. For small r , one
finds

R(2)(z) = e2z − 2ez + 1, R(3)(z) = e3z − 3e2z + 3ez − 1,

whence, by expanding,

R(2)
n = 2n − 2, R(3)

n = 3n − 3 · 2n + 3 .

The general formula follows similarly from expanding the r th power in (9) by the
binomial theorem, and then extracting coefficients:

(10) R(r)
n = n! [zn]

r∑
j=0

(
r

j

)
(−1) j e(r− j)z =

r∑
j=0

(
r

j

)
(−1) j (r − j)n .



“book” — 2008/10/3 — 16:05 — page 108 — #122

108 II. LABELLED STRUCTURES AND EGFS

6

84
5

7
93

12

41 532

92 7531 864

1

2

2

1

3

2

4

3

5

5

6

3

7

5

8

3

9

4

1 2 3

1

4

2

5

3

6

4

7

5

8 9

[    {2},          {1,  3},          {4,  6,  8},           {9},          {5, 7}    ]

Figure II.4. The decomposition of surjections as sequences-of-sets: a surjection φ

given by its graph (top), its table (second line), and its sequence of preimages (bottom
lines).

� II.4. A direct derivation of the surjection EGF. One can verify the result provided by the
symbolic method by returning to first principles. The preimage of value j by a surjection is a
non-empty set of some cardinality n j ≥ 1, so that

(11) R(r)n =
∑

(n1,n2,...,nr )

(
n

n1, n2, . . . , nr

)
,

the sum being over n j ≥ 1, n1 + n2 + · · · + nr = n. Introduce the numbers Vn := [[n ≥ 1]],
where [[P]] is Iverson’s bracket (p. 58). The formula (11) then assumes the simple form

(12) R(r)n ≡
∑

n1,n2,...,nr

(
n

n1, n2, . . . , nr

)
Vn1 Vn2 · · · Vnr ,

where the summation now extends to all tuples (n1, n2, . . . , nr ). The EGF of the Vn is V (z) =∑
Vnzn/n! = ez − 1. Thus the convolution relation (12) leads again to (9). �

Set partitions into r blocks. Let S(r)n denote the number of ways of partitioning
the set [1 . . n] into r disjoint and non-empty equivalence classes also known as blocks.
We set S(r) = ⋃

n S
(r)
n ; the corresponding objects are called set partitions (the latter

not to be confused with integer partitions examined in Section I. 3). The enumeration
problem for set partitions is closely related to that of surjections. Symbolically, a
partition is determined as a labelled set of classes (blocks), each of which is a non-
empty urn. Thus, one has

(13) S(r) = SETr (V), V = SET≥1(Z) �⇒ S(r)(z) = 1

r !

(
ez − 1

)r
.

The basic formula connecting the two counting sequences R(r)
n and S(r)n is

S(r)n = 1

r !
R(r)

n ,
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in accordance with (9) and (13). This can also be interpreted directly: an r–partition is
associated with a group of exactly r ! distinct r–surjections, two surjections belonging
to the same group iff one is obtained from the other by permuting the range values,
[1 . . r ].

The numbers S(r)n = n![zn]S(r)(z) are known as the Stirling numbers of the sec-
ond kind, or better, the Stirling partition numbers. They were already encountered in
connection with encodings by words (Chapter I, p. 62). Knuth, following Karamata,
advocated for the S(r)n the notation

{n
r

}
. From (10), an explicit form also exists:

(14) S(r)n ≡
{

n

r

}
= 1

r !

r∑
j=0

(
r

j

)
(−1) j (r − j)n .

The books by Graham, Knuth, and Patashnik [307] and Comtet [129] contain a thor-
ough discussion of these numbers; see also Appendix A.8: Stirling numbers, p. 735.

All surjections and set partitions. Define now the collection of all surjections
and all set partitions by

R =
⋃

r

R(r), S =
⋃

r

S(r).

Thus Rn is the class of all surjections of [1 . . n] onto any initial segment of the inte-
gers, and Sn is the class of all partitions of the set [1 . . n] into any number of blocks
(Figure II.5). Symbolically, one has

(15)
R = SEQ(SET≥1(Z)) �⇒ R(z) = 1

2 − ez

S = SET(SET≥1(Z)) �⇒ S(z) = eez−1.

The numbers Rn = n! [zn]R(z) are called surjection numbers (also, “preferential
arrangements”, EIS A000670). The numbers Sn are the Bell numbers (EIS A000110).
These numbers are easily determined by expanding the EGFs:

R(z) = 1 + z + 3
z2

2!
+ 13

z3

3!
+ 75

z4

4!
+ 541

z5

5!
+ 4683

z6

6!
+ 47293

z7

7!
+ · · ·

S(z) = 1 + z + 2
z2

2!
+ 5

z3

3!
+ 15

z4

4!
+ 52

z5

5!
+ 203

z6

6!
+ 877

z7

7!
+ · · · .

Explicit expressions as finite double sums result from summing Stirling numbers,

Rn =
∑
r≥0

r !

{
n

r

}
, and Sn =

∑
r≥0

{
n

r

}
,

where each Stirling number is itself a sum given by (14). Alternatively, single (though
infinite) sums arise from the expansions⎧⎪⎪⎪⎨⎪⎪⎪⎩

R(z) = 1

2

1

1 − 1
2 ez

=
∞∑
�=0

1

2�+1
e�z

and

⎧⎪⎪⎨⎪⎪⎩
S(z) = eez−1 = 1

e
eez

= 1

e

∞∑
�=0

1

�!
e�z,
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Figure II.5. A complete listing of all set partitions for sizes n = 1, 2, 3, 4. The
corresponding sequence 1, 1, 2, 5, 15, . . . is formed of Bell numbers, EIS A000110.

from which coefficient extraction yields

Rn = 1

2

∞∑
�=0

�n

2�
and Sn = 1

e

∞∑
�=0

�n

�!
.

The formula for Bell numbers was found by Dobinski in 1877.
The asymptotic analysis of the surjection numbers (Rn) will be performed in Ex-

ample IV.7 (p. 259), as one of the very first illustrations of complex asymptotic meth-
ods (the meromorphic case); that of Bell’s partition numbers is best done by means of
the saddle-point method (Example VIII.6, p. 560). The asymptotic forms found are

(16) Rn ∼ n!

2

1

(log 2)n+1
and Sn ∼ n!

eer−1

rn
√

2πr(r + 1)er
,

where r ≡ r(n) is the positive root of the equation rer = n + 1. One has r(n) ∼
log n − log log n, so that

log Sn = n (log n − log log n − 1 + o(1)) .

Elementary derivations (i.e., based solely on real analysis) of these asymptotic forms
are also possible, a fact discussed briefly in Appendix B.6: Laplace’s method, p. 755.

The line of reasoning adopted for enumerating surjections viewed as sequences-
of-sets and partitions viewed as sets-of-sets yields a general result that is applicable to
a wide variety of constrained objects.

Proposition II.2. The class R(A,B) of surjections, where the cardinalities of the
preimages lie in A ⊆ Z≥1 and the cardinality of the range belongs to B, has EGF

R(A,B)(z) = β(α(z)) where α(z) =
∑
a∈A

za

a!
, β(z) =

∑
b∈B

zb.
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The class S(A,B) of set partitions with block sizes in A ⊆ Z≥1 and with a number
of blocks that belongs to B has EGF

S(A,B)(z) = β(α(z)) where α(z) =
∑
a∈A

za

a!
, β(z) =

∑
b∈B

zb

b!
.

Proof. One has R(A,B) = SEQB(SET A(Z)) and S(A,B) = SETB(SET A(Z)), where,
in accordance with our general convention of p. 30, the notation K� specifies a con-
struction K with a number of components restricted to set �. �
Example II.6. Smallest and largest blocks in set partitions. Let eb(z) denote the truncated
exponential function,

eb(z) := 1 + z

1!
+ z2

2!
+ · · · + zb

b!
.

The EGFs S〈≤b〉(z) = exp(eb(z)− 1) and S〈>b〉(z) = exp(ez − eb(z)) correspond to partitions
with all blocks of size ≤ b and all blocks of size > b, respectively. . . . . . . . . . . . . . . . . . . . . . . �

� II.5. No singletons. The EGF of partitions without singleton parts is eez−1−z . The EGF of
“double surjections” (each preimage contains at least two elements) is (2 + z − ez)−1. �

Example II.7. Comtet’s square. An exercise in Comtet’s book [129, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic method. The question is to enumerate set
partitions such that a parity constraint is satisfied by the number of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as follows:

Set partitions: Any # of blocks Odd # of blocks Even # of blocks

any block sizes eez−1 sinh(ez − 1) cosh(ez − 1)

odd block sizes esinh z sinh(sinh z) cosh(sinh z)

even block sizes ecosh z−1 sinh(cosh z − 1) cosh(cosh z − 1)

The proof is a direct application of Proposition II.2, upon noting that ez , sinh z, cosh z are the
characteristic EGFs of Z≥0, 2Z≥0 + 1, and 2Z≥0 respectively. The sought EGFs are then
obtained by forming the compositions{

exp
sinh
cosh

}
◦
{ −1 + exp

sinh
−1 + cosh

}
,

in accordance with general principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

II. 3.2. Applications to words and random allocations. Numerous enumera-
tion problems present themselves when analysing statistics on letters in words. They
find applications in the study of random allocations [388] and the design of hashing
algorithms in computer science [378, 538]. Fix an alphabet

X = {a1, a2, . . . , ar }
of cardinality r , and let W be the class of all words over the alphabet X , the size of
a word being its length. A word w ∈ Wn of length n can be viewed as a function
from [1 . . n] to [1 . . r ], namely the function associating to each position the value of
the corresponding letter (canonically numbered from 1 to r ) in the word. For instance,
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let X = {a,b, c,d,p,q, r} and take the letters of X canonically numbered as a1 =
a, . . . , a7 = r; for the word w = “abracadabra”, the table giving the position-to-
letter mapping is ⎛⎜⎝ a b r a c a d a b r a

1 2 3 4 5 6 7 8 9 10 11
1 2 7 1 3 1 4 1 2 7 1

⎞⎟⎠,
which is itself determined by its sequence of preimages:

a=a1︷ ︸︸ ︷
{1, 4, 6, 8, 11},

b=a2︷ ︸︸ ︷
{2, 9},

c=a3︷︸︸︷
{5} ,

d=a4︷︸︸︷
{7} ,

p=a5︷︸︸︷
{ } ,

q=a6︷︸︸︷
{ } ,

r=a7︷ ︸︸ ︷
{3, 10} .

This decomposition is the same as the one used for surjections; only, it is no longer
imposed that all preimages should be non-empty.

The decomposition based on preimages then gives, with U the class of all urns

(17) W ∼= Ur ≡ SEQr (U) �⇒ W (z) = (ez)r = erz,

which yields back Wn = rn , as was to be expected. In summary: words over an r–ary
alphabet are equivalent to functions into a set of cardinality r and are described by an
r -fold labelled product.

For the situation where restrictions are imposed on the number of occurrences of
letters, the decomposition (17) generalizes as follows.

Proposition II.3. Let W(A) denote the family of words over an alphabet of cardinal-
ity r , such that the number of occurrences of each letter lies in a set A. Then

(18) W (A)(z) = α(z)r where α(z) =
∑
a∈A

za

a!
.

The proof is a one-liner: W(A) ∼= SEQr (SET A(Z)). Although this result is tech-
nically a shallow consequence of the symbolic method, it has several important appli-
cations in discrete probability, as we see next.

Example II.8. Restricted words. The EGF of words containing each letter at most b times, and
that of words containing each letter more than b times are

(19) W〈≤b〉(z) = eb(z)
r , W〈>b〉(z) = (

ez − eb(z)
)r
,

respectively. (Observe the analogy with Example II.6, p. 111.) Taking b = 1 in the first formula
gives the number of n-arrangements of r elements (i.e., of ordered combinations of n elements
among r possibilities),

(20) n! [zn](1 + z)r = n!

(
r

n

)
= r(r − 1) · · · (r − n + 1),

as anticipated; taking b = 0, but now in the second formula, gives back the number of r–
surjections. For general b, the generating functions of (19) contain valuable information on the
least frequent and most frequent letter in random words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Example II.9. Random allocations (balls-in-bins model). Throw at random n distinguishable
balls into m distinguishable bins. A particular realization is described by a word of length n
(balls are distinguishable, say, as numbers from 1 to n) over an alphabet of cardinality m (rep-
resenting the bins chosen). Let Min and Max represent the size of the least filled and most filled
bins, respectively. Then4,

(21)
P{Max ≤ b} = n! [zn]eb

( z

m

)m

P{Min > b} = n! [zn]
(

ez/m − eb

( z

m

))m
.

The justification of this formula relies on the easy identity

(22)
1

mn [zn] f (z) ≡ [zn] f
( z

m

)
,

and on the fact that a probability is determined as the ratio between the number of favorable
cases (given by (19)) and the total number of cases (mn). The formulae of (21) lend themselves
to evaluation using symbolic manipulations systems; for instance, with m = 100 and n = 200,
one finds, for P(Max = k):

k 2 4 5 6 7 8 9 12 15 20

P(Max = k) 10−55 1.4 · 10−3 0.17 0.46 0.26 0.07 0.01 9 · 10−5 2 · 10−7 4 · 10−10

The values k = 5, 6, 7, 8 concentrate about 99% of the probability mass.
An especially interesting case is when m and n are asymptotically proportional, that is,

n/m = α and α lies in a compact subinterval of (0,+∞). In that case, with probability tending
to 1 as n tends to infinity, one has

Min = 0, Max ∼ log n

log log n
.

In other words, there are, almost surely, empty urns (in fact many of them, see Example III.10,
p. 177) and the most filled urn grows logarithmically in size (Example VIII.14, p. 598). Such
probabilistic properties are best established by complex analytic methods, whose starting point
is exact generating function representations such as (19) and (21). They form the core of the
reference book [388] by Kolchin, Sevastyanov, and Chistyakov. The resulting estimates are in
turn invaluable in the analysis of hashing algorithms [301, 378, 538] to which the balls-in-bins
model has been recognized to apply with great accuracy [425]. . . . . . . . . . . . . . . . . . . . . . . . . . . �
� II.6. Number of different letters in words. The probability that a random word of length n
over an alphabet of cardinality r contains k different letters is (with

{n
k
}

a Stirling number)

p(r)n,k := 1

rn

(
r

k

){
n

k

}
k!

(Choose k letters among r , then split the n positions into k distinguished non-empty classes.)

The quantity p(r)n,k is also the probability that a random mapping from [1 . . n] to [1 . . r ] has an
image of cardinality k. �

� II.7. Arrangements. An arrangement of size n is an ordered combination of (some) elements
of [1 . . n]. Let A be the class of all arrangements. Grouping together into an urn all the elements
not present in the arrangement shows that a specification and its companion EGF are [129, p. 75]

A ∼= U � P, U = SET(Z), P = SEQ(Z) �⇒ A(z) = ez

1 − z
.

4We let P(E) represent the probability of an event E and E(X) the expectation of the random vari-
able X ; cf Appendix A.3: Combinatorial probability, p. 727 and Appendix C.2: Random variables, p. 771.
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The counting sequence An = ∑n
k=0

n!
k! starts as 1, 2, 5, 16, 65, 326, 1957 (EIS A000522). �

Birthday paradox and coupon collector problem. The next two examples show
applications of EGFs to two classical problems of probability theory, the birthday
paradox and the coupon collector problem. They constitute a neat illustration of the
fact that the symbolic method may be used to analyse discrete probabilistic models—
this theme is explored systematically in Chapter III, as regards exact results, and Chap-
ter IX, which is dedicated to asymptotic laws.

Assume that there is a very long line of persons ready to enter a very large room
one by one. Each person is let in and declares her birthday upon entering the room.
How many people must enter in order to find two that have the same birthday? The
birthday paradox is the counterintuitive fact that on average a birthday collision is
likely to take place as early as at time n

.= 24. Dually, the coupon collector problem
asks for the average number of persons that must enter in order to exhaust all the
possible days in the year as birthdates. In this case, the average is the rather large
number n′ .= 2364. (The term “coupon collection” refers to the situation where images
or coupons of various sorts are inserted in sales items and some premium is given to
those who succeed in gathering a complete collection.) The birthday problem and
the coupon collector problem are relative to a potentially infinite sequence of events;
however, the fact that the first birthday collision or the first complete collection occurs
at any fixed time n only involves finite events. The following diagram illustrates the
events of interest:

INJECTIVE SURJECTIVE

B (1st collision) C (complete collection)n = 0

n → +∞./////////////////////////////////

In other words, we seek the time at which injectivity ceases to hold (the first birthday
collision, B) and the time at which surjectivity begins to be satisfied (a complete col-
lection, C). In what follows, we consider a year with r days (readers from Earth may
take r = 365) and let X represent an alphabet with r letters (the days in the year).

Example II.10. Birthday paradox. Let B be the time of the first collision, which is a random
variable ranging between 2 and r + 1 (where the upper bound is derived from the pigeonhole
principle). A collision has not yet occurred at time n, if the sequence of birthdates β1, . . . , βn
has no repetition. In other words, the function β from [1 . . n] to X must be injective; equiva-
lently, β1, . . . , βn is an n-arrangement of r objects. Thus, we have the fundamental relation

(23)

P {B > n} = r(r − 1) · · · (r − n + 1)

rn

= n!

rn [zn](1 + z)r

= n! [zn]
(

1 + z

r

)r
,

where the second line repeats (20) and the third results from the series transformation (22).
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The expectation of the random variable B is elementarily

(24) E(B) =
∞∑

n=0

P {B > n} ,

this by virtue of a general formula valid for all discrete random variables (Appendix C.2: Ran-
dom variables, p. 771). From (23), line 1, this gives us a sum expressing the expectation:
namely,

(25) E(B) = 1 +
r∑

n=1

r(r − 1) · · · (r − n + 1)

rn .

For instance, with r = 365, one finds that the expectation is the rational number,

E(B) = 12681 · · · 06674

5151 · · · 0625
.= 24.61658,

where the denominator comprises as much as 864 digits.
An alternative form of the expectation is derived from the generating function involved

in (23), line 3. Let f (z) = ∑
n fnzn be an entire function with non-negative coefficients. Then

the formula

(26)
∞∑

n=0

fnn! =
∫ ∞

0
e−t f (t) dt,

a particular case of the Laplace transform, is valid provided either the sum or the integral on
the right converges. The proof is a direct consequence of the usual Eulerian representation of
factorials,

n! =
∫ ∞

0
e−t tn dt.

Applying this principle to (24) with the probabilities given by (23) [third line], one finds

(27) E(B) =
∫ ∞

0
e−t

(
1 + t

r

)r
dt.

Asymptotic analysis can take up from here. The Laplace method5 can be applied either
in its version for discrete sums to (25) or in its version for integrals to (27); see Appendix B.6:
Laplace’s method, p. 755. Either way provides the estimate

(28) E(B) =
√
πr

2
+ 2

3
+ O(r−1/2),

as r tends to infinity. In particular, the approximation provided by the first two terms of (28),
for r = 365, is 24.61119, which only represents a relative error of 2 · 10−4. See also a sample
realization in Figure II.6, corresponding to r = 20. The quantity E(B) is related to Ramanujan’s
Q-function (see Equation (50), p. 130) by E(B) = 1 + Q(r), and we shall examine a global
way to deal with an entire class of related sums in Example VI.13, p. 416.

The interest of such integral representations based on generating functions is that they
are robust: they adjust naturally to many kinds of combinatorial conditions. For instance, the
same calculations applied to (21) prove the following: the expected time necessary for the

5Knuth [377, Sec. 1.2.11.3] uses this calculation as a pilot example for (real) asymptotic analysis.
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0

5

10

15

20

20 40 60 80

(letter chosen)

(time of arrival)

Figure II.6. A sample realization of the “birthday paradox” and “coupon collection”
with an alphabet of r = 20 letters. The first collision occurs at time B = 6 and the
collection becomes complete at time C = 87.

first occurrence of the event “b persons have the same birthday” has expectation given by the
integral

(29) I (r, b) :=
∫ ∞

0
e−t eb−1

(
t

r

)r
dt.

(The basic birthday paradox corresponds to b = 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their paper [366] shows in addition that

I (r, b) ∼
r→∞

b√
b!�

(
1 + 1

b

)
r1−1/b,

once more a consequence of Laplace’s method. The asymptotic form evaluates to 82.87, for
r = 365 and b = 3, and the exact value of the expectation is 88.73891. Thus three-way
collisions also tend to occur much sooner than one might think, after about 89 persons on
average. Globally, such developments illustrate the versatility of the symbolic approach and its
applicability to many basic probabilistic problems (see also Subsection III. 6.1, p. 189). . . . �

� II.8. The probability distribution of time till a birthday collision. Elementary approximations
show that, for large r , and in the “central” regime n = t

√
r , one has

P(B > t
√

r) ∼ e−t2/2, P(B = t
√

r) ∼ 1√
r

te−t2/2.

The continuous probability distribution with density te−t2/2 is called a Rayleigh distribution.
Saddle-point methods (Chapter VIII) may be used to show that for the first occurrence of a

b-fold birthday collision: P(B > tr1−1/b) ∼ e−tb/b!. �

Example II.11. Coupon collector problem. This problem is dual to the birthday paradox. We
ask for the first time C when β1, . . . , βC contains all the elements of X : that is, all the possible
birthdates have been “collected”. In other words, the event {C ≤ n} means the equality between
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sets, {β1, . . . , βn} = X . Thus, the probabilities satisfy

(30)

P {C ≤ n} = R(r)n

rn = r !
{n

r
}

rn

= n!

rn [zn]
(
ez − 1

)r

= n![zn]
(

ez/r − 1
)r
,

by our earlier enumeration of surjections. The complementary probabilities are then

P {C > n} = 1 − P {C ≤ n} = n![zn]
(

ez −
(

ez/r − 1
)r)

.

An application of the Eulerian integral trick of (27) then provides a representation of the expec-
tation of the time needed for a full collection as

(31) E(C) =
∫ ∞

0

(
1 − (1 − e−t/r )r

)
dt.

A simple calculation (expand by the binomial theorem and integrate termwise) shows that

E(C) = r
r∑

j=1

(
r

j

)
(−1) j−1

j
,

which constitutes a first answer to the coupon collector problem in the form of an alternating
sum. Alternatively, in (31), perform the change of variables v = 1 − e−t/r , then expand and
integrate termwise; this process provides the more tractable form

(32) E(C) = r Hr ,

where Hr is the harmonic number:

(33) Hr = 1 + 1

2
+ 1

3
+ · · · + 1

r
.

Formula (32) is by the way easy to interpret directly6: one needs on average 1 = r/r trials to
get the first day, then r/(r − 1) to get a different day, etc.

Regarding (32), one has available the well-known formula (by comparing sums with inte-
grals or by Euler–Maclaurin summation),

Hr = log r + γ + 1

2r
+ O(r−2), γ

.= 0.57721 56649,

where γ is known as Euler’s constant. Thus, the expected time for a full collection satisfies

(34) E(C) = r log r + γ r + 1

2
+ O(r−1).

Here the “surprise” lies in the nonlinear growth of the expected time for a full collection. For a
year on Earth, r = 365, the exact expected value is

.= 2364.64602 whereas the approximation
provided by the first three terms of (34) yields 2364.64625, representing a relative error of only
one in ten million.

As usual, the symbolic treatment adapts to a variety of situations, for instance, to multiple
collections. One finds: the expected time till each item (birthday or coupon) is obtained b times
is

J (r, b) =
∫ ∞

0

(
1 −

(
1 − eb−1(t/r)e−t/r

)r)
dt.

6Such elementary derivations are very much problem specific: contrary to the symbolic method, they
do not usually generalize to more complex situations.
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This expression vastly generalizes the standard case (31), which corresponds to b = 1. From it,
one finds [454]

J (r, b) = r (log r + (b − 1) log log r + γ − log(b − 1)! + o(1)) ,

so that only a few more trials are needed in order to obtain additional collections. . . . . . . . . . �
� II.9. The little sister. The coupon collector has a little sister to whom he gives his duplicates.
Foata, Lass, and Han [266] show that the little sister misses on average Hr coupons when her
big brother first obtains a complete collection. �

� II.10. The probability distribution of time till a complete collection. The saddle-point method
(Chapter VIII) may be used to prove that, in the regime n = r log r + tr , we have

lim
t→∞P(C ≤ r log r + tr) = e−e−t

.

This continuous probability distribution is known as a double exponential distribution. For the
time C(b) till a collection of multiplicity b, one has

lim
t→∞ P(C(b) < r log r + (b − 1)r log log r + tr) = exp(−e−t/(b − 1)!),

a property known as the Erdős–Rényi law, which finds application in the study of random
graphs [195]. �

Words as both labelled and unlabelled objects. What distinguishes a labelled
structure from an unlabelled one? There is nothing intrinsic there, and everything is in
the eye of the beholder—or rather in the type of construction adopted when modelling
a specific problem. Take the class of words W over an alphabet of cardinality r . The
two generating functions (an OGF and an EGF respectively),

Ŵ (z) ≡
∑

n

Wnzn = 1

1 − r z
and W (z) ≡

∑
n

Wn
zn

n!
= erz,

leading in both cases to Wn = rn , correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, the other as a labelled power of
letter positions. A similar situation arises for r–partitions, for which we find as OGF
and EGF,

Ŝ(r)(z) = zr

(1 − z)(1 − 2z) · · · (1 − r z)
and S(r)(z) = (ez − 1)r

r !
,

by viewing these either as unlabelled structures (an encoding via words of a regular
language in Section I. 4.3, p. 62) or directly as labelled structures (this chapter, p. 108).

� II.11. Balls switching chambers: the Ehrenfest2 model. Consider a system of two cham-
bers A and B (also classically called “urns”). There are N distinguishable balls, and, initially,
chamber A contains them all. At any instant 1

2 ,
3
2 , . . ., one ball is allowed to change from one

chamber to the other. Let E [�]
n be the number of possible evolutions that lead to chamber A

containing � balls at instant n and E [�](z) the corresponding EGF. Then

E [�](z) =
(

N

�

)
(cosh z)�(sinh z)N−�, E [N ](z) = (cosh z)N ≡ 2−N (ez + e−z)N .

[Hint: the EGF E [N ] enumerates mappings where each preimage has an even cardinality.] In
particular the probability that urn A is again full at time 2n is

1

2N N 2n

N∑
k=0

(
N

k

)
(N − 2k)2n .
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This famous model was introduced by Paul and Tatiana Ehrenfest [188] in 1907, as a simplified
model of heat transfer. It helped resolve the apparent contradiction between irreversibility in
thermodynamics (the case N → ∞) and recurrence of systems undergoing ergodic transforma-
tions (the case N < ∞). See especially Mark Kac’s discussion [361]. The analysis can also
be carried out by combinatorial methods akin to those of weighted lattice paths: see Note V.25,
p. 336 and [304]. �

II. 4. Alignments, permutations, and related structures

In this section, we start by considering specifications built by piling up two con-
structions, sequences-of-cycles and sets-of-cycles respectively. They define a new
class of objects, alignments, while serving to specify permutations in a novel way.
(These specifications otherwise parallel surjections and set partitions.) In this context,
permutations are examined under their cycle decomposition, the corresponding enu-
meration results being the most important ones combinatorially (Subsection II. 4.1 and
Figure II.8, p. 123). In Subsection II. 4.2, we recapitulate the meaning of classes that
can be defined iteratively by a combination of any two nested labelled constructions.

II. 4.1. Alignments and permutations. The two specifications under consider-
ation now are

(35) O = SEQ(CYC(Z)), and P = SET(CYC(Z)),

specifying new objects called alignments (O) as well as an important decomposition
of permutations (P).

Alignments. An alignment is a well-labelled sequence of cycles. Let O be the
class of all alignments. Schematically, one can visualize an alignment as a collection
of directed cycles arranged in a linear order, somewhat like slices of a sausage fastened
on a skewer:

The symbolic method provides,

O = SEQ(CYC(Z)) �⇒ O(z) = 1

1 − log(1 − z)−1
,

and the expansion starts as

O(z) = 1 + z + 3
z2

2!
+ 14

z3

3!
+ 88

z4

4!
+ 694

z5

5!
+ · · · ,

but the coefficients (see EIS A007840: “ordered factorizations of permutations into
cycles”) appear to admit no simple form.
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A permutation may be viewed as a set of cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
11 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16

)
.

(Cycles here read clockwise and i is connected to σi by an edge in the graph.)

Figure II.7. The cycle decomposition of permutations.

Permutations and cycles. From elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. Let σ be a permutation. Start
with any element, say 1, and draw a directed edge from 1 to σ(1), then continue con-
necting to σ 2(1), σ 3(1), and so on; a cycle containing 1 is obtained after at most n
steps. If one repeats the construction, taking at each stage an element not yet con-
nected to earlier ones, the cycle decomposition of the permutation σ is obtained; see
Figure II.7. This argument shows that the class of sets-of-cycles (corresponding to P
in (35)) is isomorphic to the class of permutations as defined in Example II.2, p. 98:

(36) P ∼= SET(CYC(Z)) ∼= SEQ(Z).
This combinatorial isomorphism is reflected by the obvious series identity

P(z) = exp

(
log

1

1 − z

)
= 1

1 − z
.

The property that exp and log are inverse of one another is nothing but an analytic
reflex of the combinatorial fact that permutations uniquely decompose into cycles!

As regards combinatorial applications, what is especially fruitful is the variety of
special results derived from the decomposition of permutations into cycles. By a use
of restricted construction that entirely parallels Proposition II.2, p. 110, we obtain the
following statement.

Proposition II.4. The class P(A,B) of permutations with cycle lengths in A ⊆ Z>0
and with cycle number that belongs to B ⊆ Z≥0 has EGF

P(A,B)(z) = β(α(z)) where α(z) =
∑
a∈A

za

a
, β(z) =

∑
b∈B

zb

b!
.

� II.12. What about alignments? With similar notations, one has for alignments

O(A,B)(z) = β(α(z)) where α(z) =
∑
a∈A

za

a
, β(z) =

∑
b∈B

zb,

corresponding to O(A,B) = SEQB(CYC A(Z)). �
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Example II.12. Stirling cycle numbers. The class P(r) of permutations that decompose into r
cycles, satisfies

(37) P(r) = SETr (CYC(Z)) �⇒ P(r)(z) = 1

r !

(
log

1

1 − z

)r
.

The number of such permutations of size n is then

(38) P(r)
n = n!

r !
[zn]

(
log

1

1 − z

)r
.

These numbers are fundamental quantities of combinatorial analysis. They are known as the
Stirling numbers of the first kind, or better, according to a proposal of Knuth, the Stirling cycle
numbers. Together with the Stirling partition numbers, the properties of the Stirling cycle num-
bers are explored in the book by Graham, Knuth, and Patashnik [307] where they are denoted
by

[n
r
]
. See Appendix A.8: Stirling numbers, p. 735. (Note that the number of alignments

formed with r cycles is r !
[n
r
]
.) As we shall see shortly (p. 140) Stirling numbers also surface in

the enumeration of permutations by their number of records.
It is also of interest to determine what happens regarding cycles in a random permutation of

size n. Clearly, when the uniform distribution is placed over all elements of Pn , each particular
permutation has probability exactly 1/n!. Since the probability of an event is the quotient of
the number of favorable cases over the total number of cases, the quantity

pn,k := 1

n!

[
n

k

]
is the probability that a random element of Pn has k cycles. This probabilities can be effectively
determined for moderate values of n from (38) by means of a computer algebra system. Here
are for instance selected values for n = 100:

k 1 2 3 4 5 6 7 8 9 10
pn,k 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

For this value n = 100, we expect in a vast majority of cases the number of cycles to be in the
interval [1, 10]. (The residual probability is only about 0.005.) Under this probabilistic model,
the mean is found to be about 5.18. Thus: A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles.

Such procedures demonstrate a direct exploitation of symbolic methods. They do not
however tell us how the number of cycles could depend on n, as n increases unboundedly. Such
questions are to be investigated systematically in Chapters III and IX. Here, we shall content
ourselves with a brief sketch. First, form the bivariate generating function,

P(z, u) :=
∞∑

r=0

P(r)(z)ur ,

and observe that

P(z, u) =
∞∑

r=0

ur

r !

(
log

1

1 − z

)r
= exp

(
u log

1

1 − z

)
= (1 − z)−u .

Newton’s binomial theorem then provides

[zn](1 − z)−u = (−1)n
(−u

n

)
.
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In other words, a simple formula

(39)
n∑

k=0

[
n

k

]
uk = u(u + 1)(u + 2) · · · (u + n − 1)

encodes precisely all the Stirling cycle numbers corresponding to a fixed value of n. From here,
the expected number of cycles, μn := ∑

k kpn,k is easily found to be expressed in terms of
harmonic numbers (use logarithmic differentiation of (39)):

μn = Hn ≡ 1 + 1

2
+ · · · + 1

n
.

In particular, one has μ100 ≡ H100
.= 5.18738. In general: The mean number of cycles in a

random permutation of size n grows logarithmically with n, μn ∼ log n. . . . . . . . . . . . . . . . . . �

Example II.13. Involutions and permutations without long cycles. A permutation σ is an
involution if σ 2 = Id, with Id the identity permutation. Clearly, an involution can have only
cycles of sizes 1 and 2. The class I of all involutions thus satisfies

(40) I = SET(CYC1,2(Z)) �⇒ I (z) = exp

(
z + z2

2

)
.

The explicit form of the EGF lends itself to expansion,

In =
�n/2�∑
k=0

n!

(n − 2k)!2kk!
,

which solves the counting problem explicitly. A pairing is an involution without a fixed point.
In other words, only cycles of length 2 are allowed, so that

J = SET(CYC2(Z)) �⇒ J (z) = ez2/2, J2n = 1 · 3 · 5 · · · (2n − 1).

(The formula for Jn , hence that of In , can be checked by a direct reasoning.)
Generally, the EGF of permutations, all of whose cycles (in particular the largest one) have

length at most equal to r , satisfies

B(r)(z) = exp

⎛⎝ r∑
j=1

z j

j

⎞⎠ .

The numbers b(r)n = [zn]B(r)(z) satisfy the recurrence

(n + 1)b(r)n+1 = (n + 1)b(r)n − b(r)n−r ,

by which they can be computed quickly, while they can be analysed asymptotically by means of
the saddle-point method (Chapter VIII, p. 568). This gives access to the statistics of the longest
cycle in a permutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example II.14. Derangements and permutations without short cycles. Classically, a derange-
ment is defined as a permutation without fixed points, i.e., σi  = i for all i . Given an integer
r , an r–derangement is a permutation all of whose cycles (in particular the shortest one) have
length larger than r . Let D(r) be the class of all r–derangements. A specification is

(41) D(r) = SET(CYC>r (Z)),
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Specification EGF coefficient

Permutations: SEQ(Z) 1

1 − z
n! (p. 104)

r cycles SETr (CYC(Z)) 1

r !

(
log

1

1 − z

)r [
n

r

]
(p. 121)

involutions SET(CYC1 . . 2(Z)) ez+z2/2 ≈ nn/2 (pp. 122, 558)

all cycles ≤ r SET(CYC1 . . r (Z)) exp

(
z

1
+ · · · + zr

r

)
≈ n1−1/r (pp. 122, 568)

derangements SET(CYC>1(Z))
e−z

1 − z
∼ n!e−1 (pp. 122, 261)

all cycles > r SET(CYC>r (Z))
exp

(
− z

1 − · · · − zr

r

)
1 − z

∼ n!e−Hr (pp. 123, 261)

Figure II.8. A summary of permutation enumerations.

the corresponding EGF then being

(42) D(r)(z) = exp

⎛⎝∑
j>r

z j

j

⎞⎠ =
exp(−∑r

j=1
z j

j )

1 − z
.

For instance, when r = 1, a direct expansion yields

D(1)
n

n!
= 1 − 1

1!
+ 1

2!
− · · · + (−1)n

n!
,

a truncation of the series expansion of exp(−1) that converges rapidly to e−1. Phrased differ-
ently, this becomes a famous combinatorial problem with a pleasantly quaint nineteenth-century
formulation [129]: “A number n of people go to the opera, leave their hats on hooks in the cloak-
room and grab them at random when leaving; the probability that nobody gets back his own hat
is asymptotic to 1/e, which is nearly 37%.” The usual proof uses inclusion–exclusion; see Sec-
tion III. 7, p. 198 for both the classical and symbolic arguments. (It is a sign of changing times
that Motwani and Raghavan [451, p. 11] describe the problem as one of sailors that return to
their ship in a state of inebriation and choose random cabins to sleep in.)

For the generalized derangement problem, we have, for any fixed r (with Hr a harmonic
number, p. 117),

(43)
D(r)

n

n!
∼ e−Hr ,

which is proved easily by complex asymptotic methods (Chapter IV, p. 261). . . . . . . . . . . . . . �

Similar to several other structures that we have been considering previously, per-
mutation allow for transparent connections between structural constraints and the
forms of generating functions. The major counting results encountered in this sec-
tion are summarized in Figure II.8.
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� II.13. Permutations such that σ f = Id. Such permutations are “roots of unity” in the
symmetric group. Their EGF is

exp

⎛⎝∑
d | f

zd

d

⎞⎠ ,

where the sum extends to all divisors d of f . �

� II.14. Parity constraints in permutations. The EGFs of permutations having only even-size
cycles or odd-size cycles (O(z)) are, respectively,

E(z) = exp

(
1

2
log

1

1 − z2

)
= 1√

1 − z2
, O(z) = exp

(
1

2
log

1 + z

1 − z

)
=

√
1 + z

1 − z
.

One finds E2n = (1 · 3 · 5 · · · (2n − 1))2 and O2n = E2n , O2n+1 = (2n + 1)E2n .
The EGFs of permutations having an even number of cycles (E∗(z)) and an odd number

of cycles (O∗(z)) are, respectively,

E∗(z) = cosh

(
log

1

1 − z

)
= 1

2

1

1 − z
+ 1 − z

2
, O∗(z) = sinh

(
log

1

1 − z

)
= 1

2

1

1 − z
+ z − 1

2
,

so that parity of the number of cycles is evenly distributed among permutations of size n as soon
as n ≥ 2. The generating functions obtained in this way are analogous to the ones appearing in
the discussion of “Comtet’s square”, p. 111. �

� II.15. A hundred prisoners I. This puzzle originates with a paper of Gál and Miltersen [275,
612]. A hundred prisoners, each uniquely identified by a number between 1 and 100, have
been sentenced to death. The director of the prison gives them a last chance. He has a cabinet
with 100 drawers (numbered 1 to 100). In each, he’ll place at random a card with a prisoner’s
number (all numbers different). Prisoners will be allowed to enter the room one after the other
and open, then close again, 50 drawers of their own choosing, but will not in any way be allowed
to communicate with one another afterwards. The goal of each prisoner is to locate the drawer
that contains his own number. If all prisoners succeed, then they will all be spared; if at least
one fails, they will all be executed.

There are two mathematicians among the prisoners. The first one, a pessimist, declares
that their overall chances of success are only of the order of 1/2100 .= 8 · 10−31. The second
one, a combinatorialist, claims he has a strategy for the prisoners, which has a greater than 30%
chance of success. Who is right? [Note III.10, p. 176 provides a solution, but our gentle reader
is advised to reflect on the problem for a few moments, before she jumps there.] �

II. 4.2. Second-level structures. Consider the three basic constructors of labelled
sequences (SEQ), sets (SET), and cycles (CYC). We can play the formal game of ex-
amining what the various combinations produce as combinatorial objects. Restricting
attention to superpositions of two constructors (an external one applied to an internal
one) gives nine possibilities summarized by the table of Figure II.9.

The classes of surjections, alignments, set partitions, and permutations appear
naturally as SEQ ◦ SET, SEQ ◦ CYC, SET ◦ SET, and SET ◦ CYC (top right corner).
The others represent essentially non-classical objects. The case of the class L =
SEQ(SEQ≥1(Z)) describes objects that are (ordered) sequences of linear graphs; this
can be interpreted as permutations with separators inserted, e.g, 53|264|1, or alterna-
tively as integer compositions with a labelling superimposed, so that Ln = n! 2n−1.
The class F = SET(SEQ≥1(Z)) corresponds to unordered collections of permuta-
tions; in other words, “fragments” are obtained by breaking a permutation into pieces
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ext.\int. SEQ≥1 SET≥1 CYC

SEQ

Labelled compositions (L)

SEQ ◦ SEQ

1 − z

1 − 2z

Surjections (R)

SEQ ◦ SET

1

2 − ez

Alignments (O)

SEQ ◦ CYC

1

1 − log(1 − z)−1

SET

Fragmented permutations (F )

SET ◦ SEQ

ez/(1−z)

Set partitions (S)

SET ◦ SET

eez−1

Permutations (P)

SET ◦ CYC

1

1 − z

CYC

Supernecklaces (S I )

CYC ◦ SEQ

log
1 − z

1 − 2z

Supernecklaces (S I I )

CYC ◦ SET

log(2 − ez)−1

Supernecklaces (S I I I )

CYC ◦ CYC

log
1

1 − log(1 − z)−1

Figure II.9. The nine second-level structures.

(pieces must be non-empty for definiteness). The interesting EGF is

F(z) = ez/(1−z) = 1 + z + 3
z2

2!
+ 13

z3

3!
+ 73

z4

4!
+ · · · ,

(EIS A000262: “sets of lists”). The corresponding asymptotic analysis serves to illus-
trate an important aspect of the saddle-point method in Chapter VIII (p. 562). What we
termed “supernecklaces” in the last row represents cyclic arrangements of composite
objects existing in three brands.

All sorts of refinements, of which Figures II.8 and II.9 may give an idea, are
clearly possible. We leave to the reader’s imagination the task of determining which
among the level 3 structures may be of combinatorial interest. . .
� II.16. A meta-exercise: Counting specifications of level n. The algebra of constructions sat-
isfies the combinatorial isomorphism SET(CYC(X )) ∼= SEQ(X ) for all X . How many different
terms involving n constructions can be built from three symbols CYC, SET, SEQ satisfying a
semi-group law (“◦”) together with the relation SET ◦ CYC = SEQ? This determines the num-
ber of specifications of level n. [Hint: the OGF is rational as normal forms correspond to words
with an excluded pattern.] �

II. 5. Labelled trees, mappings, and graphs

In this section, we consider labelled trees as well as other important structures that
are naturally associated with them. As in the unlabelled case considered in Section I. 6,
p. 83, the corresponding combinatorial classes are inherently recursive, since a tree is
obtained by appending a root to a collection (set or sequence) of subtrees. From here,
it is possible to build the “functional graphs” associated to mappings from a finite set
to itself—these decompose as sets of connected components that are cycles of trees.
Variations of these construction finally open up the way to the enumeration of graphs
having a fixed excess of the number of edges over the number of vertices.
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&
1

2

3

4

5

67

( 3, 2, 5, 1, 7, 4, 6)

Figure II.10. A labelled plane tree is determined by an unlabelled tree (the “shape”)
and a permutation of the labels 1, . . . , n.

II. 5.1. Trees. The trees to be studied here are labelled, meaning that nodes bear
distinct integer labels. Unless otherwise specified, they are rooted, meaning as usual
that one node is distinguished as the root. Labelled trees, like their unlabelled coun-
terparts, exist in two varieties: (i) plane trees where an embedding in the plane is
understood (or, equivalently, subtrees dangling from a node are ordered, say, from
left to right); (i i) non-plane trees where no such embedding is imposed (such trees
are then nothing but connected undirected acyclic graphs with a distinguished root).
Trees may be further restricted by the additional constraint that the nodes’ outdegrees
should belong to a fixed set � ⊆ Z≥0 where � ' 0.

Plane labelled trees. We first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constrained by �. This family is

A = Z � SEQ�(A),
where Z represents the atomic class consisting of a single labelled node: Z = {1}.
The sequence construction appearing here reflects the planar embedding of trees, as
subtrees stemming from a common root are ordered between themselves. Accord-
ingly, the EGF A(z) satisfies

A(z) = zφ(A(z)) where φ(u) =
∑
ω∈�

uω.

This is exactly the same equation as the one satisfied by the ordinary GF of �–
restricted unlabelled plane trees (see Proposition I.5, p. 66). Thus, 1

n! An is the number
of unlabelled trees. In other words: in the plane rooted case, the number of labelled
trees equals n! times the corresponding number of unlabelled trees. As illustrated by
Figure II.10, this is easily understood combinatorially: each labelled tree can be de-
fined by its “shape” that is an unlabelled tree and by the sequence of node labels where
nodes are traversed in some fixed order (preorder, say). In a way similar to Proposi-
tion I.5, p. 66, one has, by Lagrange inversion (Appendix A.6: Lagrange Inversion,
p. 732):

An = n![zn]A(z) = (n − 1)![un−1]φ(u)n .
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1

2

3

1

2 3 2

1 1

2

2

1

1

3

23

2

2

1

2

3

1

3

1

3

1

2

3

2 3

1 1

Figure II.11. There are T1 = 1, T2 = 2, T3 = 9, and in general Tn = nn−1 Cayley
trees of size n.

This simple analytic–combinatorial relation enables us to transpose all of the enumer-
ation results of Subsection I. 5.1, p. 65, to plane labelled trees, upon multiplying the
evaluations by n!, of course. In particular, the total number of “general” plane labelled
trees (with no degree restriction imposed, i.e., � = Z≥0) is

n! × 1

n

(
2n − 2

n − 1

)
= (2n − 2)!

(n − 1)!
= 2n−1 (1 · 3 · · · (2n − 3)) .

The corresponding sequence starts as 1, 2, 12, 120, 1680 and is EIS A001813.

Non-plane labelled trees. We next turn to non-plane labelled trees (Figure II.11)
to which the rest of this section will be devoted. The class T of all such trees is
definable by a symbolic equation, which provides an implicit equation satisfied by the
EGF:

(44) T = Z � SET(T ) �⇒ T (z) = zeT (z).

There the set construction translates the fact that subtrees stemming from the root are
not ordered between themselves. From the specification (44), the EGF T (z) is defined
implicitly by the “functional equation”

(45) T (z) = zeT (z).

The first few values are easily found, for instance by the method of indeterminate
coefficients:

T (z) = z + 2
z2

2!
+ 9

z3

3!
+ 64

z4

4!
+ 625

z5

5!
+ · · · .

As suggested by the first few coefficients(9 = 32, 64 = 43, 625 = 54), the general
formula is

(46) Tn = nn−1

which is established (as in the case of plane unlabelled trees) by Lagrange inversion:

(47) Tn = n! [zn]T (z) = n!

(
1

n
[un−1](eu)n

)
= nn−1.

The enumeration result Tn = nn−1 is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821–1895) who had keen interest in com-
binatorial mathematics and published altogether over 900 papers and notes. Con-
sequently, formula (46) given by Cayley in 1889 is often referred to as “Cayley’s
formula” and unrestricted non-plane labelled trees are often called “Cayley trees”.
See [67, p. 51] for a historical discussion. The function T (z) is also known as the
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(Cayley) “tree function”; it is a close relative of the W -function [131] defined implic-
itly by W eW = z, which was introduced by the Swiss mathematician Johann Lambert
(1728–1777) otherwise famous for first proving the irrationality of the number π .

A similar process gives the number of (non-plane rooted) trees where all out-
degrees of nodes are restricted to lie in a set �. This corresponds to the specification

T (�) = Z � SET�(T (�)) �⇒ T (�)(z) = zφ(T (�)(z)), φ(u) :=
∑
ω∈�

uω

ω!
.

What the last formula involves is the “exponential characteristic” of the degree se-
quence (as opposed to the ordinary characteristic, in the planar case). It is once more
amenable to Lagrange inversion. In summary:

Proposition II.5. The number of rooted non-plane trees, where all nodes have outde-
gree in �, is

T (�)
n = (n − 1)![un−1](φ(u))n where φ(u) =

∑
ω∈�

uω

ω!
.

In particular, when all node degrees are allowed, i.e., when � ≡ Z≥0, the number of
trees is Tn = nn−1 and its EGF is the Cayley tree function satisfying T (z) = zeT (z).

As in the unlabelled case (p. 66), we refer to a class of labelled trees defined by
degree restrictions as a simple variety of trees: its EGF satisfies an equation of the
form y = zφ(y).
� II.17. Prüfer’s bijective proofs of Cayley’s formula. The simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is due to Prüfer (in 1918). It establishes
as follows a bijective correspondence between unrooted Cayley trees whose number is nn−2 for
size n and sequences (a1, . . . , an−2) with 1 ≤ a j ≤ n for each j . Given an unrooted tree τ ,
remove the endnode (and its incident edge) with the smallest label; let a1 denote the label of
the node that was joined to the removed node. Continue with the pruned tree τ ′ to get a2 in a
similar way. Repeat the construction of the sequence until the tree obtained only consists of a
single edge. For instance:

1

3

7

4 8
2

5

6

−→ (4, 8, 4, 8, 8, 4).

It can be checked that the correspondence is bijective; see [67, p. 53] or [445, p. 5]. �

� II.18. Forests. The number of unordered k–forests (i.e., k–sets of trees) is

F(k)
n = n![zn]

T (z)k

k!
= (n − 1)!

(k − 1)!
[un−k ](eu)n =

(
n − 1

k − 1

)
nn−k ,

as follows from Bürmann’s form of Lagrange inversion, relative to powers (p. 66). �

� II.19. Labelled hierarchies. The class L of labelled hierarchies is formed of trees whose
internal nodes are unlabelled and are constrained to have outdegree larger than 1, while their
leaves have labels attached to them. As for other labelled structures, size is the number of labels
(internal nodes do not contribute). Hierarchies satisfy the specification (compare with p. 72)

L = Z + SET≥2(L), �⇒ L = z + eL − 1 − L .
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26

1
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3

4
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8
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12
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22
23

24

25

Figure II.12. A functional graph of size n = 26 associated to the mapping ϕ such
that ϕ(1) = 16, ϕ(2) = ϕ(3) = 11, ϕ(4) = 23, and so on.

This happens to be solvable in terms of the Cayley function: L(z) = T ( 1
2 ez/2−1/2) + z

2 −
1
2 . The first few values are 0, 1, 4, 26, 236, 2752 (EIS A000311): these numbers count phylo-
genetic trees, used to describe the evolution of a genetically-related group of organisms, and
they correspond to Schröder’s “fourth problem” [129, p. 224]. The asymptotic analysis is done
in Example VII.12, p. 472.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z + SET2(M) �⇒ M(z) = 1 −√
1 − 2z and Mn = 1 · 3 · · · (2n − 3),

where the counting numbers are now, surprisingly perhaps, the odd factorials. �

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1 . . n] to itself. A mapping f ∈ [1 . . n] 	→ [1 . . n] can be repre-
sented by a directed graph over the set of vertices [1 . . n] with an edge connecting x
to f (x), for all x ∈ [1 . . n]. The graphs so obtained are called functional graphs and
they have the characteristic property that the outdegree of each vertex is exactly equal
to 1.

Mappings and associated graphs. Given a mapping (or function) f , upon start-
ing from any point x0, the succession of (directed) edges in the graph traverses the
vertices corresponding to iterated values of the mapping,

x0, f (x0), f ( f (x0)), . . . .

Since the domain is finite, each such sequence must eventually loop back on itself.
When the operation is repeated, starting each time from an element not previously hit,
the vertices group themselves into (weakly connected) components. This leads to a
valuable characterization of functional graphs (Figure II.12): a functional graph is a
set of connected functional graphs; a connected functional graph is a collection of
rooted trees arranged in a cycle. (This decomposition is seen to extend the decom-
position of permutations into cycles, p. 120.)
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Thus, with T being as before the class of all Cayley trees, and with K the class of
all connected functional graphs, we have the specification:

(48)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F = SET(K)
K = CYC(T )
T = Z � SET(T )

�⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(z) = eK (z)

K (z) = log
1

1 − T (z)

T (z) = zeT (z).

What is especially interesting here is a specification binding three types of related
structures. From (48), the EGF F(z) is found to satisfy F = (1 − T )−1. It can be
checked from this, by Lagrange inversion once again (p. 733), that we have

(49) Fn = nn,

as was to be expected (!) from the origin of the problem. More interestingly, Lagrange
inversion also gives the number of connected functional graphs (expand log(1− T )−1

and recover coefficients by Bürmann’s form, p. 66):

(50) Kn = nn−1 Q(n) where Q(n) := 1 + n − 1

n
+ (n − 1)(n − 2)

n2
+ · · · .

The quantity Q(n) that appears in (50) is a famous one that surfaces in many prob-
lems of discrete mathematics (including the birthday paradox, Equation (27), p. 115).
Knuth has proposed naming it “Ramanujan’s Q-function” as it already appears in the
first letter of Ramanujan to Hardy in 1913. The asymptotic analysis is elementary
and involves developing a continuous approximation of the general term and approx-
imating the resulting Riemann sum by an integral: this is an instance of the Laplace
method for sums briefly explained in Appendix B.6: Laplace’s method, p. 755 (see
also [377, Sec. 1.2.11.3] and [538, Sec. 4.7]). In fact, very precise estimates come
out naturally from an analysis of the singularities of the EGF K (z), as we shall see in
Chapters VI (p. 416) and VII (p. 449). The net result is

Kn ∼ nn

√
π

2n
,

so that a fraction about 1/
√

n of all the graphs consist of a single component.

Constrained mappings. As is customary with the symbolic method, basic con-
structions open the way to a large number of related counting results (Figure II.13).
First, by an adaptation of (48), the mappings without fixed points, (∀x : f (x)  = x) and
those without 1, 2–cycles, (additionally, ∀x : f ( f (x))  = x), have EGFs, respectively,

e−T (z)

1 − T (z)
,

e−T (z)−T 2(z)/2

1 − T (z)
.

The first term is consistent with what a direct count yields, namely (n − 1)n , which is
asymptotic to e−1nn , so that the fraction of mappings without fixed point is asymptotic
to e−1. The second one lends itself easily to complex asymptotic methods that give

n![zn]
e−T−T 2/2

1 − T
∼ e−3/2nn,
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EGF coefficient

Mappings:
1

1 − T
nn (p. 130)

connected log
1

1 − T
∼ nn

√
π

2n
(pp. 130, 449)

no fixed-point
e−T

1 − T
∼ e−1nn (p. 130)

idempotent ezez ≈ nn

(log n)n
(pp. 131, 571)

partial
eT

1 − T
∼ e nn (p. 132)

Figure II.13. A summary of various counting results relative to mappings, with T ≡
T (z) the Cayley tree function. (Bijections, surjections, involutions, and injections are
covered by previous constructions.)

and the proportion is asymptotic to e−3/2. These two particular estimates are of
the same form as that found for permutations (the generalized derangements, Equa-
tion (43)). Such facts are not quite obvious by elementary probabilistic arguments, but
they are neatly explained by the singular theory of combinatorial schemas developed
in Part B of this book.

Next, idempotent mappings, i.e., ones satisfying f ( f (x)) = f (x) for all x , cor-
respond to I ∼= SET(Z � SET(Z)), so that

I (z) = ezez
and In =

n∑
k=0

(
n

k

)
kn−k .

(The specification translates the fact that idempotent mappings can have only cycles
of length 1 on which are grafted sets of direct antecedents.) The latter sequence
is EIS A000248, which starts as 1,1,3,10,41,196,1057. An asymptotic estimate can
be derived either from the Laplace method or, better, from the saddle-point method
expounded in Chapter VIII (p. 571).

Several analyses of this type are of relevance to cryptography and the study of
random number generators. For instance, the fact that a random mapping over [1 . . n]
tends to reach a cycle in O(

√
n) steps (Subsection VII. 3.3, p. 462) led Pollard to

design a surprising Monte Carlo integer factorization algorithm; see [378, p. 371]
and [538, Sec 8.8], as well as our discussion in Example VII.11, p. 465. This al-
gorithm, once suitably optimized, first led to the factorization of the Fermat number
F8 = 228 + 1 obtained by Brent in 1980.
� II.20. Binary mappings. The class BF of binary mappings, where each point has either 0
or 2 preimages, is specified by

BF = SET(K), K = CYC(P), P = Z � B, B = Z � SET0,2(B)
(planted trees P and binary trees B are needed), so that

B F(z) = 1√
1 − 2z2

, B F2n = ((2n)!)2

2n(n!)2
.
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The class BF is an approximate model of the behaviour of (modular) quadratic functions under
iteration. See [18, 247] for a general enumerative theory of random mappings including degree-
restricted ones. �

� II.21. Partial mappings. A partial mapping may be undefined at some points, and at those
we consider it takes a special value, ⊥. The iterated preimages of ⊥ form a forest, while
the remaining values organize themselves into a standard mapping. The class PF of partial
mappings is thus specified by PF = SET(T ) � F , so that

P F(z) = eT (z)

1 − T (z)
and P Fn = (n + 1)n .

This construction lends itself to all sorts of variations. For instance, the class P F I of injective
partial maps is described as sets of chains of linear and circular graphs, P F I = SET(CYC(Z)+
SEQ≥1(Z)), so that

P F I (z) = 1

1 − z
ez/(1−z), P F In =

n∑
i=0

i!

(
n

i

)2
.

(This is a symbolic rewriting of part of the paper [78]; see Example VIII.13, p. 596, for asymp-
totics.) �

II. 5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structures [76, 355]. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are very nearly trees. (Such graphs
for instance play an essential rôle in the analysis of early stages of the evolution of a
random graph, when edges are successively added, as shown in [241, 354].)

Unrooted trees and acyclic graphs. The simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, but contrary to the case of Cayley
trees, no root is specified. Let U be the class of all unrooted trees. Since a rooted tree
(rooted trees are, as we know, counted by Tn = nn−1) is an unrooted tree combined
with a choice of a distinguished node (there are n such possible choices for trees of
size n), one has

Tn = nUn implying Un = nn−2.

At generating function level, this combinatorial equality translates into

U (z) =
∫ z

0
T (w)

dw

w
,

which integrates to give (take T as the independent variable)

U (z) = T (z)− 1

2
T (z)2.

Since U (z) is the EGF of acyclic connected graphs, the quantity

A(z) = eU (z) = eT (z)−T (z)2/2

is the EGF of all acyclic graphs. (Equivalently, these are unordered forests of unrooted
trees; the sequence is EIS A001858: 1, 1, 2, 7, 38, 291, . . . ) Singularity analysis meth-
ods (Note VI.14, p. 406) imply the estimate An ∼ e1/2 nn−2. Surprisingly, perhaps,
there are barely more acyclic graphs than unrooted trees—such phenomena are easily
explained by singularity analysis.
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Unicyclic graphs. The excess of a graph is defined as the difference between the
number of edges and the number of vertices. For a connected graph, this quantity must
be at least −1, this minimal value being precisely attained by unrooted trees. The class
Wk is the class of connected graphs of excess equal to k; in particular U = W−1. The
successive classes W−1,W0,W1, . . ., may be viewed as describing connected graphs
of increasing complexity.

The class W0 comprises all connected graphs with the number of edges equal to
the number of vertices. Equivalently, a graph in W0 is a connected graph with exactly
one cycle (a sort of “eye”), and for that reason, elements of W0 are sometimes re-
ferred to as “unicyclic components” or “unicycles”. In a way, such a graph looks very
much like an undirected version of a connected functional graph. In precise terms, a
graph of W0 consists of a cycle of length at least 3 (by definition, graphs have neither
loops nor multiple edges) that is undirected (the orientation present in the usual cycle
construction is killed by identifying cycles isomorphic up to reflection) and on which
are grafted trees (these are implicitly rooted by the point at which they are attached
to the cycle). With UCYC representing the (new) undirected cycle construction, one
thus has

W0 ∼= UCYC≥3(T ).
We claim that this construction is reflected by the EGF equation

(51) W0(z) = 1

2
log

1

1 − T (z)
− 1

2
T (z)− 1

4
T (z)2.

Indeed one has the isomorphism

W0 +W0 ∼= CYC≥3(T ),
since we may regard the two disjoint copies on the left as instantiating two possible
orientations of the undirected cycle. The result of (51) then follows from the usual
translation of the cycle construction—it is originally due to the Hungarian probabilist
Rényi in 1959. Asymptotically, one finds (using methods of Chapter VI, p. 406):

(52) n![zn]W0 ∼ 1

4

√
2πnn−1/2.

(The sequence starts as 0, 0, 1, 15, 222, 3660, 68295 and is EIS A057500.)
Finally, the number of graphs made only of trees and unicyclic components has

EGF

eW−1(z)+W0(z) = eT/2−3T 2/4

√
1 − T

,

which asymptotically yields n![zn]eW−1+W0 ∼ �(3/4)(2e)−1/4π−1/2nn−1/4. Such
graphs stand just next to acyclic graphs in order of structural complexity. They are the
undirected counterparts of functional graphs encountered in the previous subsection.
� II.22. 2–Regular graphs. This is based on Comtet’s account [129, Sec. 7.3]. A 2-regular
graph is an undirected graph in which each vertex has degree exactly 2. Connected 2–regular
graphs are thus undirected cycles of length n ≥ 3, so that their class R satisfies

(53) R = SET(UCYC≥3(Z)) �⇒ R(z) = e−z/2−z2/4
√

1 − z
.
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EGF coefficient

Graphs: 2n(n−1)/2

acyclic, connected U ≡ W−1 = T − T 2/2 nn−2

acyclic (forest) A = eT−T 2/2 ∼ e1/2nn−2

unicycle W0 = 1

2
log

1

1 − T
− T

2
− T 2

4
∼ 1

4

√
2πnn−1/2

set of trees & unicycles B = eT/2−3T 2/4
√

1 − T
∼ �(3/4)

(2e)−1/4
√
π

nn−1/4

connected, excess k Wk = Pk(T )

(1 − T )3k
∼ Pk(1)

√
2π

23k/2�(3k/2)
nn+(3k−1)/2

Figure II.14. A summary of major enumeration results relative to labelled graphs.
The asymptotic estimates result from singularity analysis (Note VI.14, p. 406).

Given n straight lines in general position in the plane, a cloud is defined to be a set of n inter-
section points, no three being collinear. Clouds and 2–regular graphs are equinumerous. [Hint:
Use duality.] The asymptotic analysis will serve as a prime example of the singularity analysis
process (Examples VI.1, p. 379 and VI.2, p. 395).

The general enumeration of r–regular graphs becomes somewhat more difficult as soon
as r > 2. Algebraic aspects are discussed in [289, 303] while Bender and Canfield [39] have
determined the asymptotic formula (for rn even)

(54) R(r)n ∼
√

2e(r
2−1)/4 rr/2

er/2r !
nrn/2,

for the number of r–regular graphs of size n. (See also Example VIII.9, p. 583, for regular
multigraphs.) �

Graphs of fixed excess. The previous discussion suggests considering more gen-
erally the enumeration of connected graphs according to excess. E. M. Wright made
important contributions in this area [620, 621, 622] that are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, Łuczak, and Pittel [354].
Wright’s result are summarized by the following proposition.

Proposition II.6. The EGF Wk(z) of connected graphs with excess (of edges over
vertices) equal to k is, for k ≥ 1, of the form

(55) Wk(z) = Pk(T )

(1 − T )3k
, T ≡ T (z),

where Pk is a polynomial of degree 3k + 2. For any fixed k, as n → ∞, one has

(56) Wk,n = n![zn]Wk(z) = Pk(1)
√

2π

23k/2� (3k/2)
nn+(3k−1)/2

(
1 + O(n−1/2)

)
.

The combinatorial part of the proof (see Note II.23 below) is an interesting ex-
ercise in graph surgery and symbolic methods. The analytic part of the statement
follows straightforwardly from singularity analysis. The polynomials P(T ) and the
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constants Pk(1) are determined by an explicit nonlinear recurrence; one finds for in-
stance:

W1 = 1

24

T 4(6 − T )

(1 − T )3
, W2 = 1

48

T 4(2 + 28T − 23T 2 + 9T 3 − T 4)

(1 − T )6
.

� II.23. Wright’s surgery. The full proof of Proposition II.6 by symbolic methods requires
the notion of pointing in conjunction with multivariate generating function techniques of Chap-
ter III. It is convenient to definewk(z, y) := yk Wk(zy), which is a bivariate generating function
with y marking the number of edges. Pick up an edge in a connected graph of excess k + 1,
then remove it. This results either in a connected graph of excess k with two pointed vertices
(and no edge in between) or in two connected components of respective excess h and k − h,
each with a pointed vertex. Graphically (with connected components in grey):

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

= +

This translates into the differential recurrence on the wk (∂x := ∂
∂x ),

2∂ywk+1 =
(

z2∂2
z wk − 2y∂ywk

)
+

k+1∑
h=−1

(z∂zwh) ·
(
z∂zwk−h

)
,

and similarly for Wk(z) = wk(z, 1). From here, it can be verified by induction that each Wk
is a rational function of T ≡ W−1. (See Wright’s original papers [620, 621, 622] or [354] for
details; constants related to the Pk(1) occur in Subsection VII. 10.1, p. 532.) �

As explained in the giant paper [354], such results combined with complex ana-
lytic techniques provide, with great detail, information about a random graph �(n,m)
with n nodes and m edges. In the sparse case where m is of the order of n, one finds the
following properties to hold “with high probability” (w.h.p.)7; that is, with probability
tending to 1 as n → ∞ .

• For m = μn, with μ < 1
2 , the random graph �(m, n) has w.h.p. only tree

and unicycle components; the largest component is w.h.p. of size O(log n).
• For m = 1

2 n + O(n2/3), w.h.p. there appear one or several semi-giant
components that have size O(n2/3).

• For m = μn, with μ > 1
2 , there is w.h.p. a unique giant component of size

proportional to n.

In each case, refined estimates follow from a detailed analysis of corresponding gen-
erating functions, which is a main theme of [241] and especially [354]. Raw forms
of these results were first obtained by Erdős and Rényi who launched the subject in a
famous series of papers dating from 1959–60; see the books [76, 355] for a probabilis-
tic context and the paper [40] for the finest counting estimates available. In contrast,
the enumeration of all connected graphs (irrespective of the number of edges, that is,
without excess being taken into account) is a relatively easy problem treated in the

7Synonymous expressions are “asymptotically almost surely” (a.a.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itself to confusion with properties of continuous
measures.
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next section. Many other classical aspects of the enumerative theory of graphs are
covered in the book Graphical Enumeration by Harary and Palmer [319].
� II.24. Graphs are not specifiable. The class of all graphs does not admit a specification that
starts from single atoms and involves only sums, products, sets and cycles. Indeed, the growth
of Gn is such that the EGF G(z) has radius of convergence 0, whereas EGFs of constructible
classes must have a non-zero radius of convergence. (Section IV. 4, p. 249, provides a detailed
proof of this fact for iterative structures; for recursively specified classes, this is a consequence
of the analysis of inverse functions, p. 402, and systems, p. 489, with suitable adaptations based
on the technique of majorant series. p. 250.) �

II. 6. Additional constructions

As in the unlabelled case, pointing and substitution are available in the world of
labelled structures (Subsection II. 6.1), and implicit definitions enlarge the scope of
the symbolic method (Subsection II. 6.2). The inversion process needed to enumer-
ate implicit structures is even simpler, since in the labelled universe sets and cycles
have more concise translations as operators over EGF. Finally, and this departs sig-
nificantly from Chapter I, the fact that integer labels are naturally ordered makes it
possible to take into account certain order properties of combinatorial structures (Sub-
section II. 6.3).

II. 6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinguishing one atom among all the
ones that compose an object of size n. The definition of composition for labelled struc-
tures is however a bit more subtle as it requires singling out “leaders” in components.

Pointing. The pointing of a class B is defined by

A = �B iff An = [1 . . n] × Bn .

In other words, in order to generate an element of A, select one of the n labels and
point at it. Clearly

An = n · Bn �⇒ A(z) = z
d

dz
B(z).

Substitution (composition). Composition or substitution can be introduced so
that it corresponds a priori to composition of generating functions. It is formally
defined as

B ◦ C =
∞∑

k=0

Bk × SETk(C),

so that its EGF is ∞∑
k=0

Bk
(C(z))k

k!
= B(C(z)).

A combinatorial way of realizing this definition and forming an arbitrary object of
B ◦ C, is as follows. First select an element of β ∈ B called the “base” and let k = |β|
be its size; then pick up a k–set of elements of C; the elements of the k–set are naturally
ordered by the value of their “leader” (the leader of an object being by convention the
value of its smallest label); the element with leader of rank r is then substituted to the
node labelled by value r of β. Gathering the above, we obtain:
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Theorem II.3. The combinatorial constructions of pointing and substitution are ad-
missible

A = �B �⇒ A(z) = z∂z B(z), ∂z ≡ d

dz
A = B ◦ C �⇒ A(z) = B(C(z)).

For instance, the EGF of (relabelled) pairings of elements drawn from C is

eC(z)2/2,

since the EGF of involutions without fixed points is ez2/2.
� II.25. Standard constructions based on substitutions. The sequence class of A may be de-
fined by composition as P ◦A where P is the set of all permutations. The set class of A may be
defined as U ◦A where U is the class of all urns. Similarly, cycles are obtained by substitution
into circular graphs. Thus,

SEQ(A) ∼= P ◦A, SET(A) ∼= U ◦A, CYC(A) ∼= C ◦A.
In this way, permutation, urns and circle graphs appear as archetypal classes in a development
of combinatorial analysis based on composition. (Joyal’s “theory of species” [359] and the
book by Bergeron, Labelle, and Leroux [50] show that a far-reaching theory of combinatorial
enumeration can be based on the concept of substitution.) �

� II.26. Distinct component sizes. The EGFs of permutations with cycles of distinct lengths
and of set partitions with parts of distinct sizes are

∞∏
n=1

(
1 + zn

n

)
,

∞∏
n=1

(
1 + zn

n!

)
.

The probability that a permutation of Pn has distinct cycle sizes tends to e−γ ; see [309,
Sec. 4.1.6] for a Tauberian argument and [495] for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven-author paper [368]. �

II. 6.2. Implicit structures. Let X be a labelled class implicitly characterized
by either of the combinatorial equations

A = B + X , A = B � X .

Then, solving the corresponding EGF equations leads to

X (z) = A(z)− B(z), X (z) = A(z)

B(z)
,

respectively. For the composite labelled constructions SEQ, SET,CYC, the algebra is
equally easy.

Theorem II.4 (Implicit specifications). The generating functions associated with the
implicit equations in X

A = SEQ(X ), A = SET(X ), A = CYC(X ),

are, respectively,

X (z) = 1 − 1

A(z)
, X (z) = log A(z), X (z) = 1 − e−A(z).
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Example II.15. Connected graphs. In the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formula relating a class G of graphs and the
subclass K ⊂ G of its connected graphs:

G = SET(K) �⇒ G(z) = eK (z).

This basic formula is known in graph theory [319] as the exponential formula.
Consider the class G of all (undirected) labelled graphs, the size of a graph being the

number of its nodes. Since a graph is determined by the choice of its set of edges, there are
(n

2
)

potential edges each of which may be taken in or out, so that Gn = 2(
n
2). Let K ⊂ G be the

subclass of all connected graphs. The exponential formula determines K (z) implicitly:

(57)

K (z) = log

(
1 +

∑
n≥1

2(
n
2)

zn

n!

)
= z + z2

2!
+ 4

z3

3!
+ 38

z4

4!
+ 728

z5

5!
+ · · · ,

where the sequence is EIS A001187. The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal series (Appendix A.5: Formal power
series, p. 730). Expanding by means of log(1 + u) = u − u2/2 + · · · , yields a complicated
convolution expression for Kn :

Kn = 2(
n
2) − 1

2

∑(
n

n1, n2

)
2(

n1
2 )+(

n2
2 ) + 1

3

∑(
n

n1, n2, n3

)
2(

n1
2 )+(

n2
2 )+(

n3
2 ) − · · · .

(The kth term is a sum over n1 + · · · + nk = n, with 0 < n j < n.) Given the very fast increase
of Gn with n, for instance

2(
n+1

2 ) = 2n 2(
n
2),

a detailed analysis of the various terms of the expression of Kn shows predominance of the first
sum, and, in that sum itself, the extreme terms corresponding to n1 = n − 1 or n2 = n − 1
predominate, so that

(58) Kn = 2(
n
2)

(
1 − 2n2−n + o(2−n)

)
.

Thus: almost all labelled graphs of size n are connected. In addition, the error term decreases
very quickly: for instance, for n = 18, an exact computation based on the generating function
formula reveals that a proportion only 0.0001373291074 of all the graphs are not connected—
this is extremely close to the value 0.0001373291016 predicted by the main terms in the asymp-
totic formula (58). Notice that good use could be made here of a purely divergent generating
function for asymptotic enumeration purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� II.27. Bipartite graphs. A plane bipartite graph is a pair (G, ω) where G is a labelled graph,
ω = (ωW , ωE ) is a bipartition of the nodes (into West and East categories), and the edges are
such that they only connect nodes from ωW to nodes of ωE . A direct count shows that the EGF
of plane bipartite graphs is

�(z) =
∑

n
γn

zn

n!
with γn =

∑
k

(
n

k

)
2k(n−k).

The EGF of plane bipartite graphs that are connected is log�(z).
A bipartite graph is a labelled graph whose nodes can be partitioned into two groups so

that edges only connect nodes of different groups. The EGF of bipartite graphs is

exp

(
1

2
log�(z)

)
=

√
�(z).
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[Hint. The EGF of a connected bipartite graph is 1
2 log�(z), since a factor of 1

2 kills the East–
West orientation present in a connected plane bipartite graph. See Wilf’s book [608, p. 78] for
details.] �

� II.28. Do two permutations generate the symmetric group? To two permutations σ, τ of the
same size, associate a graph �σ,τ whose set vertices is V = [1 . . n], if n = |σ | = |τ |, and set of
edges is formed of all the pairs (x, σ (x)), (x, τ (x)), for x ∈ V . The probability that a random
�σ,τ is connected is

πn = 1

n!
[zn] log

⎛⎝∑
n≥0

n!zn

⎞⎠ .

This represents the probability that two permutations generate a transitive group (that is for all
x, y ∈ [0 . . n], there exists a composition of σ, σ−1, τ, τ−1 that maps x to y). One has

(59) πn ∼ 1 − 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
− · · · ,

Surprisingly, the coefficients 1, 1, 4, 23, . . . (EIS A084357) in the asymptotic formula (59) enu-
merate a “third-level” structure (Subsection II. 4.2, p. 124 and Note VIII.15, p. 571), namely:
SET(SET≥1(SEQ≥1(Z))). In addition, one has n!2πn = (n − 1)!In , where In+1 is the number
of indecomposable permutations (Example I.19, p. 89).

Let π�n be the probability that two random permutations generate the whole symmetric
group. Then, by a result of Babai based on the classification of groups, the quantity πn − π�n is
exponentially small, so that (59) also applies to π�n ; see Dixon [167]. �

II. 6.3. Order constraints. A construction well-suited to dealing with many of
the order properties of combinatorial structures is the modified labelled product:

A = (B� � C).
This denotes the subset of the product B�C formed with elements such that the smallest
label is constrained to lie in the B component. (To make this definition consistent, it
must be assumed that B0 = 0.) We call this binary operation on structures the boxed
product.

Theorem II.5. The boxed product is admissible:

(60) A = (B� � C) �⇒ A(z) =
∫ z

0
(∂t B(t)) · C(t) dt, ∂t ≡ d

dt
.

Proof. The definition of boxed products implies the coefficient relation

An =
n∑

k=1

(
n − 1

k − 1

)
BkCn−k .

The binomial coefficient that appears in the standard convolution, Equation (2), p. 100,
is to be modified since only n−1 labels need to be distributed between the two compo-
nents: k − 1 go to the B component (that is already constrained to contain the label 1)
and n − k to the C component. From the equivalent form

An = 1

n

n∑
k=0

(
n

k

)
(k Bk)Cn−k,

the result follows by taking EGFs, via A(z) = (∂z B(z)) · C(z). �
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0.5

1

1.5

2

2.5

0 20 40 60 80 100

Figure II.15. A numerical sequence of size 100 with records marked by circles:
there are 7 records that occur at times 1, 3, 5, 11, 60, 86, 88.

A useful special case is the min-rooting operation,

A = (
Z� � C

)
,

for which a variant definition goes as follows: take in all possible ways elements
γ ∈ C, prepend an atom with a label, for instance 0, smaller than the labels of γ , and
relabel in the canonical way over [1 . . (n+1)] by shifting all label values by 1. Clearly
An+1 = Cn , which yields

A(z) =
∫ z

0
C(t) dt,

a result which is also consistent with the general formula (60) of boxed products.
For some applications, it is convenient to impose constraints on the maximal label

rather than the minimum. The max-boxed product written

A = (B� � C),
is then defined by the fact the maximum is constrained to lie in the B–component of
the labelled product. Naturally, translation by an integral in (60) remains valid for this
trivially modified boxed product.
� II.29. Combinatorics of integration. In the perspective of this book, integration by parts has
an immediate interpretation. Indeed, the equality∫ z

0
A′(t) · B(t) dt +

∫ z

0
A(t) · B′(t) dt = A(z) · B(z)

reads: “The smallest label in an ordered pair appears either on the left or on the right.” �

Example II.16. Records in permutations. Given a sequence of numbers x = (x1, . . . , xn),
assumed all distinct, a record is defined to be an element x j such that xk < x j for all k < j . (A
record is an element “better” than its predecessors!) Figure II.15 displays a numerical sequence
of length n = 100 that has 7 records. Confronted by such data, a statistician will typically
want to determine whether the data obey purely random fluctuations or if there could be some
indications of a “trend” or of a “bias” [139, Ch. 10]. (Think of the data as reflecting share prices
or athletic records, say.) In particular, if the x j are independently drawn from a continuous
distribution, then the number of records obeys the same laws as in a random permutation of
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[1 . . n]. This statistical preamble then invites the question: How many permutations of n have k
records?

First, we start with a special brand of permutations, the ones that have their maximum at
the beginning. Such permutations are defined as (“�” indicates the boxed product based on the
maximum label)

Q = (Z� � P),

where P is the class of all permutations. Observe that this gives the EGF

Q(z) =
∫ z

0

(
d

dt
t

)
· 1

1 − t
dt = log

1

1 − z
,

implying the obvious result Qn = (n − 1)! for all n ≥ 1. These are exactly the permutations
with one record. Next, consider the class

P(k) = SETk(Q).

The elements of P(k) are unordered sets of cardinality k with elements of type Q. Define
the max–leader (“el lider máximo”) of any component of P(k) as the value of its maximal
element. Then, if we place the components in sequence, ordered by increasing values of their
leaders, then read off the whole sequence, we obtain a permutation with exactly k records. The
correspondence8 is clearly revertible. Here is an illustration, with leaders underlined:{

(7, 2, 6, 1), (4, 3), (9, 8, 5)
} ∼= [

(4, 3), (7, 2, 6, 1), (9, 8, 5)
)
]

∼= 4, 3, 7, 2, 6, 1, 9, 8, 5.

Thus, the number of permutations with k records is determined by

P(k)(z) = 1

k!

(
log

1

1 − z

)k
, P(k)

n =
[

n

k

]
,

where we recognize Stirling cycle numbers from Example II.12, p. 121. In other words:

The number of permutations of size n having k records is counted by the
Stirling “cycle” number

[n
k
]
.

Returning to our statistical problem, the treatment of Example II.12 p. 121 (to be revisited
in Chapter III, p. 189) shows that the expected number of records in a random permutation of
size n equals Hn , the harmonic number. One has H100

.= 5.18, so that for 100 data items, a little
more than 5 records are expected on average. The probability of observing 7 records or more
is still about 23%, an altogether not especially rare event. In contrast, observing twice as many
records as we did, namely 14, would be a fairly strong indication of a bias—on random data,
the event has probability very close to 10−4. Altogether, the present discussion is consistent
with the hypothesis for the data of Figure II.15 to have been generated independently at random
(and indeed they were). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

8This correspondence can also be viewed as a transformation on permutations that maps the number
of records to the number of cycles—it is known as Foata’s fundamental correspondence [413, Sec. 10.2].
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It is possible to base a fair part of the theory of labelled constructions on sums and
products in conjunction with the boxed product. In effect, consider the three relations

F = SEQ(G) �⇒ f (z) = 1

1 − g(z)
, f = 1 + g f

F = SET(G) �⇒ f (z) = eg(z), f = 1 +
∫

g′ f

F = CYC(G) �⇒ f (z) = log
1

1 − g(z)
, f =

∫
g′ 1

1 − g
.

The last column is easily checked, by standard calculus, to provide an alternative form
of the standard operator corresponding to sequences, sets, and cycles. Each case can
in fact be deduced directly from Theorem II.5 and the labelled product rule as follows.

(i) Sequences: they obey the recursive definition

F = SEQ(G) �⇒ F ∼= {ε)+ (G � F).
(i i) Sets: we have

F = SET(G) �⇒ F ∼= {ε} + (G� � F),
which means that, in a set, one can always single out the component with
the largest label, the rest of the components forming a set. In other words,
when this construction is repeated, the elements of a set can be canonically
arranged according to increasing values of their largest labels, the “leaders”.
(We recognize here a generalization of the construction used for records in
permutations.)

(i i i) Cycles: The element of a cycle that contains the largest label can be taken
canonically as the cycle “starter”, which is then followed by an arbitrary
sequence of elements upon traversing the cycle in cyclic order. Thus

F = CYC(G) �⇒ F ∼= (G� � SEQ(G)).
Greene [308] has developed a complete framework of labelled grammars based

on standard and boxed labelled products. In its basic form, its expressive power is
essentially equivalent to ours, because of the above relations. More complicated order
constraints, dealing simultaneously with a collection of larger and smaller elements,
can be furthermore taken into account within this framework.
� II.30. Higher order constraints, after Greene. Let the symbols �, �, � represent smallest,
second smallest, and largest labels, respectively. One has the correspondences (with ∂z = d

dz )

A =
(
B� � C�

)
∂2

z A(z) = (∂z B(z)) · (∂zC(z))

A =
(
B�� � C

)
∂2

z A(z) =
(
∂2

z B(z)
)
· C(z)

A =
(
B� � C� �D�

)
∂3

z A(z) = (∂z B(z)) · (∂zC(z)) · (∂z D(z)) ,

and so on. These can be transformed into (iterated) integral representations. (See [308] for
more.) �

The next three examples demonstrate the utility of min/max-rooting used in con-
junction with recursion. Examples II.17 and II.18 introduce two important classes of
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Figure II.16. A permutation of size 7 and its increasing binary tree lifting.

trees that are tightly linked to permutations. Example II.19 provides a simple symbolic
solution to a famous parking problem, on which many analyses can be built.

Example II.17. Increasing binary trees and alternating permutations. To each permutation,
one can associate bijectively a binary tree of a special type called an increasing binary tree
and sometimes a heap-ordered tree or a tournament tree. This is a plane rooted binary tree in
which internal nodes bear labels in the usual way, but with the additional constraint that node
labels increase along any branch stemming from the root. Such trees are closely related to many
classical data structures of computer science, such as heaps and binomial queues.

The correspondence (Figure II.16) is as follows: Given a permutation written as a word,
σ = σ1σ2 . . . σn , factor it into the form σ = σL · min(σ ) · σR, with min(σ ) the smallest label
value in the permutation, and σL , σR the factors left and right of min(σ ). Then the binary tree
β(σ) is defined recursively in the format 〈root, left, right〉 by

β(σ) = 〈min(σ ), β(σL ), β(σR)〉, β(ε) = ε.

The empty tree (consisting of a unique external node of size 0) goes with the empty permutation
ε. Conversely, reading the labels of the tree in symmetric (infix) order gives back the original
permutation. (The correspondence is described for instance in Stanley’s book [552, p. 23–25]
who says that “it has been primarily developed by the French”, pointing at [267].)

Thus, the family I of binary increasing trees satisfies the recursive definition

(61) I = {ε} + (
Z� � I � I

)
,

which implies the nonlinear integral equation for the EGF

I (z) = 1 +
∫ z

0
I (t)2 dt.

This equation reduces to I ′(z) = I (z)2 and, under the initial condition I (0) = 1, it admits the
solution I (z) = (1 − z)−1. Thus In = n!, which is consistent with the fact that there are as
many increasing binary trees as there are permutations.

The construction of increasing trees is instrumental in deriving EGFs relative to various
local order patterns in permutations. We illustrate its use here by counting the number of
up-and-down (or zig-zag) permutations, also known as alternating permutations. The result,
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already mentioned in our Invitation chapter (p. 2) was first derived by Désiré André in 1881 by
means of a direct recurrence argument.

A permutation σ = σ1σ2 · · · σn is an alternating permutation if

(62) σ1 > σ2 < σ3 > σ4 < · · · ,
so that pairs of consecutive elements form a succession of ups and downs; for instance,

6

2
3

4

1

7

5

6 2 3 1 7 4 5

Consider first the case of an alternating permutation of odd size. It can be checked that the
corresponding increasing trees have no one-way branching nodes, so that they consist solely of
binary nodes and leaves. Thus, the corresponding specification is

J = Z + (
Z� � J � J

)
,

so that

J (z) = z +
∫ z

0
J (t)2 dt and

d

dz
J (z) = 1 + J (z)2.

The equation admits separation of variables, which implies, since J (0) = 0, that arctan(J (z)) =
z, hence:

J (z) = tan(z) = z + 2
z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ · · · .

The coefficients J2n+1 are known as the tangent numbers or the Euler numbers of odd index
(EIS A000182).

Alternating permutations of even size defined by the constraint (62) and denoted by K can
be determined from

K = {ε} + (
Z� � J �K

)
,

since now all internal nodes of the tree representation are binary, except for the right-most one
that only branches on the left. Thus, K ′(z) = tan(z)K (z), and the EGF is

K (z) = 1

cos(z)
= 1 + 1

z2

2!
+ 5

z4

4!
+ 61

z6

6!
+ 1385

z8

8!
+ · · · ,

where the coefficients K2n are the secant numbers also known as Euler numbers of even index
(EIS A000364).

Use will be made later in this book (Chapter III, p. 202) of this important tree represen-
tation of permutations as it opens access to parameters such as the number of descents, runs,
and (once more!) records in permutations. Analyses of increasing trees also inform us of cru-
cial performance issues regarding binary search trees, quicksort, and heap-like priority queue
structures [429, 538, 598, 600]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� II.31. Combinatorics of trigonometrics. Interpret tan z
1−z , tan tan z, tan(ez − 1) as EGFs of

combinatorial classes. �
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Figure II.17. An increasing Cayley tree (left) and its associated regressive mapping (right).

Example II.18. Increasing Cayley trees and regressive mappings. An increasing Cayley
tree is a Cayley tree (i.e., it is labelled, non-plane, and rooted) whose labels along any branch
stemming from the root form an increasing sequence. In particular, the minimum must occur
at the root, and no plane embedding is implied. Let L be the class of such trees. The recursive
specification is now

L = (
Z� � SET(L)

)
.

The generating function thus satisfies the functional relations

L(z) =
∫ z

0
eL(t) dt, L ′(z) = eL(z),

with L(0) = 0. Integration of L ′e−L = 1 shows that e−L = 1 − z, hence

L(z) = log
1

1 − z
and Ln = (n − 1)!.

Thus the number of increasing Cayley trees is (n−1)!, which is also the number of permutations
of size n − 1. These trees have been studied by Meir and Moon [435] under the name of
“recursive trees”, a terminology that we do not, however, retain here.

The simplicity of the formula Ln = (n − 1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determined by its child–parent relationship
(Figure II.17). In other words, to each increasing Cayley tree τ , we associate a partial map
φ = φτ such that φ(i) = j iff the label of the parent of i is j . Since the root of tree is an
orphan, the value of φ(1) is undefined, φ(1) =⊥; since the tree is increasing, one has φ(i) < i
for all i ≥ 2. A function satisfying these last two conditions is called a regressive mapping. The
correspondence between trees and regressive mappings is then easily seen to be bijective.

Thus regressive mappings on the domain [1 . . n] and increasing Cayley trees are equi-
numerous, so that we may as well use L to denote the class of regressive mappings. Now, a
regressive mapping of size n is evidently determined by a single choice for φ(2) (since φ(2) =
1), two possible choices for φ(3) (either of 1, 2), and so on. Hence the formula

Ln = 1 × 2 × 3 × · · · × (n − 1)

receives a natural interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� II.32. Regressive mappings and permutations. Regressive mappings can be related directly
to permutations. The construction that associates a regressive mapping to a permutation is
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called the “inversion table” construction; see [378, 538]. Given a permutation σ = σ1, . . . , σn ,
associate to it a function ψ = ψσ from [1 . . n] to [0 . . n − 1] by the rule

ψ( j) = card
{
k < j

∣∣ σk > σ j
}
.

The function ψ is a trivial variant of a regressive mapping. �

� II.33. Rotations and increasing trees. An increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right according to their label values. The
rotation correspondence (p. 73) then gives rise to a binary increasing tree. Hence, increasing
Cayley trees and increasing binary trees are also directly related. Summarizing this note and
the previous one, we have a quadruple combinatorial connection,

Increasing Cayley trees ∼= Regressive mappings ∼= Permutations ∼= Increasing binary trees,

which opens the way to yet more permutation enumerations. �

Example II.19. A parking problem. Here is Knuth’s introduction to the problem, dating
back from 1973 (see [378, p. 545]), which nowadays might be regarded by some as politically
incorrect:

“A certain one-way street has m parking spaces in a row numbered 1 to m. A man and his
dozing wife drive by, and suddenly, she wakes up and orders him to park immediately. He
dutifully parks at the first available space [. . . ].”

Consider n = m − 1 cars and condition by the fact that everybody eventually finds a parking
space and the last space remains empty. There are mn = (n + 1)n possible sequences of
“wishes”, among which only a certain number Fn satisfy the condition—this number is to be
determined. (An important motivation for this problem is the analysis of hashing algorithms
examined in Note III.11, p. 178, under the “linear probing” strategy.)

A sequence satisfying the condition called an almost-full allocation, its size n being the
number of cars involved. Let F represent the class of almost-full allocations. We claim the
decomposition:

(63) F =
[
(�F + F) �Z� � F

]
.

Indeed, consider the car that arrived last, before it will eventually land in some position k + 1
from the left. Then, there are two islands, which are themselves almost-full allocations (of
respective sizes k and n − k − 1). This last car’s intended parking wish must have been either
one of the first k occupied cells on the left (the factor �F in (63)) or the last empty cell of the
first island (the term F in the left factor); the right island is not affected (the factor F on the
right). Finally, the last car is inserted into the street (the factor Z�). Pictorially, we have a sort
of binary tree decomposition of almost-full allocations:

Analytically, the translation of (63) into EGF is

(64) F(z) =
∫ z

0
(wF ′(w)+ F(w))F(w) dw,

which, through differentiation gives

(65) F ′(z) = (zF(z))′ · F(z).
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Simple manipulations do the rest: we have F ′/F = (zF)′, which by integration gives log F =
(zF) and F = ezF . Thus F(z) satisfies a functional equation strangely similar to that of the
Cayley tree function T (z); indeed, it is not hard to see that one has

(66) F(z) = 1

z
T (z) and Fn = (n + 1)n−1,

which solves the original counting problem. The derivation above is based on articles by Fla-
jolet, Poblete, Viola, and Knuth [249, 380], who show that probabilistic properties of parking
allocations can be precisely analysed (for instance, total displacement, examined in Note VII.54,
p. 534, is found to be governed by an Airy distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

II. 7. Perspective

Together with the previous chapter and Figure I.18, this chapter and Figure II.18
provide the basis for the symbolic method that is at the core of analytic combinatorics.
The translations of the basic constructions for labelled classes to EGFs could hardly
be simpler, but, as we have seen, they are sufficiently powerful to embrace numerous
classical results in combinatorics, ranging from the birthday and coupon collector
problems to tree and graph enumeration.

The examples that we have considered for second-level structures, trees, map-
pings, and graphs lead to EGFs that are simple to express and natural to generalize.
(Often, the simple form is misleading—direct derivations of many of these EGFs that
do not appeal to the symbolic method can be rather intricate.) Indeed, the symbolic
method provides a framework that allows us to understand the nature of many of these
combinatorial classes. From here, numerous seemingly scattered counting problems
can be organized into broad structural categories and solved in an almost mechanical
manner.

Again, the symbolic method is only half of the story (the “combinatorics” in an-
alytic combinatorics), leading to EGFs for the counting sequences of numerous inter-
esting combinatorial classes. While some of these EGFs lead immediately to explicit
counting results, others require classical techniques in complex analysis and asymp-
totic analysis that are covered in Part B (the “analytic” part of analytic combinatorics)
to deliver asymptotic estimates. Together with these techniques, the basic construc-
tions, translations, and applications that we have discussed in this chapter reinforce
the overall message that the symbolic method is a systematic approach that is success-
ful for addressing classical and new problems in combinatorics, generalizations, and
applications.

We have been focusing on enumeration problems—counting the number of ob-
jects of a given size in a combinatorial class. In the next chapter, we shall consider
how to extend the symbolic method to help analyse other properties of combinatorial
classes.

Bibliographic notes. The labelled set construction and the exponential formula were recog-
nized early by researchers working in the area of graphical enumerations [319]. Foata [265]
proposed a detailed formalization in 1974 of labelled constructions, especially sequences and
sets, under the names of partitional complex; a brief account is also given by Stanley in his
survey [550]. This is parallel to the concept of “prefab” due to Bender and Goldman [42]. The
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1. The main constructions of union, and product, sequence, set, and cycle for labelled structures
together with their translation into exponential generating functions.

Construction EGF

Union A = B + C A(z) = B(z)+ C(z)

Product A = B � C A(z) = B(z) · C(z)

Sequence A = SEQ(B) A(z) = 1

1 − B(z)

Set A = SET(B) A(z) = exp(B(z))

Cycle A = CYC(B) A(z) = log
1

1 − B(z)

2. Sets, multisets, and cycles of fixed cardinality.

Construction EGF

Sequence A = SEQk(B) A(z) = B(z)k

Set A = SETk(B) A(z) = 1

k!
B(z)k

Cycle A = CYCk(B) A(z) = 1

k
B(z)k

3. The additional constructions of pointing and substitution.

Construction EGF

Pointing A = �B A(z) = z d
dz B(z)

Substitution A = B ◦ C A(z) = B(C(z))

4. The “boxed” product.

A = (B� � C) �⇒ A(z) =
∫ z

0

(
d

dt
B(t)

)
· C(t) dt.

Figure II.18. A “dictionary” of labelled constructions together with their translation
into exponential generating functions (EGFs). The first constructions are counterparts
of the unlabelled constructions of the previous chapter (the multiset construction is
not meaningful here). Translation for composite constructions of bounded cardinality
appears to be simple. Finally, the boxed product is specific to labelled structures.
(Compare with the unlabelled counterpart, Figure I.18, p. 18.)

books by Comtet [129], Wilf [608], Stanley [552], or Goulden and Jackson [303] have many
examples of the use of labelled constructions in combinatorial analysis.

Greene [308] has introduced in his 1983 dissertation a general framework of “labelled
grammars” largely based on the boxed product with implications for the random generation of
combinatorial structures. Joyal’s theory of species dating from 1981 (see [359] for the original
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article and the book by Bergeron, Labelle, and Leroux [50] for a rich exposition) is based on
category theory; it presents the advantage of uniting in a common framework the unlabelled and
the labelled worlds.

Flajolet, Salvy, and Zimmermann have developed a specification language closely related
to the system expounded here. They show in [255] how to compile automatically specifica-
tions into generating functions; this is complemented by a calculus that produces fast random
generation algorithms [264].

I can see looming ahead one of those terrible exercises in probability where six men have
white hats and six men have black hats and you have to work it out by mathematics how likely

it is that the hats will get mixed up and in what proportion. If you start thinking about things
like that, you would go round the bend. Let me assure you of that!

—AGATHA CHRISTIE

(The Mirror Crack’d. Toronto, Bantam Books, 1962.)
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Generating functions find averages, etc.

— HERBERT WILF [608]
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Many scientific endeavours demand precise quantitative information on probabilis-
tic properties of parameters of combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of interest to determine the typi-
cal disorder of data obeying a given model of randomness, and to do so in the mean,
or even in distribution, either exactly or asymptotically. Similar situations arise in
a broad variety of fields, including probability theory and statistics, computer sci-
ence, information theory, statistical physics, and computational biology. The exact
problem is then a refined counting problem with two parameters, namely, size and
an additional characteristic: this is the subject addressed in this chapter and treated
by a natural extension of the generating function framework. The asymptotic prob-
lem can be viewed as one of characterizing in the limit a family of probability laws
indexed by the values of the possible sizes: this is a topic to be discussed in Chap-
ter IX. As demonstrated here, the symbolic methods initially developed for counting
combinatorial objects adapt gracefully to the analysis of various sorts of parameters
of constructible classes, unlabelled and labelled alike.

Multivariate generating functions (MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatorial objects. From the
knowledge of such generating functions, there result either explicit probability dis-
tributions or, at least, mean and variance evaluations. For inherited parameters, all the
combinatorial classes discussed so far are amenable to such a treatment. Technically,
the translation schemes that relate combinatorial constructions and multivariate gen-
erating functions present no major difficulty—they appear to be natural (notational,
even) refinements of the paradigm developed in Chapters I and II for the univariate
case. Typical applications from classical combinatorics are the number of summands

151
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in a composition, the number of blocks in a set partition, the number of cycles in a
permutation, the root degree or path length of a tree, the number of fixed points in a
permutation, the number of singleton blocks in a set partition, the number of leaves in
trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methods, this chapter also
serves as a first encounter with the general area of random combinatorial structures.
The general question is: What does a random object of large size look like? Multi-
variate generating functions first provide an easy access to moments of combinatorial
parameters—typically the mean and variance. In addition, when combined with basic
probabilistic inequalities, moment estimates often lead to precise characterizations of
properties of large random structures that hold with high probability. For instance,
a large integer partition conforms with high probability to a deterministic profile, a
large random permutation almost surely has at least one long cycle and a few short
ones, and so on. Such a highly constrained behaviour of large objects may in turn
serve to design dedicated algorithms and optimize data structures; or it may serve to
build statistical tests—when does one depart from randomness and detect a “signal”
in large sets of observed data? Randomness forms a recurrent theme of the book: it
will be developed much further in Chapter IX, where the complex asymptotic meth-
ods of Part B are grafted on the exact modelling by multivariate generating functions
presented in this chapter.

This chapter is organized as follows. First a few pragmatic developments related
to bivariate generating functions are presented in Section III. 1. Next, Section III. 2
presents the notion of bivariate enumeration and its relation to discrete probabilistic
models, including the determination of moments, since the language of elementary
probability theory does indeed provide an intuitively appealing way to conceive of bi-
variate counting data. The symbolic method per se, declined in its general multivariate
version, is centrally developed in Sections III. 3 and III. 4: with suitable multi-index
notations, the extension of the symbolic method to the multivariate case is almost im-
mediate. Recursive parameters that often arise in particular from tree statistics form
the subject of Section III. 5, while complete generating functions and associated com-
binatorial models are discussed in Section III. 6. Additional constructions such as
pointing, substitution, and order constraints lead to interesting developments, in par-
ticular, an original treatment of the inclusion–exclusion principle in Section III. 7. The
chapter concludes, in Section III. 8, with a brief abstract discussion of extremal param-
eters like height in trees or smallest and largest components in composite structures—
such parameters are best treated via families of univariate generating functions.

III. 1. An introduction to bivariate generating functions (BGFs)

We have seen in Chapters I and II that a number sequence ( fn) can be encoded
by means of a generating function in one variable, either ordinary or exponential:

( fn) � f (z) =

⎧⎪⎪⎨⎪⎪⎩
∑

n

fnzn (ordinary GF)∑
n

fn
zn

n!
(exponential GF).
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f00 −→ f0(u)

f10 f11 −→ f1(u)

f20 f21 f22 −→ f2(u)
...

...
...

↓ ↓ ↓
f 〈0〉(z) f 〈1〉(z) f 〈2〉(z)

Figure III.1. An array of numbers and its associated horizontal and vertical GFs.

This encoding is powerful, since many combinatorial constructions admit a translation
as operations over such generating functions. In this way, one gains access to many
useful counting formulae.

Similarly, consider a sequence of numbers ( fn,k) depending on two integer-valued
indices, n and k. Usually, in this book, ( fn,k)will be an array of numbers (often a trian-
gular array), where fn,k is the number of objects ϕ in some class F , such that |ϕ| = n
and some parameter χ(ϕ) is equal to k. We can encode this sequence by means of
a bivariate generating function (BGF) involving two variables: a primary variable z
attached to n and a secondary u attached to k.

Definition III.1. The bivariate generating functions (BGFs), either ordinary or ex-
ponential, of an array ( fn,k) are the formal power series in two variables defined by

f (z, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
n,k

fn,k znuk (ordinary BGF)

∑
n,k

fn,k
zn

n!
uk (exponential BGF).

(The “double exponential” GF corresponding to zn

n!
uk

k! is not used in the book.)
As we shall see shortly, parameters of constructible classes become accessible

through such BGFs. According to the point of view adopted for the moment, one
starts with an array of numbers and forms a BGF by a double summation process. We
present here two examples related to binomial coefficients and Stirling cycle numbers
illustrating how such BGFs can be determined, then manipulated. In what follows it
is convenient to refer to the horizontal and vertical generating functions (Figure III.1)
that are each a one-parameter family of GFs in a single variable defined by

horizontal GF: fn(u) := ∑
k fn,kuk;

vertical GF: f 〈k〉(z) := ∑
n fn,k zn (ordinary case)

f 〈k〉(z) := ∑
n fn,k

zn

n! (exponential case).
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����� ����� ����� �����
����� ����� ����� �����
����� ����� ����� �����
����� ����� ����� �����

����� ����� ����� ����� ����� �����
(0) (1) (2) (3) (4) (5)

Figure III.2. The set W5 of the 32 binary words over the alphabet {�,�} enumer-
ated according to the number of occurrences of the letter ‘�’ gives rise to the bivariate
counting sequence {W5, j } = 1, 5, 10, 10, 5, 1.

The terminology is transparently explained if the elements ( fn,k) are arranged as an
infinite matrix, with fn,k placed in row n and column k, since the horizontal and
vertical GFs appear as the GFs of the rows and columns respectively. Naturally, one
has

f (z, u) =
∑

k

uk f 〈k〉(z) =

⎧⎪⎪⎨⎪⎪⎩
∑

n

fn(u)z
n (ordinary BGF)∑

n

fn(u)
zn

n!
(exponential BGF).

Example III.1. The ordinary BGF of binomial coefficients. The binomial coefficient
(n
k
)

counts
binary words of length n having k occurrences of a designated letter; see Figure III.2. In order
to compose the bivariate GF, start from the simplest case of Newton’s binomial theorem and
directly form the horizontal GFs corresponding to a fixed n:

(1) Wn(u) :=
n∑

k=0

(
n

k

)
uk = (1 + u)n,

Then a summation over all values of n gives the ordinary BGF

(2) W (z, u) =
∑

k,n≥0

(
n

k

)
uk zn =

∑
n≥0

(1 + u)nzn = 1

1 − z(1 + u)
.

Such calculations are typical of BGF manipulations. What we have done amounts to starting
from a sequence of numbers, Wn,k , determining the horizontal GFs Wn(u) in (1), then the
bivariate GF W (z, u) in (2), according to the scheme:

Wn,k � Wn(u) � W (z, u).

The BGF in (2) reduces to the OGF (1 − 2z)−1 of all words, as it should, upon setting u = 1.
In addition, one can deduce from (2) the vertical GFs of the binomial coefficients cor-

responding to a fixed value of k

W 〈k〉(z) =
∑
n≥0

(
n

k

)
zn = zk

(1 − z)k+1
,
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from an expansion of the BGF with respect to u

(3) W (z, u) = 1

1 − z

1

1 − u z
1−z

=
∑
k≥0

uk zk

(1 − z)k+1
,

and the result naturally matches what a direct calculation would give. . . . . . . . . . . . . . . . . . . . . �

� III.1. The exponential BGF of binomial coefficients. This is

(4) W̃ (z, u) =
∑
k,n

(
n

k

)
uk zn

n!
=

∑
(1 + u)n

zn

n!
= ez(1+u).

The vertical GFs are ezzk/k!. The horizontal GFs are (1 + u)n , as in the ordinary case. �

Example III.2. The exponential BGF of Stirling cycle numbers. As seen Example II.12, p. 121,
the number Pn,k of permutations of size n having k cycles equals the Stirling cycle number

[n
k
]
,

a vertical EGF being

P〈k〉(z) :=
∑

n

[
n

k

]
zn

n!
= L(z)k

k!
, L(z) := log

1

1 − z
.

From this, the exponential BGF is formed as follows (this revisits the calculations on p. 121):

(5) P(z, u) :=
∑

k

P〈k〉(z)uk =
∑

k

uk

k!
L(z)k = euL(z) = (1 − z)−u .

The simplification is quite remarkable but altogether quite typical, as we shall see shortly, in the
context of a labelled set construction. The starting point is thus a collection of vertical EGFs
and the scheme is now

P〈k〉
n � P〈k〉(z) � P(z, u).

The BGF in (5) reduces to the EGF (1 − z)−1 of all permutations, upon setting u = 1.
Furthermore, an expansion of the BGF in terms of the variable z provides useful informa-

tion; namely, the horizontal GF is obtained by Newton’s binomial theorem:

(6)
P(z, u) =

∑
n≥0

(
n + u − 1

n

)
zn =

∑
n≥0

Pn(u)
zn

n!
,

where Pn(u) = u(u + 1) · · · (u + n − 1).

This last polynomial is called the Stirling cycle polynomial of index n and it describes com-
pletely the distribution of the number of cycles in all permutations of size n. In addition, the
relation

Pn(u) = Pn−1(u)(u + (n − 1)),

is equivalent to the recurrence[
n

k

]
= (n − 1)

[
n − 1

k

]
+

[
n − 1

k − 1

]
,

by which Stirling numbers are often defined and easily evaluated numerically; see also Ap-
pendix A.8: Stirling numbers, p. 735. (The recurrence is susceptible to a direct combinatorial
interpretation—add n either to an existing cycle or as a “new” singleton.) . . . . . . . . . . . . . . . . �
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Numbers Horizontal GFs(
n

k

)
(1 + u)n

Vertical OGFs Ordinary BGF

zk

(1 − z)k+1

1

1 − z(1 + u)

Numbers Horizontal GFs[
n

k

]
u(u + 1) · · · (u + n − 1)

Vertical EGFs Exponential BGF

1

k!

(
log

1

1 − z

)k
(1 − z)−u

Figure III.3. The various GFs associated with binomial coefficients (left) and Stir-
ling cycle numbers (right).

Concise expressions for BGFs, like (2), (3), (5), or (18), are summarized in Fig-
ure III.3; they are invaluable for deriving moments, variance, and even finer character-
istics of distributions, as we see next. The determination of such BGFs can be covered
by a simple extension of the symbolic method, as will be detailed in Sections III. 3
and III. 4.

III. 2. Bivariate generating functions and probability distributions

Our purpose in this book is to analyse characteristics of a broad range of combi-
natorial types. The eventual goal of multivariate enumeration is the quantification of
properties present with high regularity in large random structures.

We shall be principally interested in enumeration according to size and an auxil-
iary parameter, the corresponding problems being naturally treated by means of BGFs.
In order to avoid redundant definitions, it proves convenient to introduce the sequence
of fundamental factors (ωn)n≥0, defined by

(7) ωn = 1 for ordinary GFs, ωn = n! for exponential GFs.

Then, the OGF and EGF of a sequence ( fn) are jointly represented as

f (z) =
∑

fn
zn

ωn
and fn = ωn [zn] f (z).

Definition III.2. Given a combinatorial class A, a (scalar) parameter is a function
from A to Z≥0 that associates to any object α ∈ A an integer value χ(α). The
sequence

An,k = card
({α ∈ A

∣∣ |α| = n, χ(α) = k}) ,
is called the counting sequence of the pair A, χ . The bivariate generating function
(BGF) of A, χ is defined as

A(z, u) :=
∑

n,k≥0

An,k
zn

ωn
uk,

and is ordinary if ωn ≡ 1 and exponential if ωn ≡ n!. One says that the variable z
marks size and the variable u marks the parameter χ .
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Naturally A(z, 1) reduces to the usual counting generating function A(z) associ-
ated with A, and the cardinality of An is expressible as

An = ωn[zn]A(z, 1).

III. 2.1. Distributions and moments. Within this subsection, we examine the
relationship between probabilistic models needed to interpret bivariate counting se-
quences and bivariate generating functions. The elementary notions needed are re-
called in Appendix A.3: Combinatorial probability, p. 727.

Consider a combinatorial class A. The uniform probability distribution over An

assigns to any α ∈ An a probability equal to 1/An . We shall use the symbol P to
denote probability and occasionally subscript it with an indication of the probabilistic
model used, whenever this model needs to be stressed: we shall then write PAn (or
simply Pn if A is understood) to indicate probability relative to the uniform distribu-
tion over An .

Probability generating functions. Consider a parameter χ . It determines over
each An a discrete random variable defined over the discrete probability space An :

(8) PAn (χ = k) = An,k

An
= An,k∑

k An,k
.

Given a discrete random variable X , typically, a parameter χ taken over a subclass An ,
we recall that its probability generating function (PGF) is by definition the quantity

(9) p(u) =
∑

k

P(X = k)uk .

From (8) and (9), one has immediately:

Proposition III.1 (PGFs from BGFs). Let A(z, u) be the bivariate generating func-
tion of a parameter χ defined over a combinatorial class A. The probability generat-
ing function of χ over An is given by∑

k

PAn (χ = k)uk = [zn]A(z, u)

[zn]A(z, 1)
,

and is thus a normalized version of a horizontal generating function.

The translation into the language of probability enables us to make use of which-
ever intuition might be available in any particular case, while allowing for a natu-
ral interpretation of data (Figure III.4). Indeed, instead of noting that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the probability of the event, which is
0.00015, i.e., about 1.5 per 10 000. Discrete distributions are conveniently represented
by histograms or “bar charts”, where the height of the bar at abscissa k indicates the
value of P{X = k}. Figure III.4 displays two classical combinatorial distributions
in this way. Given the uniform probabilistic model that we have been adopting, such
histograms are eventually nothing but a condensed form of the “stacks” corresponding
to exhaustive listings, like the one displayed in Figure III.2.
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Figure III.4. Histograms of two combinatorial distributions. Left: the number of
occurrences of a designated letter in a random binary word of length 50 (binomial
distribution). Right: the number of cycles in a random permutation of size 50 (Stirling
cycle distribution).

Moments. Important information is conveyed by moments. Given a discrete ran-
dom variable X , the expectation of f (X) is by definition the linear functional

E( f (X)) :=
∑

k

P{X = k} · f (k).

The (power) moments are

E(Xr ) :=
∑

k

P{X = k} · kr .

Then the expectation (or average, mean) of X , its variance, and its standard deviation,
respectively, are expressed as

E(X), V(X) = E(X2)− E(X)2, σ (X) =
√

V(X).

The expectation corresponds to what is typically seen when forming the arithmetic
mean value of a large number of observations: this property is the weak law of large
numbers [205, Ch X]. The standard deviation then measures the dispersion of values
observed from the expectation and it does so in a mean-quadratic sense.

The factorial moment defined for order r as

(10) E (X (X − 1) · · · (X − r + 1))

is also of interest for computational purposes, since it is obtained plainly by differen-
tiation of PGFs (Appendix A.3: Combinatorial probability, p. 727). Power moments
are then easily recovered as linear combinations of factorial moments, see Note III.9
of Appendix A. In summary:

Proposition III.2 (Moments from BGFs). The factorial moment of order r of a pa-
rameter χ is determined from the BGF A(z, u) by r-fold differentiation followed by
evaluation at 1:

EAn (χ(χ − 1) · · · (χ − r + 1)) = [zn]∂r
u A(z, u)

∣∣
u=1

[zn]A(z, 1)
.



“book” — 2008/10/3 — 16:05 — page 159 — #173

III. 2. BIVARIATE GENERATING FUNCTIONS AND PROBABILITY DISTRIBUTIONS 159

In particular, the first two moments satisfy

EAn (χ) = [zn]∂u A(z, u)|u=1

[zn]A(z, 1)

EAn (χ
2) = [zn]∂2

u A(z, u)
∣∣
u=1

[zn]A(z, 1)
+ [zn]∂u A(z, u)|u=1

[zn]A(z, 1)
,

the variance and standard deviation being determined by

V(χ) = σ(χ)2 = E(χ2)− E(χ)2.

Proof. The PGF pn(u) of χ over An is given by Proposition III.1. On the other hand,
factorial moments are on general grounds obtained by differentiation and evaluation
at u = 1. The result follows. �

In other words, the quantities

�(k)
n := ωn ·

(
[zn] ∂k

u A(z, u)
∣∣∣
u=1

)
give, after a simple normalization (by ωn · [zn]A(z, 1)), the factorial moments:

E (χ(χ − 1) · · · (χ − k + 1)) = 1

An
�(k)

n .

Most notably, �(1)
n is the cumulated value of χ over all objects of An :

�(1)
n ≡ ωn · [zn] ∂u A(z, u)|u=1 =

∑
α∈An

χ(α) ≡ An · EAn (χ).

Accordingly, the GF (ordinary or exponential) of the �(1)
n is sometimes named the

cumulative generating function. It can be viewed as an unnormalized generating func-
tion of the sequence of expected values. These considerations explain Wilf’s sugges-
tive motto quoted on p. 151: “Generating functions find averages, etc”. (The “etc” can
be interpreted as a token for higher moments and probability distributions.)
� III.2. A combinatorial form of cumulative GFs. One has

�(1)(z) ≡
∑

n
EAn (χ)An

zn

ωn
=

∑
α∈A

χ(α)
z|α|
ω|α|

,

where ωn = 1 (ordinary case) or ωn = n! (exponential case). �

Example III.3. Moments of the binomial distribution. The binomial distribution of index n can
be defined as the distribution of the number of as in a random word of length n over the binary
alphabet {a, b}. The determination of moments results easily from the ordinary BGF,

W (z, u) = 1

1 − z − zu
.

By differentiation, one finds

∂r

∂ur W (z, u)

∣∣∣∣
u=1

= r !zr

(1 − 2z)r+1
.

Coefficient extraction then gives the form of the factorial moments of orders 1, 2, 3, . . . , r as

n

2
,

n(n − 1)

4
,

n(n − 1)(n − 2)

8
, . . . ,

r !

2r

(
n

r

)
.
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In particular, the mean and the variance are 1
2 n and 1

4 n. The standard deviation is thus 1
2
√

n
which is of a smaller order than the mean: this indicates that the distribution is somehow con-
centrated around its mean value, as suggested by Figure III.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.3. De Moivre’s approximation of the binomial coefficients. The fact that the mean and
the standard deviation of the binomial distribution are respectively 1

2 n and 1
2
√

n suggests we
examine what goes on at a distance of x standard deviations from the mean. Consider for
simplicity the case of n = 2ν even. From the ratio

r(ν, �) :=
( 2ν
ν+�

)(2ν
ν

) = (1 − 1
ν )(1 − 2

ν ) · · · (1 − k−1
ν )

(1 + 1
ν )(1 + 2

ν ) · · · (1 + k
ν )

,

the approximation log(1 + x) = x + O(x2) shows that, for any fixed y ∈ R,

lim
n→∞, �=ν+y

√
ν/2

( 2ν
ν+�

)(2ν
ν

) = e−y2/2.

(Alternatively, Stirling’s formula can be employed.) This Gaussian approximation for the bino-
mial distribution was discovered by Abraham de Moivre (1667–1754), a close friend of Newton.
General methods for establishing such approximations are developed in Chapter IX. �

Example III.4. Moments of the Stirling cycle distribution. Let us return to the example of
cycles in permutations which is of interest in connection with certain sorting algorithms like
bubble sort or insertion sort, maximum finding, and in situ rearrangement [374].

We are dealing with labelled objects, hence exponential generating functions. As seen
earlier on p. 155, the BGF of permutations counted according to cycles is

P(z, u) = (1 − z)−u .

By differentiating the BGF with respect to u, then setting u = 1, we next get the expected
number of cycles in a random permutation of size n as a Taylor coefficient:

(11) En(χ) = [zn]
1

1 − z
log

1

1 − z
= 1 + 1

2
+ · · · + 1

n
,

which is the harmonic number Hn . Thus, on average, a random permutation of size n has about
log n + γ cycles, a well-known fact of discrete probability theory, derived on p. 122 by means
of horizontal generating functions.

For the variance, a further differentiation of the bivariate EGF gives

(12)
∑
n≥0

En(χ(χ − 1))zn = 1

1 − z

(
log

1

1 − z

)2
.

From this expression and Note III.4 (or directly from the Stirling cycle polynomials of p. 155),
a calculation shows that

(13) σ 2
n =

⎛⎝ n∑
k=1

1

k

⎞⎠−
⎛⎝ n∑

k=1

1

k2

⎞⎠ = log n + γ − π2

6
+ O

(
1

n

)
.

Thus, asymptotically,
σn ∼

√
log n.

The standard deviation is of an order smaller than the mean, and therefore large deviations from
the mean have an asymptotically negligible probability of occurrence (see below the discussion
of moment inequalities). Furthermore, the distribution is asymptotically Gaussian, as we shall
see in Chapter IX, p. 644. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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� III.4. Stirling cycle numbers and harmonic numbers. By the “exp–log trick” of Chapter I,
p. 29, the PGF of the Stirling cycle distribution satisfies

1

n!
u(u + 1) · · · (u + n − 1) = exp

(
vHn −v2

2
H(2)

n +v3

3
H(3)

n + · · ·
)
, u = 1 + v

where H(r)
n is the generalized harmonic number

∑n
j=1 j−r . Consequently, any moment of the

distribution is a polynomial in generalized harmonic numbers; compare (11) and (13). Fur-
thermore, the kth moment satisfies EPn (χ

k) ∼ (log n)k . (The same technique expresses the

Stirling cycle number
[n
k
]

as a polynomial in generalized harmonic numbers H(r)
n−1.)

Alternatively, start from the expansion of (1 − z)−α and differentiate repeatedly with re-
spect to α; for instance, one has

(1 − z)−α log
1

1 − z
=

∑
n≥0

(
1

α
+ 1

α + 1
+ · · · + 1

n − 1 + α

)(
n + α − 1

n

)
zn,

which provides (11) upon setting α = 1, while the next differentiation gives (13). �

The situation encountered with cycles in permutations is typical of iterative (non-
recursive) structures. In many other cases, especially when dealing with recursive
structures, the bivariate GF may satisfy complicated functional equations in two vari-
ables (see the example of path length in trees, Section III. 5 below), which means we
do not know them explicitly. However, asymptotic laws can be determined in a large
number of cases (Chapter IX). In all cases, the BGFs are the central tool in obtain-
ing mean and variance estimates, since their derivatives evaluated at u = 1 become
univariate GFs that usually satisfy much simpler relations than the BGFs themselves.

III. 2.2. Moment inequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classified into two categories: (i) distri-
butions that are spread, i.e., the standard deviation is of order at least as large as the
mean (e.g.the uniform distributions over [0 . . n], which have totally flat histograms);
(i i) distributions for which the standard deviation is of an asymptotic order smaller
than the mean (e.g., the Stirling cycle distribution, Figure III.4, and the binomial distri-
bution, Figure III.5.) Such informal observations are indeed supported by the Markov–
Chebyshev inequalities, which take advantage of information provided by the first two
moments. (A proof is found in Appendix A.3: Combinatorial probability, p. 727.)

Markov–Chebyshev inequalities. Let X be a non-negative random variable and Y
an arbitrary real variable. One has for any t > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

This result informs us that the probability of being much larger than the mean must
decay (Markov) and that an upper bound on the decay is measured in units given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration property of distributions. It ap-
plies to a family of distributions indexed by the integers.
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Figure III.5. Plots of the binomial distributions for n = 5, . . . , 50. The horizontal
axis is normalized (by a factor of 1/n) and rescaled to 1, so that the curves display{
P(

Xn
n = x)

}
, for x = 0, 1

n ,
2
n , . . . .

Proposition III.3 (Concentration of distribution). Consider a family of random vari-
ables Xn, typically, a scalar parameter χ on the subclass An. Assume that the means
μn = E(Xn) and the standard deviations σn = σ(Xn) satisfy the condition

lim
n→+∞

σn

μn
= 0.

Then the distribution of Xn is concentrated in the sense that, for any ε > 0, there
holds

(14) lim
n→+∞P

{
1 − ε ≤ Xn

μn
≤ 1 + ε

}
= 1.

Proof. The result is a direct consequence of Chebyshev’s inequality. �
The concentration property (14) expresses the fact that values of Xn tend to be-

come closer and closer (in relative terms) to the mean μn as n increases. Another
figurative way of describing concentration, much used in random combinatorics, is to
say that “Xn/μn tends to 1 in probability”; in symbols:

Xn

μn

P−→ 1.

When this property is satisfied, the expected value is in a strong sense a typical value—
this fact is an extension of the weak law of large numbers of probability theory.

Concentration properties of the binomial and Stirling cycle distributions. The
binomial distribution is concentrated, since the mean of the distribution is n/2 and
the standard deviation is

√
n/4, a much smaller quantity. Figure III.5 illustrates con-

centration by displaying the graphs (as polygonal lines) associated to the binomial
distributions for n = 5, . . . , 50. Concentration is also quite perceptible on simula-
tions as n gets large: the table below describes the results of batches of ten (sorted)
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simulations from the binomial distribution
{

1
2n

(n
k

)}n

k=0
:

n = 100 39, 42, 43, 49, 50, 52, 54, 55, 55, 57
n = 1000 487, 492, 494, 494, 506, 508, 512, 516, 527, 545
n = 10 000 4972, 4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065
n = 100 000 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such samples are 22% (n = 102),
9% (n = 103), 1.3% (n = 104), and 0.6% (n = 105). Similarly, the mean and
variance computations of (11) and (13) imply that the number of cycles in a random
permutation of large size is concentrated.

Finer estimates on distributions form the subject of our Chapter IX dedicated to
limit laws. The reader may get a feeling of some of the phenomena at stake when
examining Figure III.5 and Note III.3, p. 160: the visible emergence of a continu-
ous curve (the bell-shaped curve) corresponds to a common asymptotic shape for the
whole family of distributions—the Gaussian law.

III. 3. Inherited parameters and ordinary MGFs

In this section and the next, we address the question of determining BGFs directly
from combinatorial specifications. The answer is provided by a simple extension of
the symbolic method, which is formulated in terms of multivariate generating func-
tions (MGFs). Such generating functions have the capability of taking into account a
finite collection (equivalently, a vector) of combinatorial parameters. Bivariate gener-
ating functions discussed earlier appear as a special case.

III. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed finite collection of parameters.

Definition III.3. Consider a combinatorial class A. A (multidimensional) parameter
χ = (χ1, . . . , χd) on the class is a function from A to the set Zd

≥0 of d–tuples of
natural numbers. The counting sequence of A with respect to size and the parameter χ
is then defined by

An,k1,...,kd = card
{
α

∣∣ |α| = n, χ1(α) = k1, . . . , χd(α) = kd
}
.

We sometimes refer to such a parameter as a “multiparameter” when d > 1, and
a “simple” or “scalar” parameter otherwise. For instance, one may take the class P
of all permutations σ , and for χ j ( j = 1, 2, 3) the number of cycles of length j in σ .
Alternatively, we may consider the class W of all words w over an alphabet with four
letters, {α1, . . . , α4} and take for χ j ( j = 1, . . . , 4) the number of occurrences of the
letter α j in w, and so on.

The multi-index convention employed in various branches of mathematics greatly
simplifies notations: let x = (x1, . . . , xd) be a vector of d formal variables and k =
(k1, . . . , kd) be a vector of integers of the same dimension; then, the multipower xk is
defined as the monomial

(15) xk := xk1
1 xk2

2 · · · xkd
d .

With this notation, we have:
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Definition III.4. Let An,k be a multi-index sequence of numbers, where k ∈ Nd .
The multivariate generating function (MGF) of the sequence of either ordinary or
exponential type is defined as the formal power series

(16)

A(z,u) =
∑
n,k

An,kukzn (ordinary MGF)

A(z,u) =
∑
n,k

An,kuk zn

n!
(exponential MGF).

Given a class A and a parameter χ , the MGF of the pair 〈A, χ〉 is the MGF of
the corresponding counting sequence. In particular, one has the combinatorial forms:

(17)

A(z,u) =
∑
α∈A

uχ(α)z|α| (ordinary MGF; unlabelled case)

A(z,u) =
∑
α∈A

uχ(α)
z|α|

|α|! (exponential MGF; labelled case).

One also says that A(z,u) is the MGF of the combinatorial class with the formal
variable u j marking the parameter χ j and z marking size.

From the very definition, with 1 a vector of all 1’s, the quantity A(z, 1) coincides
with the generating function of A, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GF by way of a vector u,
with the property that the multivariate GF reduces to the univariate GF at u = 1. If all
but one of the u j are set to 1, then a BGF results; in this way, the symbolic calculus
that we are going to develop gives full access to BGFs (and, from here, to moments).
� III.5. Special cases of MGFs. The exponential MGF of permutations with u1, u2 marking
the number of 1–cycles and 2–cycles respectively is

(18) P(z, u1, u2) =
exp

(
(u1 − 1)z + (u2 − 1) z2

2

)
1 − z

.

(This will be proved later in this chapter, p. 187.) The formula is checked to be consistent with
three already known special cases derived in Chapter II: (i) setting u1 = u2 = 1 gives back
the counting of all permutations, P(z, 1, 1) = (1 − z)−1, as it should; (i i) setting u1 = 0 and
u2 = 1 gives back the EGF of derangements, namely e−z/(1 − z); (i i i) setting u1 = u2 =
0 gives back the EGF of permutations with cycles all of length greater than 2, P(z, 0, 0) =
e−z−z2/2/(1 − z), a generalized derangement GF. In addition, the particular BGF

P(z, u, 1) = e(u−1)z

1 − z
,

enumerates permutations according to singleton cycles. This last BGF interpolates between the
EGF of derangements (u = 0) and the EGF of all permutations (u = 1). �

III. 3.2. Inheritance and MGFs. Parameters that are inherited from substruc-
tures (definition below) can be taken into account by a direct extension of the symbolic
method. With a suitable use of the multi-index conventions, it is even the case that the
translation rules previously established in Chapters I and II can be copied verbatim.
This approach provides a large quantity of multivariate enumeration results that follow
automatically by the symbolic method.
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Definition III.5. Let 〈A, χ〉, 〈B, ξ 〉, 〈C, ζ 〉 be three combinatorial classes endowed
with parameters of the same dimension d. The parameter χ is said to be inherited in
the following cases.

• Disjoint union: when A = B + C, the parameter χ is inherited from ξ, ζ iff
its value is determined by cases from ξ, ζ :

χ(ω) =
⎧⎨⎩ ξ(ω) if ω ∈ B

ζ(ω) if ω ∈ C.

• Cartesian product: when A = B×C, the parameter χ is inherited from ξ, ζ

iff its value is obtained additively from the values of ξ, ζ :

χ(β, γ ) = ξ(β)+ ζ(γ ).

• Composite constructions: when A = K{B}, where K is a metasymbol repre-
senting any of SEQ,MSET, PSET,CYC, the parameter χ is inherited from ξ

iff its value is obtained additively from the values of ξ on components; for
instance, for sequences:

χ(β1, . . . , βr ) = ξ(β1)+ · · · + ξ(βr ).

With a natural extension of the notation used for constructions, we shall write

〈A, χ〉 = 〈B, ξ 〉 + 〈C, ζ 〉, 〈A, χ〉 = 〈B, ξ 〉 × 〈C, ζ 〉, 〈A, χ〉 = K {〈B, ξ 〉} .
This definition of inheritance is seen to be a natural extension of the axioms that

size itself has to satisfy (Chapter I): size of a disjoint union is defined by cases; size
of a pair, and similarly of a composite construction, is obtained by addition.

Next, we need a bit of formality. Consider a pair 〈A, χ〉, where A is a combi-
natorial class endowed with its usual size function | · | and χ = (χ1, . . . , χd) is a
d-dimensional (multi)parameter. Write χ0 for size and z0 for the variable marking
size (previously denoted by z). The key point is to define an extended multiparameter
χ = (χ0, χ1, . . . , χd); that is, we treat size and parameters on an equal opportunity
basis. Then the ordinary MGF in (16) assumes an extremely simple and symmetrical
form:

(19) A(z) =
∑

k

Akzk =
∑
α∈A

zχ(α).

Here, the indeterminates are the vector z = (z0, z1, . . . , zd), the indices are k =
(k0, k1, . . . , kd), where k0 indexes size (previously denoted by n) and the usual multi-
index convention introduced in (15) is in force:

(20) zk := zk0
0 zk1

1 · · · zd
kd ,

but it is now applied to (d + 1)-dimensional vectors. With this convention, we have:

Theorem III.1 (Inherited parameters and ordinary MGFs). Let A be a combinatorial
class constructed from B, C, and let χ be a parameter inherited from ξ defined on
B and (as the case may be) from ζ on C. Then the translation rules of admissible
constructions stated in Theorem I.1, p. 27, are applicable, provided the multi-index
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convention (19) is used. The associated operators on ordinary MGFs are then (ϕ(k)
is the Euler totient function, defined on p. 721):

Union: A = B + C �⇒ A(z) = B(z)+ C(z),

Product: A = B × C �⇒ A(z) = B(z) · C(z),

Sequence: A = SEQ(B) �⇒ A(z) = 1

1 − B(z)
,

Powerset: A = PSET(B) �⇒ A(z) = exp

( ∞∑
�=1

(−1)�−1

�
B(z�)

)
.

Multiset: A = MSET(B) �⇒ A(z) = exp

( ∞∑
�=1

1

�
B(z�)

)
,

Cycle: A = CYC(B) �⇒ A(z) =
∞∑
�=1

ϕ(�)

�
log

1

1 − B(z�)
,

Proof. For disjoint unions, one has

A(z) =
∑
α∈A

zχ(α) =
∑
β∈B

zξ(β) +
∑
γ∈C

zζ (γ ),

since inheritance is defined by cases on unions. For cartesian products, one has

A(z) =
∑
α∈A

zχ(α) =
∑
β∈B

zξ(β) ×
∑
γ∈C

zζ (γ ),

since inheritance corresponds to additivity on products.
The translation of composite constructions in the case of sequences, powersets,

and multisets is then built up from the union and product schemes, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dealt with by the methods of
Appendix A.4: Cycle construction, p. 729. �

The multi-index notation is a crucial ingredient for developing the general theory
of multivariate enumerations. When we work with only a small number of parameters,
typically one or two, we will however often find it convenient to return to vectors of
variables like (z, u) or (z, u, v). In this way, unnecessary subscripts are avoided.

The reader is especially encouraged to study the treatment of integer composi-
tions in Examples III.5 and III.6 below carefully, since it illustrates the power of the
multivariate symbolic method, in its bare bones version.

Example III.5. Integer compositions and MGFs I. The class C of all integer compositions
(Chapter I) is specified by

C = SEQ(I), I = SEQ≥1(Z),
where I is the set of all positive numbers. The corresponding OGFS are

C(z) = 1

1 − I (z)
, I (z) = z

1 − z
,

so that Cn = 2n−1 (n ≥ 1). Say we want to enumerate compositions according to the number χ
of summands. One way to proceed, in accordance with the formal definition of inheritance, is
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as follows. Let ξ be the parameter that takes the constant value 1 on all elements of I. The
parameter χ on compositions is inherited from the (almost trivial) parameter ξ ≡ 1 defined on
summands. The ordinary MGF of 〈I, ξ〉 is

I (z, u) = zu + z2u + z3u + · · · = zu

1 − z
.

Let C(z, u) be the BGF of 〈C, χ〉. By Theorem III.1, the schemes translating admissible con-
structions in the univariate case carry over to the multivariate case, so that

(21) C(z, u) = 1

1 − I (z, u)
= 1

1 − u z
1−z

= 1 − z

1 − z(u + 1)
.

Et voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Markers. There is an alternative way of arriving at MGFs, as in (21), which is
important and will be of much use thoughout this book. A marker (or mark) in a spec-
ification # is a neutral object (i.e., an object of size 0) attached to a construction or an
atom by a product. Such a marker does not modify size, so that the univariate counting
sequence associated to # remains unaffected. On the other hand, the total number of
markers that an object contains determines by design an inherited parameter, so that
Theorem III.1 is automatically applicable. In this way, one may decorate specifica-
tions so as to keep track of “interesting” substructures and get BGFs automatically.
The insertion of several markers similarly gives MGFs.

For instance, say we are interested in the number of summands in compositions,
as in Example III.5 above. Then, one has an enriched specification, and its translation
into MGF,

(22) C = SEQ
(
μ SEQ≥1(Z)

) �⇒ C(z, u) = 1

1 − uI (z)
,

based on the correspondence: Z 	→ z, μ 	→ u.

Example III.6. Integer compositions and MGFs II. Consider the double parameter χ =
(χ1, χ2) where χ1 is the number of parts equal to 1 and χ2 the number of parts equal to 2.
One can write down an extended specification, with μ1 a combinatorial mark for summands
equal to 1 and μ2 for summands equal to 2,

(23)
C = SEQ

(
μ1Z + μ2Z2 + SEQ≥3(Z)

)
�⇒ C(z, u1, u2) =

1

1 − (u1z + u2z2 + z3(1 − z)−1)
,

where u j ( j = 1, 2) records the number of marks of type μ j .
Similarly, let μ mark each summand and μ1 mark summands equal to 1. Then, one has,

(24) C = SEQ

(
μμ1Z + μ SEQ≥2(Z)

)
�⇒ C(z, u1, u) = 1

1 − (uu1z + uz2(1 − z)−1)
,

where u keeps track of the total number of summands and u1 records the number of summands
equal to 1.
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MGFs obtained in this way via the multivariate extension of the symbolic method can then
provide explicit counts, after suitable series expansions. For instance, the number of composi-
tions of n with k parts is, by (21),

[znuk ]
1 − z

1 − (1 + u)z
=

(
n

k

)
−

(
n − 1

k

)
=

(
n − 1

k − 1

)
,

a result otherwise obtained in Chapter I by direct combinatorial reasoning (the balls-and-bars
model). The number of compositions of n containing k parts equal to 1 is obtained from the
special case u2 = 1 in (23),

[znuk ]
1

1 − uz − z2

(1−z)

= [zn−k ]
(1 − z)k+1

(1 − z − z2)k+1
,

where the last OGF closely resembles a power of the OGF of Fibonacci numbers.
Following the discussion of Section III. 2, such MGFs also carry complete information

about moments. In particular, the cumulated value of the number of parts in all compositions
of n has OGF

∂uC(z, u)|u=1 = z(1 − z)

(1 − 2z)2
,

since cumulated values are obtained via differentiation of a BGF. Therefore, the expected num-
ber of parts in a random composition of n is exactly (for n ≥ 1)

1

2n−1
[zn]

z(1 − z)

(1 − 2z)2
= 1

2
(n + 1).

One further differentiation will give rise to the variance. The standard deviation is found to
be 1

2

√
n − 1, which is of an order (much) smaller than the mean. Thus, the distribution of the

number of summands in a random composition satisfies the concentration property as n → ∞.
In the same vein, the number of parts equal to a fixed number r in compositions is deter-

mined by

C = SEQ

(
μZr + SEQ  =r (Z)

)
�⇒ C(z, u) =

(
1 −

(
z

1 − z
+ (u − 1)zr

))−1
.

It is then easy to pull out the expected number of r -summands in a random composition of
size n. The differentiated form

∂uC(z, u)|u=1 = zr (1 − z)2

(1 − 2z)2

gives, by partial fraction expansion,

∂uC(z, u)|u=1 = 2−r−2

(1 − 2z)2
+ 2−r−1 − r2−r−2

1 − 2z
+ q(z),

for a polynomial q(z) that we do not need to make explicit. Extracting the nth coefficient of
the cumulative GF ∂uC(z, 1) and dividing by 2n−1 yields the mean number of r–parts in a
random composition. Another differentiation gives access to the second moment. One obtains
the following proposition.

Proposition III.4 (Summands in integer compositions). The total number of summands in a
random composition of size n has mean 1

2 (n+1) and a distribution that is concentrated around
the mean. The number of r summands in a composition of size n has mean

n

2r+1
+ O(1);

and a standard deviation of order
√

n, which also ensures concentration of distribution.
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Figure III.6. A random composition of n = 100 represented as a ragged landscape
(top); its associated profile 120212310415171101, defined as the partition obtained by
sorting the summands (bottom).

Results of a simulation illustrating the proposition are displayed in Figure III.6 to which
Note III.6 below adds further comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.6. The profile of integer compositions. From the point of view of random structures,
Proposition III.4 shows that random compositions of large size tend to conform to a global
“profile”. With high probability, a composition of size n should have about n/4 parts equal to 1,
n/8 parts equal to 2, and so on. Naturally, there are statistically unavoidable fluctuations, and
for any finite n, the regularity of this law cannot be perfect: it tends to fade away, especially with
regard to largest summands that are log2(n)+ O(1) with high probability. (In this region mean
and standard deviation both become of the same order and are O(1), so that concentration no
longer holds.) However, such observations do tell us a great deal about what a typical random
composition must (probably) look like—it should conform to a “geometric profile”,

1n/4 2n/8 3n/16 4n/32 · · · .
Here are for instance the profiles of two compositions of size n = 1024 drawn uniformly at
random:

1250 2138 370 429 515 610 74 80, 91 and 1253 2136 368 431 513 68 73 81 91 102.

These are to be compared with the “ideal” profile

1256 2128 364 432 516 68 74 82 91.

It is a striking fact that samples of a very few elements or even just one element (this would
be ridiculous by the usual standards of statistics) are often sufficient to illustrate asymptotic
properties of large random structures. The reason is once more to be attributed to concentration
of distributions whose effect is manifest here. Profiles of a similar nature present themselves
among objects defined by the sequence construction, as we shall see throughout this book.
(Establishing such general laws is usually not difficult but it requires the full power of complex
analytic methods developed in Chapters IV–VIII.) �

� III.7. Largest summands in compositions. For any ε > 0, with probability tending to 1
as n → ∞, the largest summand in a random integer composition of size n is in the interval
[(1 − ε) log2 n, (1 + ε) log2 n]. (Hint: use the first and second moment methods. More precise
estimates are obtained by the methods of Example V.4, p. 308.) �
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K BGF (A(z, u)) cumulative GF (�(z))

SEQ :
1

1 − u B(z)
A(z)2 · B(z) = B(z)

(1 − B(z))2

PSET :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

⎛⎝ ∞∑
k=1

(−1)k−1 uk

k
B(zk)

⎞⎠
∞∏

n=1

(1 + uzn)Bn

A(z) ·
∞∑

k=1

(−1)k−1 B(zk)

MSET :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

⎛⎝ ∞∑
k=1

uk

k
B(zk)

⎞⎠
∞∏

n=1

(1 − uzn)−Bn

A(z) ·
∞∑

k=1

B(zk)

CYC :
∞∑

k=1

ϕ(k)

k
log

1

1 − uk B(zk)

∞∑
k=1

ϕ(k)
B(zk)

1 − B(zk)
.

Figure III.7. Ordinary GFs relative to the number of components in A = K(B).

Simplified notation for markers. It proves highly convenient to simplify nota-
tions, much in the spirit of our current practice, where the atom Z is reflected by
the name of the variable z in GFs. The following convention will be systematically
adopted: the same symbol (usually u, v, u1, u2 . . .) is freely employed to designate a
combinatorial marker (of size 0) and the corresponding marking variable in MGFs.

For instance, we can write directly, for compositions,

C = SEQ(u SEQ≥1 Z)), C = SEQ(uu1Z + u SEQ≥2 Z)),
where u marks all summands and u1 marks summands equal to 1, giving rise to (22)
and (24) above. The symbolic scheme of Theorem III.1 invariably applies to enumer-
ation according to the number of markers.

III. 3.3. Number of components in abstract unlabelled schemas. Consider a
construction A = K(B), where the metasymbol K designates any standard unlabelled
constructor among SEQ,MSET, PSET,CYC. What is sought is the BGF A(z, u) of
class A, with u marking each component. The specification is then of the form

A = K(uB), K = SEQ,MSET, PSET,CYC .

Theorem III.1 applies and yields immediately the BGF A(z, u). In addition, differ-
entiating with respect to u then setting u = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequence of mean values of the
number of components):

�(z) = ∂

∂u
A(z, u)

∣∣∣∣
u=1

.



“book” — 2008/10/3 — 16:05 — page 171 — #185

III. 3. INHERITED PARAMETERS AND ORDINARY MGFS 171

0

5

10

15

20

2 4 6 8 10

Figure III.8. A random partition of size n = 100 has an aspect rather different from
the profile of a random composition of the same size (Figure III.6).

In summary:

Proposition III.5 (Components in unlabelled schemas). Given a construction, A =
K(B), the BGF A(z, u) and the cumulated GF �(z) associated to the number of com-
ponents are given by the table of Figure III.7.

Mean values are then recovered with the usual formula,

EAn (# components) = [zn]�(z)

[zn]A(z)
.

� III.8. r–Components in abstract unlabelled schemas. Consider unlabelled structures. The
BGF of the number of r–components in A = K{B} is given by

A(z, u) = (
1 − B(z)− (u − 1)Br zr )−1

, A(z, u) = A(z) ·
(

1 − zr

1 − uzr

)Br

,

in the case of sequences (K = SEQ) and multisets (K = MSET), respectively. Similar formulae
hold for the other basic constructions and for cumulative GFs. �

� III.9. Number of distinct components in a multiset. The specification and the BGF are∏
β∈B

(
1 + u SEQ≥1(β)

) �⇒
∏
n≥1

(
1 + uzn

1 − zn

)Bn

,

as follows from first principles. �

As an illustration of Proposition III.5, we discuss the profile of random partitions
(Figure III.8).

Example III.7. The profile of partitions. Let P = MSET(I) be the class of all integer
partitions, where I = SEQ≥1(Z) represents integers in unary notation. The BGF of P with u
marking the number χ of parts (or summands) is obtained from the specification

P = MSET(uI) �⇒ P(z, u) = exp

⎛⎝ ∞∑
k=1

uk

k

zk

1 − zk

⎞⎠ .
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Figure III.9. The number of parts in random partitions of size 1, . . . , 500: exact
values of the mean and simulations (circles, one for each value of n).

Equivalently, from first principles,

P ∼=
∞∏

n=1

SEQ (uIn) �⇒
∞∏

n=1

1

1 − uzn .

The OGF of cumulated values then results from the second form of the BGF by logarithmic
differentiation:

(25) �(z) = P(z) ·
∞∑

k=1

zk

1 − zk
.

Now, the factor on the right in (25) can be expanded as
∞∑

k=1

zk

1 − zk
=

∞∑
n=1

d(n)zn,

with d(n) the number of divisors of n. Thus, the mean value of χ is

(26) En(χ) = 1

Pn

n∑
j=1

d( j)Pn− j .

The same technique applies to the number of parts equal to r . The form of the BGF is

P̃ ∼= SEQ(uIr )×
∏
n  =r

SEQ(In) �⇒ P̃(z, u) = 1 − zr

1 − uzr · P(z),

which implies that the mean value of the number χ̃ of r–parts satisfies

En(χ̃) = 1

Pn
[zn]

(
P(z) · zr

1 − zr

)
= 1

Pn

(
Pn−r + Pn−2r + Pn−3r + · · · ) .

From these formulae and a decent symbolic manipulation package, the means are calculated
easily up to values of n well into the range of several thousand. . . . . . . . . . . . . . . . . . . . . . . . . . �

The comparison between Figures III.6 and III.8 shows that different combinatorial
models may well lead to rather different types of probabilistic behaviours. Figure III.9
displays the exact value of the mean number of parts in random partitions of size n =
1, . . . , 500, (as calculated from (26)) accompanied with the observed values of one
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Figure III.10. Two partitions of P1000 drawn at random, compared to the limiting
shape 
(x) defined by (27).

random sample for each value of n in the range. The mean number of parts is known
to be asymptotic to √

n log n

π
√

2/3
,

and the distribution, though it admits a comparatively large standard deviation O(
√

n),
is still concentrated, in the technical sense of the term. We shall prove some of these
assertions in Chapter VIII, p. 581.

In recent years, Vershik and his collaborators [152, 595] have shown that most in-
teger partitions tend to conform to a definite profile given (after normalization by

√
n)

by the continuous plane curve y = 
(x) defined implicitly by

(27) y = 
(x) iff e−αx + e−αy = 1, α = π√
6
.

This is illustrated in Figure III.10 by two randomly drawn elements of P1000 repre-
sented together with the “most likely” limit shape. The theoretical result explains the
huge differences that are manifest on simulations between integer compositions and
integer partitions.

The last example of this section demonstrates the application of BGFs to estimates
regarding the root degree of a tree drawn uniformly at random among the class Gn of
general Catalan trees of size n. Tree parameters such as number of leaves and path
length that are more global in nature and need a recursive definition will be discussed
in Section III. 5 below.

Example III.8. Root degree in general Catalan trees. Consider the parameter χ equal to
the degree of the root in a tree, and take the class G of all plane unlabelled trees, i.e., general
Catalan trees. The specification is obtained by first defining trees (G), then defining trees with a
mark for subtrees (G◦) dangling from the root:⎧⎨⎩ G = Z × SEQ(G)

G◦ = Z × SEQ(uG)
�⇒

⎧⎪⎨⎪⎩
G(z) = z

1 − G(z)

G(z, u) = z

1 − uG(z)
.
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This set of equations reveals that the probability that the root degree equals r is

Pn{χ = r} = 1

Gn
[zn−1]G(z)r = r

n − 1

(
2n − 3 − r

n − 2

)
∼ r

2r+1
,

this by Lagrange inversion and elementary asymptotics. Furthermore, the cumulative GF is
found to be

�(z) = zG(z)

(1 − G(z))2
.

The relation satisfied by G entails a further simplification,

�(z) = 1

z
G(z)3 =

(
1

z
− 1

)
G(z)− 1,

so that the mean root degree admits a closed form,

En(χ) = 1

Gn

(
Gn+1 − Gn

) = 3
n − 1

n + 1
,

a quantity clearly asymptotic to 3.
A random plane tree is thus usually composed of a small number of root subtrees, at least

one of which should accordingly be fairly large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

III. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last section applies almost verbatim to
labelled objects. The only difference is that the variable marking size must carry a fac-
torial coefficient dictated by the needs of relabellings. Once more, with a suitable use
of multi-index conventions, the translation mechanisms developed in the univariate
case (Chapter II) remain in force, this in a way that parallels the unlabelled case.

Let us consider a pair 〈A, χ〉, where A is a labelled combinatorial class endowed
with its size function | · | and χ = (χ1, . . . , χd) is a d-dimensional parameter. As
before, the parameter χ is extended into χ by inserting size as zeroth coordinate and
a vector z = (z0, . . . , zd) of d + 1 indeterminates is introduced, with z0 marking size
and z j marking χ j . Once the multi-index convention of (20) defining zk has been
brought into play, the exponential MGF of 〈A, χ〉 (see Definition III.4, p. 164) can be
rephrased as

(28) A(z) =
∑

k

Ak
zk

k0!
=

∑
α∈A

zχ(α)

|α|! .

This MGF is exponential in z (alias z0) but ordinary in the other variables; only the
factorial k0! is needed to take into account relabelling induced by labelled products.

We a priori restrict attention to parameters that do not depend on the absolute
values of labels (but may well depend on the relative order of labels): a parameter is
said to be compatible if, for any α, it assumes the same value on any labelled object α
and all the order-consistent relabellings of α. A parameter is said to be inherited if it
is compatible and it is defined by cases on disjoint unions and determined additively
on labelled products—this is Definition III.5 (p. 165) with labelled products replacing
cartesian products. In particular, for a compatible parameter, inheritance signifies
additivity on components of labelled sequences, sets, and cycles. We can then cut-
and-paste (with minor adjustments) the statement of Theorem III.1, p. 165:
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Theorem III.2 (Inherited parameters and exponential MGFs). Let A be a labelled
combinatorial class constructed from B, C, and let χ be a parameter inherited from
ξ defined on B and (as the case may be) from ζ on C. Then the translation rules of
admissible constructions stated in Theorem II.1, p. 103, are applicable, provided the
multi-index convention (28) is used. The associated operators on exponential MGFs
are then:

Union: A = B + C �⇒ A(z) = B(z)+ C(z)

Product: A = B � C �⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) �⇒ A(z) = 1

1 − B(z)

Cycle: A = CYC(B) �⇒ A(z) = log
1

1 − B(z)
.

Set: A = SET(B) �⇒ A(z) = exp
(
B(z)

)
.

Proof. Disjoint unions are treated in a similar manner to the unlabelled multivariate
case. Labelled products result from

A(z) =
∑
α∈A

zχ(α)

|α|! =
∑

β∈B,γ∈C

(|β| + |γ |
|β|, |γ |

)
zξ(β) zζ (γ )

(|β| + |γ |)! ,

and the usual translation of binomial convolutions that reflect labellings by means of
products of exponential generating functions (like in the univariate case detailed in
Chapter II). The translation for composite constructions is then immediate. �

This theorem can be exploited to determine moments, in a way that entirely par-
allels its unlabelled counterpart.

Example III.9. The profile of permutations. Let P be the class of all permutations and χ the
number of components. Using the concept of marking, the specification and the exponential
BGF are

P = SET (u CYC(Z)) �⇒ P(z, u) = exp

(
u log

1

1 − z

)
= (1 − z)−u ,

as was already obtained by an ad hoc calculation in (5). We also know (p. 160) that the mean
number of cycles is the harmonic number Hn and that the distribution is concentrated, since the
standard deviation is much smaller than the mean.

Regarding the number χ of cycles of length r , the specification and the exponential BGF
are now

(29)
P = SET

(
CYC  =r (Z)+ u CYC=r (Z)

)
�⇒ P(z, u) = exp

(
log

1

1 − z
+ (u − 1)

zr

r

)
= e(u−1)zr /r

1 − z
.

The EGF of cumulated values is then

(30) �(z) = zr

r

1

1 − z
.

The result is a remarkably simple one: In a random permutation of size n, the mean number
of r–cycles is equal to 1/r for any r ≤ n.

Thus, the profile of a random permutation, where profile is defined as the ordered sequence
of cycle lengths, departs significantly from what has been encountered for integer compositions
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Figure III.11. The profile of permutations: a rendering of the cycle structure of six
random permutations of size 500, where circle areas are drawn in proportion to cycle
lengths. Permutations tend to have a few small cycles (of size O(1)), a few large ones
(of size �(n)), and altogether have Hn ∼ log n cycles on average.

and partitions. Formula (30) also sheds a new light on the harmonic number formula for the
mean number of cycles—each term 1/r in the harmonic number expresses the mean number
of r–cycles.

As formulae are so simple, one can extract more information. By (29) one has

P{χ = k} = 1

k! rk
[zn−kr ]

e−zr /r

1 − z
,

where the last factor counts permutations without cycles of length r . From this (and the asymp-
totics of generalized derangement numbers in Note IV.9, p. 261), one proves easily that the
asymptotic law of the number of r–cycles is Poisson1 of rate 1/r ; in particular it is not concen-
trated. (This interesting property to be established in later chapters constitutes the starting point
of an important study by Shepp and Lloyd [540].)

Furthermore, the mean number of cycles whose size is between n/2 and n is Hn −H�n/2�,
a quantity that equals the probability of existence of such a long cycle and is approximately
log 2

.= 0.69314. In other words, we expect a random permutation of size n to have one or a
few large cycles. (See the article of Shepp and Lloyd [540] for the original discussion of largest
and smallest cycles.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.10. A hundred prisoners II. This is the solution to the prisoners problem of Note II.15,
p. 124 The better strategy goes as follows. Each prisoner will first open the drawer which
corresponds to his number. If his number is not there, he’ll use the number he just found to
access another drawer, then find a number there that points him to a third drawer, and so on,
hoping to return to his original drawer in at most 50 trials. (The last opened drawer will then
contain his number.) This strategy globally succeeds provided the initial permutation σ defined
by σi (the number contained in drawer i) has all its cycles of length at most 50. The probability
of the event is

p = [z100] exp

(
z

1
+ z2

2
+ · · · + z50

50

)
= 1 −

100∑
j=51

1

j
.= 0.31182 78206.

1 The Poisson distribution of rate λ > 0 has the non-negative integers as support and is determined by

P{k} = e−λ λ
k

k!
.
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Figure III.12. Two random allocations with m = 12, n = 48, corresponding to
λ ≡ n/m = 4 (left). The right-most diagrams display the bins sorted by decreasing
order of occupancy.

Do the prisoners stand a chance against a malicious director who would not place the numbers
in drawers at random? For instance, the director might organize the numbers in a cyclic per-
mutation. [Hint: randomize the problem by renumbering the drawers according to a randomly
chosen permutation.] �

Example III.10. Allocations, balls-in-bins models, and the Poisson law. Random allocations
and the balls-in-bins model were introduced in Chapter II in connection with the birthday para-
dox and the coupon collector problem. Under this model, there are n balls thrown into m bins
in all possible ways, the total number of allocations being thus mn . By the labelled construction
of words, the bivariate EGF with z marking the number of balls and u marking the number χ(s)

of bins that contain s balls (s a fixed parameter) is given by

A = SEQm
(
SET  =s(Z)+ u SET=s(Z)

) �⇒ A(s)(z, u) =
(

ez + (u − 1)
zs

s!

)m
.

In particular, the distribution of the number of empty bins (χ(0)) is expressible in terms of
Stirling partition numbers:

Pm,n(χ
(0) = k) ≡ n!

mn [uk zn]A(0)(z, u) = (m − k)!

mn

(
m

k

){
n

m − k

}
.

By differentiating the BGF, we get an exact expression for the mean (any s ≥ 0):

(31)
1

m
Em,n(χ

(s)) = 1

s!

(
1 − 1

m

)n−s n(n − 1) · · · (n − s + 1)

ms .

Let m and n tend to infinity in such a way that n/m = λ is a fixed constant. This regime
is extremely important in many applications, some of which are listed below. The average pro-
portion of bins containing s elements is 1

m Em,n(χ
(s)), and from (31), one obtains by straight-

forward calculations the asymptotic limit estimate,

(32) lim
n/m=λ, n→∞

1

m
Em,n(χ

(s)) = e−λ λ
s

s!
.

(See Figure III.12 for two simulations corresponding to λ = 4.) In other words, a Poisson
formula describes the average proportion of bins of a given size in a large random allocation.
(Equivalently, the occupancy of a random bin in a random allocation satisfies a Poisson law in
the limit.)
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K exponential BGF (A(z, u)) cumulative GF (�(z))

SEQ :
1

1 − u B(z)
A(z)2 · B(z) = B(z)

(1 − B(z))2

SET : exp (u B(z)) A(z) · B(z) = B(z)eB(z)

CYC : log
1

1 − u B(z)

B(z)

1 − B(z)
.

Figure III.13. Exponential GFs relative to the number of components in A = K(B).

The variance of each χ(s) (with fixed s) is estimated similarly via a second derivative and
one finds:

Vm,n(χ
(s)) ∼ me−2λ λ

s

s!
E(λ), E(λ) :=

(
eλ − sλs−1

(s − 1)!
− (1 − 2s)

λs

s!
− λs+1

s!

)
.

As a consequence, one has the convergence in probability,

1

m
χ(s)

P−→e−λ λ
s

s!
,

valid for any fixed s ≥ 0. See Example VIII.14, p. 598 for an analysis of the most filled urn. �

� III.11. Hashing and random allocations. Random allocations of balls into bins are central
in the understanding of a class of important algorithms of computer science known as hash-
ing [378, 537, 538, 598]: given a universe U of data, set up a function (called a hashing func-
tion) h : U −→ [1 . .m] and arrange for an array of m bins; an element x ∈ U is placed in bin
number h(x). If the hash function scrambles the data in a way that is suitably (pseudo)uniform,
then the process of hashing a file of n records (keys, data items) into m bins is adequately mod-
elled by a random allocation scheme. If λ = n/m, representing the “load”, is kept reasonably
bounded (say, λ ≤ 10), the previous analysis implies that hashing allows for an almost direct
access to data. (See also Example II.19, p. 146 for a strategy that folds colliding items into a
table.) �

Number of components in abstract labelled schemas. As in the unlabelled uni-
verse, a general formula gives the distribution of the number of components for the
basic constructions.

Proposition III.6. Consider labelled structures and the parameter χ equal to the
number of components in a construction A = K{B}, where K is one of SEQ, SET CYC.
The exponential BGF A(z, u) and the exponential GF �(z) of cumulated values are
given by the table of Figure III.13.

Mean values are then easily recovered, and one finds

En(χ) = �n

An
= [zn]�(z)

[zn]A(z)
,

by the same formula as in the unlabelled case.



“book” — 2008/10/3 — 16:05 — page 179 — #193

III. 4. INHERITED PARAMETERS AND EXPONENTIAL MGFS 179

� III.12. r–Components in abstract labelled schemas. The BGF A(z, u) and the cumulative
EGF �(z) are given by the following table,

SEQ :
1

1 −
(

B(z)+ (u − 1) Br zr

r !

) 1

(1 − B(z))2
· Br zr

r !

SET : exp

(
B(z)+ (u − 1)

Br zr

r !

)
eB(z) · Br zr

r !

CYC : log
1

1 −
(

B(z)+ (u − 1) Br zr

r !

) 1

(1 − B(z))
· Br zr

r !
,

in the labelled case. �

Example III.11. Set partitions. Set partitions S are sets of blocks, themselves non-empty sets
of elements. The enumeration of set partitions according to the number of blocks is then given
by

S = SET(u SET≥1(Z)) �⇒ S(z, u) = eu(ez−1).

Since set partitions are otherwise known to be enumerated by the Stirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,∑

n,k

{
n

k

}
uk zn

n!
= eu(ez−1),

∑
n

{
n

k

}
zn

n!
= 1

k!
(ez − 1)k ,

which is consistent with earlier calculations of Chapter II.
The EGF of cumulated values, �(z) is then almost a derivative of S(z):

�(z) = (ez − 1)eez−1 = d

dz
S(z)− S(z).

Thus, the mean number of blocks in a random partition of size n equals

�n

Sn
= Sn+1

Sn
− 1,

a quantity directly expressible in terms of Bell numbers. A delicate computation based on
the asymptotic expansion of the Bell numbers reveals that the expected value and the standard
deviation are asymptotic to

n

log n
,

√
n

log n
,

respectively (Chapter VIII, p. 595). Similarly the exponential BGF of the number of blocks of
size k is

S = SET(u SET=k(Z)+ SET  =0,k(Z)) �⇒ S(z, u) = eez−1+(u−1)zk/k!,

out of which mean and variance can also be derived. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example III.12. Root degree in Cayley trees. Consider the class T of Cayley trees (non-plane
labelled trees) and the parameter “root-degree”. The basic specifications are⎧⎨⎩ T = Z � SET(T )

T ◦ = Z � SET(uT )
�⇒

⎧⎨⎩ T (z) = zeT (z)

T (z, u) = zeuT (z).
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The set construction reflects the non-planar character of Cayley trees and the specification T ◦ is
enriched by a mark associated to subtrees dangling from the root. Lagrange inversion provides
the fraction of trees with root degree k,

1

(k − 1)!

n!

(n − 1 − k)!

(n − 1)n−2−k

nn−1
∼ e−1

(k − 1)!
, k ≥ 1.

Similarly, the cumulative GF is found to be �(z) = T (z)2, so that the mean root degree satisfies

ETn (root degree) = 2

(
1 − 1

n

)
∼ 2.

Thus the law of root degree is asymptotically a Poisson law of rate 1, shifted by 1. Probabilistic
phenomena qualitatively similar to those encountered in plane trees are observed here, since
the mean root degree is asymptotic to a constant. However a Poisson law eventually reflecting
the non-planarity condition replaces the modified geometric law (known as a negative binomial
law) present in plane trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.13. Numbers of components in alignments. Alignments (O) are sequences of cycles
(Chapter II, p. 119). The expected number of components in a random alignment of On is

[zn] log(1 − z)−1(1 − log(1 − z)−1)−2

[zn](1 − log(1 − z)−1)−1
.

Methods of Chapter V imply that the number of components in a random alignment has expec-
tation ∼ n/(e − 1) and standard deviation �(

√
n). �

� III.14. Image cardinality of a random surjection. The expected cardinality of the image of a
random surjection in Rn (Chapter II, p. 106) is

[zn]ez(2 − ez)−2

[zn](2 − ez)−1
.

The number of values whose preimages have cardinality k is obtained upon replacing the factor
ez by zk/k!. By the methods of Chapters IV (p. 259) and V (p. 296), the image cardinality of a
random surjection has expectation n/(2 log 2) and standard deviation �(

√
n). �

� III.15. Distinct component sizes in set partitions. Take the number of distinct block sizes
and cycle sizes in set partitions and permutations. The bivariate EGFs are

∞∏
n=1

(
1 − u + uezn/n!

)
,

∞∏
n=1

(
1 − u + uezn/n

)
,

as follows from first principles. �

Postscript: Towards a theory of schemas. Let us look back and recapitulate
some of the information gathered in pages 167–180 regarding the number of compo-
nents in composite structures. The classes considered in Figure III.14 are composi-
tions of two constructions, either in the unlabelled or the labelled universe. Each entry
contains the BGF for the number of components (e.g., cycles in permutations, parts
in integer partitions, and so on), and the asymptotic orders of the mean and standard
deviation of the number of components for objects of size n.

Some obvious facts stand out from the data and call for explanation. First the
outer construction appears to play the essential rôle: outer sequence constructs (com-
pare integer compositions, surjections and alignments) tend to dictate a number of
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Unlabelled structures

Integer partitions, MSET ◦ SEQ

exp

(
u

z

1 − z
+ u2

2

z2

1 − z2
+ · · ·

)
∼

√
n log n

π
√

2/3
, �(

√
n)

Integer compositions, SEQ ◦ SEQ(
1 − u

z

1 − z

)−1

∼ n

2
, �(

√
n)

Labelled structures

Set partitions, SET ◦ SET

exp
(
u
(
ez − 1

))
∼ n

log n
∼

√
n

log n

Surjections, SEQ ◦ SET(
1 − u

(
ez − 1

))−1

∼ n

2 log 2
, �(

√
n)

Permutations, SET ◦ CYC

exp
(

u log(1 − z)−1
)

∼ log n, ∼ √
log n

Alignments, SEQ ◦ CYC(
1 − u log(1 − z)−1

)−1

∼ n

e − 1
, �(

√
n)

Figure III.14. Major properties of the number of components in six level-two struc-
tures. For each class, from top to bottom: (i) specification type; (i i) BGF; (i i i) mean
and standard deviation of the number of components.

components that is �(n) on average, while outer set constructs (compare integer par-
titions, set partitions, and permutations) are associated with a greater variety of asymp-
totic regimes. Eventually, such facts can be organized into broad analytic schemas, as
will be seen in Chapters V–IX.

� III.16. Singularity and probability. The differences in behaviour are to be assigned to the
rather different types of singularity involved (Chapters IV–VIII): on the one hand sets corre-
sponding algebraically to an exp(·) operator induce an exponential blow-up of singularities; on
the other hand sequences expressed algebraically by quasi-inverses (1 − ·)−1 are likely to in-
duce polar singularities. Recursive structures such as trees lead to yet other types of phenomena
with a number of components, e.g., the root degree, that is bounded in probability. �

III. 5. Recursive parameters

In this section, we adapt the general methodology of previous sections in order to
treat parameters that are defined by recursive rules over structures that are themselves
recursively specified. Typical applications concern trees and tree-like structures.

Regarding the number of leaves, or more generally, the number of nodes of some
fixed degree, in a tree, the method of placing marks applies, as in the non-recursive
case. It suffices to distinguish elements of interest and mark them by an auxiliary
variable. For instance, in order to mark composite objects made of r components,
where r is an integer and K designates any of SEQ, SET (or MSET, PSET), CYC, one
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should split a construction K(C) as follows:

K(C) = uK=r (C)+ K  =r (C) = (u − 1)Kr (C)+ K(C).
This technique gives rise to specifications decorated by marks to which Theorems III.1
and III.2 apply. For a recursively-defined structure, the outcome is a functional equa-
tion defining the BGF recursively. The situation is illustrated by Examples III.13
and III.14 below in the case of Catalan trees and the parameter number of leaves.

Example III.13. Leaves in general Catalan trees. How many leaves does a random tree of
some variety have? Can different varieties of trees be somehow distinguished by the proportion
of their leaves? Beyond the botany of combinatorics, such considerations are for instance rele-
vant to the analysis of algorithms since tree leaves, having no descendants, can be stored more
economically; see [377, Sec. 2.3] for an algorithmic motivation for such questions.

Consider once more the class G of plane unlabelled trees, G = Z × SEQ(G), enumerated
by the Catalan numbers: Gn = 1

n
(2n−2

n−1
)
. The class G◦ where each leaf is marked is

G◦ = Zu +Z × SEQ≥1(G◦) �⇒ G(z, u) = zu + zG(z, u)

1 − G(z, u)
.

The induced quadratic equation can be solved explicitly

G(z, u) = 1

2

(
1 + (u − 1)z −

√
1 − 2(u + 1)z + (u − 1)2z2

)
.

It is however simpler to expand using the Lagrange inversion theorem which yields

Gn,k = [uk ]
(
[zn]G(z, u)

) = [uk ]

(
1

n
[yn−1]

(
u + y

1 − y

)n)
= 1

n

(
n

k

)
[yn−1]

yn−k

(1 − y)n−k
= 1

n

(
n

k

)(
n − 2

k − 1

)
.

These numbers are known as Narayana numbers, see EIS A001263, and they surface repeatedly
in connection with ballot problems. The mean number of leaves is derived from the cumulative
GF, which is

�(z) = ∂u G(z, u)|u=1 = 1

2
z + 1

2

z√
1 − 4z

,

so that the mean is n/2 exactly for n ≥ 2. The distribution is concentrated since the standard
deviation is easily calculated to be O(

√
n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example III.14. Leaves and node types in binary trees. The class B of binary plane trees, also
enumerated by Catalan numbers (Bn = 1

n+1

(2n
n
)
) can be specified as

(33) B = Z + (B × Z)+ (Z × B)+ (B × Z × B),

which stresses the distinction between four types of nodes: leaves, left branching, right branch-
ing, and binary. Let u0, u1, u2 be variables that mark nodes of degree 0,1,2, respectively. Then
the root decomposition (33) yields, for the MGF B = B(z, u0, u1, u2), the functional equation

B = zu0 + 2zu1 B + zu2 B2,

which, by Lagrange inversion, gives

Bn,k0,k1,k2 = 2k1

n

(
n

k0, k1, k2

)
,
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subject to the natural conditions: k0 + k1 + k2 = n and k0 = k2 + 1. Moments can be easily
calculated using this approach [499]. In particular, the mean number of nodes of each type is
asymptotically:

leaves: ∼ n

4
, 1–nodes : ∼ n

2
, 2–nodes : ∼ n

4
.

There is an equal asymptotic proportion of leaves, double nodes, left branching, and right
branching nodes. Furthermore, the standard deviation is in each case O(

√
n), so that all the

corresponding distributions are concentrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.17. Leaves and node-degree profile in Cayley trees. For Cayley trees, the bivariate EGF
with u marking the number of leaves is the solution to

T (z, u) = uz + z(eT (z,u) − 1).

(By Lagrange inversion, the distribution is expressible in terms of Stirling partition numbers.)
The mean number of leaves in a random Cayley tree is asymptotic to ne−1. More generally, the
mean number of nodes of outdegree k in a random Cayley tree of size n is asymptotic to

n · e−1 1

k!
.

Degrees are thus approximately described by a Poisson law of rate 1. �

� III.18. Node-degree profile in simple varieties of trees. For a family of trees generated
by T (z) = zφ(T (z)) with φ a power series, the BGF of the number of nodes of degree k
satisfies

T (z, u) = z
(
φ(T (z, u))+ φk(u − 1)T (z, u)k

)
,

where φk = [uk ]φ(u). The cumulative GF is

�(z) = z
φk T (z)k

1 − zφ′(T (z)) = φk z2T (z)k−1T ′(z),

from which expectations can be determined. �

� III.19. Marking in functional graphs. Consider the class F of finite mappings discussed in
Chapter II:

F = SET(K), K = CYC(T ), T = Z � SET(T ).
The translation into EGFs is

F(z) = eK (z), K (z) = log
1

1 − T (z)
, T (z) = zeT (z).

Here are the bivariate EGFs for (i) the number of components, (i i) the number of maximal
trees, (i i i) the number of leaves:

(i) euK (z), (i i)
1

1 − uT (z)
,

(i i i)
1

1 − T (z, u)
with T (z, u) = (u − 1)z + zeT (z,u).

The trivariate EGF F(u1, u2, z) of functional graphs with u1 marking components and u2 mark-
ing trees is

F(z, u1, u2) = exp(u1 log(1 − u2T (z))−1) = 1

(1 − u2T (z))u1
.

An explicit expression for the coefficients involves the Stirling cycle numbers. �
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We shall now stop supplying examples that could be multiplied ad libitum, since
such calculations greatly simplify when interpreted in the light of asymptotic analysis,
as developed in Part B. The phenomena observed asymptotically are, for good reasons,
especially close to what the classical theory of branching processes provides (see the
books by Athreya–Ney [21] and Harris [324], as well as our discussion in the context
of “complete” GFs on p. 196).

Linear transformations on parameters and path length in trees. We have so
far been dealing with a parameter defined directly by recursion. Next, we turn to
other parameters such as path length. As a preamble, one needs a simple linear trans-
formation on combinatorial parameters. Let A be a class equipped with two scalar
parameters, χ and ξ , related by

χ(α) = |α| + ξ(α).

Then, the combinatorial form of BGFs yields∑
α∈A

z|α|uχ(α) =
∑
α∈A

z|α|u|α|+ξ(α) =
∑
α∈A

(zu)|α|uξ(α) ;

that is,

(34) Aχ (z, u) = Aξ (zu, u).

This is clearly a general mechanism:

Linear transformations and MGFs: A linear transformation on parameters induces
a monomial substitution on the corresponding marking variables in MGFs.

We now put this mechanism to use in the recursive analysis of path length in trees.

Example III.15. Path length in trees. The path length of a tree is defined as the sum of distances
of all nodes to the root of the tree, where distances are measured by the number of edges on
the minimal connecting path of a node to the root. Path length is an important characteristic
of trees. For instance, when a tree is used as a data structure with nodes containing additional
information, path length represents the total cost of accessing all data items when a search
is started from the root. For this reason, path length surfaces, under various models, in the
analysis of algorithms, in particular, in the area of algorithms and data structures for searching
and sorting (e.g., tree-sort, quicksort, radix-sort [377, 538]).

The formal definition of path length of a tree is

(35) λ(τ) :=
∑
ν∈τ

dist(ν, root(τ )),

where the sum is over all nodes of the tree and the distance between two nodes is measured by
the number of connecting edges. The definition implies an inductive rule

(36) λ(τ) =
∑
υ≺τ

(λ(υ)+ |υ|) ,

in which υ ≺ τ indicates a summation over all the root subtrees υ of τ . (To verify the equiva-
lence of (35) and (36), observe that path length also equals the sum of all subtree sizes.)

From this point on, we focus the discussion on general Catalan trees (see Note III.20 for
other cases): G = Z×SEQ(G). Introduce momentarily the parameter μ(τ) = |τ |+λ(τ). Then,
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one has from the inductive definition (36) and the general transformation rule (34):

(37) Gλ(z, u) = z

1 − Gμ(z, u)
and Gμ(z, u) = Gλ(zu, u).

In other words, G(z, u) ≡ Gλ(z, u) satisfies a nonlinear functional equation of the difference
type:

G(z, u) = z

1 − G(uz, u)
.

(This functional equation will be revisited in connection with area under Dyck paths in Chap-
ter V, p. 330.) The generating function �(z) of cumulated values of λ is then obtained by
differentiation with respect to u, then setting u = 1. We find in this way that the cumulative GF
�(z) := ∂u G(z, u)|u=1 satisfies

�(z) = z

(1 − G(z))2
(
zG′(z)+�(z)

)
,

which is a linear equation that solves to

�(z) = z2 G′(z)
(1 − G(z))2 − z

= z

2(1 − 4z)
− z

2
√

1 − 4z
.

Consequently, one has (n ≥ 1)

�n = 22n−3 − 1

2

(
2n − 2

n − 1

)
,

where the sequence starting 1, 5, 22, 93, 386 for n ≥ 2 constitutes EIS A000346. By elementary
asymptotic analysis, we get:

The mean path length of a random Catalan tree of size n is asymptotic to 1
2

√
πn3;

in short: a branch from the root to a random node in a random Catalan tree of size n
has expected length of the order of

√
n.

Random Catalan trees thus tend to be somewhat imbalanced—by comparison, a fully balanced
binary tree has all paths of length at most log2 n + O(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The imbalance in random Catalan trees is a general phenomenon—it holds for bi-
nary Catalan and more generally for all simple varieties of trees. Note III.20 below and
Example VII.9 (p. 461) imply that path length is invariably of order n

√
n on average

in such cases. Height is of typical order
√

n as shown by Rényi and Szekeres [507], de
Bruijn, Knuth, and Rice [145], Kolchin [386], as well as Flajolet and Odlyzko [246]:
see Subsection VII. 10.2, p. 535 for the outline of a proof. Figure III.15 borrowed
from [538] illustrates this on a simulation. (The contour of the histogram of nodes by
levels, once normalized, has been proved to converge to the process known as Brow-
nian excursion.)
� III.20. Path length in simple varieties of trees. The BGF of path length in a variety of trees
generated by T (z) = zφ(T (z)) satisfies

T (z, u) = zφ(T (zu, u)).

In particular, the cumulative GF is

�(z) ≡ ∂u (T (z, u))u=1 = φ′(T (z))
φ(T (z))

(zT ′(z))2,

from which coefficients can be extracted. �
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Figure III.15. A random pruned binary tree of size 256 and its associated level pro-
file: the histogram on the left displays the number of nodes at each level in the tree.

III. 6. Complete generating functions and discrete models

By a complete generating function, we mean, loosely speaking, a generating func-
tion in a (possibly large, and even infinite in the limit) number of variables that mark
a homogeneous collection of characteristics of a combinatorial class2. For instance
one might be interested in the joint distribution of all the different letters composing
words, the number of cycles of all lengths in permutations, and so on. A complete
MGF naturally entails detailed knowledge on the enumerative properties of structures
to which it is relative. Complete generating functions, given their expressive power,
also make weighted models amenable to calculation, a situation that covers in particu-
lar Bernoulli trials (p. 190) and branching processes from classical probability theory
(p. 196).

Complete GFs for words. As a basic example, consider the class of all words
W = SEQ{A} over some finite alphabet A = {a1, . . . , ar }. Let χ = (χ1, . . . , χr ),
where χ j (w) is the number of occurrences of the letter a j in word w. The MGF of A
with respect to χ is

A = u1a1 + u2a2 + · · · ur ar �⇒ A(z,u) = zu1 + zu2 + · · · + zur ,

and χ on W is clearly inherited from χ on A. Thus, by the sequence rule, one has

(38) W = SEQ(A) �⇒ W (z,u) = 1

1 − z(u1 + u2 + · · · + ur )
,

which describes all words according to their compositions into letters. In particular,
the number of words with n j occurrences of letter a j and with n = ∑

n j is in this

2Complete GFs are not new objects. They are simply an avatar of multivariate GFs. Thus the term is
only meant to be suggestive of a particular usage of MGFs, and essentially no new theory is needed in order
to cope with them.
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framework obtained as

[un1
1 un2

2 · · · unr
r ] (u1 + u2 + · · · + ur )

n =
(

n

n1, n2, . . . , nr

)
= n!

n1!n2! · · · nr
.

We are back to the usual multinomial coefficients.
� III.21. After Bhaskara Acharya (circa 1150AD). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,. . . , with digit 9 used nine times. Such numbers
all have 45 digits. Compute their sum S and discover, much to your amazement that S equals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
tion? This exercise is inspired by the Indian mathematician Bhaskara Acharya who discovered
multinomial coefficients near 1150AD; see [377, pp. 23–24] for a brief historical note. �

Complete GFs for permutations and set partitions. Consider permutations and
the various lengths of their cycles. The MGF where uk marks cycles of length k for
k = 1, 2, . . . can be written as an MGF in infinitely many variables:

(39) P(z,u) = exp

(
u1

z

1
+ u2

z2

2
+ u3

z3

3
+ · · ·

)
.

This MGF expression has the neat feature that, upon restricting all but a finite number
of u j to 1, we derive all the particular cases of interest with respect to any finite
collection of cycles lengths. Observe also that one can calculate in the usual way any
coefficient [zn]P as it only involves the variables u1, . . . , un .
� III.22. The theory of formal power series in infinitely many variables. (This note is for
formalists.) Mathematically, an object like P in (39) is perfectly well defined. Let U =
{u1, u2, . . .} be an infinite collection of indeterminates. First, the ring of polynomials R =
C[U ] is well defined and a given element of R involves only finitely many indeterminates.
Then, from R, one can define the ring of formal power series in z, namely R[[z]]. (Note that,
if f ∈ R[[z]], then each [zn] f involves only finitely many of the variables u j .) The basic op-
erations and the notion of convergence, as described in Appendix A.5: Formal power series,
p. 730, apply in a standard way.

For instance, in the case of (39), the complete GF P(z, u) is obtainable as the formal limit

P(z, u) = lim
k→∞

exp

(
u1

z

1
+ · · · + uk

zk

k
+ zk+1

k + 1
+ · · ·

)
in R[[z]] equipped with the formal topology. (In contrast, the quantity evocative of a generating
function of words over an infinite alphabet

W
!=
⎛⎝1 − z

∞∑
j=1

u j

⎞⎠−1

cannot be soundly defined as an element of the formal domain R[[z]].) �

Henceforth, we shall keep in mind that verifications of formal correctness regard-
ing power series in infinitely many indeterminates are always possible by returning to
basic definitions.

Complete generating functions are often surprisingly simple to expand. For in-
stance, the equivalent form of (39)

P(z,u) = eu1z/1 · eu2z2/2 · eu3z3/3 · · ·



“book” — 2008/10/3 — 16:05 — page 188 — #202

188 III. PARAMETERS AND MULTIVARIATE GFS

implies immediately that the number of permutations with k1 cycles of size 1, k2 of
size 2, and so on, is

(40)
n!

k1! k2! · · · kn! 1k1 2k2 · · · nkn
,

provided
∑

jk j = n. This is a result originally due to Cauchy. Similarly, the EGF of
set partitions with u j marking the number of blocks of size j is

S(z,u) = exp

(
u1

z

1!
+ u2

z2

2!
+ u3

z3

3!
+ · · ·

)
.

A formula analogous to (40) follows: the number of partitions with k1 blocks of size
1, k2 of size 2, and so on, is

n!

k1! k2! · · · kn! 1!k1 2!k2 · · · n!kn
.

Several examples of such complete generating functions are presented in Comtet’s
book; see [129], pages 225 and 233.
� III.23. Complete GFs for compositions and surjections. The complete GFs of integer
compositions and surjections with u j marking the number of components of size j are

1

1 −∑∞
j=1 u j z j

,
1

1 −∑∞
j=1 u j

z j

j!

.

The associated counts with n = ∑
j jk j are given by(

k1 + k2 + · · ·
k1, k2, . . .

)
,

n!

1!k1 2!k2 · · ·
(

k1 + k2 + · · ·
k1, k2, . . .

)
.

These factored forms follow directly from the multinomial expansion. The symbolic form of
the multinomial expansion of powers of a generating function is sometimes expressed in terms
of Bell polynomials, themselves nothing but a rephrasing of the multinomial expansion; see
Comtet’s book [129, Sec. 3.3] for a fair treatment of such polynomials. �

� III.24. Faà di Bruno’s formula. The formulae for the successive derivatives of a functional
composition h(z) = f (g(z))

∂zh(z) = f ′(g(z))g′(z), ∂2
z h(z) = f ′′(g(z))g′(z)2 + f ′(z)g′′(z), . . . ,

are clearly equivalent to the expansion of a formal power series composition. Indeed, assume
without loss of generality that z = 0 and g(0) = 0; set fn := ∂n

z f (0), and similarly for g, h.
Then

h(z) ≡
∑

n
hn

zn

n!
=

∑
k

fk
k!

(
g1z + g2

2!
z2 + · · ·

)k
.

Thus in one direct application of the multinomial expansion, one finds

hn

n!
=

∑
k

fk
k!

∑
C

(
k

�1, �2, . . . , �k

)( g1

1!

)�1
( g2

2!

)�2 · · ·
( gk

k!

)�k
,

where the summation condition C is: 1�1 + 2�2 + · · · + k�k = n, �1 + �2 + · · · + �k = k.
This shallow identity is known as Faà di Bruno’s formula [129, p. 137]. (Faà di Bruno (1825–
1888) was canonized by the Catholic Church in 1988, presumably for reasons unrelated to his
formula.) �
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� III.25. Relations between symmetric functions. Symmetric functions may be manipulated
by mechanisms that are often reminiscent of the set and multiset construction. They appear in
many areas of combinatorial enumeration. Let X = {xi }ri=1 be a collection of formal variables.
Define the symmetric functions∏

i

(1 + xi z) =
∑

n
anzn,

∏
i

1

1 − xi z
=

∑
n

bnzn,
∑

i

xi z

1 − xi z
=

∑
n

cnzn .

The an, bn, cn , called, respectively, elementary, monomial, and power symmetric functions, are
expressible as

an =
∑

i1<i2<···<ir

xi1 xi2 · · · xir , bn =
∑

i1≤i2≤···≤ir

xi1 xi2 · · · xir , cn =
r∑

i=1

xr
i .

The following relations hold for the OGFs A(z), B(z),C(z) of an, bn, cn :

B(z) = 1

A(−z)
, A(z) = 1

B(−z)
,

C(z) = z
d

dz
log B(z), B(z) = exp

∫ z

0
C(t)

dt

t
.

Consequently, each of an, bn, cn is polynomially expressible in terms of any of the other quan-
tities. (The connection coefficients, as in Note III.24, involve multinomials.) �

� III.26. Regular graphs. A graph is r–regular iff each node has degree exactly equal to r . The
number of r–regular graphs of size n is

[xr
1 xr

2 · · · xr
n]

∏
1≤i< j≤n

(1 + xi x j ).

[Gessel [289] has shown how to extract explicit expressions from such huge symmetric func-
tions; see Appendix B.4: Holonomic functions, p. 748.] �

III. 6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to generalize many results to the case
of non-uniform letter probabilities, such as the coupon collector problem and the birth-
day paradox considered in Chapter II. Applications are to be found in classical prob-
ability theory and statistics [139] (the so-called Bernoulli trial models), as well as in
computer science [564] and mathematical models of biology [603].

Example III.16. Words and records. Fix an alphabet A = {a1, . . . , ar } and let W = SEQ{A}
be the class of all words over A, where A is naturally ordered by a1 < a2 < · · · < ar .
Given a word w = w1 · · ·wn , a (strict) record is an element w j that is larger than all preceding
elements: w j > wi for all i < j . (Refer to Figure III.15 of Chapter II for a graphical rendering
of records in the case of permutations.)

Consider first the subset of W comprising all words that have the letters ai1 , . . . , aik as
successive records, where i1 < · · · < ik . The symbolic description of this set is in the form of
a product of k terms

(41)

(
ai1 SEQ(a1 + · · · + ai1)

)
· · ·

(
aik SEQ(a1 + · · · + aik )

)
.

Consider now MGFs of words where z marks length, v marks the number of records, and each
u j marks the number of occurrences of letter a j . The MGF associated to the subset described
in (41) is then(

zvui1(1 − z(u1 + · · · + ui1))
−1

)
· · ·

(
zvuik (1 − z(u1 + · · · + uik ))

−1
)
.
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Summing over all values of k and of i1 < · · · < ik gives

(42) W (z, v, u) =
r∏

s=1

(
1 + zvus (1 − z(u1 + · · · + us))

−1
)
,

the rationale being that, for arbitrary quantities ys , one has by distributivity:
r∑

k=0

∑
1≤i1<···<ik≤r

yi1 yi2 · · · yik =
r∏

s=1

(1 + ys).

We shall encounter more applications of (42) below. For the time being let us simply
examine the mean number of records in a word of length n over the alphabet A, when all such
words are taken equally likely. One should set u j 	→ 1 (the composition into specific letters is
forgotten), so that W assumes the simpler form

W (z, v) =
r∏

j=1

(
1 + vz

1 − j z

)
.

Logarithmic differentiation then gives access to the generating function of cumulated values,

�(z) ≡ ∂

∂v
W (z, v)

∣∣∣∣
v=1

= z

1 − r z

r∑
j=1

1

1 − ( j − 1)z
.

Thus, by partial fraction expansion, the mean number of records in Wn (whose cardinality is rn)
has the exact value

(43) EWn (# records) = Hr −
r−1∑
j=1

( j/r)n

r − j
.

There appears the harmonic number Hr , as in the permutation case, but now with a negative
correction term which, for fixed r , vanishes exponentially with n. . . . . . . . . . . . . . . . . . . . . . . . �

Example III.17. Weighted word models and Bernoulli trials. Let A = {a1, . . . , ar } be an
alphabet of cardinality r , and let % = {λ1, . . . , λr } be a system of numbers called weights,
where weight λ j is viewed as attached to letter a j . Weights may be extended from letters to
words multiplicatively by defining the weight π(w) of word w as

π(w) = λi1λi2 · · · λin if w = ai1 ai2 · · · ain

=
r∏

j=1

λ
χ j (w)

j ,

where χ j (w) is the number of occurrences of letter a j in w. Finally, the weight of a set is by
definition the sum of the weights of its elements.

Combinatorially, weights of sets are immediately obtained once the corresponding gener-
ating function is known. Indeed, let S ⊆ W = SEQ{A} have the complete GF

S(z, u1, . . . , ur ) =
∑
w∈S

z|w|uχ1(w)
1 · · · uχr (w)

r ,

where χ j (w) is the number of occurrences of letter a j in w. Then one has

S(z, λ1, . . . , λr ) =
∑
w∈S

z|w|π(w),
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so that extracting the coefficient of zn gives the total weight of Sn = S ∩Wn under the weight
system %. In other words, the GF of a weighted set is obtained by substitution of the numerical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequences of independent draws from a fixed
distribution with finitely many possible values. One may think of the succession of flippings of
a coin or castings of a die. If any trial has r possible outcomes, then the various possibilities can
be described by letters of the r–ary alphabet A. If the probability of the j th outcome is taken to
be λ j , then the %-weighted models on words becomes the usual probabilistic model of indepen-
dent trials. (In this situation, the λ j are often written as p j .) Observe that, in the probabilistic
situation, one must have λ1 +· · ·+λr = 1 with each λ j satisfying 0 ≤ λ j ≤ 1. The equiproba-
ble case, where each outcome has probability 1/r can be obtained by setting λ j = 1/r , leaving
us with the usual enumerative model. In terms of GFs, the coefficient [zn]S(z, λ1, . . . , λr )

then represents the probability that a random word of Wn belongs to S. Multivariate gener-
ating functions and cumulative generating functions then obey properties similar to their usual
(ordinary, exponential) counterparts.

As an illustration, assume one has a biased coin with probability p for heads (H ) and q =
1− p for tails (T ). Consider the event: “in n tosses of the coin, there never appear � contiguous
heads”. The alphabet is A = {H, T }. The construction describing the events of interest is, as
seen in Subsection I. 4.1 (p. 51),

S = SEQ<�{H} SEQ{T SEQ<�{H}}.
Its GF, with u marking heads and v marking tails, is then

W (z, u, v) = 1 − z�u�

1 − zu

(
1 − zv

1 − z�u�

1 − zu

)−1

.

Thus, the probability of the absence of �–runs among a sequence of n random coin tosses is
obtained after the substitution u → p, v → q in the MGF,

[zn]
1 − p�z�

1 − z + qp�z�+1
,

leading to an expression which is amenable to numerical or asymptotic analysis. For instance,
Feller’s book [206, p. 322–326] offers a classical discussion of the problem. . . . . . . . . . . . . . . �

Example III.18. Records in Bernoulli trials. We pursue the discussion of probabilistic
models on words and come back to the analysis of records. Assume now that the alphabet
A = {a1, . . . , ar } has in all generality the probability p j associated with the letter a j . The
mean number of records is analysed by a process entirely parallel to the derivation of (43): one
finds by logarithmic differentiation of (42)

(44) EWn (# records) = [zn]�(z) where �(z) = z

1 − z

r∑
j=1

p j

1 − z(p1 + · · · + p j−1)
.

The cumulative GF �(z) in (44) has simple poles at the points 1, 1/Pr−1, 1/Pr−2, and so on,
where Ps = p1 + · · · + ps . For asymptotic purposes, only the dominant pole at z = 1 counts
(see Chapter IV for a systematic discussion), near which

�(z) ∼
z→1

1

1 − z

r∑
j=1

p j

1 − Pj−1
.

Consequently, one has an elegant asymptotic formula, generalizing the case of permutations:
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The mean number of records in a random word of length n with non-uniform letter
probabilities p j satisfies asymptotically (n → +∞)

EWn (# records) ∼
r∑

j=1

p j

p j + p j+1 + · · · + pr
.

This relation and similar ones were obtained by Burge [97]; analogous ideas may serve to ana-
lyse the sorting algorithm Quicksort under equal keys [536] as well as the hybrid data structures
of Bentley and Sedgewick; see [47, 124]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Coupon collector problem and birthday paradox. Similar considerations apply
to weighted EGFs of words, as considered in Chapter II. For instance, the proba-
bility of having a complete coupon collection at time n in the case a company issues
coupon j with probability p j , for 1 ≤ j ≤ r , is (coupon collector problem, p. 114)

P(C ≤ n) = n![zn]
r∏

j=1

(
ep j z − 1

)
.

The probability that all coupons are different at time n is (birthday paradox, p. 114)

P(B > n) = n![zn]
r∏

j=1

(
1 + p j z

)
,

which corresponds to the birthday problem in the case of non-uniform mating periods.
Integral representations comparable those of Chapter II are also available:

E(C) =
∫ ∞

0

⎛⎝1 −
r∏

j=1

(1 − e−pi t )

⎞⎠ dt, E(B) =
∫ ∞

0

r∏
j=1

(
1 + p j t

)
e−t dt.

See the study by Flajolet, Gardy, and Thimonier [231] for variations on this theme.
� III.27. Birthday paradox with leap years. Assume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectation of the first birthday collision. �

Example III.19. Rises in Bernoulli trials: Simon Newcomb’s problem. Simon Newcomb
(1835–1909), otherwise famous for his astronomical work, was reportedly fond of playing the
following patience game: one draws from a deck of 52 playing cards, stacking them in piles in
such a way that one new pile is started each time a card appears whose number is smaller than
its predecessor. What is the probability of obtaining t piles? A solution to this famous problem
is found in MacMahon’s book [428] and a concise account by Andrews appears in [14, §4.4].

Simon Newcomb’s problem can be rephrased in terms of rises. Given a word w =
w1 · · ·wn over the alphabet A ordered by a1 < a2 < · · · , a weak rise is a position j < n
such that w j ≤ w j+1. (The numbers of piles in Newcomb’s problem is the number of cards
minus 1 minus the number of weak rises.) Let W ≡ W (z, v,u) be the MGF of all words where
z marks length, v marks the number of weak rises, and u j marks the number of occurrences of
letter j . Set z j = zu j and let W j ≡ W j (z, v, u) be the MGF relative to those non-empty words
that start with letter a j , so that

W = 1 + (W1 + · · · + Wr ).

The W j satisfy the set of equations ( j = 1, . . . , r ),

(45) W j = z j + z j
(
W1 + · · · + W j−1

)+ vz j
(
W j + · · · + Wr

)
,



“book” — 2008/10/3 — 16:05 — page 193 — #207

III. 6. COMPLETE GENERATING FUNCTIONS AND DISCRETE MODELS 193

as seen by considering the first letter of each word. The linear system (45) is easily solved upon
setting W j = z j X j . Indeed, by differencing, one finds that

(46) X j+1 − X j = z j X j (1 − v), X j+1 = X j (1 + z j (1 − v)).

In this way, each X j can be determined in terms of X1. Then transporting the resulting expres-
sions into the relation (45) taken with j = 1, and solving for X1 leads to an expression for X1,
hence for all the X j and finally for W itself:

(47) W = v − 1

v − P−1
, P :=

r∏
j=1

(1 + (1 − v)z j ).

Goulden and Jackson obtain a similar expressions in [303] (pp. 72 and 236).
The result of (47) gives access to moments (e.g., mean and variance) of the number of

rises in a Bernoulli sequence as well as to counting results, once coefficients of the MGF are
extracted. (See also [289, 303] for an approach based on the theory of symmetric functions.)
The OGF (47) can alternatively be derived by an inclusion–exclusion argument: refer to the
particular case of rises in permutations and Eulerian numbers, p. 210. . . . . . . . . . . . . . . . . . . . . �

� III.28. The final solution to Simon Newcomb’s problem. Consider a deck of cards with a suits
and r distinct card values. Set N = ra. (The original problem has r = 13, a = 4, N = 52.)
One has from (47): W = (v − 1)P/(1 − vP). The expansion of (1 − y)−1 and the collection
of coefficients yields

[za
1 · · · za

r ]W = (1 − v)
∑
k≥1

vk−1[za
1 · · · za

r ]Pk = (1 − v)N+1
∑
k≥1

(
k

a

)r
vk−1,

so that [za
1 · · · za

r v
t ]W =

t+1∑
k=0

(−1)t+1−k
(

N + 1

t + 1 − k

)(
k

a

)r
. �

III. 6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerning the degree profile and the level
profile of trees, while being tightly coupled with an important class of stochastic pro-
cesses, namely branching processes.

The major classes of trees that we have encountered so far are the unlabelled
plane trees and the labelled non-plane trees, prototypes being general Catalan trees
(Chapter I) and Cayley trees (Chapter II). In both cases, the counting GFs satisfy a
relation of the form

(48) Y (z) = zφ(Y (z)),

where the GF is either ordinary (plane unlabelled trees) or exponential (non-plane
labelled trees). Corresponding to the two cases, the function φ is determined, respec-
tively, by

(49) φ(w) =
∑
ω∈�

wω, φ(w) =
∑
ω∈�

wω

ω!
,

where � ⊆ N is the set of allowed node degrees. Meir and Moon in an important
paper [435] have described some common properties of tree families that are deter-
mined by the Axiom (48). (For instance mean path length is invariably of order n

√
n,

see Chapter VII, and height is O(
√

n).) Following these authors, we call a simple
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variety of trees any class whose counting GF is defined by an equation of type (48).
For each of the two cases of (49), we write

(50) φ(w) =
∞∑
j=0

φ jw
j .

Degree profile of trees. First we examine the degree profile of trees. Such a
profile is determined by the collection of parameters χ j , where χ j (τ ) is the number of
nodes of outdegree j in τ . The variable u j will be used to mark χ j , that is, nodes of
outdegree j . The discussion already conducted regarding recursive parameters shows
that the GF Y (z,u) satisfies the equation

Y (z,u) = z	(Y (z,u)) where 	(w) = u0φ0 + u1φ1w + u2φ2w
2 + · · · .

Formal Lagrange inversion can then be applied to Y (z,u), to the effect that its coeffi-
cients are given by the coefficients of the powers of 	.

Proposition III.7 (Degree profile of trees). The number of trees of size n and degree
profile (n0, n1, n2, . . .) in a simple variety of trees defined by the “generator” (50) is

(51) Yn;n0,n1,n2,... = ωn · 1

n

(
n

n0, n1, n2, . . .

)
φ

n0
0 φ

n1
1 φ

n2
2 · · · .

There, ωn = 1 in the unlabelled case, whereas ωn = n! in the labelled case. The
values of the n j are assumed to satisfy the two consistency conditions:

∑
j n j = n

and
∑

j jn j = n − 1.

Proof. The consistency conditions translate the fact that the total number of nodes
should be n while the total number of edges should equal n−1 (each node of degree j
is the originator of j edges). The result follows from Lagrange inversion

Yn;n0,n1,n2,... = ωn · [un0
0 un1

1 un2
2 · · · ]

(
1

n
[wn−1]	(w)n

)
,

to which a standard multinomial expansion applies, yielding (51).
For instance, for general Catalan trees (φ j = 1) and for Cayley trees (φ j = 1/j!)

these formulae become

1

n

(
n

n0, n1, n2, . . .

)
and

(n − 1)!

0!n01!n1 2!n2 · · ·
(

n

n0, n1, n2, . . .

)
.

�
The proof above also reveals the logical equivalence between the general tree

counting result of Proposition III.7 and the most general case of Lagrange inversion.
(This equivalence is due to the fact that any fixed series is a special case of 	.) Put
another way, any direct proof of (51) provides a combinatorial proof of the Lagrange
inversion theorem. Such direct derivations have been proposed by Raney [503] and
are based on simple but cunning surgery performed on lattice path representations of
trees (the “conjugation principle” of which a particular case is the “cycle lemma” of
Dvoretzky–Motzkin [184]; see Note I.47, p. 75).
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Level profile of trees. The next example demonstrates the utility of complete GFs
for investigating the level profile of trees.

Example III.20. Trees and level profile. Given a rooted tree τ , its level profile is defined as the
vector (n0, n1, n2, . . .) where n j is the number of nodes present at level j (i.e., at distance j
from the root) in tree τ . Continuing within the framework of a simple variety of trees, we now
define the quantity Yn;n0,n1,... to be the number of trees with size n and level profile given by
the n j . The corresponding complete GF Y (z, u) with z marking size and u j marking nodes at
level j is expressible in terms of the fundamental “generator” φ:

(52) Y (z, u) = zu0φ (zu1φ (zu2φ (zu3φ(· · · )))) .

We may call this a “continued φ-form”. For instance, general Catalan trees have generator
φ(w) = (1 − w)−1, so that in this case the complete GF is the continued fraction:

(53) Y (z, u) = u0z

1 − u1z

1 − u2z

1 − u3z

. . .

.

(See Section V. 4, p. 318, for complementary aspects.) In contrast, Cayley trees are generated
by φ(w) = ew , so that

Y (z, u) = zu0ezu1ezu2ezu3e. .
.

,

which is a “continued exponential”; that is, a tower of exponentials. Expanding such generating
functions with respect to u0, u1, . . ., in order gives the following proposition straightforwardly.

Proposition III.8 (Level profile of trees). The number of trees of size n, having (n0, n1, n2, . . .)

as level profile, in a simple variety of trees with generator φ(w) is

Yn;n0,n1,n2,... = ωn−1 · φ(n0)
n1 φ

(n1)
n2 φ

(n2)
n3 · · · where φ

(μ)
ν := [wν ]φ(w)μ.

There, the consistency conditions are n0 = 1 and
∑

j n j = n. In particular, the counts for
general Catalan trees and for Cayley trees are, respectively,(

n0 + n1 − 1

n1

)(
n1 + n2 − 1

n2

)(
n2 + n3 − 1

n3

)
· · · , (n − 1)!

n0!n1!n2! · · ·n
n1
0 nn2

1 nn3
2 · · · .

(Note that one must always have n0 = 1 for a single tree; the general formula with n0  = 1
and ωn−1 replaced by ωn−n0 gives the level profile of forests.) The first of these enumerative
results is due to Flajolet [214] and it places itself within a general combinatorial theory of
continued fractions (Section V. 4, p. 318); the second one is due to Rényi and Szekeres [507] ,
who developed such a formula in the course of a deep study relative to the distribution of height
in random Cayley trees (Chapter VII, p. 537). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� III.29. Continued forms for path length. The BGF of path length is obtained from the level
profile MGF by means of the substitution u j 	→ q j . For general Catalan trees and Cayley trees,
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this gives

(54) G(z, q) = z

1 − zq

1 − zq2

. . .

, T (z, q) = zezqezq2e. .
.

,

where q marks path length. The MGFs are ordinary and exponential. (Combined with differen-
tiation, such MGFs represent an attractive option for mean value analysis.) �

Trees and processes. The next example is an especially important application of
complete GFs, as these GFs provide a bridge between combinatorial models and a
major class of stochastic processes, the branching processes of probability theory.

Example III.21. Weighted tree models and branching processes. Consider the family G of all
general plane trees. Let % = (λ0, λ1, . . .) be a system of numeric weights. The weight of a
node of outdegree j is taken to be λ j and the weight of a tree is the product of the individual
weights of its nodes:

(55) π(τ) =
∞∏
j=0

λ
χ j (τ )

j ,

with χ j (τ ) the number of nodes of degree j in τ . One can view the weighted model of trees as
a model in which a tree receives a probability proportional to π(w). Precisely, the probability
of selecting a particular tree τ under this model is, for a fixed size n,

(56) PGn ,%(τ) =
π(τ)∑

|T |=n π(T )
.

This defines a probability measure over the set Gn and one can consider events and random
variables under this weighted model.

The weighted model defined by (55) and (56) covers any simple variety of trees: just
replace each λ j by the quantity φ j given by the “generator’ (50) of the model. For instance,
plane unlabelled unary–binary trees are obtained by % = (1, 1, 1, 0, 0, . . .), while Cayley trees
correspond to λ j = 1/j!. Two equivalence-preserving transformations are then especially
important in this context:

(i) Let %∗ be defined by λ∗j = cλ j for some non-zero constant c. Then the weight cor-

responding to %∗ satisfies π∗(τ ) = c|τ |π(w). Consequently, the models associated
to % and %∗ are equivalent as regards (56).

(i i) Let %◦ be defined by λ◦j = θ jλ j for some non-zero constant θ . Then the weight

corresponding to %◦ satisfies π◦(τ ) = c|τ |−1π(w), since
∑

j jχ j (τ ) = |τ | − 1 for
any tree τ . Thus the models %◦ and % are again equivalent.

Each transformation has a simple effect on the generator φ, namely:

(57) φ(w) 	→ φ∗(w) = cφ(w) and φ(w) 	→ φ◦(w) = φ(θw).

Once equipped with such equivalence transformations, it becomes possible to describe
probabilistically the process that generates trees according to a weighted model. Assume that
λ j ≥ 0 and that the λ j are summable. Then the normalized quantities

p j =
λ j∑
j λ j
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form a probability distribution over N. By the first equivalence-preserving transformation the
model induced by the weights p j is the same as the original model induced by the λ j . (By
the second equivalence transformation, one can furthermore assume that the generator φ is the
probability generating function of the p j .)

Such a model defined by non-negative weights {p j } summing to 1 is nothing but the clas-
sical model of branching processes (also known as Galton–Watson processes); see [21, 324]. In
effect, a realization T of the branching process is classically defined by the two rules: (i) pro-
duce a root node of degree j with probability p j ; (i i) if j ≥ 1, attach to the root node a
collection T1, . . . , Tj of independent realizations of the process. This may be viewed as the
development of a “family” stemming from a common ancestor where any individual has prob-
ability p j of giving birth to j children. Clearly, the probability of obtaining a particular finite
tree τ has probability π(τ), where π is given by (55) and the weights are λ j = p j . The
generator

φ(w) =
∞∑
j=0

p jw
j

is then nothing but the probability generating function of (one-generation) offspring, with the
quantity μ = φ′(1) being its mean size.

For the record, we recall that branching processes can be classified into three categories
depending on the values of μ.

Subcriticality: when μ < 1, the random tree produced is finite with probability 1
and its expected size is also finite.
Criticality: when μ = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.
Supercriticality: when μ > 1, the random tree produced is finite with probability
strictly less than 1.

From the discussion of equivalence transformations (57), it is furthermore true that, regarding
trees of a fixed size n, there is complete equivalence between all branching processes with
generators of the form

φθ (w) =
φ(θw)

φ(θ)
.

Such families of related functions are known as “exponential families” in probability theory. In
this way, one may always regard at will the random tree produced by a weighted model of some
fixed size n as originating from a branching process (of subcritical, critical, or supercritical
type) conditioned upon the size of the total progeny.

Finally, take a set S ⊆ G for which the complete generating function of S with respect to
the degree profile is available,

S(z, u0, u1, . . .) =
∑
τ∈S

z|τ |
(

uχ0(τ )
0 uχ1(τ )

1 · · ·
)
.

Then, for a system of weights %, one has

S(z, λ0, λ1, . . .) =
∑
τ∈S

π(τ)z|τ |.

Thus, we can find the probability that a weighted tree of size n belongs to S, by extracting
the coefficient of zn . This applies a fortiori to branching processes as well. In summary, the
analysis of parameters of trees of size n under either weighted models or branching process
models follows from substituting weights or probability values in the corresponding complete
generating functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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The reduction of combinatorial tree models to branching processes was pursued
early, most notably by the “Russian School”: see especially the books by Kolchin
[386, 387] and references therein. (For asymptotic purposes, the equivalence between
combinatorial models and critical branching processes often turns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may be viewed as a systematic way
of obtaining equations relative to characteristics of branching processes. We do not
elaborate further along these lines as this would take us outside of the scope of the
present book.
� III.30. Catalan trees, Cayley trees, and branching processes. Catalan trees of size n are
defined by the weighted model in which λ j ≡ 1, but also equivalently by λ̂ j = cθ j , for
any c > 0 and θ ≤ 1. In particular they coincide with the random tree produced by the critical
branching process whose offspring probabilities are geometric: p j = 1/2 j+1.

Cayley trees are a priori defined by λ j = 1/j!. They can be generated by the critical

branching process with Poisson probabilities, p j = e−1/j!, and more generally with an arbi-

trary Poisson distribution p j = e−λλ j/j!. �

III. 7. Additional constructions

We discuss here additional constructions already examined in earlier chapters;
namely pointing and substitution (Section III. 7.1), order constraints (Section III. 7.2),
and implicit structures (Section III. 7.3). Given that basic translation mechanisms can
be directly adapted to the multivariate realm, such extensions involve basically no
new concept, and the methods of Chapters I and II can be easily recycled. In Sec-
tion III. 7.4, we revisit the classical principle of inclusion–exclusion under a generat-
ing function perspective. In this light, the principle appears as a typically multivariate
device well suited to enumerating objects according the number of occurrences of
subconfigurations.

III. 7.1. Pointing and substitution. Let 〈F , χ〉 be a class–parameter pair, where
χ is multivariate of dimension r ≥ 1, and let F(z) be the MGF associated to it in
the notations of (19) and (28). In particular z0 ≡ z marks size, and zk marks the
component k of the multiparameter χ . If z marks size, then, as in the univariate
case, θz ≡ z∂z translates the fact of distinguishing one atom. Generally, pick up a
variable x ≡ z j for some j with 0 ≤ j ≤ r . Then since

x∂x (s
atbx f ) = f · (satbx f ),

the interpretation of the operator θx ≡ x∂x is immediate; it means “pick up in all
possible ways in objects of F a configuration marked by x and point to it”. For
instance, if F(z, u) is the BGF of trees where z marks size and u marks leaves,
then θu F(z, u) = u∂u F(z, u) enumerates trees with one distinguished leaf.

Similarly, the substitution x 	→ S(z) in a GF F , where S(z) is the MGF of a
class S, means attaching an object of type S to configurations marked by the vari-
able x in F . The process is better understood by practice than by long formal devel-
opments. Justification in each particular case can be easily obtained by returning to
the combinatorial representation of generating functions as images of combinatorial
classes.
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Figure III.16. The technique of “adding a slice” for constrained compositions.

Example III.22. Constrained integer compositions and “slicing”. This example illustrates
variations around the substitution scheme. Consider compositions of integers where successive
summands have sizes that are constrained to belong to a fixed set R ⊆ N2. For instance, the
relations

R1 = {(x, y) | 1 ≤ x ≤ y}, R2 = {(x, y) | 1 ≤ y ≤ 2x},
correspond to weakly increasing summands in the case of R1 and to summands that can at most
double at each stage in the case of R2. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells aligned in columns along the horizontal
axis, with successive columns obeying the constraint imposed by R.

Let F(z, u) be the BGF of such R–restricted compositions, where z marks total sum and u
marks the value of the last summand; that is, the height of the last column. The function F(z, u)
satisfies a functional equation of the form

(58) F(z, u) = f (zu)+ (L [F(z, u)])u 	→zu ,

where f (z) is the generating function of the one-column objects and L is a linear operator over
formal series in u given by

(59) L[u j ] :=
∑

( j,k)∈R
uk .

In effect, Equation (58) describes inductively objects as comprising either one column ( f (zu))
or else as being formed by adding a new column to an existing one; see Figure III.16. The
process of appending a slice of size j to one of size k, with ( j, k) ∈ R, is precisely what (59)
expresses; the functional equation (58) is obtained by effecting the final substitution u 	→ zu,
in order to take into account the k atoms contributed by the new slice. The special case F(z, 1)
gives the enumeration of F–objects irrespective of the size of the last column.

For a rule R that is “simple”, the basic equation (58) will often involve a substitution. Let
us first rederive in this way the enumeration of partitions. We take R = R1 and assume that
the first column can have any positive size. Compositions into increasing summands are clearly
the same as partitions. Since

L[u j ] = u j + u j+1 + u j+2 + · · · = u j

1 − u
,

the function F(z, u) satisfies a functional equation involving a substitution,

(60) F(z, u) = zu

1 − zu
+ 1

1 − zu
F(z, zu).

This relation iterates: any linear functional equation of the substitution type

φ(u) = α(u)+ β(u)φ(σ (u))
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is solved formally by

(61) φ(u) = α(u)+ β(u)α(σ (u))+ β(u)β(σ (u))α(σ 〈2〉(u))+ · · · ,
where σ 〈 j〉(u) designates the j th iterate of u.

We can now return to partitions. The turnkey solution (61) gives, upon iterating on the
second argument and treating the first argument as a parameter,

(62) F(z, u) = zu

1 − zu
+ z2u

(1 − zu)(1 − z2u)
+ z3u

(1 − zu)(1 − z2u)(1 − z3u)
+ · · · .

Equivalence with the alternative form

(63) F(z, u) = zu

1 − z
+ z2u2

(1 − z)(1 − z2)
+ z3u3

(1 − z)(1 − z2)(1 − z3)
+ · · ·

is then easily verified from (60) by expanding F(z, u) as a series in u and applying the method of
indeterminate coefficients to the form (1−zu)F(z, u) = zu+F(z, zu). (The representation (63)
is furthermore consistent with the treatment of partitions given in Chapter I since the quantity
[uk ]F(z, u) clearly represents the OGF of non-empty partitions whose largest summand is k. In
passing, the equality between (62) and (63) is a shallow but curious identity that is quite typical
of the area of q–analogues.)

This same method has been applied in [250] to compositions satisfying condition R2
above. In this case, successive summands are allowed to double at most at each stage. The
associated linear operator is

L[u j ] = u + · · · + u2 j = u
1 − u2 j

1 − u
.

For simplicity, it is assumed that the first column has size 1. Thus, F satisfies a functional
equation of the substitution type:

F(z, u) = zu + zu

1 − zu

(
F(z, 1)− F(z, z2u2)

)
.

This can be solved by means of the general iteration mechanism (61), treating for the moment
F(z, 1) as a known quantity: with a(u) := zu + F(z, 1)/(1 − zu), one has

F(z, u) = a(u)− zu

1 − zu
a(z2u2)+ zu

1 − zu

z2u2

1 − z2u2
a(z6u4)− · · · .

Then, the substitution u = 1 in the solution becomes permissible. Upon solving for F(z, 1),
one eventually gets the somewhat curious GF for compositions satisfying R2:

(64)
F(z, 1) =

∑
j≥1(−1) j−1z2 j+1− j−2/Q j−1(z)∑

j≥0(−1) j z2 j+1− j−2/Q j (z)

where Q j (z) = (1 − z)(1 − z3)(1 − z7) · · · (1 − z2 j−1).

The sequence of coefficients starts as 1, 1, 2, 3, 5, 9, 16, 28, 50 and is EIS A002572: it rep-
resents, for instance, the number of possible level profiles of binary trees, or equivalently the
number of partitions of 1 into summands of the form 1, 1

2 ,
1
4 ,

1
8 , . . . (this is related to the number

of solutions to Kraft’s inequality). See [250] for details, including precise asymptotic estimates,
and Tangora’s paper [571] for relations to algebraic topology. . . . . . . . . . . . . . . . . . . . . . . . . . . �
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The reason for presenting the slicing method3 in some detail is that it is very
general. It has been particularly employed to derive a number of original enumerations
of polyominoes by area, a topic of interest in some branches of statistical mechanics:
for instance, the book by Janse van Rensburg [592] discusses many applications of
such lattice models to polymers and vesicles. Bousquet-Mélou’s review paper [82]
offers a methodological perspective. Some of the origins of the method point to Pólya
in the 1930s, see [490], and independently to Temperley [574, pp. 65–67].
� III.31. Pointing–erasing and the combinatorics of Taylor’s formula. The derivative oper-
ator ∂x corresponds combinatorially to a “pointing–erasing” operation: select in all possible
ways an atom marked by x and make it transparent to x-marking (e.g., by replacing it by a
neutral object). The operator 1

k!∂
k
x f (x), then corresponds to picking up in all possible way a

subset (order does not count) of k configurations marked by x . The identity (Taylor’s formula)

f (x + y) =
∑
k≥0

(
1

k!
∂k

x f (x)

)
yk

can then receive a simple combinatorial interpretation: Given a population of individuals (F
enumerated by f ), form the bicoloured population of individuals enumerated by f (x + y),
where each atom of each object can be repainted either in x-colour or y-colour; the process is
equivalent to deciding a priori for each individual to repaint k of its atoms from x to y, this for
all possible values of k ≥ 0. Conclusion: seen from combinatorics, Taylor’s formula merely
expresses the logical equivalence between two ways of counting. �

� III.32. Carlitz compositions I. Let K be the class of compositions such that all pairs of
adjacent summands are formed of distinct values. These can be generated by the operator
L[u j ] = uz

1−uz − u j z j , so that L[ f (u)] = uz
1−uz f (1) − f (uz). The BGF K (z, u), with u

marking the value of the last summand, then satisfies a functional equation,

K (z, u) = uz

1 − uz
+ uz

1 − uz
K (z, 1)− K (z, zu),

giving eventually K (z) ≡ K (z, 1) under the form

(65)
K (z) =

⎛⎝1 +
∑
j≥1

(−z) j

1 − z j

⎞⎠−1

= 1 + z + z2 + 3z3 + 4z4 + 7z5 + 14z6 + 23z7 + 39z8 + · · · .
The sequence of coefficients constitutes EIS A003242. Such compositions were introduced by
Carlitz in 1976; the derivation above is from a paper by Knopfmacher and Prodinger [369]
who provide early references and asymptotic properties. (We resume this thread in Note III.35,
p. 206, then in Chapter IV, p. 263, with regard to asymptotics.) �

III. 7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been given in Subsection II. 6.3 (p. 139).
We recall that the modified labelled product

A = (B� � C)
only includes the elements of (B � C) such that the minimal label lies in the A com-
ponent. Once more the univariate rules generalize verbatim for parameters that are

3For other applications, see Examples V.20, p. 365 (horizontally convex polyominoes) and IX.14,
p. 660 (parallelogram polyominoes), as well as Subsection VII. 8.1, p. 506 (walks and the kernel method).
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peak: σi−1 < σi > σi+1 leaf node (u0)

double rise: σi−1 < σi < σi+1 unary right-branching (u1)

double fall: σi−1 > σi > σi+1 unary left-branching (u′1)

valley: σi−1 > σi < σi+1 binary node (u2)

Figure III.17. Local order patterns in a permutation and the four types of nodes in
the corresponding increasing binary tree.

inherited and the corresponding exponential MGFs are related by

A(z,u) =
∫ z

0
(∂t B(t,u)) · C(t,u) dt.

To illustrate this multivariate extension, we shall consider a quadrivariate statistic on
permutations.

Example III.23. Local order patterns in permutations. An element σi of a permutation
written σ = σ1, . . . , σn when compared to its immediate neighbours can be categorized into
one of four types4 summarized in the first two columns of Figure III.17. The correspondence
with binary increasing trees described in Example II.17 and Figure II.16 (p. 143) then shows the
following: peaks and valleys correspond to leaves and binary nodes, respectively, while double
rises and double falls are associated with right-branching and left-branching unary nodes. Con-
sider the class Î of non-empty increasing binary trees (so that Î = I \ {ε} in the notations of
p. 143) and let u0, u1, u′1, u2 be markers for the number of nodes of each type, as summarized
in Figure III.17. Then the exponential MGF of non-empty increasing trees under this statistic is
given by

Î = u0Z + u1(Z� � Î)+ u′1(Î �Z
�)+ u2(Î �Z� � Î)

�⇒ Î (z) = u0z +
∫ z

0

(
(u1 + u1) Î (w)+ u2 Î (w)2

)
dw,

which gives rise to the differential equation:

∂

∂z
Î (z, u) = u0 + (u1 + u′1) Î (z,u)+ u2 Î (z,u)2.

This is solved by separation of variables as

(66) Î (z, u) = δ

u2

v1 + δ tan(zδ)

δ − v1 tan(zδ)
− v1

u2
,

where the following abbreviations are used:

v1 = 1

2
(u1 + u′1), δ =

√
u0u2 − v2

1 .

One finds

Î = u0z + u0(u1 + u′1)
z2

2!
+ u0((u1 + u′1)

2 + 2u0u2)
z3

3!
+ · · · ,

4Here, for |σ | = n, we regard σ as bordered by (−∞,−∞), i.e., we set σ0 = σn+1 = −∞ and let
the index i in Figure III.17 vary in [1 . . n]. Alternative bordering conventions prove occasionally useful.



“book” — 2008/10/3 — 16:05 — page 203 — #217

III. 7. ADDITIONAL CONSTRUCTIONS 203

Figure III.18. The level profile of a random increasing binary tree of size 256.
(Compare with Figure III.15, p. 186, for binary trees drawn under the uniform Catalan
statistics.)

which agrees with the small cases. This calculation is consistent with what has been found in
Chapter II regarding the EGF of all non-empty permutations and of alternating permutations,

z

1 − z
, tan(z),

that follow from the substitutions {u0 = u1 = u′1 = u2 = 1} and {u0 = u2 = 1, u1 = u′1 = 0},
respectively. The substitution {u0 = u1 = u, u′1 = u2 = 1} gives a simple variant (without the
empty permutation) of the BGF of Eulerian numbers (75) on p. 209.

From the quadrivariate GF, there results that, in a tree of size n the mean number of nodes
of nullary, unary, or binary type is asymptotic to n/3, with a variance that is O(n), thereby
ensuring concentration of distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

A similar analysis yields path length. It is found that a random increasing binary
tree of size n has mean path length

2n log n + O(n).

Contrary to what the uniform combinatorial model gives, such trees tend to be rather
well balanced, and a typical branch is only about 38.6% longer than in a perfect binary
tree (since 2/ log 2

.= 1.386): see Figure III.18 for an illustration. This fact applies
to binary search trees (Note III.33) and it justifies the fact that the performance of
such trees is quite good, when they are applied to random data [378, 429, 538] or
subjected to randomization [451, 520]. See Subsection VI. 10.3 (p. 427) dedicated
to tree recurrences for a general analysis of additive functionals on such trees and
Example IX.28, p. 684, for a distributional analysis of depth.
� III.33. Binary search trees (BSTs). Given a permutation τ , one defines inductively a tree
BST(τ ) by

BST(ε) = ∅; BST(τ ) = 〈τ1, BST(τ |<τ1), BST(τ |>τ1)〉.
(Here, τ |P represents the subword of τ consisting of those elements that satisfy predicate P .)
Let IBT(σ ) be the increasing binary tree canonically associated to σ . Then one has the funda-
mental Equivalence Principle,

IBT(σ )
shape≡ BST(σ−1),

where A
shape≡ B means that A and B have identical tree shapes. (Hint: relate the trees to the

cartesian representation of permutations [538, 600], as in Example II.17, p. 143.) �

III. 7.3. Implicit structures. For implicit structures defined by a relation of the
form A = K[X ], we note that equations involving sums and products, either labelled
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or not, are easily solved just as in the univariate case. The same remark applies for se-
quence and set constructions: refer to the corresponding sections of Chapters I (p. 88)
and II (p. 137). Again, the process is best understood by examples.

Suppose for instance one wants to enumerate connected labelled graphs by the
number of nodes (marked by z) and the number of edges (marked by u). The class K
of connected graphs and the class G of all graphs are related by the set construction,

G = SET(K),
meaning that every graph decomposes uniquely into connected components. The cor-
responding exponential BGFs then satisfy

G(z, u) = eK (z,u) implying K (z, u) = log G(z, u),

since the number of edges in a graph is inherited (additively) from the corresponding
numbers in connected components. Now, the number of graphs of size n having k
edges is

(n(n−1)/2
k

)
, so that

(67) K (z, u) = log

(
1 +

∞∑
n=1

(1 + u)n(n−1)/2 zn

n!

)
.

This formula, which appears as a refinement of the univariate formula of Chapter II
(p. 138), then simply reads: connected graphs are obtained as components (the log
operator) of general graphs, where a general graph is determined by the presence or
absence of an edge (corresponding to (1+u)) between any pair of nodes (the exponent
n(n − 1)/2).

To pull information out of the formula (67) is, however, not obvious due to the
alternation of signs in the expansion of log(1 + w) and due to the strongly divergent
character of the involved series. As an aside, we note here that the quantity

K̂ (z, u) = K
( z

u
, u

)
enumerates connected graphs according to size (marked by z) and excess (marked
by u) of the number of edges over the number of nodes. This means that the results
of Note II.23 (p. 135), obtained by Wright’s decomposition, can be rephrased as the
expansion (within C(u)[[z]]):

(68)
log

(
1 +

∞∑
n=1

(1 + u)n(n−1)/2 znu−n

n!

)
= 1

u
W−1(z)+ W0(z)+ · · ·

= 1

u

(
T − 1

2
T 2

)
+

(
1

2
log

1

1 − T
− 1

2
T − 1

4
T 2

)
+ · · · ,

with T ≡ T (z). See Temperley’s early works [573, 574] as well as the “giant paper on
the giant component” [354] and the paper [254] for direct derivations that eventually
constitute analytic alternatives to Wright’s combinatorial approach.

Example III.24. Smirnov words. Following the treatment of Goulden and Jackson [303], we
define a Smirnov word to be any word that has no consecutive equal letters. Let W = SEQ(A)
be the set of words over the alphabet A = {a1, . . . , ar } of cardinality r , and S be the set of
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Smirnov words. Let also v j mark the number of occurrences of the j th letter in a word. One

has5

W (v1, . . . , vr ) = 1

1 − (v1 + · · · + vr )

Start from a Smirnov word and substitute for any letter a j that appears in it an arbitrary non-
empty sequence of letters a j . When this operation is done at all places of a Smirnov word,
it gives rise to an unconstrained word. Conversely, any word can be associated to a unique
Smirnov word by collapsing into single letters maximal groups of contiguous equal letters. In
other terms, arbitrary words are derived from Smirnov words by a simultaneous substitution:

W = S
[
a1 	→ SEQ≥1{a1}, . . . , ar 	→ SEQ≥1{ar }

]
.

This leads to the relation

(69) W (v1, . . . , vr ) = S

(
v1

1 − v1
, . . . ,

vr

1 − vr

)
.

This relation determines the MGF S(v1, . . . , vr ) implicitly. Now, since the inverse function of
v/(1 − v) is v/(1 + v), one finds the solution:

(70) S(v1, . . . , vr ) = W

(
v1

1 + v1
, . . . ,

vr

1 + vr

)
=

⎛⎝1 −
r∑

j=1

v j

1 + v j

⎞⎠−1

.

For instance, if we set v j = z, that is, we “forget” the composition of the words into letters,
we obtain the OGF of Smirnov words counted according to length as

1

1 − r z
1+z

= 1 + z

1 − (r − 1)z
= 1 +

∑
n≥1

r(r − 1)n−1zn .

This is consistent with elementary combinatorics since a Smirnov word of length n is deter-
mined by the choice of its first letter (r possibilities) followed by a sequence of n − 1 choices
constrained to avoid one letter among r (and corresponding to r − 1 possibilities for each po-
sition). The interest of (70) is to apply equally well to the Bernoulli model where letters may
receive unequal probabilities and where a direct combinatorial argument does not appear to be
easy: it suffices to perform the substitution v j 	→ p j z in this case: see Example IV.10, p. 262
and Note V.11, p. 311, for applications to asymptotics.

From these developments, one can next build the GF of words that never contain more
than m consecutive equal letters. It suffices to effect in (70) the substitution v j 	→ v j +
· · · + vm

j . In particular for the univariate problem (or, equivalently, the case where letters are
equiprobable), one finds the OGF

1

1 − r
z 1−zm

1−z

1 + z 1−zm

1−z

= 1 − zm+1

1 − r z + (r − 1)zm+1
.

This extends to an arbitrary alphabet the analysis of single runs and double runs in binary words
that was performed in Subsection I. 4.1, p. 51. Naturally, the present approach applies equally
well to non-uniform letter probabilities and to a collection of run-length upper-bounds and
lower-bounds dependent on each particular letter. This topic is in particular pursued by different
methods in several works of Karlin and coauthors (see, e.g., [446]), themselves motivated by
applications to life sciences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

5The variable z marking length, being redundant, is best omitted in this calculation.
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� III.34. Enumeration in free groups. Consider the composite alphabet B = A ∪ A, where
A = {a1, . . . , ar } and A = {a1, . . . , ar }. A word over alphabet B is said to be reduced if it
arises from a word over B by a maximal application of the reductions a j a j 	→ ε and a j a j 	→ ε

(with ε the empty word). A reduced word thus has no factor of the form a j a j or a j a j . Such a
reduced word serves as a canonical representation of an element in the free group Fr generated
by A, upon identifying a j = a−1

j . The GF of the class R of reduced words, with u j and u j
marking the number of occurrences of letter a j and a j , respectively, is

R(u1, . . . , ur , u1, . . . , ur ) = S

(
u1

1 − u1
+ u1

1 − u1
, . . . ,

ur

1 − ur
+ ur

1 − ur

)
,

where S is the GF of Smirnov words, as in (70). In particular this gives the OGF of reduced
words with z marking length as R(z) = (1+ z)/(1− (2r −1)z); this implies Rn = 2r(2r −1)n ,
which matches the result given by elementary combinatorics.

The Abelian image λ(w) of an element w of the free group Fk is obtained by letting all
letters commute and applying the reductions a j · a−1

j = 1. It can then be put under the form

am1
1 · · · amr

r , with each m j in Z, so that it can be identified with an element of Zr . Let x =
(x1, . . . , xr ) be a vector of indeterminates and define xλ(w) to be the monomial xm1

1 · · · xmr
r .

Of interest in certain group-theoretic investigations is the MGF of reduced words

Q(z; x) :=
∑
w∈R

z|w|xλ(w) = S

(
zx1

1 − zx1
+ zx−1

1

1 − zx−1
1

, . . . ,
zxr

1 − zxr
+ zx−1

r

1 − zx−1
r

)
,

which is found to simplify to

Q(z; x) = 1 − z2

1 − z
∑r

j=1(x j + x−1
j )+ (2r − 1)z2

.

This last form appears in a paper of Rivin [514], where it is obtained by matrix techniques.
Methods developed in Chapter IX can then be used to establish central and local limit laws
for the asymptotic distribution of λ(w) over Rn , providing an alternative to the methods of
Rivin [514] and Sharp [539]. (This note is based on an unpublished memo of Flajolet, Noy, and
Ventura, 2006.) �

� III.35. Carlitz compositions II. Here is an alternative derivation of the OGF of Carlitz
compositions (Note III.32, p. 201). Carlitz compositions with largest summand ≤ r are obtained
from the OGF of Smirnov words by the substitution v j 	→ z j :

(71) K [r ](z) =
⎛⎝1 −

r∑
j=1

z j

1 + z j

⎞⎠−1

,

The OGF of all Carlitz compositions then results from letting r → ∞:

(72) K (z) =
⎛⎝1 −

∞∑
j=1

z j

1 + z j

⎞⎠−1

.

The asymptotic form of the coefficients is derived in Chapter IV, p. 263. �

III. 7.4. Inclusion–exclusion. Inclusion–exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, in order to count exactly, consists
in grossly overcounting, then performing a simple correction of the overcounting, then
correcting the correction, and so on. Characteristically, enumerative results provided
by inclusion exclusion involve an alternating sum. We revisit this process here in the
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perspective of multivariate generating functions, where it essentially reduces to a com-
bined use of substitution and implicit definitions. Our approach follows Goulden and
Jackson’s encyclopaedic treatise [303].

Let E be a set endowed with a real- or complex-valued measure | · | in such a way
that, for A, B ⊂ E , there holds

|A ∪ B| = |A| + |B| whenever A ∩ B = ∅.
Thus, | · | is an additive measure, typically taken as set cardinality (i.e., |e| = 1 for
e ∈ E) or a discrete probability measure on E (i.e., |e| = pe for e ∈ E). The general
formula

|A ∪ B| = |A| + |B| − |AB| where AB := A ∩ B,

follows immediately from basic set-theoretic principles:∑
c∈A∪B

|c| =
∑
a∈A

|a| +
∑
b∈B

|b| −
∑

i∈A∩B

|i |.

What is called the inclusion–exclusion principle or sieve formula is the following mul-
tivariate generalization, for an arbitrary family A1, . . . , Ar ⊂ E :

(73)
|A1 ∪ · · · ∪ Ar | ≡

∣∣E \ (A1 A2 · · · Ar )
∣∣

=
∑

1≤i≤r

|Ai | −
∑

1≤i1<i2≤r

|Ai1 Ai2 | + · · · + (−1)r−1|A1 A2 · · · Ar |,

where A := E \ A denotes complement. (The easy proof by induction results from el-
ementary properties of the boolean algebra formed by the subsets of E ; see, e.g., [129,
Ch. IV].) An alternative formulation results from setting B j = A j , B j = A j :

(74) |B1 B2 · · · Br | = |E |−
∑

1≤i≤r

|Bi |+
∑

1≤i1<i2≤r

|Bi1 Bi2 |−· · ·+(−1)r |B1 B2 · · · Br |.

In terms of measure, this equality quantifies the set of objects satisfying exactly a
collection of simultaneous conditions (all the B j ) in terms of those that violate at
least some of the conditions (the B j ).

Derangements. Here is a textbook example of an inclusion–exclusion argument,
namely, the enumeration of derangements. Recall that a derangement (p. 122) is a
permutation σ such that σi  = i , for all i . Fix E as the set of all permutations of [1, n],
take the measure | · | to be set cardinality, and let Bi be the subset of permutations in E
associated to the property σi  = i . (There are consequently r = n conditions.) Thus,
Bi means having no fixed point at i , while Bi means having a fixed point at the distin-
guished value i . Then, the left-hand side of (74) gives the number of permutations that
are derangements; that is, Dn . As regards the right-hand side, the kth sum comprises
itself

(n
k

)
terms counting possibilities attached to the choices of indices i1 < · · · < ik ;

each such choice is associated to a factor Bi1 · · · Bik that describes all permutations
with fixed points at the distinguished points i1, . . . , ik (i.e., σ(i1) = i1, . . . , σik = ik).
Clearly, |Bi1 · · · Bik | = (n − k)!. Therefore one has

Dn = n! −
(

n

1

)
(n − 1)! +

(
n

2

)
(n − 2)! − · · · + (−1)n

(
n

n

)
0!,
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which rewrites into the more familiar form

Dn

n!
= 1 − 1

1!
+ 1

2!
− · · · + (−1)n

n!
.

This gives an elementary derivation of the derangement numbers already encountered
in Chapter II and obtained there by means of the labelled set and cycle constructions.

Symbolic inclusion–exclusion. The derivation above is perfectly fine but com-
plex examples may represent somewhat of a challenge. In contrast, as we now explain,
there exists a symbolic alternative based on multivariate generating functions, which
is technically easy and has great versatility.

Let us now re-examine derangements in a generating function perspective. Con-
sider the set P of all permutations and build a superset Q as follows. The set Q
is comprised of permutations in which an arbitrary number of fixed points—some,
possibly none, possibly all—have been distinguished. (This corresponds to arbitrary
products of the B j in the argument above.) For instance Q contains elements like

1, 3, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3,

where distinguished fixed points are underlined. Clearly, if one removes the distin-
guished elements of a γ ∈ Q, what is left constitutes an arbitrary permutation of the
remaining elements. One has

Q ∼= U � P,
where U denotes the class of urns that are sets of atoms. In particular, the EGF of Q
is Q(z) = ez/(1 − z). (What we have just done is to enumerate the quantities that
appear in (74), but with the signs “wrong”, i.e., all pluses.)

Introduce now the variable v to mark the distinguished fixed points in objects
of Q. The exponential BGF is then, by the general principles of this chapter,

Q(z, v) = evz 1

1 − z
.

Let now P(z, u) be the BGF of permutations where u marks the number of fixed
points. Permutations with some fixed points distinguished are generated by the substi-
tution u 	→ 1 + v inside P(z, u). In other words one has the fundamental relation

Q(z, v) = P(z, 1 + v).

This is then immediately solved to give

P(z, u) = Q(z, u − 1),

so that knowledge of (the easy) Q gives (the harder) P . For the case at hand, this
yields

P(z, u) = e(u−1)z

1 − z
, P(z, 0) = D(z) = e−z

1 − z
,

and, in particular, the EGF of derangements has been retrieved. Note that the de-
sired quantity P(z, 0) comes out as Q(z,−1), so that signs corresponding to the sieve
formula (74) have now been put “right”, i.e., alternating.
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The process employed for derangements is clearly very general: counting objects
that contain an exact number of “patterns” is reduced to counting objects that con-
tain the pattern at distinguished places—the latter is usually a simpler problem. The
generating function analogue of inclusion–exclusion is then simply the substitution
v 	→ u − 1, if a bivariate GF is sought, or v 	→ −1 in the univariate case, when
patterns are altogether to be excluded.

Rises in permutations and patterns in words. The book by Goulden and Jack-
son [303, pp. 45–48] describes a useful formalization of the inclusion process operat-
ing on MGFs. Conceptually, it combines substitution and implicit definitions, just as
in the case of derangements above. Again, the modus operandi is best grasped through
examples, two of which are detailed now.

Example III.25. Rises and ascending runs in permutations. A rise (also called an ascent)
in a permutation σ = σ1 · · · σn is a pair of consecutive elements σiσi+1 satisfying σi < σi+1
(with 1 ≤ i < n). The problem is to determine the number An,k of permutations of size
having exactly k rises, together with the exponential BGF A(z, u). By symmetry, we are also
enumerating descents (defined by σi > σi+1) as well as ascending runs that are each terminated
by a descent.

Guided by the inclusion–exclusion principle, we tackle the easier problem of enumerating
permutations with distinguished rises, of which the set is denoted by B. For instance, B contains
elements such as

2 6 1 3↗4↗8↗9↗11 15 12 5↗10 13 7 14,

where those rises that are distinguished are represented by arrows. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent distinguished rises (boxed in the repre-
sentation) will be called clusters. Then, B can be specified by the sequence construction applied
to atoms (Z) and clusters (C) as

B = SEQ(Z + C), where C = (Z ↗ Z)+ (Z ↗ Z ↗ Z)+ · · · = SET≥2(Z).

since a cluster is an ordered sequence, or equivalently a set, furthermore having at least two
elements. This gives the EGF of B as

B(z) = 1

1 − (z + (ez − 1 − z))
= 1

2 − ez ,

which happens to coincide with the EGF of surjections.
For inclusion–exclusion purposes, we need the BGF of B with v marking the number of

distinguished rises. A cluster of size k contains k − 1 rises, so that

B(z, v) = 1

1 − (z + (ezv − 1 − zv)/v)
= v

v + 1 − ezv .

Now, the usual argument applies: the BGF A(z, u) satisfies B(z, v) = A(z, 1 + v), so that
A(z, u) = B(z, u − 1), which yields the particularly simple form

(75) A(z, u) = u − 1

u − ez(u−1)
.

In particular, this GF expands as

A(z, u) = 1 + z + (u + 1)
z2

2!
+ (u2 + 4u + 1)

z3

3!
+ (u3 + 11u2 + 11u + 1)

z4

4!
+ · · · .
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The coefficients An,k are known as the Eulerian numbers (Invitation, p. 9). In combinatorial
analysis, these numbers are almost as classic as the Stirling numbers; a detailed discussion of
their properties is to be found in classical treatises such as Comtet [129] or Graham et al. [307].

Moments derive easily from an expansion of (75) at u = 1, which gives

A(z, u) = 1

1 − z
+ 1

2

z2

(1 − z)2
(u − 1)+ 1

12

z3(2 + z)

(1 − z)3
(u − 1)2 + · · · .

In particular: the mean of the number of rises in a random permutation of size n is 1
2 (n − 1)

and the variance is ∼ 1
12 n, ensuring concentration of distribution.

The same method applies to the enumeration of ascending runs: for a fixed parameter �,
an ascending run of length � is a sequence of consecutive elements σiσi+1 · · · σi+� such that
σi < σi+1 < · · · < σi+�. (Thus, a rise is an ascending run of length 1.) We define a cluster as a
sequence of distinguished runs which overlap in the sense that they share some of the elements
of the permutation. The exponential BGF of permutations with distinguished ascending runs is
then

B(z, v) = 1

1 − z − Î (z, v)
, where Î (z, v) =

∑
n,k

In,kv
k zn

n!
,

and In,k is the number of ways of covering the segment [1, n] with k distinct intervals of length �
that are contained in [1, n] and have integral end points. The numbers In,k themselves result
from elementary combinatorics (see also the case of patterns in words below) and one has for
the OGF corresponding to Î :

I (z, v) = z�+1v

1 − v(z + z2 + · · · + z�)
.

(Proof: The first segment in the covering must be placed on the left, the others appear in suc-
cession, each shifted right by 1 to � positions from the previous one.) The last two equations
finally determine the exponential BGF of permutations with size marked by z and ascending
runs of length �+ 1 marked by u,

(76) A(z, u) = B(z, u − 1),

given the inclusion–exclusion principle.
The resulting formulae generalize the case of rises (� = 1). They can be made explicit

by first expanding the OGF I (z, v) into partial fractions, then applying the transformation (1 −
ωz)−1 	→ eωz in order to translate I (z, v) into Î (z, v). The net result is

A(z, u) = 1

1 − z − Î (z, u − 1)
, where Î (z, v) = (1 − z)(v + 1)+

�∑
j=1

c j (v)e
ω j (v)z

involves a sum of exponentials. In this last equation, the ω j (v) are the roots of the characteristic

equation ω� = v(1 + · · · + ω�−1) and the c j (v) are the corresponding coefficients in the
partial fraction decomposition of I (z, v). These expressions were first published by Elizalde
and Noy [190] who obtained them by means of tree decompositions.

The BGF (76) can be exploited in order to determine quantitative information on long runs
in permutations. First, an expansion at u = 1 (also, by a direct reasoning: see the discussion
of hidden words in Chapter I) shows that the mean number of ascending runs of length � − 1
is (n − � + 1)/�! exactly, as soon as n ≥ �. This entails that, if n = o(�!), the probability of
finding an ascending run of length �− 1 tends to 0 as n → ∞. What is used in passing in this
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argument is the general fact that for a discrete variable X with values in 0, 1, 2, . . ., one has
(with Iverson’s notation),

P(X ≥ 1) = E([[X ≥ 1]]) = E(min(X, 1)) ≤ E(X).

An inequality in the converse direction can be obtained from the second moment method. In
effect, the variance of the number of ascending runs of length �− 1 is found to be of the exact
form α�n + β�, in which α� is essentially 1/�! and β� is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of distribution holds as long as � is such that
(�+1)! = o(n). In this case, with high probability (i.e., with probability tending to 1 as n tends
to ∞), there is at least one ascending run of length �− 1 (in fact, many). In particular:

Let Ln be the length of the longest ascending run in a random permutation of n
elements. Let �0(n) be the smallest integer such that �! ≥ n. Then the distribu-
tion of Ln is concentrated: Ln/�0(n) converges in probability to 1 (in the sense of
Equation (14), p. 162).

What has been found here is a fairly sharp threshold phenomenon. . . . . . . . . . . . . . . . . . . . . . . �
� III.36. Permutations without �–ascending runs. The EGF of permutations without 1–, 2–
and 3–ascending runs are respectively⎛⎝∑

i≥0

x2i

(2i)!
− x2i+1

(2i + 1)!

⎞⎠−1

,

⎛⎝∑
i≥0

x3i

(3i)!
− x3i+1

(3i + 1)!

⎞⎠−1

,

⎛⎝∑
i≥0

x4i

(4i)!
− x4i+1

(4i + 1)!

⎞⎠−1

,

and so on. (See Carlitz’s review [103] as well as Elizalde and Noy’s article [190] for interesting
results involving several types of order patterns in permutations.) �

Many variations on the theme of rises and ascending runs are clearly possible. Lo-
cal order patterns in permutations have been intensely researched, notably by Carlitz
in the 1970s. Goulden and Jackson [303, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutations patterns associated with binary
increasing trees are also studied by Flajolet, Gourdon, and Martı́nez [235] (by com-
binatorial methods) and Devroye [159] (by probabilistic arguments). On another reg-
ister, the longest ascending run has been found above to be of order (log n)/ log log n
in probability. The superficially resembling problem of analysing the length of the
longest increasing sequence in random permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of attention, but is considerably
harder. This quantity is ∼ 2

√
n on average and in probability, as shown by a pene-

trating analysis of the shape of random Young tableaux due to Logan and Shepp [411]
and Vershik and Kerov [596]. Solving a problem that had been open for over 20 years,
Baik, Deift, and Johansson [24] have eventually determined its limiting distribution.
The undemanding survey by Aldous and Diaconis [10] discusses some of the back-
ground of this problem, while Chapter VIII (p. 596) shows how to derive bounds that
are of the right order of magnitude, using saddle-point methods.

Example III.26. Patterns in words. Take the set of all words W = SEQ{A} over a finite
alphabet A = {a1, . . . , ar }. A pattern p = p1 p2 · · · pk , which is a particular word of length k
has been fixed. What is sought is the BGF W (z, u) of W , where u marks the number of
occurrences of pattern p inside a word of W . The results of Chapter I already give access to
W (z, 0), which is the OGF of words not containing the pattern.

In accordance with the inclusion–exclusion principle, one should introduce the class X of
words augmented by distinguishing an arbitrary number of occurrences of p. Define a cluster
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as a maximal collection of distinguished occurrences that have an overlap. For instance, if
p = aaaaa, a particular word may give rise to the particular cluster:

a b a a a a a a a a a a a a a b a a a a a a a a b b
a a a a a

a a a a a
a a a a a

Then objects of X decompose as sequences of either arbitrary letters from A or clusters:

X = SEQ (A+ C) ,

with C the class of all clusters.
Clusters are themselves obtained by repeatedly sliding the pattern, but with the constraint

that it should constantly overlap partly with itself. Let c(z) be the autocorrelation polynomial
of p as defined in Chapter I (p. 61), and set ĉ(z) = c(z) − 1. A moment’s reflection should
convince the reader that zk ĉ(z)s−1 when expanded describes all the possibilities for forming
clusters of s overlapping occurrences. On the example above, one has ĉ(z) = z + z2 + z3 + z4,
and a particular cluster of 3 overlapping occurrences corresponds to one of the terms in zk ĉ(z)2

as follows:

z5︷ ︸︸ ︷
a a a a a z5

a a a

z2︷︸︸︷
a a × (z + z2 + z3 + z4)

a

z4︷ ︸︸ ︷
a a a a × (z + z2 + z3 + z4).

The OGF of clusters is consequently C(z) = zk/(1 − ĉ(z)) since this quantity describes all the
ways to write the pattern (zk ) and then slide it so that it should overlap with itself (this is given
by (1 − ĉ(z))−1).

By a similar reasoning, the BGF of clusters is vzk/(1−vĉ(z)), and the BGF of X with the
supplementary variable v marking the number of distinguished occurrences is

X (z, v) = 1

1 − r z − vzk/(1 − vĉ(z))
.

Finally, the usual inclusion–exclusion argument (change v to u − 1) yields W (z, u) =
X (z, u − 1). As a result:

For a pattern p with correlation polynomial c(z) and length k, the BGF of words
over an alphabet of cardinality r , where u marks the number of occurrences of p, is

(77) W (z, u) = (u − 1)c(z)− u

(1 − r z)((u − 1)c(z)− u)+ (u − 1)zk
.

The specialization u = 0 gives back the formula already found in Chapter I, p. 61. The same
principles clearly apply to weighted models corresponding to unequal letter probabilities, pro-
vided a suitably weighted version of the correlation polynomial is introduced (see Note III.39
below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

There are a very large number of formulae related to patterns in strings. For
instance, BGFs are known for occurrences of one or several patterns under either
Bernoulli or Markov models; see Note III.39 below. We refer to Szpankowski’s
book [564] and Lothaire’s chapter [347], where such questions are treated system-
atically in great detail. Bourdon and Vallée [81] have succeeded in extending this
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approach to dynamical sources of information, thereby uniting a large number of pre-
viously known results. Their approach even makes it possible to analyse the occur-
rence of patterns in continued fraction representations of real numbers.
� III.37. Moments of number of occurrences. The derivatives of X (z, v) at v = 0 give access
to the factorial moments of the number of occurrences of a pattern. In this way or directly, one
determines

W (z, u) = 1

1 − r z
+ zk

(1 − r z)2
(u − 1)+ 2

zk((1 − r z)(c(z)− 1)+ zk)

(1 − r z)3
(u − 1)2

2!
+ · · · .

The mean number of occurrences is r−n times the coefficient of zn in the coefficient of (u − 1)
and is (n − k + 1)r−k , as anticipated. The coefficient of (u − 1)2/2! is of the form

2r−2k

(1 − r z)3
+ 2r−k(1 + 2kr−k − c(1/r))

(1 − r z)2
+ P(z)

1 − r z
,

with P a polynomial. This shows that the variance of the number of occurrences is of the form

αn + β, α = r−k(2c(1/r)− 1 + r−k(1 − 2k)).

Consequently, the distribution is concentrated around its mean. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 61.) �

� III.38. Words with fixed repetitions. Let W 〈s〉(z) = [us ]W (z, u) be the OGF of words
containing a pattern exactly s times. One has, for s > 0 and s = 0, respectively,

W 〈s〉(z) = zk N (z)s−1

D(z)s+1
, W 〈0〉(z) = c(z)

D(z)
,

with N (z) and D(z) given by

N (z) = (1 − r z)(c(z)− 1)+ zk , D(z) = (1 − r z)c(z)+ zk .

The expression of W 〈0〉 is in agreement with Chapter I, Equation (62), p. 61. �

� III.39. Patterns in Bernoulli sequences. Let A be an alphabet where letter α has probabil-
ity πα and consider the Bernoulli model where letters in words are chosen independently. Fix a
pattern p = p1 · · · pk and define the finite language of protrusions as

� =
⋃

i : ci  =0

{pi+1 pi+2 · · · pk},

where the union is over all correlation positions of the pattern. Define now the correlation
polynomial γ (z) (relative to p and the πα) as the generating polynomial of the finite language
of protrusions weighted by (πα). For instance, p = ababa gives rise to � = {ε, ba, baba} and

γ (z) = 1 + πaπbz2 + π2
aπ

2
b z4.

The BGF of words with z marking length and u marking the number of occurrences of p is

W (z, u) = (u − 1)γ (z)− u

(1 − z)((u − 1)γ (z)− u)+ (u − 1)π [p]zk
,

where π [p] is the product of the probabilities of letters of p. �

� III.40. Patterns in trees I. Consider the class B of pruned binary trees. An occurrence of
pattern t in a tree τ is defined by a node of τ whose dangling subtree is isomorphic to t. We
seek the BGF B(z, u) of class B where u marks the number of occurrences of t.

The OGF of B is B(z) = (1−√
1 − 4z)/(2z). The quantity vB(zv) is the BGF of B with v

marking external nodes. By virtue of the pointing operation, the quantity

Uk :=
(

1

k!
∂k
v (vB(zv))

)
v=1

,
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describes trees with k distinct external nodes distinguished (pointed). Let m = |t|. The quantity

V :=
∑

Ukuk(zm)k satisfies V = (vB(zv))v=1+uzm ,

by virtue of Taylor’s formula. It is also the BGF of trees with distinguished occurrences of t
marked by v. Setting v 	→ u − 1 in V then gives B(z, u) as

(78) B(z, u) = 1

2z

(
1 −

√
1 − 4z − 4(u − 1)zm+1

)
.

In particular B(z, 0) = 1
2z

(
1 −

√
1 − 4z + 4zm+1

)
represents the OGF of trees not containing

pattern t. The method generalizes to any simple variety of trees. It can be used to prove that
the factored representation (as a directed acyclic graph) of a random tree of size n has expected
size O(n/

√
log n). (These results appear in [257]; see also Example IX.26, p. 680, for a related

Gausian law.) �

� III.41. Patterns in trees II. Here follows an alternative derivation of (78) that is based on the
root decomposition of trees. A pattern t occurs either in the left root subtree τ0, or in the right
root subtree τ1, or at the root iself in the case in which t coincides with τ . Thus the number
ω[τ ] of occurrences of t in τ satisfies the recursive definition

ω[τ ] = ω[τ0] + ω[τ1] + [[τ = t]], ω[∅] = 0.

The function uω[τ ] is almost multiplicative, and

uω[τ ] = u[[τ=t]]uω[τ0]uω[τ1] = uω[τ0]uω[τ1] + [[τ = t]] · (u − 1).

Thus, the bivariate generating function B(z, u) := ∑
t z|t |uω[t] satisfies the quadratic equation,

B(z, u) = 1 + (u − 1)zm + zB(z, u)2,

which, when solved, yields (78). �

III. 8. Extremal parameters

Apart from additively inherited parameters already examined at length in this
chapter, another important category is that of parameters defined by a maximum rule.
Two major cases are the largest component in a combinatorial structure (for instance,
the largest cycle of a permutation) and the maximum degree of nesting of construc-
tions in a recursive structure (typically, the height of a tree). In this case, bivariate
generating functions are of little help, because of the nonlinear character of the max-
function. The standard technique consists in introducing a collection of univariate
generating functions defined by imposing a bound on the parameter of interest. Such
GFs can then be constructed by the symbolic method in its univariate version.

III. 8.1. Largest components. Consider a construction B = 	[A], where 	

may involve an arbitrary combination of basic constructions, and assume here for
simplicity that the construction for B is a non-recursive one. This corresponds to a
relation between generating functions

B(z) = 
[A(z)],

where 
 is the functional that is the “image” of the combinatorial construction 	.
Elements of A thus appear as components in an object β ∈ B. Let B〈b〉 denote the
subclass of B formed with objects whose A–components all have a size at most b. The
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GF of B〈b〉 is obtained by the same process as that of B itself, save that A(z) should
be replaced by the GF of elements of size at most b. Thus,

B〈b〉(z) = 
[Tb A(z)],

where the truncation operator is defined on series by

Tb f (z) =
b∑

n=0

fnzn ( f (z) =
∞∑

n=0

fnzn).

Example III.27. A pot-pourri of largest components. Several instances of largest components
have already been analysed in Chapters I and II. For instance, the cycle decomposition of
permutations translated by

P = SET(CYC(Z)) �⇒ P(z) = exp

(
log

1

1 − z

)
gives more generally the EGF of permutations with longest cycle ≤ b,

P〈b〉(z) = exp

(
z

1
+ z2

2
+ · · · + zb

b

)
,

which involves the truncated logarithm.
The labelled specification of words over an m–ary alphabet

W = SETm(SET(Z)) �⇒ W (z) = (
ez)m

leads to the EGF of words such that each letter occurs at most b times:

W 〈b〉(z) =
(

1 + z

1!
+ z2

2!
+ · · · + zb

b!

)m

,

which now involves the truncated exponential. Similarly, the EGF of set partitions with largest
block of size at most b is

S〈b〉(z) = exp

(
z

1!
+ z2

2!
+ · · · + zb

b!

)
.

A slightly less direct example is that of the longest run in a binary string (p. 51), which we
now revisit. The collection W of binary words over the alphabet {a, b} admits the unlabelled
specification

W = SEQ(a) · SEQ(b SEQ(a)),

corresponding to a “scansion” dictated by the occurrences of the letter b. The corresponding
OGF then appears under the form

W (z) = Y (z) · 1

1 − zY (z)
, where Y (z) = 1

1 − z

corresponds to Y = SEQ(a). Thus, the OGF of strings with at most k − 1 consecutive occur-
rences of the letter a obtains upon replacing Y (z) by its truncation:

W 〈k〉(z) = Y 〈k〉(z) 1

1 − zY 〈k〉(z)
, where Y 〈k〉(z) = 1 + z + z2 + · · · + zk−1,

so that

W 〈k〉(z) = 1 − zk

1 − 2z + zk+1
.

An asymptotic analysis is given in Example V.4, p. 308. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Generating functions for largest components are thus easy to derive. The asymp-
totic analysis of their coefficients is however often hard when compared to additive
parameters, owing to the need to rely on complex analytic properties of the truncation
operator. The bases of a general asymptotic theory have been laid by Gourdon [305].
� III.42. Smallest components. The EGF of permutations with smallest cycle of size > b is

1

1 − z
exp

(
− z

1
− z2

2
− · · · − zb

b

)
.

A symbolic theory of smallest components in combinatorial structures is easily developed as
regards formal GFs. Elements of the corresponding asymptotic theory are provided by Panario
and Richmond in [470]. �

III. 8.2. Height. The degree of nesting of a recursive construction is a general-
ization of the notion of height in the simpler case of trees. Consider for instance a
recursively defined class

B = 	[B],

where 	 is a construction. Let B[h] denote the subclass of B composed solely of ele-
ments whose construction involves at most h applications of 	. We have by definition

B[h+1] = 	{B[h]}.
Thus, with 
 the image functional of construction 	, the corresponding GFs are de-
fined by a recurrence,

B[h+1] = 
[B[h]].

(This discussion is related to the semantics of recursion, p. 33.)

Example III.28. Generating functions for tree height. Consider first general plane trees:

G = Z × SEQ(G) �⇒ G(z) = z

1 − G(z)
.

Define the height of a tree as the number of edges on its longest branch. Then the set of trees of
height ≤ h satisfies the recurrence

G[0] = Z, G[h+1] = Z × SEQ(G[h]).

Accordingly, the OGF of trees of bounded height satisfies

G[0](z) = z, G[h+1](z) = z

1 − G[h](z)
.

The recurrence unwinds and one finds

(79) G[h](z) = z

1 − z

1 − z

. . .

1 − z

,

where the number of stages in the fraction equals b. This is the finite form (technically known
as a “convergent”) of a continued fraction expansion. From implied linear recurrences and
an analysis based on Mellin transforms, de Bruijn, Knuth, and Rice [145] have determined the
average height of a general plane tree to be ∼ √

πn. We provide a proof of this fact in Chapter V
(p. 329) dedicated to applications of rational and meromorphic asymptotics.
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For plane binary trees defined by

B = Z + B × B so that B(z) = z + (B(z))2,

(size here is the number of external nodes), the recurrence is

B[0](z) = z, B[h+1](z) = z + (B[h](z))2.

In this case, the B[h] are the approximants to a “continuous quadratic form”, namely

B[h](z) = z + (z + (z + (· · · )2)2)2.
These are polynomials of degree 2h for which no closed form expression is known, nor even
likely to exist6. However, using complex asymptotic methods and singularity analysis, Flajolet
and Odlyzko [246] have shown that the average height of a binary plane tree is ∼ 2

√
πn. See

Subsection VII. 10.2, p. 535 for the sketch of a proof.
For Cayley trees, finally, the defining equation is

T = Z � SET(T ) �⇒ T (z) = zeT (z).

The EGF of trees of bounded height satisfy the recurrence

T [0](z) = z, T [h+1](z) = zeT [h](z).

We are now confronted with a “continuous exponential”,

T [h](z) = zezeze. .
. zez

.

The average height was found by Rényi and Szekeres who appealed again to complex analytic
methods and found it to be ∼ √

2πn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

These examples show that height statistics are closely related to iteration theory.
Except in a few cases like general plane trees, normally no algebra is available and
one has to resort to complex analytic methods as expounded in forthcoming chapters.

III. 8.3. Averages and moments. For extremal parameters, the GFs of mean val-
ues obey a general pattern. Let F be some combinatorial class with GF f (z). Consider
for instance an extremal parameter χ such that f [h](z) is the GF of objects with χ -
parameter at most h. The GF of objects for which χ = h exactly is equal to

f [h](z)− f [h−1](z).

Thus differencing gives access to the probability distribution of height over F . The
generating function of cumulated values (providing mean values after normalization)
is then

�(z) =
∞∑

h=0

h
[

f [h](z)− f [h−1](z)
]

=
∞∑

h=0

[
f (z)− f [h](z)

]
,

as is readily checked by rearranging the second sum, or equivalently using summation
by parts.

6These polynomials are exactly the much-studied Mandelbrot polynomials whose behaviour in the
complex plane gives rise to extraordinary graphics (Figure VII.23, p. 536).
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For the largest components, the formulae involve truncated Taylor series. For
height, analysis involves in all generality the differences between the fixed point of a
functional 	 (the GF f (z)) and the approximations to the fixed point ( f [h](z)) pro-
vided by iteration. This is a common scheme in extremal statistics.
� III.43. The height of increasing binary trees. Given the specification of increasing binary
trees in Equation (61), p. 143, the EGF of trees of height at most h is given by the recurrence

I [0](z) = 1, I [h+1](z) = 1 +
∫ z

0
I [h](w)2 dw.

Devroye [157, 158] showed in 1986 that the expected height of a tree of size n is asymptotic
to c log n where c

.= 4.31107 is a solution of c log((2e)/c) = 1. �

� III.44. Hierarchical partitions. Let ε(z) = ez − 1. The generating function

ε(ε(· · · (ε(z)))) (h times).

can be interpreted as the EGF of certain hierarchical partitions. (Such structures show up in
statistical classification theory [585, 586].) �

� III.45. Balanced trees. Balanced structures lead to counting GFs close to the ones obtained
for height statistics. The OGF of balanced 2–3 trees of height h counted by the number of leaves
satisfies the recurrence

Z [h+1](z) = Z [h](z2 + z3) = (Z [h](z))2 + (Z [h](z))3,

which can be expressed in terms of the iterates of σ(z) = z2 + z3 (see Note I.67, p. 91, as well
as Chapter IV, p. 281, for asymptotics). It is possible to express the OGF of cumulated values
of the number of internal nodes in such trees in terms of the iterates of σ . �

� III.46. Extremal statistics in random mappings. One can express the EGFs relative to the
largest cycle, longest branch, and diameter of functional graphs. Similarly for the largest tree,
largest component. [Hint: see [247] for details.] �

� III.47. Deep nodes in trees. The BGF giving the number of nodes at maximal depth in
a general plane tree or a Cayley tree can be expressed in terms of a continued fraction or a
continuous exponential. �

III. 9. Perspective

The message of this chapter is that we can use the symbolic method not just to
count combinatorial objects but also to quantify their properties. The relative ease
with which we are able to do so is testimony to the power of the method as a major
organizing principle of analytic combinatorics.

The global framework of the symbolic method leads us to a natural structural cat-
egorization of parameters of combinatorial objects. First, the concept of inherited pa-
rameters permits a direct extension of the already seen formal translation mechanisms
from combinatorial structures to GFs, for both labelled and unlabelled objects—this
leads to MGFs useful for solving a broad variety of classical combinatorial problems.
Second, the adaptation of the theory to recursive parameters provides information
about trees and similar structures, this even in the absence of explicit representations
of the associated MGFs. Third, extremal parameters, which are defined by a maxi-
mum rule (rather than an additive rule), can be studied by analysing families of uni-
variate GFs. Yet another illustration of the power of the symbolic method is found in
the notion of complete GF, which in particular enables us to study Bernoulli trials and
branching processes.
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As we shall see starting with Chapter IV, these approaches become especially
powerful since they serve as the basis for the asymptotic analysis of properties of
structures. Not only does the symbolic method provide precise information about
particular parameters, but it also paves the way for the discovery of general schemas
and theorems that tell us what to expect about a broad variety of combinatorial types.

Bibliographic notes. Multivariate generating functions are a common tool from classical com-
binatorial analysis. Comtet’s book [129] is once more an excellent source of examples. A
systematization of multivariate generating functions for inherited parameters is given in the
book by Goulden and Jackson [303].

In contrast generating functions for cumulated values of parameters (related to averages)
seemed to have received relatively little attention until the advent of digital computers and
the analysis of algorithms. Many important techniques are implicit in Knuth’s treatises, es-
pecially [377, 378]. Wilf discusses related issues in his book [608] and the paper [606].
Early systems specialized to tree algorithms were proposed by Flajolet and Steyaert in the
1980s [215, 261, 262, 560]; see also Berstel and Reutenauer’s work [56]. Some of the ideas
developed there initially drew their inspiration from the well-established treatment of formal
power series in non-commutative indeterminates; see the books by Eilenberg [189] and Sa-
lomaa and Soittola [527] as well as the proceedings edited by Berstel [54]. Several compu-
tations in this area can nowadays even be automated with the help of computer algebra sys-
tems [255, 528, 628].

Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie. Je
n’aimais point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit que résoudre un

problème de géométrie par les équations, c’étoit jouer un air en tournant une manivelle.

(“I never went far enough to get a good feel for the application of algebra to geometry. I was not pleased

with this method of operating according to the rules without seeing what one does; solving geometrical

problems by means of equations seemed like playing a tune by turning a crank.”)

— JEAN-JACQUES ROUSSEAU, Les Confessions, Livre VI
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IV

Complex Analysis, Rational and
Meromorphic Asymptotics

Entre deux vérités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe.

PAUL PAINLEVÉ [467, p. 2]

It has been written that
the shortest and best way between two truths of the real domain

often passes through the imaginary one1.

— JACQUES HADAMARD [316, p. 123]

IV. 1. Generating functions as analytic objects 225
IV. 2. Analytic functions and meromorphic functions 229
IV. 3. Singularities and exponential growth of coefficients 238
IV. 4. Closure properties and computable bounds 249
IV. 5. Rational and meromorphic functions 255
IV. 6. Localization of singularities 263
IV. 7. Singularities and functional equations 275
IV. 8. Perspective 286

Generating functions are a central concept of combinatorial theory. In Part A, we have
treated them as formal objects; that is, as formal power series. Indeed, the major theme
of Chapters I–III has been to demonstrate how the algebraic structure of generating
functions directly reflects the structure of combinatorial classes. From now on, we
examine generating functions in the light of analysis. This point of view involves
assigning values to the variables that appear in generating functions.

Comparatively little benefit results from assigning only real values to the vari-
able z that figures in a univariate generating function. In contrast, assigning complex
values turns out to have serendipitous consequences. When we do so, a generating
function becomes a geometric transformation of the complex plane. This transforma-
tion is very regular near the origin—one says that it is analytic (or holomorphic). In
other words, near 0, it only effects a smooth distortion of the complex plane. Farther
away from the origin, some cracks start appearing in the picture. These cracks—the
dignified name is singularities—correspond to the disappearance of smoothness. It
turns out that a function’s singularities provide a wealth of information regarding the
function’s coefficients, and especially their asymptotic rate of growth. Adopting a
geometric point of view for generating functions has a large pay-off.

1Hadamard’s quotation (1945) is a free rendering of the original one due to Painlevé (1900); namely,
“The shortest and easiest path betwen two truths of the real domain most often passes through the complex
domain.”

223
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By focusing on singularities, analytic combinatorics treads in the steps of many
respectable older areas of mathematics. For instance, Euler recognized that for the
Riemann zeta function ζ(s) to become infinite (hence have a singularity) at 1 im-
plies the existence of infinitely many prime numbers; Riemann, Hadamard, and de la
Vallée-Poussin later uncovered deep connections between quantitative properties of
prime numbers and singularities of 1/ζ(s).

The purpose of this chapter is largely to serve as an accessible introduction or
a refresher of basic notions regarding analytic functions. We start by recalling the
elementary theory of functions and their singularities in a style tuned to the needs of
analytic combinatorics. Cauchy’s integral formula expresses coefficients of analytic
functions as contour integrals. Suitable uses of Cauchy’s integral formula then make
it possible to estimate such coefficients by suitably selecting an appropriate contour
of integration. For the common case of functions that have singularities at a finite
distance, the exponential growth formula relates the location of the singularities clos-
est to the origin—these are also known as dominant singularities—to the exponential
order of growth of coefficients. The nature of these singularities then dictates the fine
structure of the asymptotics of the function’s coefficients, especially the subexponen-
tial factors involved.

As regards generating functions, combinatorial enumeration problems can be
broadly categorized according to a hierarchy of increasing structural complexity. At
the most basic level, we encounter scattered classes, which are simple enough, so that
the associated generating function and coefficients can be made explicit. (Examples of
Part A include binary and general plane trees, Cayley trees, derangements, mappings,
and set partitions). In that case, elementary real-analysis techniques usually suffice
to estimate asymptotically counting sequences. At the next, intermediate, level, the
generating function is still explicit, but its form is such that no simple expression is
available for coefficients. This is where the theory developed in this and the next chap-
ters comes into play. It usually suffices to have an expression for a generating function,
but not necessarily its coefficients, so as to be able to deduce precise asymptotic esti-
mates of its coefficients. (Surjections, generalized derangements, unary–binary trees
are easily subjected to this method. A striking example, that of trains, is detailed in
Section IV. 4.) Properties of analytic functions then make this analysis depend only on
local properties of the generating function at a few points, its dominant singularities.
The third, highest, level, within the perspective of analytic combinatorics, comprises
generating functions that can no longer be made explicit, but are only determined by a
functional equation. This covers structures defined recursively or implicitly by means
of the basic constructors of Part A. The analytic approach even applies to a large
number of such cases. (Examples include simple families of trees, balanced trees,
and the enumeration of certain molecules treated at the end of this chapter. Another
characteristic example is that of non-plane unlabelled trees treated in Chapter VII.)

As we shall see throughout this book, the analytic methodology applies to almost
all the combinatorial classes studied in Part A, which are provided by the symbolic
method. In the present chapter we carry out this programme for rational functions and
meromorphic functions (i.e., functions whose singularities are poles).
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IV. 1. Generating functions as analytic objects

Generating functions, considered in Part A as purely formal objects subject to al-
gebraic operations, are now going to be interpreted as analytic objects. In so doing one
gains easy access to the asymptotic form of their coefficients. This informal section
offers a glimpse of themes that form the basis of Chapters IV–VII.

In order to introduce the subject, let us start with two simple generating functions,
one, f (z), being the OGF of the Catalan numbers (cf G(z), p. 35), the other, g(z),
being the EGF of derangements (cf D(1)(z), p. 123):

(1) f (z) = 1

2

(
1 −√

1 − 4z
)
, g(z) = exp(−z)

1 − z
.

At this stage, the forms above are merely compact descriptions of formal power series
built from the elementary series

(1 − y)−1 = 1 + y + y2 + · · · , (1 − y)1/2 = 1 − 1

2
y − 1

8
y2 − · · · ,

exp(y) = 1 + 1

1!
y + 1

2!
y2 + · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known
in explicit form:

fn := [zn] f (z) = 1

n

(
2n − 2

n − 1

)
, gn := [zn]g(z) =

(
1

0!
− 1

1!
+ · · · + (−1)n

n!

)
.

Stirling’s formula and the comparison with the alternating series giving exp(−1) pro-
vide, respectively,

(2) fn ∼
n→∞

4n−1

√
πn3

, gn = ∼
n→∞ e−1 .= 0.36787.

Our purpose now is to provide intuition on how such approximations could be
derived without appealing to explicit forms. We thus examine, heuristically for the
moment, the direct relationship between the asymptotic forms (2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available for fn and gn , it is legitimate to substitute
in the power series expansions of the GFs f (z) and g(z) any real or complex value of
a small enough modulus, the upper bounds on modulus being ρ f = 1/4 (for f ) and
ρg = 1 (for g). Figure IV.1 represents the graph of the resulting functions when such
real values are assigned to z. The graphs are smooth, representing functions that are
differentiable any number of times for z interior to the interval (−ρ,+ρ). However,
at the right boundary point, smoothness stops: g(z) become infinite at z = 1, and so it
even ceases to be finitely defined; f (z) does tend to the limit 1

2 as z → ( 1
4 )

−, but its
derivative becomes infinite there. Such special points at which smoothness stops are
called singularities, a term that will acquire a precise meaning in the next sections.

Observe also that, in spite of the series expressions being divergent outside the
specified intervals, the functions f (z) and g(z) can be continued in certain regions: it
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Figure IV.1. Left: the graph of the Catalan OGF, f (z), for z ∈ (− 1
4 ,+ 1

4 ); right: the
graph of the derangement EGF, g(z), for z ∈ (−1,+1).

suffices to make use of the global expressions of Equation (1), with exp and √ being
assigned their usual real-analytic interpretation. For instance:

f (−1) = 1

2

(
1 −

√
5
)
, g(−2) = e2

3
.

Such continuation properties, most notably to the complex realm, will prove essential
in developing efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose
modulus is less than the radius of convergence of the series defining the GF. Fig-
ure IV.2 displays the images of regular grids by f and g, as given by (1). This illus-
trates the fact that a regular grid is transformed into an orthogonal network of curves
and more precisely that f and g preserve angles—this property corresponds to com-
plex differentiability and is equivalent to analyticity to be introduced shortly. The
singularity of f is clearly perceptible on the right of its diagram, since, at z = 1/4
(corresponding to f (z) = 1/2), the function f folds lines and divides angles by a
factor of 2. The singularity of g at z = 1 is indirectly perceptible from the fact that
g(z) → ∞ as z → 1 (the square grid had to be truncated at z = 0.75, since this book
can only accommodate finite graphs).

Let us now turn to coefficient asymptotics. As is expressed by (2), the coefficients
fn and gn each belong to a general asymptotic type for coefficients of a function F ,
namely,

(3) [zn]F(z) = Anθ(n),

corresponding to an exponential growth factor An modulated by a tame factor θ(n),
which is subexponential. Here, one has A = 4 for fn and A = 1 for gn ; also,
θ(n) ∼ 1

4 (
√
πn3)−1 for fn and θ(n) ∼ e−1 for gn . Clearly, A should be related

to the radius of convergence of the series. We shall see that, invariably, for combi-
natorial generating functions, the exponential rate of growth is given by A = 1/ρ,
where ρ is the first singularity encountered along the positive real axis (Theorem IV.6,
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Figure IV.2. The images of regular grids by f (z) (left) and g(z) (right).

p. 240). In addition, under general complex analytic conditions, it will be established
that θ(n) = O(1) is systematically associated to a simple pole of the generating func-
tion (Theorem IV.10, p. 258), while θ(n) = O(n−3/2) systematically arises from a
singularity that is of the square-root type (Chapters VI and VII). We enunciate:

First Principle of Coefficient Asymptotics. The location of a function’s
singularities dictates the exponential growth (An) of its coefficients.
Second Principle of Coefficient Asymptotics. The nature of a function’s
singularities determines the associate subexponential factor (θ(n)).

Observe that the rescaling rule,

[zn]F(z) = ρ−n[zn]F(ρz),

enables one to normalize functions so that they are singular at 1. Then, various the-
orems, starting with Theorems IV.9 and IV.10, provide sufficient conditions under
which the following fundamental implication is valid,

(4) h(z) ∼ σ(z) �⇒ [zn]h(z) ∼ [zn]σ(z).

There h(z), whose coefficients are to be estimated, is a function singular at 1 and σ(z)
is a local approximation near the singularity; usually σ is a much simpler function,
typically like (1 − z)α logβ(1 − z) whose coefficients are comparatively easy to esti-
mate (Chapter VI). The relation (4) expresses a mapping between asymptotic scales
of functions near singularities and asymptotics scales of coefficients. Under suitable
conditions, it then suffices to estimate a function locally at a few special points (sin-
gularities), in order to estimate its coefficients asymptotically.



“book” — 2008/10/3 — 16:05 — page 228 — #242

228 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

A succinct roadmap. Here is what now awaits the reader. Section IV. 2 serves
to introduce basic notions of complex function theory. Singularities and exponential
growth of coefficients are examined in Section IV. 3, which justifies the First Principle.
Next, in Section IV. 4, we establish the computability of exponential growth rates
for all the non-recursive structures that are specifiable. Section IV. 5 presents two
important theorems that deal with rational and meromorphic functions and illustrate
the Second Principle, in its simplest version (the subexponential factors are merely
polynomials). Then, Section IV. 6 examines constructively ways to locate singularities
and treats in detail the case of patterns in words. Finally, Section IV. 7 shows how
functions only known through a functional equation may be accessible to complex
asymptotic methods.
� IV.1. Euler, the discrete, and the continuous. Eulers’s proof of the existence of infinitely
many prime numbers illustrates in a striking manner the way analysis of generating functions
can inform us on the discrete realm. Define, for real s > 1 the function

ζ(s) :=
∞∑

n=1

1

ns ,

known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2, 3, 5, . . .)

(5)

ζ(s)=
(

1 + 1

2s + 1

22s
+ · · ·

)(
1 + 1

3s + 1

32s
+ · · ·

)(
1 + 1

5s + 1

52s
+ · · ·

)
· · ·

=
∏

p

(
1 − 1

ps

)−1

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (5) is easily checked to be valid for all s > 1. Now suppose that there
were only finitely many primes. Let s tend to 1+ in (5). Then, the left-hand side becomes
infinite, while the right-hand side tends to the finite limit

∏
p(1 − 1/p)−1: a contradiction has

been reached. �

� IV.2. Elementary transfers. Elementary series manipulation yield the following general re-
sult: Let h(z) be a power series with radius of convergence > 1 and assume that h(1)  = 0; then
one has

[zn]
h(z)

1 − z
∼ h(1), [zn]h(z)

√
1 − z ∼− h(1)

2
√
πn3

, [zn]h(z) log
1

1 − z
∼ h(1)

n
.

See our discussion on p. 434 and Bender’s survey [36] for many similar statements, of which
this chapter and Chapter VI provide many far-reaching extensions. �

� IV.3. Asymptotics of generalized derangements. The EGF of permutations without cycles of
length 1 and 2 satisfies (p. 123)

j (z) = e−z−z2/2

1 − z
with j (z) ∼

z→1

e−3/2

1 − z
.

Analogy with derangements suggests that [zn] j (z) ∼
n→∞ e−3/2. [For a proof, use Note IV.2 or

refer to Example IV.9 below, p. 261.] Here is a table of exact values of [zn] j (z) (with relative
error of the approximation by e−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50
jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122

error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)



“book” — 2008/10/3 — 16:05 — page 229 — #243

IV. 2. ANALYTIC AND MEROMORPHIC FUNCTIONS 229

The quality of the asymptotic approximation is extremely good, such a property being, as we
shall see, invariably attached to polar singularities. �

IV. 2. Analytic functions and meromorphic functions

Analytic functions are a primary mathematical concept of asymptotic theory. They
can be characterized in two essentially equivalent ways (see Subsection IV. 2.1): by
means of convergent series expansions (à la Cauchy and Weierstrass) and by differ-
entiability properties (à la Riemann). The first aspect is directly related to the use of
generating functions for enumeration; the second one allows for a powerful abstract
discussion of closure properties that usually requires little computation.

Integral calculus with analytic functions (see Subsection IV. 2.2) assumes a shape
radically different from that which prevails in the real domain: integrals become
quintessentially independent of details of the integration contour—certainly the prime
example of this fact is Cauchy’s famous residue theorem. Conceptually, this indepen-
dence makes it possible to relate properties of a function at a point (e.g., the coeffi-
cients of its expansion at 0) to its properties at another far-away point (e.g., its residue
at a pole).

The presentation in this section and the next one constitutes an informal review
of basic properties of analytic functions tuned to the needs of asymptotic analysis of
counting sequences. The entry in Appendix B.2: Equivalent definitions of analyticity,
p. 741, provides further information, in particular a proof of the Basic Equivalence
Theorem, Theorem IV.1 below. For a detailed treatment, we refer the reader to one
of the many excellent treatises on the subject, such as the books by Dieudonné [165],
Henrici [329], Hille [334], Knopp [373], Titchmarsh [577], or Whittaker and Wat-
son [604]. The reader previously unfamiliar with the theory of analytic functions
should essentially be able to adopt Theorems IV.1 and IV.2 as “axioms” and start from
here using basic definitions and a fair knowledge of elementary calculus. Figure IV.19
at the end of this chapter (p. 287) recapitulates the main results of relevance to Analytic
Combinatorics.

IV. 2.1. Basics. We shall consider functions defined in certain regions of the
complex domain C. By a region is meant an open subset � of the complex plane
that is connected. Here are some examples:

simply connected domain slit complex plane indented disc annulus.

Classical treatises teach us how to extend to the complex domain the standard
functions of real analysis: polynomials are immediately extended as soon as complex
addition and multiplication have been defined, while the exponential is definable by
means of Euler’s formula. One has for instance

z2 = (x2 − y2)+ 2i xy, ez = ex cos y + iex sin y,
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if z = x + iy, that is, x = -(z) and y = .(z) are the real and imaginary parts of z.
Both functions are consequently defined over the whole complex plane C.

The square-root and logarithm functions are conveniently described in polar co-
ordinates:

(6)
√

z = √
ρeiθ/2, log z = log ρ + iθ,

if z = ρeiθ . One can take the domain of validity of (6) to be the complex plane slit
along the axis from 0 to −∞, that is, restrict θ to the open interval (−π,+π), in which
case the definitions above specify what is known as the principal determination. There
is no way for instance to extend by continuity the definition of

√
z in any domain

containing 0 in its interior since, for a > 0 and z → −a, one has
√

z → i
√

a as
z → −a from above, whereas

√
z → −i

√
a as z → −a from below. This situation is

depicted here:

+i
√

a

−i
√

a

0
√

a The values of
√

z
as z varies along |z| = a.

The point z = 0, where several determinations “meet”, is accordingly known as a
branch point.

Analytic functions. First comes the main notion of an analytic function that
arises from convergent series expansions and is of obvious relevance to generating-
functionology.

Definition IV.1. A function f (z) defined over a region � is analytic at a point z0 ∈ �

if, for z in some open disc centred at z0 and contained in �, it is representable by a
convergent power series expansion

(7) f (z) =
∑
n≥0

cn(z − z0)
n .

A function is analytic in a region � iff it is analytic at every point of �.

As derived from an elementary property of power series (Note IV.4), given a
function f that is analytic at a point z0, there exists a disc (of possibly infinite radius)
with the property that the series representing f (z) is convergent for z inside the disc
and divergent for z outside the disc. The disc is called the disc of convergence and
its radius is the radius of convergence of f (z) at z = z0, which will be denoted by
Rconv( f ; z0). The radius of convergence of a power series conveys basic information
regarding the rate at which its coefficients grow; see Subsection IV. 3.2 below for
developments. It is also easy to prove by simple series rearrangement that if a function
is analytic at z0, it is then analytic at all points interior to its disc of convergence
(see Appendix B.2: Equivalent definitions of analyticity, p. 741).
� IV.4. The disc of convergence of a power series. Let f (z) = ∑

fn zn be a power series.
Define R as the supremum of all values of x ≥ 0 such that { fn xn} is bounded. Then, for
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|z| < R, the sequence fnzn tends geometrically to 0; hence f (z) is convergent. For |z| > R,
the sequence fn zn is unbounded; hence f (z) is divergent. In short: a power series converges
in the interior of a disc; it diverges in its exterior. �

Consider for instance the function f (z) = 1/(1 − z) defined over C \ {1} in the
usual way via complex division. It is analytic at 0 by virtue of the geometric series
sum,

1

1 − z
=

∑
n≥0

1 · zn,

which converges in the disc |z| < 1. At a point z0  = 1, we may write

(8)

1

1 − z
= 1

1 − z0 − (z − z0)
= 1

1 − z0

1

1 − z−z0
1−z0

=
∑
n≥0

(
1

1 − z0

)n+1

(z − z0)
n .

The last equation shows that f (z) is analytic in the disc centred at z0 with radius
|1− z0|, that is, the interior of the circle centred at z0 and passing through the point 1.
In particular Rconv( f, z0) = |1 − z0| and f (z) is globally analytic in the punctured
plane C \ {1}.

The example of (1 − z)−1 illustrates the definition of analyticity. However, the
series rearrangement approach that it uses might be difficult to carry out for more
complicated functions. In other words, a more manageable approach to analyticity is
called for. The differentiability properties developed now provide such an approach.

Differentiable (holomorphic) functions. The next important notion is a geomet-
ric one based on differentiability.

Definition IV.2. A function f (z) defined over a region � is called complex-differen-
tiable (also holomorphic) at z0 if the limit, for complex δ,

lim
δ→0

f (z0 + δ)− f (z0)

δ

exists. (In particular, the limit is independent of the way δ tends to 0 in C.) This

limit is denoted as usual by f ′(z0), or d
dz f (z)

∣∣∣
z0

, or ∂z f (z0). A function is complex-

differentiable in � iff it is complex-differentiable at every z0 ∈ �.

From the definition, if f (z) is complex-differentiable at z0 and f ′(z0)  = 0, it acts
locally as a linear transformation:

f (z)− f (z0) = f ′(z0)(z − z0)+ o(z − z0) (z → z0).

Then, f (z) behaves in small regions almost like a similarity transformation (composed
of a translation, a rotation, and a scaling). In particular, it preserves angles2 and
infinitesimal squares get transformed into infinitesimal squares; see Figure IV.3 for a
rendering. Further aspects of the local shape of an analytic function will be examined
in Section VIII. 1, p. 543, in relation with the saddle-point method.

2A mapping of the plane that locally preserves angles is also called a conformal map. Section VIII. 1
(p. 543) presents further properties of the local “shape” of an analytic function.
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Figure IV.3. Multiple views of an analytic function. The image of the domain � =
{z ∣∣ |-(z)| < 2, |.(z)| < 2} by f (z) = exp(z) + z + 2: [top] transformation of a
square grid in � by f ; [bottom] the modulus and argument of f (z).

For instance the function
√

z, defined by (6) in the complex plane slit along the
ray (−∞, 0), is complex-differentiable at any z0 of the slit plane since

(9) lim
δ→0

√
z0 + δ −√

z0

δ
= lim

δ→0

√
z0

√
1 + δ/z0 − 1

δ
= 1

2
√

z0
,

which extends the customary proof of real analysis. Similarly,
√

1 − z is complex-
differentiable in the complex plane slit along the ray (1,+∞). More generally, the
usual proofs from real analysis carry over almost verbatim to the complex realm, to
the effect that

( f + g)′ = f ′ + g′, ( f g)′ = f ′g+ f g′,
(

1

f

)′
= − f ′

f 2
, ( f ◦ g)′ = ( f ′ ◦ g)g′.

The notion of complex differentiability is thus much more manageable than the notion
of analyticity.

It follows from a well known theorem of Riemann (see for instance [329, vol. 1,
p 143] and Appendix B.2: Equivalent definitions of analyticity, p. 741) that analyticity
and complex differentiability are equivalent notions.

Theorem IV.1 (Basic Equivalence Theorem). A function is analytic in a region � if
and only if it is complex-differentiable in �.

The following are known facts (see p. 236 and Appendix B): (i) if a function
is analytic (equivalently complex-differentiable) in �, it admits (complex) deriva-
tives of any order there—this property markedly differs from real analysis: complex-
differentiable, equivalently analytic, functions are all smooth; (i i) derivatives of a
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function may be obtained through term-by-term differentiation of the series represen-
tation of the function.

Meromorphic functions. We finally introduce meromorphic3 functions that are
mild extensions of the concept of analyticity (or holomorphy) and are essential to
the theory. The quotient of two analytic functions f (z)/g(z) ceases to be analytic
at a point a where g(a) = 0; however, a simple structure for quotients of analytic
functions prevails.

Definition IV.3. A function h(z) is meromorphic at z0 iff, for z in a neighbourhood of
z0 with z  = z0, it can be represented as f (z)/g(z), with f (z) and g(z) being analytic
at z0. In that case, it admits near z0 an expansion of the form

(10) h(z) =
∑

n≥−M

hn(z − z0)
n .

If h−M  = 0 and M ≥ 1, then h(z) is said to have a pole of order M at z = z0. The
coefficient h−1 is called the residue of h(z) at z = z0 and is written as

Res[h(z); z = z0].

A function is meromorphic in a region iff it is meromorphic at every point of the region.

IV. 2.2. Integrals and residues. A path in a region � is described by its pa-
rameterization, which is a continuous function γ mapping [0, 1] into �. Two paths
γ, γ ′ in � that have the same end points are said to be homotopic (in �) if one can
be continuously deformed into the other while staying within � as in the following
examples:

homotopic paths:

A closed path is defined by the fact that its end points coincide: γ (0) = γ (1), and a
path is simple if the mapping γ is one-to-one. A closed path is said to be a loop of
� if it can be continuously deformed within � to a single point; in this case one also
says that the path is homotopic to 0. In what follows paths are taken to be piecewise
continuously differentiable and, by default, loops are oriented positively.

Integrals along curves in the complex plane are defined in the usual way as curvi-
linear integrals of complex-valued functions. Explicitly: let f (x + iy) be a function

3“Holomorphic” and “meromorphic” are words coming from Greek, meaning, respectively, “of com-
plete form” and “of partial form”.
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and γ be a path; then,∫
γ

f (z) dz :=
∫ 1

0
f (γ (t))γ ′(t) dt

=
∫ 1

0
[AC − B D] dt + i

∫ 1

0
[AD + BC] dt,

where f ◦ γ = A + i B and γ ′ = C + i D. However, integral calculus in the complex
plane greatly differs from its form on the real line—in many ways, it is much simpler
and much more powerful. One has:

Theorem IV.2 (Null Integral Property). Let f be analytic in � and let λ be a simple
loop of �. Then, one has

∫
λ

f = 0.

Equivalently, integrals are largely independent of details of contours: for f analytic
in �, one has

(11)
∫
γ

f =
∫
γ ′

f,

provided γ and γ ′ are homotopic (not necessarily closed) paths in �. A proof of The-
orem IV.2 is sketched in Appendix B.2: Equivalent definitions of analyticity, p. 741.

Residues. The important Residue Theorem due to Cauchy relates global prop-
erties of a meromorphic function (its integral along closed curves) to purely local
characteristics at designated points (its residues at poles).

Theorem IV.3 (Cauchy’s residue theorem). Let h(z) be meromorphic in the region �
and let λ be a positively oriented simple loop in� along which the function is analytic.
Then

1

2iπ

∫
λ

h(z) dz =
∑

s

Res[h(z); z = s],

where the sum is extended to all poles s of h(z) enclosed by λ.

Proof. (Sketch) To see it in the representative case where h(z) has only a pole at
z = 0, observe by appealing to primitive functions that∫

λ

h(z) dz =
∑

n≥−M
n  =−1

hn

[
zn+1

n + 1

]
λ

+ h−1

∫
λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the function u(z) along
the contour λ. This expression reduces to its last term, itself equal to 2iπh−1, as is
checked by using integration along a circle (set z = reiθ ). The computation extends
by translation to the case of a unique pole at z = a.

Next, in the case of multiple poles, we observe that the simple loop can only
enclose finitely many poles (by compactness). The proof then follows from a simple
decomposition of the interior domain of λ into cells, each containing only one pole.
Here is an illustration in the case of three poles.
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(Contributions from internal edges cancel.) �
Global (integral) to local (residues) connections. Here is a textbook example of

a reduction from global to local properties of analytic functions. Define the integrals

Im :=
∫ ∞

−∞
dx

1 + x2m
,

and consider specifically I1. Elementary calculus teaches us that I1 = π since the
antiderivative of the integrand is an arc tangent:

I1 =
∫ ∞

−∞
dx

1 + x2
= [arctan x]+∞

−∞ = π.

Here is an alternative, and in many ways more fruitful, derivation. In the light
of the residue theorem, we consider the integral over the whole line as the limit of
integrals over large intervals of the form [−R,+R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

�
�
�
�

0−R +R

i

Let γ be the contour comprised of the interval and the semi-circle. Inside γ , the
integrand has a pole at x = i , where

1

1 + x2
≡ 1

(x + i)(x − i)
= − i

2

1

x − i
+ · · · ,

so that its residue there is −i/2. By the residue theorem, the integral taken over γ is
equal to 2iπ times the residue of the integrand at i . As R → ∞, the integral along
the semi-circle vanishes (it is less than πR/(R2 − 1) in modulus), while the integral
along the real segment gives I1 in the limit. There results the relation giving I1:

I1 = 2iπ Res

(
1

1 + x2
; x = i

)
= (2iπ)

(
− i

2

)
= π.

The evaluation of the integral in the framework of complex analysis rests solely
upon the local expansion of the integrand at special points (here, the point i). This is a
remarkable feature of the theory, one that confers it much simplicity, when compared
with real analysis.
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� IV.5. The general integral Im. Let α = exp( iπ
2m ) so that α2m = −1. Contour integration of

the type used for I1 yields

Im = 2iπ
m∑

j=1

Res

(
1

1 + x2m
; x = α2 j−1

)
,

while, for any β = α2 j−1 with 1 ≤ j ≤ m, one has

1

1 + x2m
∼

x→β

1

2mβ2m−1

1

x − β
≡ − β

2m

1

x − β
.

As a consequence,

I2m = − iπ

m

(
α + α3 + · · · + α2m−1

)
= π

m sin π
2m

.

In particular, I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
√

2 +√
2, and 1

π I5, 1
π I6 are expressible by

radicals, but 1
π I7,

1
π I9 are not. The special cases 1

π I17,
1
π I257 are expressible by radicals. �

� IV.6. Integrals of rational fractions. Generally, all integrals of rational functions taken over
the whole real line are computable by residues. In particular,

Jm =
∫ +∞

−∞
dx

(1 + x2)m
, Km =

∫ +∞

−∞
dx

(12 + x2)(22 + x2) · · · (m2 + x2)

can be explicitly evaluated. �

Cauchy’s coefficient formula. Many function-theoretic consequences are derived
from the residue theorem. For instance, if f is analytic in �, z0 ∈ �, and λ is a simple
loop of � encircling z0, one has

(12) f (z0) = 1

2iπ

∫
λ

f (ζ )
dζ

ζ − z0
.

This follows directly since

Res [ f (ζ )/(ζ − z0); ζ = z0] = f (z0).

Then, by differentiation with respect to z0 under the integral sign, one has similarly

(13)
1

k!
f (k)(z0) = 1

2iπ

∫
λ

f (ζ )
dζ

(ζ − z0)k+1
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point. The world of analytic functions is a very
friendly one in which to live: contrary to real analysis, a function is differentiable any
number of times as soon as it is differentiable once. Also, Taylor’s formula invariably
holds: as soon as f (z) is analytic at z0, one has

(14) f (z) = f (z0)+ f ′(z0)(z − z0)+ 1

2!
f ′′(z0)(z − z0)

2 + · · · ,
with the representation being convergent in a disc centred at z0. [Proof: a verification
from (12) and (13), or a series rearrangement as in Appendix B, p. 742.]

A very important application of the residue theorem concerns coefficients of ana-
lytic functions.
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Theorem IV.4 (Cauchy’s Coefficient Formula). Let f (z) be analytic in a region �

containing 0 and let λ be a simple loop around 0 in � that is positively oriented.
Then, the coefficient [zn] f (z) admits the integral representation

fn ≡ [zn] f (z) = 1

2iπ

∫
λ

f (z)
dz

zn+1
.

Proof. This formula follows directly from the equalities

1

2iπ

∫
λ

f (z)
dz

zn+1
= Res

[
f (z)z−n−1; z = 0

]
= [zn] f (z),

of which the first one follows from the residue theorem, and the second one from the
identification of the residue at 0 as a coefficient. �

Analytically, the coefficient formula allows us to deduce information about the
coefficients from the values of the function itself, using adequately chosen contours of
integration. It thus opens the possibility of estimating the coefficients [zn] f (z) in the
expansion of f (z) near 0 by using information on f (z) away from 0. The rest of this
chapter will precisely illustrate this process in the case of rational and meromorphic
functions. Observe also that the residue theorem provides the simplest proof of the
Lagrange inversion theorem (see Appendix A.6: Lagrange Inversion, p. 732) whose
rôle is central to tree enumerations, as we saw in Chapters I and II. The notes below
explore some independent consequences of the residue theorem and the coefficient
formula.
� IV.7. Liouville’s Theorem. If a function f (z) is analytic in the whole of C and is of modulus
bounded by an absolute constant, | f (z)| ≤ B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Taylor coefficients at the origin of index
≥ 1 are all equal to 0.] Similarly, if f (z) is of at most polynomial growth, | f (z)| ≤ B (|z|+1)r ,
over the whole of C, then it must be a polynomial. �

� IV.8. Lindelöf integrals. Let a(s) be analytic in -(s) > 1
4 where it is assumed to satisfy

a(s) = O(exp((π − δ)|s|)) for some δ with 0 < δ < π . Then, one has for | arg(z)| < δ,
∞∑

k=1

a(k)(−z)k = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
a(s)zs π

sinπs
ds,

in the sense that the integral exists and provides the analytic continuation of the sum in | arg(z)| <
δ. [Close the integration contour by a large semi-circle on the right and evaluate by residues.]
Such integrals, sometimes called Lindelöf integrals, provide representations for many functions
whose Taylor coefficients are given by an explicit rule [268, 408]. �

� IV.9. Continuation of polylogarithms. As a consequence of Lindelöf’s representation, the
generalized polylogarithm functions,

Liα,k(z) =
∑
n≥1

n−α(log n)k zn (α ∈ R, k ∈ Z≥0),

are analytic in the complex plane C slit along (1+,∞). (More properties are presented in
Section VI. 8, p. 408; see also [223, 268].) For instance, one obtains in this way

“
∞∑

n=1

(−1)n log n ” = −1

4

∫ +∞

−∞
log( 1

4 + t2)

cosh(π t)
dt = 0.22579 · · · = log

√
π

2
,

when the divergent series on the left is interpreted as Li0,1(−1) = limz→−1+ Li0,1(z). �
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� IV.10. Magic duality. Let φ be a function initially defined over the non-negative integers but
admitting a meromorphic extension over the whole of C. Under growth conditions in the style
of Note IV.8, the function

F(z) :=
∑
n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F(z) ∼
z→+∞ E(z)−

∑
n≥1

φ(−n)(−z)−n,

for some elementary function E(z), which is a linear combination of terms of the form zα(log z)k .
[Starting from the representation of Note IV.8, close the contour of integration by a large semi-
circle to the left.] In such cases, the function is said to satisfy the principle of magic duality—its
expansion at 0 and ∞ are given by one and the same rule. Functions

1

1 + z
, log(1 + z), exp(−z), Li2(−z), Li3(−z),

satisfy a form of magic duality. Ramanujan [52] made a great use of this principle, which
applies to a wide class of functions including hypergeometric ones; see Hardy’s insightful dis-
cussion [321, Ch XI]. �

� IV.11. Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the ana-
lytic function f , one has Plana’s (also known as Abel’s) complex variables version of the Euler–
Maclaurin summation formula:

∞∑
n=0

f (n) = 1

2
f (0)+

∫ ∞

0
f (x) dx +

∫ ∞

0

f (iy)− f (−iy)

e2iπy − 1
dy.

(See [330, p. 274] for a proof and validity conditions.) �

� IV.12. Nörlund–Rice integrals. Let a(z) be analytic for -(z) > k0 − 1
2 and of at most

polynomial growth in this right half-plane. Then, with γ a simple loop around the interval
[k0, n], one has

n∑
k=k0

(
n

k

)
(−1)n−ka(k) = 1

2iπ

∫
γ

a(s)
n! ds

s(s − 1)(s − 2) · · · (s − n)
.

If a(z) is meromorphic and suitably small in a larger region, then the integral can be estimated
by residues. For instance, with

Sn =
n∑

k=1

(
n

k

)
(−1)k

k
, Tn =

n∑
k=1

(
n

k

)
(−1)k

k2 + 1
,

it is found that Sn = −Hn (a harmonic number), while Tn oscillates boundedly as n →
+∞. [This technique is a classical one in the calculus of finite differences, going back to
Nörlund [458]. In computer science it is known as the method of Rice’s integrals [256] and
is used in the analysis of many algorithms and data structures including digital trees and radix
sort [378, 564].] �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally defined as a point where the
function ceases to be analytic. (Poles are the simplest type of singularity.) Singu-
larities are, as we have stressed repeatedly, essential to coefficient asymptotics. This
section presents the bases of a discussion within the framework of analytic function
theory.
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IV. 3.1. Singularities. Let f (z) be an analytic function defined over the interior
region determined by a simple closed curve γ , and let z0 be a point of the bounding
curve γ . If there exists an analytic function f �(z) defined over some open set ��

containing z0 and such that f �(z) = f (z) in �� ∩ �, one says that f is analytically
continuable at z0 and that f � is an immediate analytic continuation of f . Pictorially:

Analytic continuation:

*

( f )

Ω

( f* )

z0

Ωγ

f �(z) = f (z) on �� ∩�.

Consider for instance the quasi-inverse function, f (z) = 1/(1 − z). Its power series
representation f (z) = ∑

n≥0 zn initially converges in |z| < 1. However, the calcula-
tion of (8), p. 231, shows that it is representable locally by a convergent series near
any point z0  = 1. In particular, it is continuable at any point of the unit disc ex-
cept 1. (Alternatively, one may appeal to complex-differentiability to verify directly
that f (z), which is given by a “global” expression, is holomorphic, hence analytic, in
the punctured plane C \ {1}.)

In sharp contrast with real analysis, where a smooth function admits of uncount-
ably many extensions, analytic continuation is essentially unique: if f � (in ��) and
f �� (in ���) continue f at z0, then one must have f �(z) = f ��(z) in the intersection
�� ∩ ���, which in particular includes a small disc around z0. Thus, the notion of
immediate analytic continuation at a boundary point is intrinsic. The process can be
iterated and we say that g is an analytic continuation4 of f along a path, even if the
domains of definition of f and g do not overlap, provided a finite chain of interme-
diate function elements connects f and g. This notion is once more intrinsic—this is
known as the principle of unicity of analytic continuation (Rudin [523, Ch. 16] pro-
vides a thorough discussion). An analytic function is then much like a hologram: as
soon as it is specified in any tiny region, it is rigidly determined in any wider region
to which it can be continued.

Definition IV.4. Given a function f defined in the region interior to the simple closed
curve γ , a point z0 on the boundary (γ ) of the region is a singular point or a singularity5

if f is not analytically continuable at z0.

Granted the intrinsic character of analytic continuation, we can usually dispense with
a detailed description of the original domain � and the curve γ . In simple terms, a
function is singular at z0 if it cannot be continued as an analytic function beyond z0.
A point at which a function is analytic is also called by contrast a regular point.

The two functions f (z) = 1/(1− z) and g(z) = √
1 − z may be taken as initially

defined over the open unit disc by their power series representation. Then, as we
already know, they can be analytically continued to larger regions, the punctured plane

4The collection of all function elements continuing a given function gives rise to the notion of Riemann
surface, for which many good books exist, e.g., [201, 549]. We shall not need to appeal to this theory.

5For a detailed discussion, see [165, p. 229], [373, vol. 1, p. 82], or [577].
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� = C \ {1} for f [e.g., by the calculation of (8), p. 231] and the complex plane
slit along (1,+∞) for g [e.g., by virtue of continuity and differentiability as in (9),
p. 232]. But both are singular at 1: for f , this results (say) from the fact that f (z) →
∞ as z → 1; for g this is due to the branching character of the square-root. Figure IV.4
displays a few types of singularities that are traceable by the way they deform a regular
grid near a boundary point.

A converging power series is analytic inside its disc of convergence; in other
words, it can have no singularity inside this disc. However, it must have at least one
singularity on the boundary of the disc, as asserted by the theorem below. In addition, a
classical theorem, called Pringsheim’s theorem, provides a refinement of this property
in the case of functions with non-negative coefficients, which happens to include all
counting generating functions.

Theorem IV.5 (Boundary singularities). A function f (z) analytic at the origin, whose
expansion at the origin has a finite radius of convergence R, necessarily has a singu-
larity on the boundary of its disc of convergence, |z| = R.

Proof. Consider the expansion

(15) f (z) =
∑
n≥0

fnzn,

assumed to have radius of convergence exactly R. We already know that there can
be no singularity of f within the disc |z| < R. To prove that there is a singularity
on |z| = R, suppose a contrario that f (z) is analytic in the disc |z| < ρ for some
ρ satisfying ρ > R. By Cauchy’s coefficient formula (Theorem IV.4, p. 237), upon
integrating along the circle of radius r = (R + ρ)/2, and by trivial bounds, it is seen
that the coefficient [zn] f (z) is O(r−n). But then, the series expansion of f would
have to converge in the disc of radius r > R, a contradiction. �

Pringsheim’s Theorem stated and proved now is a refinement of Theorem IV.5
that applies to all series having non-negative coefficients, in particular, generating
functions. It is central to asymptotic enumeration, as the remainder of this section will
amply demonstrate.

Theorem IV.6 (Pringsheim’s Theorem). If f (z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then
the point z = R is a singularity of f (z).

� IV.13. Proof of Pringsheim’s Theorem. (See also [577, Sec. 7.21].) In a nutshell, the idea
of the proof is that if f has positive coefficients and is analytic at R, then its expansion slightly
to the left of R has positive coefficients. Then, the power series of f would converge in a disc
larger than the postulated disc of convergence—a clear contradiction.

Suppose then a contrario that f (z) is analytic at R, implying that it is analytic in a disc of
radius r centred at R. We choose a number h such that 0 < h < 1

3r and consider the expansion
of f (z) around z0 = R − h:

(16) f (z) =
∑
m≥0

gm(z − z0)
m .
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Figure IV.4. The images of a grid on the unit square (with corners ±1±i) by various
functions singular at z = 1 reflect the nature of the singularities involved. Singulari-
ties are apparent near the right of each diagram where small grid squares get folded
or unfolded in various ways. (In the case of functions f0, f1, f4 that become infinite
at z = 1, the grid has been slightly truncated to the right.)
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By Taylor’s formula and the representability of f (z) together with its derivatives at z0 by means
of (15), we have

gm =
∑
n≥0

(
n

m

)
fn zn−m

0 ,

and in particular, gm ≥ 0.
Given the way h was chosen, the series (16) converges at z = R + h (so that z − z0 = 2h)

as illustrated by the following diagram:

z0 = R − h
R
R + h

R 2h r

Consequently, one has

f (R + h) =
∑
m≥0

⎛⎝∑
n≥0

(
n

m

)
fn zm−n

0

⎞⎠ (2h)m .

This is a converging double sum of positive terms, so that the sum can be reorganized in any
way we like. In particular, one has convergence of all the series involved in

f (R + h) =
∑

m,n≥0

(
n

m

)
fn(R − h)m−n(2h)m

=
∑
n≥0

fn [(R − h)+ (2h)]n

=
∑
n≥0

fn(R + h)n .

This establishes the fact that fn = o((R + h)−n), thereby reaching a contradiction with the as-
sumption that the series representation of f has radius of convergence exactly R. Pringsheim’s
theorem is proved. �

Singularities of a function analytic at 0, which lie on the boundary of the disc of
convergence, are called dominant singularities. Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions
since these have non-negative coefficients—it is sufficient to investigate analyticity
along the positive real line and detect the first place at which it ceases to hold.

Example IV.1. Some combinatorial singularities. The derangement and the surjection EGFs,

D(z) = e−z

1 − z
, R(z) = (2 − ez)−1

are analytic, except for a simple pole at z = 1 in the case of D(z), and for points χk =
log 2 + 2ikπ that are simple poles in the case of R(z). Thus the dominant singularities for
derangements and surjections are at 1 and log 2, respectively.
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It is known that
√

Z cannot be unambiguously defined as an analytic function in a neigh-
bourhood of Z = 0. As a consequence, the function

G(z) = 1 −√
1 − 4z

2
,

which is the generating function of general Catalan trees, is an analytic function in regions that
must exclude 1/4; for instance, one may take the complex plane slit along the ray (1/4,+∞).
The OGF of Catalan numbers C(z) = G(z)/z is, as G(z), a priori analytic in the slit plane,
except perhaps at z = 0, where it has the indeterminate form 0/0. However, after C(z) is
extended by continuity to C(0) = 1, it becomes an analytic function at 0, where its Taylor
series converges in |z| < 1

4 . In this case, we say that that C(z) has an apparent or removable
singularity at 0. (See also Morera’s Theorem, Note B.6, p. 743.)

Similarly, the EGF of cyclic permutations

L(z) = log
1

1 − z
is analytic in the complex plane slit along (1,+∞).

A function having no singularity at a finite distance is called entire; its Taylor series then
converges everywhere in the complex plane. The EGFs,

ez+z2/2 and eez−1,

associated, respectively, with involutions and set partitions, are entire. . . . . . . . . . . . . . . . . . . . �

IV. 3.2. The Exponential Growth Formula. We say that a number sequence
{an} is of exponential order K n , which we abbreviate as (the symbol /0 is a “bowtie”)

an /0 K n iff lim sup |an|1/n = K .

The relation “an /0 K n” reads as “an is of exponential order K n”. It expresses both
an upper bound and a lower bound, and one has, for any ε > 0:

(i) |an| >i.o (K − ε)n ; that is to say, |an| exceeds (K − ε)n infinitely often (for
infinitely many values of n);

(i i) |an| <a.e. (K + ε)n ; that is to say, |an| is dominated by (K + ε)n almost
everywhere (except for possibly finitely many values of n).

This relation can be rephrased as an = K nθ(n), where θ is a subexponential factor :

lim sup |θ(n)|1/n = 1;
such a factor’s modulus is thus bounded from above almost everywhere by any in-
creasing exponential (of the form (1 + ε)n) and bounded from below infinitely often
by any decaying exponential (of the form (1 − ε)n). Typical subexponential factors
are

1, n3, (log n)2,
√

n,
1

3
√

log n
, n−3/2, (−1)n, log log n.

(Functions such as e
√

n and exp(log2 n) are also to be treated as subexponential factors
for the purpose of this discussion.) The lim sup definition also allows in principle for
factors that are infinitely often very small or 0, such as n2 sin n π

2 , log n cos
√

n π
2 , and

so on. In this and the next chapters, we shall develop systematic methods that enable
one to extract such subexponential factors from generating functions.
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It is an elementary observation that the radius of convergence of the series rep-
resentation of f (z) at 0 is related to the exponential growth rate of the coefficients
fn = [zn] f (z). To wit, if Rconv( f ; 0) = R, then we claim that

(17) fn /0
(

1

R

)n

, i.e., fn = R−nθ(n) with lim sup |θ(n)|1/n = 1.

� IV.14. Radius of convergence and exponential growth. This only requires the basic definition
of a power series. (i) By definition of the radius of convergence, we have for any small ε > 0,
fn(R − ε)n → 0. In particular, | fn |(R − ε)n < 1 for all sufficiently large n, so that | fn |1/n <

(R − ε)−1 “almost everywhere”. (i i) In the other direction, for any ε > 0, | fn |(R + ε)n cannot
be a bounded sequence, since otherwise,

∑
n | fn |(R + ε/2)n would be a convergent series.

Thus, | fn |1/n > (R + ε)−1 “infinitely often”. �

A global approach to the determination of growth rates is desirable. This is made
possible by Theorem IV.5, p. 240, as shown by the following statement.

Theorem IV.7 (Exponential Growth Formula). If f (z) is analytic at 0 and R is the
modulus of a singularity nearest to the origin in the sense that6

R := sup
{

r ≥ 0
∣∣ f is analytic in |z| < r

}
,

then the coefficient fn = [zn] f (z) satisfies

fn /0
(

1

R

)n

.

For functions with non-negative coefficients, including all combinatorial generating
functions, one can also adopt

R := sup
{

r ≥ 0
∣∣ f is analytic at all points of 0 ≤ z < r

}
.

Proof. Let R be as stated. We cannot have R < Rconv( f ; 0) since a function is analytic
everywhere in the interior of the disc of convergence of its series representation. We
cannot have R > Rconv( f ; 0) by the Boundary Singularity Theorem. Thus R =
Rconv( f ; 0). The statement then follows from (17). The adaptation to non-negative
coefficients results from Pringsheim’s theorem. �

The exponential growth formula thus directly relates the exponential growth of
coefficients of a function to the location of its singularities nearest to the origin. This
is precisely expressed by the First Principle of Coefficient Asymptotics (p. 227), which,
given its importance, we repeat here:

First Principle of Coefficient Asymptotics. The location of a function’s
singularities dictates the exponential growth (An) of its coefficient.

Example IV.2. Exponential growth and combinatorial enumeration. Here are a few immediate
applications of exponential bounds.

Surjections. The function

R(z) = (2 − ez)−1

6One should think of the process defining R as follows: take discs of increasing radii r and stop as
soon as a singularity is encountered on the boundary. (The dual process that would start from a large disc
and restrict its radius is in general ill-defined—think of

√
1 − z.)
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n 1
n log rn

1
n log r∗n

10 0.33385 −0.22508

20 0.35018 −0.18144

50 0.35998 −0.154449

100 0.36325 −0.145447

∞ 0.36651 −0.13644

(log 1/ρ) (log(1/ρ∗)

Figure IV.5. The growth rate of simple and double surjections.

is the EGF of surjections. The denominator is an entire function, so that singularities may
only arise from its zeros, to be found at the points χk = log 2 + 2ikπ , k ∈ Z. The dominant
singularity of R is then at ρ = χ0 = log 2. Thus, with rn = [zn]R(z),

rn /0
(

1

log 2

)n
.

Similarly, if “double” surjections are considered (each value in the range of the surjection
is taken at least twice), the corresponding EGF is

R∗(z) = 1

2 + z − ez ,

with the counts starting as 1,0,1,1,7,21,141 (EIS A032032). The dominant singularity is at
ρ∗ defined as the positive root of equation eρ

∗ − ρ∗ = 2, and the coefficient r∗n satisfies:
r∗n /0 (1/ρ∗)n Numerically, this gives

rn /0 1.44269n and r∗n /0 0.87245n,

with the actual figures for the corresponding logarithms being given in Figure IV.5.
These estimates constitute a weak form of a more precise result to be established later in

this chapter (p. 260): If random surjections of size n are considered equally likely, the probabil-
ity of a surjection being a double surjection is exponentially small.

Derangements. For the cases d1,n = [zn]e−z(1−z)−1 and d2,n = [zn]e−z−z2/2(1−z)−1,
we have, from the poles at z = 1,

d1,n /0 1n and d2,n /0 1n .

The implied upper bound is combinatorially trivial. The lower bound expresses that the prob-
ability for a random permutation to be a derangement is not exponentially small. For d1,n , we
have already proved (p. 225) by an elementary argument the stronger result d1,n → e−1; in the
case of d2,n , we shall establish later (p. 261) the precise asymptotic estimate d2,n → e−3/2.

Unary–binary trees. The expression

U (z) = 1 − z −
√

1 − 2z − 3z2

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

represents the OGF of (plane unlabelled) unary–binary trees. From the equivalent form,

U (z) = 1 − z −√
(1 − 3z)(1 + z)

2z
,
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it follows that U (z) is analytic in the complex plane slit along ( 1
3 ,+∞) and (−∞,−1) and is

singular at z = −1 and z = 1/3 where it has branch points. The closest singularity to the origin
being at 1

3 , one has

Un /0 3n .

In this case, the stronger upper bound Un ≤ 3n results directly from the possibility of encoding
such trees by words over a ternary alphabet using Łukasiewicz codes (Chapter I, p. 74). A
complete asymptotic expansion will be obtained, as one of the first applications of singularity
analysis, in Chapter VI (p. 396). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IV.15. Coding theory bounds and singularities. Let C be a combinatorial class. We say that
it can be encoded with f (n) bits if, for all sufficiently large values of n, elements of Cn can be
encoded as words of f (n) bits. (An interesting example occurs in Note I.23, p. 53.) Assume
that C has OGF C(z) with radius of convergence R satisfying 0 < R < 1. Then, for any ε,
C can be encoded with (1 + ε)κn bits where κ = − log2 R, but C cannot be encoded with
(1 − ε)κn bits.

Similarly, if C has EGF Ĉ(z) with radius of convergence R satisfying 0 < R < ∞, then C
can be encoded with n log(n/e)+ (1+ ε)κn bits where κ = − log2 R, but C cannot be encoded
with n log(n/e)+ (1− ε)κn bits. Since the radius of convergence is determined by the distance
to singularities nearest to the origin, we have the following interesting fact: singularities convey
information on optimal codes. �

Saddle-point bounds. The exponential growth formula (Theorem IV.7, p. 244)
can be supplemented by effective upper bounds which are very easy to derive and
often turn out to be surprisingly accurate. We state:

Proposition IV.1 (Saddle-point bounds). Let f (z) be analytic in the disc |z| < R with
0 < R ≤ ∞. Define M( f ; r) for r ∈ (0, R) by M( f ; r) := sup|z|=r | f (z)|. Then,
one has, for any r in (0, R), the family of saddle-point upper bounds

(18) [zn] f (z) ≤ M( f ; r)

rn
implying [zn] f (z) ≤ inf

r∈(0,R)
M( f ; r)

rn
.

If in addition f (z) has non-negative coefficients at 0, then

(19) [zn] f (z) ≤ f (r)

rn
implying [zn] f (z) ≤ inf

r∈(0,R)
f (r)

rn
.

Proof. In the general case of (18), the first inequality results from trivial bounds ap-
plied to the Cauchy coefficient formula, when integration is performed along a circle:

[zn] f (z) = 1

2iπ

∫
|z|=r

f (z)
dz

zn+1
.

It is consequently valid for any r smaller than the radius of convergence of f at 0. The
second inequality in (18) plainly represents the best possible bound of this type.

In the positive case of (19), the bounds can be viewed as a direct specialization
of (18). (Alternatively, they can be obtained in a straightforward manner, since

fn ≤ f0

rn
+ · · · + fn−1

r
+ fn + fn+1

rn+1
+ · · · ,

whenever the fk are non-negative.) �
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Note that the value s that provides the best bound in (19) can be determined by
setting a derivative to zero,

(20) s
f ′(s)
f (s)

= n.

Thanks to the universal character of the first bound, any approximate solution of this
last equation will in fact provide a valid upper bound.

We shall see in Chapter VIII another way to conceive of these bounds as a first
step in an important method of asymptotic analysis; namely, the saddle-point method,
which explains where the term “saddle-point bound” originates from (Theorem VIII.2,
p. 547). For reasons that are well developed there, the bounds usually capture the
actual asymptotic behaviour up to a polynomial factor. A typical instance is the weak
form of Stirling’s formula,

1

n!
≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.
� IV.16. A suboptimal but easy saddle-point bound. Let f (z) be analytic in |z| < 1 with
non-negative coefficients. Assume that f (x) ≤ (1 − x)−β for some β ≥ 0 and all x ∈ (0, 1).
Then

[zn] f (z) = O(nβ).

(Better bounds of the form O(nβ−1) are usually obtained by the method of singularity analysis
expounded in Chapter VI.) �

Example IV.3. Combinatorial examples of saddle-point bounds. Here are applications to
fragmented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations. First, fragmented permutations (Chapter II, p. 125) are labelled
structures defined by F = SET(SEQ≥1(Z)). The EGF is ez/(1−z); we claim that

(21)
1

n!
Fn ≡ [zn]ez/(1−z) ≤ e2

√
n− 1

2+O(n−1/2).

Indeed, the minimizing radius of the saddle-point bound (19) is s such that

0 = d

ds

(
s

1 − s
− n log s

)
= 1

(1 − s)2
− n

s
.

The equation is solved by s = (2n+1−√
4n + 1)/(2n). One can either use this exact value and

compute an asymptotic approximation of f (s)/sn , or adopt right away the approximate value
s1 = 1 − 1/

√
n, which leads to simpler calculations. The estimate (21) results. It is off from

the actual asymptotic value only by a factor of order n−3/4 (cf Example VIII.7, p. 562).

Bell numbers and set partitions. Another immediate application is an upper bound on
Bell numbers enumerating set partitions, S = SET(SET≥1(Z)), with EGF eez−1. According
to (20), the best saddle-point bound is obtained for s such that ses = n. Thus,

(22)
1

n!
Sn ≤ ees−1−n log s where s : ses = n;

additionally, one has s = log n − log log n + o(log log n). See Chapter VIII, p. 561 for the
complete saddle-point analysis.
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n Ĩn In

100 0.106579 · 1085 0.240533 · 1083

200 0.231809 · 10195 0.367247 · 10193

300 0.383502 · 10316 0.494575 · 10314

400 0.869362 · 10444 0.968454 · 10442

500 0.425391 · 10578 0.423108 · 10576 0 1 2 3

−2

−1

Figure IV.6. A comparison of the exact number of involutions In to its approxi-
mation Ĩn = n!e

√
n+n/2n−n/2: [left] a table; [right] a plot of log10(In/ Ĩn) against

log10 n suggesting that the ratio satisfies In/ Ĩn ∼ K · n−1/2, the slope of the curve
being ≈ − 1

2 .

Involutions. Involutions are specified by I = SET(CYC1,2(Z)) and have EGF I (z) =
exp(z + 1

2 z2). One determines, by choosing s = √
n as an approximate solution to (20):

(23)
1

n!
In ≤ e

√
n+n/2

nn/2
.

(See Figure IV.6 for numerical data and Example VIII.5, p. 558 for a full analysis.) Similar
bounds hold for permutations with all cycle lengths ≤ k and permutations σ such that σ k = I d .

Integer partitions. The function

(24) P(z) =
∞∏

k=1

1

1 − zk
= exp

⎛⎝ ∞∑
�=1

1

�

z�

1 − z�

⎞⎠
is the OGF of integer partitions, an unlabelled analogue of set partitions. Its radius of con-
vergence is a priori bounded from above by 1, since the set P is infinite and the second form
of P(z) shows that it is exactly equal to 1. Therefore Pn /0 1n . A finer upper bound results
from the estimate (see also p. 576)

(25) L(t) := log P(e−t ) ∼ π2

6t
+ log

√
t

2π
− 1

24
t + O(t2),

which is obtained from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing Appendix B.7: Mellin transform, p. 762. Indeed, the Mellin transform of L is, by the
harmonic sum rule,

L�(s) = ζ(s)ζ(s + 1)�(s), s ∈ 〈1,+∞〉,
and the successive left-most poles at s = 1 (simple pole), s = 0 (double pole), and s = −1
(simple pole) translate into the asymptotic expansion (25). When z → 1−, we have

(26) P(z) ∼ e−π2/12
√

2π

√
1 − z exp

(
π2

6(1 − z)

)
,

from which we derive (choose s = D
√

n as an approximate solution to (20))

Pn ≤ Cn−1/4eπ
√

2n/3,

for some C > 0. This last bound is once more only off by a polynomial factor, as we shall
prove when studying the saddle-point method (Proposition VIII.6, p. 578). . . . . . . . . . . . . . . . �
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� IV.17. A natural boundary. One has P(reiθ ) → ∞ as r → 1−, for any angle θ that is a
rational multiple of 2π . The points e2iπp/q being dense on the unit circle, the function P(z)
admits the unit circle as a natural boundary; that is, it cannot be analytically continued beyond
this circle. �

IV. 4. Closure properties and computable bounds

Analytic functions are robust: they satisfy a rich set of closure properties. This
fact makes possible the determination of exponential growth constants for coefficients
of a wide range of classes of functions. Theorem IV.8 below expresses computability
of growth rate for all specifications associated with iterative specifications. It is the
first result of several that relate symbolic methods of Part A with analytic methods
developed here.

Closure properties of analytic functions. The functions analytic at a point z = a
are closed under sum and product, and hence form a ring. If f (z) and g(z) are ana-
lytic at z = a, then so is their quotient f (z)/g(z) provided g(a)  = 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such prop-
erties are proved most easily using complex-differentiability and extending the usual
relations from real analysis, for instance, ( f + g)′ = f ′ + g′, ( f g)′ = f g′ + f ′g.

Analytic functions are also closed under composition: if f (z) is analytic at z = a
and g(w) is analytic at b = f (a), then g ◦ f (z) is analytic at z = a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse
functions exist conditionally: if f ′(a)  = 0, then f (z) is locally linear near a, hence
invertible, so that there exists a g satisfying f ◦ g = g ◦ f = I d, where I d is
the identity function, I d(z) ≡ z. The inverse function is itself locally linear, hence
complex-differentiable, hence analytic. In short: the inverse of an analytic function f
at a place where the derivative does not vanish is an analytic function. We shall return
to this important property later in this chapter (Subsection IV. 7.1, p. 275), then put it
to full use in Chapter VI (p. 402) and VII (p. 452) in order to derive strong asymptotic
properties of simple varieties of trees.
� IV.18. A Mean Value Theorem for analytic functions. Let f be analytic in � and assume the
existence of M := supz∈� | f ′(z)|. Then, for all a, b in �, one has

| f (b)− f (a)| ≤ 2M |b − a|.
(Hint: a simple consequence of the Mean Value Theorem applied to -( f ), .( f ).) �

� IV.19. The analytic inversion lemma. Let f be analytic on � ' z0 and satisfy f ′(z0)  = 0.
Then, there exists a small region �1 ⊆ � containing z0 and a C > 0 such that | f (z)− f (z′)| >
C |z − z′|, for all z, z′ ∈ �1, z  = z′. Consequently, f maps bijectively �1 on f (�1). (See also
Subsection IV. 6.2, p. 269, for a proof based on integration.) �

One way to establish closure properties, as suggested above, is to deduce analyt-
icity criteria from complex differentiability by way of the Basic Equivalence Theorem
(Theorem IV.1, p. 232). An alternative approach, closer to the original notion of ana-
lyticity, can be based on a two-step process: (i) closure properties are shown to hold
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true for formal power series; (i i) the resulting formal power series are proved to be
locally convergent by means of suitable majorizations on their coefficients. This is the
basis of the classical method of majorant series originating with Cauchy.

� IV.20. The majorant series technique. Given two power series, define f (z) 1 g(z) if∣∣[zn] f (z)
∣∣ ≤ [zn]g(z) for all n ≥ 0. The following two conditions are equivalent: (i) f (z)

is analytic in the disc |z| < ρ; (i i) for any r > ρ−1 there exists a c such that

f (z) 1 c

1 − r z
.

If f, g are majorized by c/(1−r z), d/(1−r z), respectively, then f +g and f ·g are majorized,

f (z)+ g(z) 1 c + d

1 − r z
, f (z) · g(z) 1 e

1 − sz
,

for any s > r and for some e dependent on s. Similarly, the composition f ◦ g is majorized:

f ◦ g(z) 1 c

1 − r(1 + d)z
.

Constructions for 1/ f and for the functional inverse of f can be similarly developed. See
Cartan’s book [104] and van der Hoeven’s study [587] for a systematic treatment. �

As a consequence of closure properties, for functions defined by analytic expres-
sions, singularities can be determined inductively in an intuitively transparent manner.
If Sing( f ) and Zero( f ) are, respectively, the set of singularities and zeros of the func-
tion f , then, due to closure properties of analytic functions, the following informally
stated guidelines apply.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sing( f ± g) ⊆ Sing( f ) ∪ Sing(g)
Sing( f × g) ⊆ Sing( f ) ∪ Sing(g)
Sing( f/g) ⊆ Sing( f ) ∪ Sing(g) ∪ Zero(g)
Sing( f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing( f ))
Sing(

√
f ) ⊆ Sing( f ) ∪ Zero( f )

Sing(log( f )) ⊆ Sing( f ) ∪ Zero( f )
Sing( f (−1)) ⊆ f (Sing( f )) ∪ f (Zero( f ′)).

A mathematically rigorous treatment would require considering multivalued func-
tions and Riemann surfaces, so that we do not state detailed validity conditions and
keep for these formulae the status of useful heuristics. In fact, because of Pringsheim’s
theorem, the search of dominant singularities of combinatorial generating function can
normally avoid considering the complete multivalued structure of functions, since only
some initial segment of the positive real half-line needs to be considered. This in turn
implies a powerful and easy way of determining the exponential order of coefficients
of a wide variety of generating functions, as we explain next.

Computability of exponential growth constants. As defined in Chapters I and II,
a combinatorial class is constructible or specifiable if it can be specified by a finite set
of equations involving only the basic constructors. A specification is iterative or non-
recursive if in addition the dependency graph (p. 33) of the specification is acyclic.
In that case, no recursion is involved and a single functional term (written with sums,
products, sequences, sets, and cycles) describes the specification.
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Our interest here is in effective computability issues. We recall that a real number
α is computable iff there exists a program �α , which, on input m, outputs a rational
number αm guaranteed to be within ±10−m of α. We state:

Theorem IV.8 (Computability of growth). Let C be a constructible unlabelled class
that admits an iterative specification in terms of (SEQ, PSET,MSET,CYC;+,×)
starting with (1,Z). Then, the radius of convergence ρC of the OGF C(z) of C is
either +∞ or a (strictly) positive computable real number.

Let D be a constructible labelled class that admits an iterative specification in
terms of (SEQ, SET,CYC;+, �) starting with (1,Z). Then, the radius of convergence
ρD of the EGF D(z) of D is either +∞ or a (strictly) positive computable real number.

Accordingly, if finite, the constants ρC , ρD in the exponential growth estimates,

[zn]C(z) ≡ Cn /0
(

1

ρC

)n

, [zn]D(z) ≡ 1

n!
Dn /0

(
1

ρD

)n

,

are computable numbers.

Proof. In both cases, the proof proceeds by induction on the structural specification of
the class. For each class F , with generating function F(z), we associate a signature,
which is an ordered pair 〈ρF , τF 〉, where ρF is the radius of convergence of F and τF

is the value of F at ρF , precisely,

τF := lim
x→ρ−F

F(x).

(The value τF is well defined as an element of R ∪ {+∞} since F , being a counting
generating function, is necessarily increasing on (0, ρF ).)

Unlabelled case. An unlabelled class G is either finite, in which case its OGF
G(z) is a polynomial, or infinite, in which case it diverges at z = 1, so that ρG ≤ 1. It
is clearly decidable, given the specification, whether a class is finite or not: a necessary
and sufficient condition for a class to be infinite is that one of the unary constructors
(SEQ,MSET,CYC) intervenes in the specification. We prove (by induction) the as-
sertion of the theorem together with the stronger property that τF = ∞ as soon as the
class is infinite.

First, the signatures of the neutral class 1 and the atomic class Z , with OGF 1 and
z, are 〈+∞, 1〉 and 〈+∞,+∞〉. Any non-constant polynomial which is the OGF of
a finite set has the signature 〈+∞,+∞〉. The assertion is thus easily verified in these
cases.

Next, let F = SEQ(G). The OGF G(z) must be non-constant and satisfy G(0) =
0, in order for the sequence construction to be properly defined. Thus, by the induc-
tion hypothesis, one has 0 < ρG ≤ +∞ and τG = +∞. Now, the function G being
increasing and continuous along the positive axis, there must exist a value β such that
0 < β < ρG with G(β) = 1. For z ∈ (0, β), the quasi-inverse F(z) = (1 − G(z))−1

is well defined and analytic; as z approaches β from the left, F(z) increases un-
boundedly. Thus, the smallest singularity of F along the positive axis is at β, and
by Pringsheim’s theorem, one has ρF = β. The argument shows at the same time that
τF = +∞. There only remains to check that β is computable. The coefficients of
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G form a computable sequence of integers, so that G(x), which can be well approxi-
mated via a truncated Taylor series, is an effectively computable number7 if x is itself
a positive computable number less than ρG . Then, binary search provides an effective
procedure for determining β.

Next, we consider the multiset construction, F = MSET(G), whose translation
into OGFs necessitates the Pólya exponential of Chapter I (p. 34):

F(z) = Exp(G(z)) where Exp(h(z)) := exp

(
h(z)+ 1

2
h(z2)+ 1

3
h(z3)+ · · ·

)
.

Once more, the induction hypothesis is assumed for G. If G is a polynomial, then F
is a rational function with poles at roots of unity only. Thus, ρF = 1 and τF = ∞
in that particular case. In the general case of F = MSET(G) with G infinite, we start
by fixing arbitrarily a number r such that 0 < r < ρG ≤ 1 and examine F(z) for
z ∈ (0, r). The expression for F rewrites as

Exp(G(z)) = eG(z) · exp

(
1

2
G(z2)+ 1

3
G(z3)+ · · ·

)
.

The first factor is analytic for z on (0, ρG) since, the exponential function being entire,
eG has the singularities of G. As to the second factor, one has G(0) = 0 (in order
for the set construction to be well-defined), while G(x) is convex for x ∈ [0, r ] (since
its second derivative is positive). Thus, there exists a positive constant K such that
G(x) ≤ K x when x ∈ [0, r ]. Then, the series 1

2 G(z2) + 1
3 G(z3) + · · · has its terms

dominated by those of the convergent series

K

2
r2 + K

3
r3 + · · · = K log(1 − r)−1 − Kr.

By a well-known theorem of analytic function theory, a uniformly convergent sum of
analytic functions is itself analytic; consequently, 1

2 G(z2)+ 1
3 G(z3)+ · · · is analytic

at all z of (0, r). Analyticity is then preserved by the exponential, so that F(z), being
analytic at z ∈ (0, r) for any r < ρG has a radius of convergence that satisfies ρF ≥
ρG . On the other hand, since F(z) dominates termwise G(z), one has ρF ≤ ρG . Thus
finally one has ρF = ρG . Also, τG = +∞ implies τF = +∞.

A parallel discussion covers the case of the powerset construction (PSET) whose
associated functional Exp is a minor modification of the Pólya exponential Exp. The
cycle construction can be treated by similar arguments based on consideration of
“Pólya’s logarithm” as F = CYC(G) corresponds to

F(z) = Log
1

1 − G(z)
, where Log h(z) = log h(z)+ 1

2
log h(z2)+ · · · .

In order to conclude with the unlabelled case, it only remains to discuss the binary
constructors +, ×, which give rise to F = G + H , F = G · H . It is easily verified that

7The present argument only establishes non-constructively the existence of a program, based on the
fact that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence.
Making explict this program and the involved parameters from the specification itself however represents a
much harder problem (that of “uniformity” with respect to specifications) that is not addressed here.
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ρF = min(ρG , ρH ). Computability is granted since the minimum of two computable
numbers is computable. That τF = +∞ in each case is immediate.

Labelled case. The labelled case is covered by the same type of argument as
above, the discussion being even simpler, since the ordinary exponential and logarithm
replace the Pólya operators Exp and Log. It is still a fact that all the EGFs of infinite
non-recursive classes are infinite at their dominant positive singularity, though the
radii of convergence can now be of any magnitude (compared to 1). �
� IV.21. Restricted constructions. This is an exercise in induction. Theorem IV.8 is stated for
specifications involving the basic constructors. Show that the conclusion still holds if the corres-
ponding restricted constructions (K=r ,K<r ,K>r , with K being any of the basic constructors)
are also allowed. �

� IV.22. Syntactically decidable properties. For unlabelled classes F , the property ρF = 1 is
decidable. For labelled and unlabelled classes, the property ρF = +∞ is decidable. �

� IV.23. Pólya–Carlson and a curious property of OGFs. Here is a statement first conjectured
by Pólya, then proved by Carlson in 1921 (see [164, p. 323]): If a function is represented by
a power series with integer coefficients that converges inside the unit disc, then either it is a
rational function or it admits the unit circle as a natural boundary. This theorem applies in
particular to the OGF of any combinatorial class. �

� IV.24. Trees are recursive structures only! General and binary trees cannot receive an iter-
ative specification since their OGFs assume a finite value at their Pringsheim singularity. [The
same is true of most simple families of trees; cf Proposition VI.6, p. 404]. �

� IV.25. Non-constructibility of permutations and graphs. The class P of all permutations
cannot be specified as a constructible unlabelled class since the OGF P(z) = ∑

n n!zn has
radius of convergence 0. (It is of course constructible as a labelled class.) Graphs, whether
labelled or unlabelled, are too numerous to form a constructible class. �

Theorem IV.8 establishes a link between analytic combinatorics, computability
theory, and symbolic manipulation systems. It is based on an article of Flajolet, Salvy,
and Zimmermann [255] devoted to such computability issues in exact and asymptotic
enumeration. Recursive specifications are not discussed now since they tend to give
rise to branch points, themselves amenable to singularity analysis techniques to be
fully developed in Chapters VI and VII. The inductive process, implied by the proof of
Theorem IV.8, that decorates a specification with the radius of convergence of each of
its subexpressions, provides a practical basis for determining the exponential growth
rate of counts associated to a non-recursive specification.

Example IV.4. Combinatorial trains. This purposely artificial example from [219] (see Fig-
ure IV.7) serves to illustrate the scope of Theorem IV.8 and demonstrate its inner mechanisms
at work. Define the class of all labelled trains by the following specification,

(27)

⎧⎪⎪⎨⎪⎪⎩
T r = Wa � SEQ(Wa � SET(Pa)),
Wa = SEQ≥1(P�),
P� = Z �Z � (1 + CYC(Z)),
Pa = CYC(Z) � CYC(Z).

In figurative terms, a train (T r ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers (Pa).
A wagon is itself composed of “planks” (P�) conventionally identified by their two end points
(Z � Z) and to which a circular wheel (CYC(Z)) may optionally be attached. A passenger is
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T r

�

Wa

Seq≥1

�

Z Z +

1 Cyc

Z

Seq

�

(Wa) Set

�

Cyc

Z

Cyc

Z

0.48512

0.68245

1

∞ ∞ 1

∞ 1

∞

0.48512

0.68245

0.68245 1

1

1

∞

1

∞

Figure IV.7. The inductive determination of the radius of convergence of the EGF of
trains: (left) a hierarchical view of the specification of T r ; (right) the corresponding
radii of convergence for each subspecification.

composed of a head and a belly that are each circular arrangements of atoms. Here is a depiction
of a random train:

The translation into a set of EGF equations is immediate and a symbolic manipulation system
readily provides the form of the EGF of trains as

T r(z) =
z2

(
1 + log((1 − z)−1)

)
(

1 − z2
(

1 + log((1 − z)−1)
))

⎛⎜⎜⎜⎝1 −
z2

(
1 + log((1 − z)−1)

)
e

(
log((1−z)−1)

)2

1 − z2
(

1 + log((1 − z)−1)
)

⎞⎟⎟⎟⎠
−1

,

together with the expansion

T r(z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .

The specification (27) has a hierarchical structure, as suggested by the top representation of
Figure IV.7, and this structure is itself directly reflected by the form of the expression tree of the
GF T r(z). Then, each node in the expression tree of T r(z) can be tagged with the corresponding
value of the radius of convergence. This is done according to the principles of Theorem IV.8;
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see the right diagram of Figure IV.7. For instance, the quantity 0.68245 associated to W a(z) is
given by the sequence rule and is determined as the smallest positive solution of the equation

z2
(

1 − log(1 − z)−1
)
= 1.

The tagging process works upwards till the root of the tree is reached; here the radius of con-
vergence of T r is determined to be ρ

.= 0.48512 · · · , a quantity that happens to coincide with
the ratio [z49]T r(z)/[z50]T r(z) to more than 15 decimal places. . . . . . . . . . . . . . . . . . . . . . . . . �

IV. 5. Rational and meromorphic functions

The last section has fully justified the First Principle of Coefficient Asymptotics
leading to the exponential growth formula fn /0 An for the coefficients of an analytic
function f (z). Indeed, as we saw, one has A = 1/ρ, where ρ equals both the radius of
convergence of the series representing f and the distance of the origin to the dominant,
i.e., closest, singularities. We are going to start examining here the Second Principle,
already given on p. 227 and relative to the form

fn = Anθ(n),

with θ(n) the subexponential factor:

Second Principle of Coefficient Asymptotics. The nature of a function’s
singularities determines the associate subexponential factor (θ(n)).

In this section, we develop a complete theory in the case of rational functions (that is,
quotients of polynomials) and, more generally, meromorphic functions. The net result
is that, for such functions, the subexponential factors are essentially polynomials:

Polar singularities � subexponential factors θ(n) of polynomial growth.

A distinguishing feature is the extremely good quality of the asymptotic approxima-
tions obtained; for naturally occurring combinatorial problems, 15 digits of accuracy
is not uncommon in coefficients of index as low as 50 (see Figure IV.8, p. 260 below
for a striking example).

IV. 5.1. Rational functions. A function f (z) is a rational function iff it is of the
form f (z) = N (z)/D(z), with N (z) and D(z) being polynomials, which we may,
without loss of generality, assume to be relatively prime. For rational functions that
are analytic at the origin (e.g., generating functions), we have D(0)  = 0.

Sequences { fn}n≥0 that are coefficients of rational functions satisfy linear re-
currence relations with constant coefficients. This fact is easy to establish: com-
pute [zn] f (z) · D(z); then, with D(z) = d0 + d1z + · · · + dm zm , one has, for all
n > deg(N (z)),

m∑
j=0

d j fn− j = 0.

The main theorem we prove now provides an exact finite expression for coeffi-
cients of f (z) in terms of the poles of f (z). Individual terms in these expressions are
sometimes called exponential–polynomials.
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Theorem IV.9 (Expansion of rational functions). If f (z) is a rational function that is
analytic at zero and has poles at points α1, α2, . . . , αm, then its coefficients are a sum
of exponential–polynomials: there exist m polynomials {� j (x)}m

j=1 such that, for n
larger than some fixed n0,

(28) fn ≡ [zn] f (z) =
m∑

j=1

� j (n)α
−n
j .

Furthermore the degree of � j is equal to the order of the pole of f at α j minus one.

Proof. Since f (z) is rational it admits a partial fraction expansion. To wit:

f (z) = Q(z)+
∑
(α,r)

cα,r
(z − α)r

,

where Q(z) is a polynomial of degree n0 := deg(N )− deg(D) if f = N/D. Here α
ranges over the poles of f (z) and r is bounded from above by the multiplicity of α as
a pole of f . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z − α)r
= (−1)r

αr
[zn]

1(
1 − z

α

)r = (−1)r

αr

(
n + r − 1

r − 1

)
α−n .

The binomial coefficient is a polynomial of degree r − 1 in n, and collecting terms
associated with a given α yields the statement of the theorem. �

Notice that the expansion (28) is also an asymptotic expansion in disguise: when
grouping terms according to the α’s of increasing modulus, each group appears to be
exponentially smaller than the previous one. In particular, if there is a unique dominant
pole, |α1| < |α2| ≤ |α3| ≤ · · · , then

fn ∼ α−n
1 �1(n),

and the error term is exponentially small as it is O(α−n
2 nr ) for some r . A classical

instance is the OGF of Fibonacci numbers,

F(z) = z

1 − z − z2
,

with poles at
−1 +√

5

2
.= 0.61803 and

−1 −√
5

2
.= −1.61803, so that

[zn]F(z) ≡ Fn = 1√
5
ϕn − 1√

5
ϕ̄n = ϕn

√
5
+ O(

1

ϕn
),

with ϕ = (1 +√
5)/2 the golden ratio, and ϕ̄ its conjugate.

� IV.26. A simple exercise. Let f (z) be as in Theorem IV.9, assuming additionally a single
dominant pole α1, with multiplicity r . Then, by inspection of the proof of Theorem IV.9:

fn = C

(r − 1)!
α−n+r

1 nr−1
(

1 + O

(
1

n

))
with C = lim

z→α1
(z − α1)

r f (z).

This is certainly the most direct illustration of the Second Principle: under the assumptions, a
one-term asymptotic expansion of the function at its dominant singularity suffices to determine
the asymptotic form of the coefficients. �
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Example IV.5. Qualitative analysis of a rational function. This is an artificial example de-
signed to demonstrate that all the details of the full decomposition are usually not required. The
rational function

f (z) = 1

(1 − z3)2(1 − z2)3(1 − z2

2 )

has a pole of order 5 at z = 1, poles of order 2 at z = ω,ω2 (ω = e2iπ/3 a cubic root of unity),
a pole of order 3 at z = −1, and simple poles at z = ±√

2. Therefore,

fn = P1(n)+ P2(n)ω
−n + P3(n)ω

−2n + P4(n)(−1)n+
+P5(n)2

−n/2 + P6(n)(−1)n2−n/2

where the degrees of P1, . . . , P6 are 4, 1, 1, 2, 0, 0. For an asymptotic equivalent of fn , only
the poles at roots of unity need to be considered since they correspond to the fastest exponential
growth; in addition, only z = 1 needs to be considered for first-order asymptotics; finally, at
z = 1, only the term of fastest growth needs to be taken into account. In this way, we find the
correspondence

f (z) ∼ 1

32 · 23 · ( 1
2 )

1

(1 − z)5
�⇒ fn ∼ 1

32 · 23 · ( 1
2 )

(
n + 4

4

)
∼ n4

864
.

The way the analysis can be developed without computing details of partial fraction expansion
is typical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Theorem IV.9 applies to any specification leading to a GF that is a rational func-
tion8. Combined with the qualitative approach to rational coefficient asymptotics, it
gives access to a large number of effective asymptotic estimates for combinatorial
counting sequences.

Example IV.6. Asymptotics of denumerants. Denumerants are integer partitions with sum-
mands restricted to be from a fixed finite set (Chapter I, p. 43). We let PT be the class relative
to set T ⊂ Z>0, with the known OGF,

PT (z) =
∏
ω∈T

1

1 − zω
.

Without loss of generality, we assume that gcd(T ) = 1; that is, the coin denomination are not
all multiples of a number d > 1.

A particular case is the one of integer partitions whose summands are in {1, 2, . . . , r},

P{1,...,r}(z) =
r∏

m=1

1

1 − zm .

The GF has all its poles being roots of unity. At z = 1, the order of the pole is r , and one has

P{1,...,r}(z) ∼ 1

r !

1

(1 − z)r
,

as z → 1. Other poles have strictly smaller multiplicity. For instance the multiplicity of z = −1
is equal to the number of factors (1 − z2 j )−1 in P{1,...,r}, which is the same as the number of
coin denominations that are even; this last number is at most r −1 since, by the gcd assumption
gcd(T ) = 1, at least one is odd. Similarly, a primitive qth root of unity is found to have

8In Part A, we have been occasionally led to discuss coefficients of some simple enough rational
functions, thereby anticipating the statement of the theorem: see for instance the discussion of parts in
compositions (p. 168) and of records in sequences (p. 190).
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multiplicity at most r − 1. It follows that the pole z = 1 contributes a term of the form nr−1

to the coefficient of index n, while each of the other poles contributes a term of order at most
nr−2. We thus find

P{1,...,r}
n ∼ cr nr−1 with cr = 1

r !(r − 1)!
.

The same argument provides the asymptotic form of PT
n , since, to first order asymptotics,

only the pole at z = 1 counts.

Proposition IV.2. Let T be a finite set of integers without a common divisor (gcd(T ) = 1).
The number of partitions with summands restricted to T satisfies

PT
n ∼ 1

τ

nr−1

(r − 1)!
, with τ :=

∏
ω∈T

ω, r := card(T ).

For instance, in a strange country that would have pennies (1 cent), nickels (5 cents), dimes
(10 cents), and quarters (25 cents), the number of ways to make change for a total of n cents is

[zn]
1

(1 − z)(1 − z5)(1 − z10)(1 − z25)
∼ 1

1 · 5 · 10 · 25

n3

3!
≡ n3

7500
,

asymptotically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

IV. 5.2. Meromorphic functions. An expansion similar to that of Theorem IV.9
(p. 256) holds true for coefficients of a much larger class; namely, meromorphic func-
tions.

Theorem IV.10 (Expansion of meromorphic functions). Let f (z) be a function mero-
morphic at all points of the closed disc |z| ≤ R, with poles at points α1, α2, . . . , αm.
Assume that f (z) is analytic at all points of |z| = R and at z = 0. Then there exist m
polynomials {� j (x)}m

j=1 such that:

(29) fn ≡ [zn] f (z) =
m∑

j=1

� j (n)α
−n
j + O(R−n).

Furthermore the degree of � j is equal to the order of the pole of f at α j minus one.

Proof. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i) Subtracted singularities. Around any pole α, f (z) can be expanded locally:

f (z) =
∑

k≥−M

cα,k(z − α)k(30)

= Sα(z)+ Hα(z)(31)

where the “singular part” Sα(z) is obtained by collecting all the terms with index in
[−M . . − 1] (that is, forming Sα(z) = Nα(z)/(z − α)M with Nα(z) a polynomial
of degree less than M) and Hα(z) is analytic at α. Thus setting S(z) := ∑

j Sα j (z),
we observe that f (z) − S(z) is analytic for |z| ≤ R. In other words, by collecting
the singular parts of the expansions and subtracting them, we have “removed” the sin-
gularities of f (z), whence the name of method of subtracted singularities sometimes
given to the method [329, vol. 2, p. 448].
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Taking coefficients, we get:

[zn] f (z) = [zn]S(z)+ [zn]( f (z)− S(z)).

The coefficient of [zn] in the rational function S(z) is obtained from Theorem IV.9.
It suffices to prove that the coefficient of zn in f (z) − S(z), a function analytic for
|z| ≤ R, is O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral
formula with the contour of integration being λ = {z : |z| = R}, as in the proof of
Proposition IV.1, p 246 (saddle-point bounds):∣∣∣∣[zn]( f (z)− S(z))

∣∣∣∣ = 1

2π

∣∣∣∣ ∫|z|=R
( f (z)− S(z))

dz

zn+1

∣∣∣∣ ≤ 1

2π

O(1)

Rn+1
2πR.

(i i) Contour integration. There is another line of proof for Theorem IV.10 which
we briefly sketch as it provides an insight which is useful for applications to other
types of singularities treated in Chapter VI. It consists in using Cauchy’s coefficient
formula and “pushing” the contour of integration past singularities. In other words,
one computes directly the integral

In = 1

2iπ

∫
|z|=R

f (z)
dz

zn+1

by residues. There is a pole at z = 0 with residue fn and poles at the α j with residues
corresponding to the terms in the expansion stated in Theorem IV.10; for instance, if
f (z) ∼ c/(z − a) as z → a, then

Res( f (z)z−n−1; z = a) = Res

(
c

(z − a)
z−n−1; z = a

)
= c

an+1
.

Finally, by the same trivial bounds as before, In is O(R−n). �
� IV.27. Effective error bounds. The error term O(R−n) in (29), call it εn , satisfies

|εn | ≤ R−n · sup
|z|=R

| f (z)|.

This results immediately from the second proof. This bound may be useful, even in the case of
rational functions to which it is clearly applicable. �

As a consequence of Theorem IV.10, all GFs whose dominant singularities are
poles can be easily analysed. Prime candidates from Part A are specifications that
are “driven” by a sequence construction, since the translation of sequences involves a
quasi-inverse, itself conducive to polar singularities. This covers in particular surjec-
tions, alignments, derangements, and constrained compositions, which we treat now.

Example IV.7. Surjections. These are defined as sequences of sets (R = SEQ(SET≥1(Z)))
with EGF R(z) = (2 − ez)−1 (see p. 106). We have already determined the poles in Exam-
ple IV.2 (p. 244), the one of smallest modulus being at log 2

.= 0.69314. At this dominant
pole, one finds R(z) ∼ − 1

2 (z − log 2)−1. This implies an approximation for the number of
surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) := n!

2
·
(

1

log 2

)n+1
.
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4683 4683
545835 545835

102247563 102247563
28091567595 28091567595

10641342970443 10641342970443
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3385534663256845323 338553466325684532 6
2677687796244384203115 2677687796244384203 088

2574844419803190384544203 2574844419803190384544 450
2958279121074145472650648875 295827912107414547265064 6597

4002225759844168492486127539083 40022257598441684924861275 55859
6297562064950066033518373935334635 6297562064950066033518373935 416161

11403568794011880483742464196184901963 1140356879401188048374246419617 4527074
23545154085734896649184490637144855476395 2354515408573489664918449063714 5314147690

Figure IV.8. The surjection numbers pyramid: for n = 2, 4, . . . , 32, the exact values
of the numbers Rn (left) compared to the approximation �ξ(n)� with discrepant digits
in boldface (right).

Figure IV.8 gives, for n = 2, 4, . . . , 32, a table of the values of the surjection numbers (left)
compared with the asymptotic approximation rounded9 to the nearest integer, �ξ(n)�: It is
piquant to see that �ξ(n)� provides the exact value of Rn for all values of n = 1, . . . , 15, and
it starts losing one digit for n = 17, after which point a few “wrong” digits gradually appear,
but in very limited number; see Figure IV.8. (A similar situation prevails for tangent numbers
discussed in our Invitation, p. 5.) The explanation of such a faithful asymptotic representation
owes to the fact that the error terms provided by meromorphic asymptotics are exponentially
small. In effect, there is no other pole in |z| ≤ 6, the next ones being at log 2 ± 2iπ with
modulus of about 6.32. Thus, for rn = [zn]R(z), there holds

(32)
Rn

n!
∼ 1

2
·
(

1

log 2

)n+1
+ O(6−n).

For the double surjection problem, R∗(z) = (2 + z − ez), we get similarly

[zn]R∗(z) ∼ 1

eρ∗ − 1
(ρ∗)−n−1,

with ρ∗ = 1.14619 the smallest positive root of eρ
∗ − ρ∗ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . �

It is worth reflecting on this example as it is representative of a “production chain”
based on the two successive implications which are characteristic of Part A and Part B
of the book:⎧⎪⎨⎪⎩

R = SEQ(SET≥1(Z)) �⇒ R(z) = 1

2 − ez

R(z) ∼
z→log 2

−1

2

1

(z − log 2)
−→ 1

n!
Rn ∼ 1

2
(log 2)−n−1.

9The notation �x� represents x rounded to the nearest integer: �x� := �x + 1
2 �.
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The first implication (written “�⇒”, as usual) is provided automatically by the sym-
bolic method. The second one (written here “−→”) is a direct translation from the ex-
pansion of the GF at its dominant singularity to the asymptotic form of coefficients; it
is valid conditionally upon complex analytic conditions, here those of Theorem IV.10.

Example IV.8. Alignments. These are sequences of cycles (O = SEQ(CYC(Z)), p. 119) with
EGF

O(z) = 1

1 − log 1
1−z

.

There is a singularity when log(1− z)−1 = 1, which is at ρ = 1− e−1 and which arises before
z = 1, where the logarithm becomes singular. Then, the computation of the asymptotic form of
[zn]O(z) only requires a local expansion near ρ,

O(z) ∼ −e−1

z − 1 + e−1
−→ [zn]O(z) ∼ e−1

(1 − e−1)n+1
,

and the coefficient estimates result from Theorem IV.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IV.28. Some “supernecklaces”. One estimates

[zn] log

(
1

1 − log 1
1−z

)
∼ 1

n
(1 − e−1)−n,

where the EGF enumerates labelled cycles of cycles (supernecklaces, p. 125). [Hint: Take
derivatives.] �

Example IV.9. Generalized derangements. The probability that the shortest cycle in a random
permutation of size n has length larger than k is

[zn]D(k)(z), where D(k)(z) = 1

1 − z
e−

z
1− z2

2 −···− zk
k ,

as results from the specification D(k) = SET(CYC>k(Z)). For any fixed k, one has (easily)
D(k)(z) ∼ e−Hk /(1 − z) as z → 1, with 1 being a simple pole. Accordingly the coefficients
[zn]D(k)(z) tend to e−Hk as n → ∞. In summary, due to meromorphy, we have the character-
istic implication

D(k)(z) ∼ e−Hk

1 − z
−→ [zn]D(k)(z) ∼ e−Hk .

Since there is no other singularity at a finite distance, the error in the approximation is (at least)
exponentially small,

(33) [zn]
1

1 − z
e−

z
1− z2

2 −···− zk
k = e−Hk + O(R−n),

for any R > 1. The cases k = 1, 2 in particular justify the estimates mentioned at the beginning
of this chapter, on p. 228. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

This example is also worth reflecting upon. In prohibiting cycles of length < k,
we modify the EGF of all permutations, (1 − z)−1 by a factor e−z/1−···−zk/k . The
resulting EGF is meromorphic at 1; thus only the value of the modifying factor at
z = 1 matters, so that this value, namely e−Hk , provides the asymptotic proportion
of k–derangements. We shall encounter more and more shortcuts of this sort as we
progress into the book.
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� IV.29. Shortest cycles of permutations are not too long. Let Sn be the random variable
denoting the length of the shortest cycle in a random permutation of size n. Using the circle
|z| = 2 to estimate the error in the approximation e−Hk above, one finds that, for k ≤ log n,∣∣∣P(Sn > k)− e−Hk

∣∣∣ ≤ 1

2n e2k+1
,

which is exponentially small in this range of k-values. Thus, the approximation e−Hk remains
usable when k is allowed to tend sufficiently slowly to ∞ with n. One can also explore the
possibility of better bounds and larger regions of validity of the main approximation. (See
Panario and Richmond’s study [470] for a general theory of smallest components in sets.) �

� IV.30. Expected length of the shortest cycle. The classical approximation of the harmonic
numbers, Hk ≈ log k + γ , suggests e−γ /k as a possible approximation to (33) for both large n
and large k in suitable regions. In agreement with this heuristic argument, the expected length
of the shortest cycle in a random permutation of size n is effectively asymptotic to

n∑
k=1

e−γ
k

∼ e−γ log n,

a property first discovered by Shepp and Lloyd [540]. �

The next example illustrates the analysis of a collection of rational generating
functions (Smirnov words) paralleling nicely the enumeration of a special type of
integer composition (Carlitz compositions), which belongs to meromorphic asymp-
totics.

Example IV.10. Smirnov words and Carlitz compositions. Bernoulli trials have been discussed
in Chapter III (p. 204), in relation to weighted word models. Take the class W of all words over
an r–ary alphabet, where letter j is assigned probability p j and letters of words are drawn
independently. With this weighting, the GF of all words is W (z) = 1/(1 − ∑

p j z) = (1 −
z)−1. Consider the problem of determining the probability that a random word of length n is of
Smirnov type, that is, all blocks of length 2 are formed with unequal letters. In order to avoid
degeneracies, we impose r ≥ 3 (since for r = 2, the only Smirnov words are ababa. . . and
babab. . . ).

By our discussion in Example III.24 (p. 204), the GF of Smirnov words (again with the
probabilistic weighting) is

S(z) = 1

1 −∑ p j z
1+p j z

.

By monotonicity of the denominator, this rational function has a dominant singularity at the
unique positive solution of the equation

(34)
r∑

j=1

p jρ

1 + p jρ
= 1,

and the point ρ is a simple pole. Consequently, ρ is a well-characterized algebraic number
defined implicitly by a polynomial equation of degree ≤ r . One can furthermore check, by
studying the variations of the denominator, that the other roots are all real and negative; thus,
ρ is the unique dominant singularity. (Alternatively, appeal to the Perron–Frobenius argument
of Example V.11, p. 349) It follows that the probability for a word to be Smirnov is, not too
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surprisingly, exponentially small, the precise formula being

[zn]S(z) ∼ C · ρ−n, C =
⎛⎝ r∑

j=1

p jρ

(1 + p jρ)
2

⎞⎠−1

.

A similar analysis, using bivariate generating functions, shows that in a random word of length n
conditioned to be Smirnov, the letter j appears with asymptotic frequency

(35) q j =
1

Q

p j

(1 + p jρ)
2
, Q :=

r∑
j=1

p j

(1 + p jρ)
2
,

in the sense that the mean number of occurrences of letter j is asymptotic to q j n. All these
results are seen to be consistent with the equiprobable letter case p j = 1/r , for which ρ =
r/(r − 1).

Carlitz compositions illustrate a limit situation, in which the alphabet is infinite, while
letters have different sizes. Recall that a Carlitz composition of the integer n is a composition
of n such that no two adjacent summands have equal value. By Note III.32, p. 201, such
compositions can be obtained by substitution from Smirnov words, to the effect that

(36) K (z) =
⎛⎝1 −

∞∑
j=1

z j

1 + z j

⎞⎠−1

.

The asymptotic form of the coefficients then results from an analysis of dominant poles. The
OGF has a simple pole at ρ, which is the smallest positive root of the equation

(37)
∞∑
j=1

ρ j

1 + ρ j
= 1.

(Note the analogy with (34) due to commonality of the combinatorial argument.) Thus:

Kn ∼ C · βn, C
.= 0.45636 34740, β

.= 1.75024 12917.

There, β = 1/ρ with ρ as in (37). In a way analogous to Smirnov words, the asymptotic
frequency of summand k appears to be proportional to kρk/(1+ρk)2; see [369, 421] for further
properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

IV. 6. Localization of singularities

There are situations where a function possesses several dominant singularities,
that is, several singularities are present on the boundary of the disc of convergence.
We examine here the induced effect on coefficients and discuss ways to locate such
dominant singularities.

IV. 6.1. Multiple singularities. In the case when there exists more than one
dominant singularity, several geometric terms of the form βn sharing the same mod-
ulus (and each carrying its own subexponential factor) must be combined. In simpler
situations, such terms globally induce a pure periodic behaviour for coefficients that is
easy to describe. In the general case, irregular fluctuations of a somewhat arithmetic
nature may prevail.
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Figure IV.9. The coefficients [zn] f (z) of the rational function f (z) =(
1 + 1.02z4

)−3 (
1 − 1.05z5

)−1
illustrate a periodic superposition of regimes, de-

pending on the residue class of n modulo 40.

Pure periodicities. When several dominant singularities of f (z) have the same
modulus and are regularly spaced on the boundary of the disc of convergence, they
may induce complete cancellations of the main exponential terms in the asymptotic
expansion of the coefficient fn . In that case, different regimes will be present in the
coefficients fn based on congruence properties of n. For instance, the functions

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · , 1

1 − z3
= 1 + z3 + z6 + z9 + · · · ,

exhibit patterns of periods 4 and 3, respectively, this corresponding to poles that are
roots of unity or order 4 (±i), and 3 (ω : ω3 = 1). Then, the function

φ(z) = 1

1 + z2
+ 1

1 − z3
= 2 − z2 + z3 + z4 + z8 + z9 − z10

1 − z12

has coefficients that obey a pattern of period 12 (for example, the coefficients φn such
that n ≡ 1, 5, 6, 7, 11 modulo 12 are zero). Accordingly, the coefficients of

[zn]ψ(z) where ψ(z) = φ(z)+ 1

1 − z/2
,

manifest a different exponential growth when n is congruent to 1, 5, 6, 7, 11 mod 12.
See Figure IV.9 for such a superposition of pure periodicities. In many combinatorial
applications, generating functions involving periodicities can be decomposed at sight,
and the corresponding asymptotic subproblems generated are then solved separately.
� IV.31. Decidability of polynomial properties. Given a polynomial p(z) ∈ Q[z], the following
properties are decidable: (i) whether one of the zeros of p is a root of unity; (i i) whether one
of the zeros of p has an argument that is commensurate with π . [One can use resultants. An
algorithmic discussion of this and related issues is given in [306].] �

Nonperiodic fluctuations. As a representative example, consider the polynomial
D(z) = 1 − 6

5 z + z2, whose roots are

α = 3

5
+ i

4

5
, ᾱ = 3

5
− i

4

5
,
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Figure IV.10. The coefficients of f (z) = 1/(1 − 6
5 z + z2) exhibit an apparently

chaotic behaviour (left) which in fact corresponds to a discrete sampling of a sine
function (right), reflecting the presence of two conjugate complex poles.

both of modulus 1 (the numbers 3, 4, 5 form a Pythagorean triple), with argument
±θ0 where θ0 = arctan( 4

3 )
.= 0.92729. The expansion of the function f (z) = 1/D(z)

starts as
1

1 − 6
5 z + z2

= 1 + 6

5
z + 11

25
z2 − 84

125
z3 − 779

625
z4 − 2574

3125
z5 + · · · ,

the sign sequence being

+++−−−++++−−−+++−−−−+++−−−−+++−−− ,

which indicates a somewhat irregular oscillating behaviour, where blocks of three or
four pluses follow blocks of three or four minuses.

The exact form of the coefficients of f results from a partial fraction expansion:

f (z) = a

1 − z/α
+ b

1 − z/ᾱ
with a = 1

2
+ 3

8
i, b = 1

2
− 3

8
i,

where α = eiθ0 , α = e−iθ0 Accordingly,

(38) fn = ae−inθ0 + beinθ0 = sin((n + 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angle θ0 is not commensurate with
π , the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is
present in the sign patterns. See Figure IV.10 for a rendering and Figure V.3 (p. 299)
for a meromorphic case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur if several such singu-
larities with non-commensurate arguments combine, and some open problem remain
even in the analysis of linear recurring sequences. (For instance no decision proce-
dure is known to determine whether such a sequence ever vanishes [200].) Fortunately,
such problems occur infrequently in combinatorial applications, where dominant poles
of rational functions (as well as many other functions) tend to have a simple geometry
as we explain next.
� IV.32. Irregular fluctuations and Pythagorean triples. The quantity θ0/π is an irrational
number, so that the sign fluctuations of (38) are “irregular” (i.e., non-purely periodic). [Proof:
a contrario. Indeed, otherwise, α = (3 + 4i)/5 would be a root of unity. But then the minimal
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polynomial of α would be a cyclotomic polynomial with non-integral coefficients, a contradic-
tion; see [401, VIII.3] for the latter property.] �

� IV.33. Skolem-Mahler-Lech Theorem. Let fn be the sequence of coefficients of a rational
function, f (z) = A(z)/B(z), where A, B ∈ Q[z]. The set of all n such that fn = 0 is the
union of a finite (possibly empty) set and a finite number (possibly zero) of infinite arithmetic
progressions. (The proof is based on p-adic analysis, but the argument is intrinsically non-
constructive; see [452] for an attractive introduction to the subject and references.) �

Periodicity conditions for positive generating functions. By the previous dis-
cussion, it is of interest to locate dominant singularities of combinatorial generating
functions, and, in particular, determine whether their arguments (the “dominant direc-
tions”) are commensurate to 2π . In the latter case, different asymptotic regimes of the
coefficients manifest themselves, depending on the congruence properties of n.

Definition IV.5. For a sequence ( fn)with GF f (z), the support of f , denoted Supp( f ),
is the set of all n such that fn  = 0. The sequence ( fn), as well as its GF f (z), is said
to admit a span d if for some r, there holds

Supp( f ) ⊆ r + dZ≥0 ≡ {r, r + d, r + 2d, . . .}.
The largest span, p, is the period, all other spans being divisors of p. If the period is
equal to 1, the sequence and its GF are said to be aperiodic.

If f is analytic at 0, with span d, there exists a function g analytic at 0 such
that f (z) = zr g(zd), for some r ∈ Z≥0. With E := Supp( f ), the maximal span
[the period] is determined as p = gcd(E − E) (pairwise differences) as well as p =
gcd(E − {r}) where r := min(E). For instance sin(z) has period 2, cos(z)+ cosh(z)
has period 4, z3ez5

has period 5, and so on.
In the context of periodicities, a basic property is expressed by what we have

chosen to name figuratively the “Daffodil Lemma”. By virtue of this lemma, the span
of a function f with non-negative coefficients is related to the behaviour of | f (z)| as
z varies along circles centred at the origin (Figure IV.11).

Lemma IV.1 (“Daffodil Lemma”). Let f (z) be analytic in |z| < ρ and have non-
negative coefficients at 0. Assume that f does not reduce to a monomial and that for
some non-zero non-positive z satisfying |z| < ρ, one has

| f (z)| = f (|z|).
Then, the following hold: (i) the argument of z must be commensurate to 2π , i.e.,
z = Reiθ with θ/(2π) = r

p ∈ Q (an irreducible fraction) and 0 < r < p; (i i) f
admits p as a span.

Proof. This classical lemma is a simple consequence of the strong triangle inequality.
Indeed, for Part (i) of the statement, with z = Reiθ , the equality | f (z)| = f (|z|)
implies that the complex numbers fn Rneinθ , for n ∈ Supp( f ), all lie on the same ray
(a half-line emanating from 0). This is impossible if θ/(2π) is irrational, since, by as-
sumption, the expansion of f contains at least two monomials (one cannot have n1θ ≡
n2θ (mod 2π)). Thus, θ/(2π) = r/p is a rational number. Regarding Part (i i), con-
sider two distinct indices n1 and n2 in Supp( f ) and let θ/(2π) = r/p. Then, by
the strong triangle inequality again, one must have (n1 − n2)θ ≡ 0 (mod 2π); that



“book” — 2008/10/3 — 16:05 — page 267 — #281

IV. 6. LOCALIZATION OF SINGULARITIES 267

0.5

0.5

-0.5

-1

-1.5

-1 0

1.5

1

1

0

1.5-0.5-1.5

Figure IV.11. Illustration of the “Daffodil Lemma”: the images of circles z = Reiθ

(R = 0.4 . . 0.8) rendered by a polar plot of | f (z)| in the case of f (z) = z7ez25 +
z2/(1 − z10)), which has span 5.

is, (ni − n j )r/p = (k1 − k2), for some k1, k2 ∈ Z ≥ 0. This is only possible if p
divides n1 − n2. Hence, p is a span. �

Berstel [53] first realized that rational generating functions arising from regular
languages can only have dominant singularities of the form ρω j , where ω is a certain
root of unity. This property in fact extends to many non-recursive specifications, as
shown by Flajolet, Salvy, and Zimmermann in [255].

Proposition IV.3 (Commensurability of dominant directions). Let S be a constructible
labelled class that is non-recursive, in the sense of Theorem IV.8. Assume that the
EGF S(z) has a finite radius of convergence ρ. Then there exists a computable inte-
ger d ≥ 1 such that the set of dominant singularities of S(z) is contained in the set
{ρω j }, where ωd = 1.

Proof. (Sketch; see [53, 255]) By definition, a non-recursive class S is obtained from
1 and Z by means of a finite number of union, product, sequence, set, and cycle
constructions. We have seen earlier, in Section IV. 4 (p. 249), an inductive algorithm
that determines radii of convergence. It is then easy to enrich that algorithm and
determine simultaneously (by induction on the specification) the period of its GF and
the set of dominant directions.

The period is determined by simple rules. For instance, if S = T �U (S = T ·U )
and T,U are infinite series with respective periods p, q, one has the implication

Supp(T ) ⊆ a + pZ, Supp(U ) ⊆ b + qZ �⇒ Supp(S) ⊆ a + b + ξZ,

with ξ = gcd(p, q). Similarly, for S = SEQ(T ),
Supp(T ) ⊆ a + pZ �⇒ Supp(S) ⊆ δZ,

where now δ = gcd(a, p).
Regarding dominant singularities, the case of a sequence construction is typical.

It corresponds to g(z) = (1 − f (z))−1. Assume that f (z) = zah(z p), with p the
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maximal period, and let ρ > 0 be such that f (ρ) = 1. The equations determining
any dominant singularity ζ are f (ζ ) = 1, |ζ | = ρ. In particular, the equations imply
| f (ζ )| = f (|ζ |), so that, by the Daffodil Lemma, the argument of ζ must be of the
form 2πr/s. An easy refinement of the argument shows that, for δ = gcd(a, p), all the
dominant directions coincide with the multiples of 2π/δ. The discussion of cycles is
entirely similar since log(1− f )−1 has the same dominant singularities as (1− f )−1.
Finally, for exponentials, it suffices to observe that e f does not modify the singularity
pattern of f , since exp(z) is an entire function. �
� IV.34. Daffodil lemma and unlabelled classes. Proposition IV.3 applies to any unlabelled
class S that admits a non-recursive specification, provided its radius of convergence ρ satisfies
ρ < 1. (When ρ = 1, there is a possibility of having the unit circle as a natural boundary, a
property that is otherwise decidable from the specification.) The case of regular specifications
will be investigated in detail in Section V. 3, p. 300. �

Exact formulae. The error terms appearing in the asymptotic expansion of coef-
ficients of meromorphic functions are already exponentially small. By peeling off the
singularities of a meromorphic function layer by layer, in order of increasing modulus,
one is led to extremely precise, sometimes even exact, expansions for the coefficients.
Such exact representations are found for Bernoulli numbers Bn , surjection numbers
Rn , as well as Secant numbers E2n and Tangent numbers E2n+1, defined by

(39)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=0

Bn
zn

n!
= z

ez − 1
(Bernoulli numbers)

∞∑
n=0

Rn
zn

n!
= 1

2 − ez
(Surjection numbers)

∞∑
n=0

E2n
z2n

(2n)!
= 1

cos(z)
(Secant numbers)

∞∑
n=0

E2n+1
z2n+1

(2n + 1)!
= tan(z) (Tangent numbers).

Bernoulli numbers. These numbers traditionally written Bn can be defined by their
EGF B(z) = z/(ez − 1), and they are central to Euler–Maclaurin expansions (p. 726).
The function B(z) has poles at the points χk = 2ikπ , with k ∈ Z\{0}, and the residue
at χk is equal to χk ,

z

ez − 1
∼ χk

z − χk
(z → χk).

The expansion theorem for meromorphic functions is applicable here: start with the
Cauchy integral formula, and proceed as in the proof of Theorem IV.10, using as
external contours a large circle of radius R that passes half-way between poles. As R
tends to infinity, the integrand tends to 0 (as soon as n ≥ 2) because the Cauchy kernel
z−n−1 decreases as an inverse power of R while the EGF remains O(R). In the limit,
corresponding to an infinitely large contour, the coefficient integral becomes equal to
the sum of all residues of the meromorphic function over the whole of the complex
plane.
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From this argument, we get the representation Bn = −n!
∑

k∈Z\{0} χ
−n
k . This

verifies that Bn = 0 if n is odd and n ≥ 3. If n is even, then grouping terms two by
two, we get the exact representation (which also serves as an asymptotic expansion):

(40)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑
k=1

1

k2n
.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
, with ζ(s) =

∞∑
k=1

1

ks
, Bn = n![zn]

z

ez − 1
,

a well-known identity that provides values of the Riemann zeta function ζ(s) at even
integers as rational multiples of powers of π .

Surjection numbers. In the same vein, the surjection numbers have EGF R(z) =
(2 − ez)−1 with simple poles at

χk = log 2 + 2ikπ where R(z) ∼ 1

2

1

χk − z
.

Since R(z) stays bounded on circles passing half-way in between poles, we find the
exact formula, Rn = 1

2 n!
∑

k∈Z χ
−n−1
k . An equivalent real formulation is

(41)
Rn

n!
= 1

2

(
1

log 2

)n+1

+
∞∑

k=1

cos((n + 1)θk)

(log2 2 + 4k2π2)(n+1)/2
, θk := arctan(

2kπ

log 2
),

which exhibits infinitely many harmonics of fast decaying amplitude.
� IV.35. Alternating permutations, tangent and secant numbers. The relation (40) also provides
a representation of the tangent numbers since E2n−1 = (−1)n−1 B2n4n(4n − 1)/(2n). The
secant numbers E2n satisfy

∞∑
k=1

(−1)k

(2k + 1)2n+1
= (π/2)2n+1

2 (2n)!
E2n,

which can be read either as providing an asymptotic expansion of E2n or as an evaluation of the
sums on the left (the values of a Dirichlet L-function) in terms of π . The asymptotic number of
alternating permutations (pp. 5 and 143) is consequently known to great accuracy. �

� IV.36. Solutions to the equation tan(x) = x. Let xn be the nth positive root of the equation
tan(x) = x . For any integer r ≥ 1, the sum S(r) := ∑

n x−2r
n is a computable rational number.

For instance: S2 = 1/10, S4 = 1/350, S6 = 1/7875. [From mathematical folklore.] �

IV. 6.2. Localization of zeros and poles. We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of
poles of meromorphic functions. A detailed treatment of this topic may be found in
Henrici’s book [329, §4.10].

Let f (z) be an analytic function in a region � and let γ be a simple closed curve
interior to �, and on which f is assumed to have no zeros. We claim that the quantity

(42) N ( f ; γ ) = 1

2iπ

∫
γ

f ′(z)
f (z)

dz
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exactly equals the number of zeros of f inside γ counted with multiplicity. [Proof:
the function f ′/ f has its poles exactly at the zeros of f , and the residue at each pole α
equals the multiplicity of α as a root of f ; the assertion then results from the residue
theorem.]

Since a primitive function (antiderivative) of f ′/ f is log f , the integral also
represents the variation of log f along γ , which is written [log f ]γ . This varia-
tion itself reduces to 2iπ times the variation of the argument of f along γ , since
log(reiθ ) = log r + iθ and the modulus r has variation equal to 0 along a closed
contour ([log r ]γ = 0). The quantity [θ ]γ is, by its definition, 2π multiplied by
the number of times the transformed contour f (γ ) winds about the origin, a number
known as the winding number. This observation is known as the Argument Principle:

Argument Principle. The number of zeros of f (z) (counted with multiplic-
ities) inside the simple loop γ equals the winding number of the transformed
contour f (γ ) around the origin.

By the same argument, if f is meromorphic in � ' γ , then N ( f ; γ ) equals the differ-
ence between the number of zeros and the number of poles of f inside γ , multiplicities
being taken into account. Figure IV.12 exemplifies the use of the argument principle
in localizing zeros of a polynomial.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem. Let the functions f (z) and g(z) be analytic in a region
containing in its interior the closed simple curve γ . Assume that f and g
satisfy |g(z)| < | f (z)| on the curve γ . Then f (z) and f (z)+ g(z) have the
same number of zeros inside the interior domain delimited by γ .

An intuitive way to visualize Rouché’s Theorem is as follows: since |g| < | f |, then
f (γ ) and ( f + g)(γ ) must have the same winding number.
� IV.37. Proof of Rouché’s theorem. Under the hypothesis of Rouché’s theorem, for 0 ≤ t ≤ 1,
the function h(z) = f (z)+ tg(z) is such that N (h; γ ) is both an integer and an analytic, hence
continuous, function of t in the given range. The conclusion of the theorem follows. �

� IV.38. The Fundamental Theorem of Algebra. Every complex polynomial p(z) of degree n
has exactly n roots. A proof follows by Rouché’s theorem from the fact that, for large enough
|z| = R, the polynomial assumed to be monic is a “perturbation” of its leading term, zn . [Other
proofs can be based on Liouville’s Theorem (Note IV.7, p. 237) or on the Maximum Modulus
Principle (Theorem VIII.1, p. 545).] �

� IV.39. Symmetric function of the zeros. Let Sk( f ; γ ) be the sum of the kth powers of the
roots of equation f (z) = 0 inside γ . One has

Sk( f ; γ ) = 1

2iπ

∫
f ′(z)
f (z)

zk dz,

by a variant of the proof of the Argument Principle. �

These principles form the basis of numerical algorithms for locating zeros of an-
alytic functions, in particular the ones closest to the origin, which are of most interest
to us. One can start from an initially large domain and recursively subdivide it until
roots have been isolated with enough precision—the number of roots in a subdomain
being at each stage determined by numerical integration; see Figure IV.12 and refer
for instance to [151] for a discussion. Such algorithms even acquire the status of full
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Figure IV.12. The transforms of γ j = {|z| = 4 j
10 } by P4(z) = 1 − 2z + z4, for j =

1, 2, 3, 4, demonstrate, via winding numbers, that P4(z) has no zero inside |z| < 0.4,
one zero inside |z| < 0.8, two zeros inside |z| < 1.2 and four zeros inside |z| < 1.6.
The actual zeros are at ρ4 = 0.54368, 1 and 1.11514 ± 0.77184i .

proofs if one operates with guaranteed precision routines (using, for instance, careful
implementations of interval arithmetics).

IV. 6.3. Patterns in words: a case study. Analysing the coefficients of a sin-
gle generating function that is rational is a simple task, often even bordering on the
trivial, granted the exponential–polynomial formula for coefficients (Theorem IV.9,
p. 256). However, in analytic combinatorics, we are often confronted with problems
that involve an infinite family of functions. In that case, Rouché’s Theorem and the
Argument Principle provide decisive tools for localizing poles, while Theorems IV.3
(Residue Theorem, p. 234) and IV.10 (Expansion of meromorphic functions, p. 258)
serve to determine effective error terms. An illustration of this situation is the analysis
of patterns in words for which GFs have been derived in Chapters I (p. 60) and III
(p. 212).

Example IV.11. Patterns in words: asymptotics. All patterns are not born equal. Surprisingly,
in a random sequence of coin tossings, the pattern HTT is likely to occur much sooner (after
8 tosses on average) than the pattern HHH (needing 14 tosses on average); see the preliminary
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Length (k) types c(z) ρ

k = 3 aab, abb, bba, baa 1 0.61803
aba, bab 1 + z2 0.56984
aaa, bbb 1 + z + z2 0.54368

k = 4 aaab, aabb, abbb,
bbba, bbaa, baaa 1 0.54368
aaba, abba, abaa,
bbab, baab, babb 1 + z3 0.53568

abab, baba 1 + z2 0.53101
aaaa, bbbb 1 + z + z2 + z3 0.51879

Figure IV.13. Patterns of length 3, 4: autocorrelation polynomial and dominant
poles of S(z).

discussion in Example I.12 (p. 59). Questions of this sort are of obvious interest in the statistical
analysis of genetic sequences [414, 603]. Say you discover that a sequence of length 100,000 on
the four letters A,G,C,T contains the pattern TACTAC twice. Can this be assigned to chance
or is this likely to be a meaningful signal of some yet unknown structure? The difficulty here
lies in quantifying precisely where the asymptotic regime starts, since, by Borges’s Theorem
(Note I.35, p. 61), sufficiently long texts will almost certainly contain any fixed pattern. The
analysis of rational generating functions supplemented by Rouché’s theorem provides definite
answers to such questions, under Bernoulli models at least.

We consider here the class W of words over an alphabet A of cardinality m ≥ 2. A
pattern p of some length k is given. As seen in Chapters I and III, its autocorrelation polynomial
is central to enumeration. This polynomial is defined as c(z) = ∑k−1

j=0 c j z j , where c j is 1 if
p coincides with its j th shifted version and 0 otherwise. We consider here the enumeration of
words containing the pattern p at least once, and dually of words excluding the pattern p. In
other words, we look at problems such as: What is the probability that a random text of length n
does (or does not) contain your name as a block of consecutive letters?

The OGF of the class of words excluding p is, we recall,

(43) S(z) = c(z)

zk + (1 − mz)c(z)
.

(Proposition I.4, p. 61), and we shall start with the case m = 2 of a binary alphabet. The func-
tion S(z) is simply a rational function, but the location and nature of its poles is yet unknown.
We only know a priori that it should have a pole in the positive interval somewhere between 1

2
and 1 (by Pringsheim’s Theorem and since its coefficients are in the interval [1, 2n], for n large
enough). Figure IV.13 gives a small list, for patterns of length k = 3, 4, of the pole ρ of S(z)
that is nearest to the origin. Inspection of the figure suggests ρ to be close to 1

2 as soon as the
pattern is long enough. We are going to prove this fact, based on Rouché’s Theorem applied to
the denominator of (43).

As regards termwise domination of coefficients, the autocorrelation polynomial lies be-
tween 1 (for less correlated patterns like aaa. . .ab) and 1 + z + · · · + zk−1 (for the special
case aaa. . .aa). We set aside the special case of p having only equal letters, i.e., a “maxi-
mal” autocorrelation polynomial—this case is discussed at length in the next chapter. Thus, in
this scenario, the autocorrelation polynomial starts as 1 + z� + · · · for some � ≥ 2. Fix the
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Figure IV.14. Complex zeros of z31 + (1− 2z)c(z) represented as joined by a poly-
gonal line: (left) correlated pattern a(ba)15; (right) uncorrelated pattern a(ab)15.

number A = 0.6, which proves suitable for our subsequent analysis. On |z| = A, we have

(44) |c(z)| ≥
∣∣∣1 − (A2 + A3 + · · · )

∣∣∣ = ∣∣∣∣∣1 − A2

1 − A

∣∣∣∣∣ = 1

10
.

In addition, the quantity (1−2z) ranges over the circle of diameter [−0.2, 1.2] as z varies along
|z| = A, so that |1 − 2z| ≥ 0.2. All in all, we have found that, for |z| = A,

|(1 − 2z)c(z)| ≥ 0.02.

On the other hand, for k > 7, we have |zk | < 0.017 on the circle |z| = A. Then, among
the two terms composing the denominator of (43), the first is strictly dominated by the second
along |z| = A. By virtue of Rouché’s Theorem, the number of roots of the denominator inside
|z| ≤ A is then same as the number of roots of (1 − 2z)c(z). The latter number is 1 (due to the
root 1

2 ) since c(z) cannot be 0 by the argument of (44). Figure IV.14 exemplifies the extremely
well-behaved characters of the complex zeros.

In summary, we have found that for all patterns with at least two different letters (� ≥ 2)
and length k ≥ 8, the denominator has a unique root in |z| ≤ A = 0.6. The same property
for lengths k satisfying 4 ≤ k ≤ 7 is then easily verified directly. The case � = 1 where we
are dealing with long runs of identical letters can be subjected to an entirely similar argument
(see also Example V.4, p. 308, for details). Therefore, unicity of a simple pole ρ of S(z) in the
interval (0.5, 0.6) is granted, for a binary alphabet.

It is then a simple matter to determine the local expansion of S(z) near z = ρ,

S(z) ∼
z→ρ

%̃

ρ − z
, %̃ := c(ρ)

2c(ρ)− (1 − 2ρ)c′(ρ)− kρk−1
,

from which a precise estimate for coefficients results from Theorems IV.9 (p. 256) and IV.10
(p. 258).

The computation finally extends almost verbatim to non-binary alphabets, with ρ being
now close to 1/m. It suffices to use the disc of radius A = 1.2/m. The Rouché part of the
argument grants us unicity of the dominant pole in the interval (1/m, A) for k ≥ 5 when
m = 3, and for k ≥ 4 and any m ≥ 4. (The remaining cases are easily checked individually.)
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Proposition IV.4. Consider an m–ary alphabet. Let p be a fixed pattern of length k ≥ 4, with
autocorrelation polynomial c(z). Then the probability that a random word of length n does not
contain p as a pattern (a block of consecutive letters) satisfies

(45) PWn (p does not occur) = %p(mρ)
−n−1 + O

((
5

6

)n)
,

where ρ ≡ ρp is the unique root in ( 1
m , 6

5m ) of the equation zk + (1 − mz)c(z) = 0 and

%p := mc(ρ)/(mc(ρ)− c′(ρ)(1 − mρ)− kρk−1).

Despite their austere appearance, these formulae have indeed a fairly concrete content.
First, the equation satisfied by ρ can be put under the form mz = 1 + zk/c(z), and, since
ρ is close to 1/m, we may expect the approximation (remember the use of “≈” as meaning
“numerically approximately equal”, but not implying strict asymptotic equivalence)

mρ ≈ 1 + 1

γmk
,

where γ := c(m−1) satisfies 1 ≤ γ < m/(m − 1). By similar principles, the probabilities
in (45) are approximately

PWn (p does not occur) ≈
(

1 + 1

γmk

)−n
≈ e−n/(γmk ).

For a binary alphabet, this tells us that the occurrence of a pattern of length k starts becoming
likely when n is of the order of 2k , that is, when k is of the order of log2 n. The more precise
moment when this happens must depend (via γ ) on the autocorrelation of the pattern, with
strongly correlated patterns having a tendency to occur a little late. (This vastly generalizes our
empirical observations of Chapter I.) However, the mean number of occurrences of a pattern in
a text of length n does not depend on the shape of the pattern. The apparent paradox is easily
resolved, as we already observed in Chapter I: correlated patterns tend to occur late, while
being prone to appear in clusters. For instance, the “late” pattern aaa, when it occurs, still has
probability 1

2 to occur at the next position as well and cash in another occurrence; in contrast no
such possibility is available to the “early” uncorrelated pattern aab, whose occurrences must
be somewhat spread out.

Such analyses are important as they can be used to develop a precise understanding of
the behaviour of data compression algorithms (the Lempel–Ziv scheme); see Julien Fayolle’s
contribution [204] for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IV.40. Multiple pattern occurrences. A similar analysis applies to the generating func-
tion S〈s〉(z) of words containing a fixed number s of occurrences of a pattern p. The OGF
is obtained by expanding (with respect to u) the BGF W (z, u) obtained in Chapter III, p. 212,
by means of an inclusion–exclusion argument. For s ≥ 1, one finds

S〈s〉(z) = zk N (z)s−1

D(z)s+1
, D(z) = zk + (1 − mz)c(z), N (z) = zk + (1 − mz)(c(z)− 1)),

which now has a pole of multiplicity s + 1 at z = ρ. �

� IV.41. Patterns in Bernoulli sequences—asymptotics. Similar results hold when letters are
assigned non-uniform probabilities, p j = P(a j ), for a j ∈ A. The weighted autocorrelation
polynomial is then defined by protrusions, as in Note III.39 (p. 213). Multiple pattern occur-
rences can be also analysed. �
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IV. 7. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have
been dealing with functions that are given by explicit expressions. Such situations
essentially cover non-recursive structures as well as the very simplest recursive ones,
such as Catalan or Motzkin trees, whose generating functions are expressible in terms
of radicals. In fact, as we shall see extensively in this book, complex analytic methods
are instrumental in analysing coefficients of functions implicitly specified by func-
tional equations. In other words: the nature of a functional equation can often provide
information regarding the singularities of its solution. Chapter V will illustrate this
philosophy in the case of rational functions defined by systems of positive equations;
a very large number of examples will then be given in Chapters VI and VII, where
singularities that are much more general than poles are treated.

In this section, we discuss three representative functional equations,

f (z) = ze f (z), f (z) = z + f (z2 + z3), f (z) = 1

1 − z f (z2)
,

associated, respectively, to Cayley trees, balanced 2–3 trees, and Pólya’s alcohols.
These illustrate the use of fundamental inversion or iteration properties for locating
dominant singularities and derive exponential growth estimates of coefficients.

IV. 7.1. Inverse functions. We start with a generic problem already introduced
on p. 249: given a function ψ analytic at a point y0 with z0 = ψ(y0) what can be said
about its inverse, namely the solution(s) to the equation ψ(y) = z when z is near z0
and y near y0?

Let us examine what happens when ψ ′(y0)  = 0, first without paying attention to
analytic rigour. One has locally (“≈” means as usual “approximately equal”)

(46) ψ(y) ≈ ψ(y0)+ ψ ′(y0)(y − y0),

so that the equation ψ(y) = z should admit, for z near z0, a solution satisfying

(47) y ≈ y0 + 1

ψ ′(y0)
(z − z0).

If this is granted, the solution being locally linear, it is differentiable, hence analytic.
The Analytic Inversion Lemma10 provides a firm foundation for such calculations.

Lemma IV.2 (Analytic Inversion). Let ψ(z) be analytic at y0, with ψ(y0) = z0.
Assume that ψ ′(y0)  = 0. Then, for z in some small neighbourhood �0 of z0, there
exists an analytic function y(z) that solves the equation ψ(y) = z and is such that
y(z0) = y0.

Proof. (Sketch) The proof involves ideas analogous to those used to establish Rouché’s
Theorem and the Argument Principle (see especially the argument justifying Equa-
tion (42), p. 269). As a preliminary step, define the integrals ( j ∈ Z≥0)

(48) σ j (z) := 1

2iπ

∫
γ

ψ ′(y)
ψ(y)− z

y j dy,

10A more general statement and several proof techniques are also discussed in Appendix B.5: Implicit
Function Theorem, p. 753.
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where γ is a small enough circle centred at y0 in the y-plane.
First consider σ0. This function satisfies σ0(z0) = 1 [by the Residue Theorem]

and is a continuous function of z whose value can only be an integer, this value being
the number of roots of the equation ψ(y) = z. Thus, for z close enough to z0, one
must have σ0(z) ≡ 1. In other words, the equation ψ(y) = z has exactly one solution,
the function ψ is locally invertible and a solution y = y(z) that satisfies y(z0) = y0 is
well-defined.

Next examine σ1. By the Residue Theorem once more, the integral defining σ1(z)
is the sum of the roots of the equation ψ(y) = z that lie inside γ , that is, in our case,
the value of y(z) itself. (This is also a particular case of Note IV.39, p. 270.) Thus,
one has σ1(z) ≡ y(z). Since the integral defining σ1(z) depends analytically on z for
z close enough to z0, analyticity of y(z) results. �
� IV.42. Details. Let ψ be analytic in an open disc D centred at y0. Then, there exists a
small circle γ centred at y0 and contained in D such that ψ(y)  = y0 on γ . [Zeros of analytic
functions are isolated, a fact that results from the definition of an analytic expansion]. The
integrals σ j (z) are thus well defined for z restricted to be close enough to z0, which ensures
that there exists a δ > 0 such that |ψ(y) − z| > δ for all y ∈ γ . One can then expand the
integrand as a power series in (z − z0), integrate the expansion termwise, and form in this way
the analytic expansions of σ0, σ1 at z0. (This line of proof follows [334, I, §9.4].) �

� IV.43. Inversion and majorant series. The process corresponding to (46) and (47) can be
transformed into a sound proof: first derive a formal power series solution, then verify that the
formal solution is locally convergent using the method of majorant series (p. 250). �

The Analytic Inversion Lemma states the following: An analytic function locally
admits an analytic inverse near any point where its first derivative is non-zero. How-
ever, as we see next, a function cannot be analytically inverted in a neighbourhood of
a point where its first derivative vanishes.

Consider now a function ψ(y) such that ψ ′(y0) = 0 but ψ ′′(y0)  = 0, then, by the
Taylor expansion of ψ , one expects

(49) ψ(y) ≈ ψ(y0)+ 1

2
(y − y0)

2ψ ′′(y0).

Solving formally for y now indicates a locally quadratic dependency

(y − y0)
2 ≈ 2

ψ ′′(y0)
(z − z0),

and the inversion problem admits two solutions satisfying

(50) y ≈ y0 ±
√

2

ψ ′′(y0)

√
z − z0.

What this informal argument suggests is that the solutions have a singularity at z0, and,
in order for them to be suitably specified, one must somehow restrict their domain of
definition: the case of

√
z (the root(s) of y2 − z = 0) discussed on p. 230 is typical.

Given some point z0 and a neighbourhood � of z0, the slit neighbourhood along
direction θ is the set

�\θ := {
z ∈ �

∣∣ arg(z − z0)  ≡ θ mod 2π, z  = z0
}
.

We state:
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Lemma IV.3 (Singular Inversion). Let ψ(y) be analytic at y0, with ψ(y0) = z0.
Assume that ψ ′(y0) = 0 and ψ ′′(y0)  = 0. There exists a small neighbourhood �0
of z0 such that the following holds: for any fixed direction θ , there exist two functions,
y1(z) and y2(z) defined on �\θ

0 that satisfy ψ(y(z)) = z; each is analytic in �\θ
0 , has

a singularity at the point z0, and satisfies limz→z0 y(z) = y0.

Proof. (Sketch) Define the functions σ j (z) as in the proof of the previous lemma,
Equation (48). One now has σ0(z) = 2, that is, the equation ψ(y) = z possesses two
roots near y0, when z is near z0. In other words ψ effects a double covering of a small
neighbourhood � of y0 onto the image neighbourhood �0 = ψ(�) ' z0. By possibly
restricting �, we may furthermore assume that ψ ′(y) only vanishes at y0 in � (zeros
of analytic functions are isolated) and that � is simply connected.

Fix any direction θ and consider the slit neighbourhood �
\θ
0 . Fix a point ζ in

this slit domain; it has two preimages, η1, η2 ∈ �. Pick up the one named η1. Since
ψ ′(η1) is non-zero, the Analytic Inversion Lemma applies: there is a local analytic
inverse y1(z) of ψ . This y1(z) can then be uniquely continued11 to the whole of �\θ

0 ,
and similarly for y2(z). We have thus obtained two distinct analytic inverses.

Assume a contrario that y1(z) can be analytically continued at z0. It would then
admit a local expansion

y1(z) =
∑
n≥0

cn(z − z0)
n,

while satisfying ψ(y1(z)) = z. But then, composing the expansions of ψ and y would
entail

ψ(y1(z)) = z0 + O
(
(z − z0)

2
)

(z → z0),

which cannot coincide with the identity function (z). A contradiction has been reached.
The point z0 is thus a singular point for y1 (as well as for y2). �
� IV.44. Singular inversion and majorant series. In a way that parallels Note IV.43, the process
summarized by Equations (49) and (50) can be justified by the method of majorant series, which
leads to an alternative proof of the Singular Inversion Lemma. �

� IV.45. Higher order branch points. If all derivatives of ψ till order r − 1 inclusive vanish
at y0, there are r inverses, y1(z), . . . , yr (z), defined over a slit neighbourhood of z0. �

Tree enumeration. We can now consider the problem of obtaining information
on the coefficients of a function y(z) defined by an implicit equation

(51) y(z) = zφ(y(z)),

when φ(u) is analytic at u = 0. In order for the problem to be well-posed (i.e.,
algebraically, in terms of formal power series, as well as analytically, near the origin,
there should be a unique solution for y(z)), we assume that φ(0)  = 0. Equation (51)
may then be rephrased as

(52) ψ(y(z)) = z where ψ(u) = u

φ(u)
,

11The fact of slitting �0 makes the resulting domain simply connected, so that analytic continuation
becomes uniquely defined. In contrast, the punctured domain �0 \ {z0} is not simply connected, so that the
argument cannot be applied to it. As a matter of fact, y1(z) gets continued to y2(z), when the ray of angle θ
is crossed: the point z0 where two determinations meet is a branch point.
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Figure IV.15. Singularities of inverse functions: φ(u) = eu (left); ψ(u) = u/φ(u)
(centre); y = Inv(ψ) (right).

so that it is in fact an instance of the inversion problem for analytic functions.
Equation (51) occurs in the counting of various types of trees, as seen in Subsec-

tions I. 5.1 (p. 65), II. 5.1 (p. 126), and III. 6.2 (p. 193). A typical case is φ(u) = eu ,
which corresponds to labelled non-plane trees (Cayley trees). The function φ(u) =
(1+u)2 is associated to unlabelled plane binary trees and φ(u) = 1+u+u2 to unary–
binary trees (Motzkin trees). A full analysis was developed by Meir and Moon [435],
themselves elaborating on earlier ideas of Pólya [488, 491] and Otter [466]. In all
these cases, the exponential growth rate of the number of trees can be automatically
determined.

Proposition IV.5. Let φ be a function analytic at 0, having non-negative Taylor co-
efficients, and such that φ(0)  = 0. Let R ≤ +∞ be the radius of convergence of the
series representing φ at 0. Under the condition,

(53) lim
x→R−

xφ′(x)
φ(x)

> 1,

there exists a unique solution τ ∈ (0, R) of the characteristic equation,

(54)
τφ′(τ )
φ(τ)

= 1.

Then, the formal solution y(z) of the equation y(z) = zφ(y(z)) is analytic at 0 and
its coefficients satisfy the exponential growth formula:

[zn] y(z) /0
(

1

ρ

)n

where ρ = τ

φ(τ)
= 1

φ′(τ )
.

Note that condition (53) is automatically realized as soon as φ(R−) = +∞, which
covers our earlier examples as well as all the cases where φ is an entire function (e.g.,
a polynomial). Figure IV.15 displays graphs of functions on the real line associated to
a typical inversion problem, that of Cayley trees, where φ(u) = eu .

Proof. By Note IV.46 below, the function xφ′(x)/φ(x) is an increasing function of x
for x ∈ (0, R). Condition (53) thus guarantees the existence and unicity of a solution
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Type φ(u) (R) τ ρ yn /0 ρ−n

binary tree (1 + u)2 (∞) 1 1
4 yn /0 4n (p. 67)

Motzkin tree 1 + u + u2 (∞) 1 1
3 yn /0 3n (p. 68)

gen. Catalan tree
1

1 − u
(1) 1

2
1
4 yn /0 4n (p. 65)

Cayley tree eu (∞) 1 e−1 yn /0 en (p. 128)

Figure IV.16. Exponential growth for classical tree families.

of the characteristic equation. (Alternatively, rewrite the characteristic equation as
φ0 = φ2τ

2 + 2φ3τ
3 + · · · , where the right side is clearly an increasing function.)

Next, we observe that the equation y = zφ(y) admits a unique formal power se-
ries solution, which furthermore has non-negative coefficients. (This solution can for
instance be built by the method of indeterminate coefficients.) The Analytic Inversion
Lemma (Lemma IV.2) then implies that this formal solution represents a function,
y(z), that is analytic at 0, where it satisfies y(0) = 0.

Now comes the hunt for singularities and, by Pringsheim’s Theorem, one may
restrict attention to the positive real axis. Let r ≤ +∞ be the radius of convergence
of y(z) at 0 and set y(r) := limx→r− y(x), which is well defined (although possibly
infinite), given positivity of coefficients. Our goal is to prove that y(r) = τ .

— Assume a contrario that y(r) < τ . One would then have ψ ′(y(r))  = 0. By
the Analytic Inversion Lemma, y(z) would be analytic at r , a contradiction.

— Assume a contrario that y(r) > τ . There would then exist r∗ ∈ (0, r) such
that ψ ′(y(r∗)) = 0. But then y would be singular at r∗, by the Singular
Inversion Lemma, also a contradiction.

Thus, one has y(r) = τ , which is finite. Finally, since y and ψ are inverse functions,
one must have

r = ψ(τ) = τ/φ(τ) = ρ,

by continuity as x → r−, which completes the proof. �
Proposition IV.5 thus yields an algorithm that produces the exponential growth

rate associated to tree functions. This rate is itself invariably a computable number
as soon as φ is computable (i.e., its sequence of coefficients is computable). This
computability result complements Theorem IV.8 (p. 251), which is relative to non-
recursive structures only.

As an example of application of Proposition IV.5, general Catalan trees corres-
pond to φ(y) = (1 − y)−1, whose radius of convergence is R = 1. The characteristic
equation is τ/(1 − τ) = 1, which implies τ = 1/2 and ρ = 1/4. We obtain (not a
surprise!) yn /0 4n , a weak asymptotic formula for the Catalan numbers. Similarly,
for Cayley trees, φ(u) = eu and R = +∞. The characteristic equation reduces to
(τ − 1)eτ = 0, so that τ = 1 and ρ = e−1, giving a weak form of Stirling’s formula:
[zn]y(z) = nn−1/n! /0 en . Figure IV.16 summarizes the application of the method to
a few already encountered tree families.
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As our previous discussion suggests, the dominant singularity of tree generating
functions is, under mild conditions, of the square-root type. Such a singular behaviour
can then be analysed by the methods of Chapter VI: the coefficients admit an asymp-
totic form

[zn] y(z) ∼ C · ρ−nn−3/2,

with a subexponential factor of the form n−3/2; see Section VI. 7, p. 402.

� IV.46. Convexity of GFs, Boltzmann models, and the Variance Lemma. Let φ(z) be a
non-constant analytic function with non-negative coefficients and a non-zero radius of con-
vergence R, such that φ(0)  = 0. For x ∈ (0, R) a parameter, define the Boltzmann random
variable � (of parameter x) by the property

(55) P(� = n) = φn xn

φ(x)
, with E(s�) = φ(sx)

φ(x)

the probability generating function of �. By differentiation, the first two moments of � are

E(�) = xφ′(x)
φ(x)

, E(�2) = x2φ′′(x)
φ(x)

+ xφ′(x)
φ(x)

.

There results, for any non-constant GF φ, the general convexity inequality valid for 0 < x < R:

(56)
d

dx

(
xφ′(x)
φ(x)

)
> 0,

due to the fact that the variance of a non-degenerate random variable is always positive. Equiv-
alently, the function log(φ(et )) is convex for t ∈ (−∞, log R). (In statistical physics, a Boltz-
mann model (of parameter x) corresponds to a class 	 (with OGF φ) from which elements
are drawn according to the size distribution (55). An alternative derivation of (56) is given in
Note VIII.4, p. 550.) �

� IV.47. A variant form of the inversion problem. Consider the equation y = z+φ(y), where φ
is assumed to have non-negative coefficients and be entire, with φ(u) = O(u2) at u = 0. This
corresponds to a simple variety of trees in which trees are counted by the number of their leaves
only. For instance, we have already encountered labelled hierarchies (phylogenetic trees in
Section II. 5, p. 128) corresponding to φ(u) = eu −1−u, which gives rise to one of “Schröder’s
problems”. Let τ be the root of φ′(τ ) = 1 and set ρ = τ − φ(τ). Then, [zn]y(z) /0 ρ−n . For
the EGF L of labelled hierarchies (L = z + eL − 1 − L), this gives Ln/n! /0 (2 log 2 − 1)−n .
(Observe that Lagrange inversion also provides [zn]y(z) = 1

n [wn−1](1 − y−1φ(y))−n .) �

IV. 7.2. Iteration. The study of iteration of analytic functions was launched by
Fatou and Julia in the first half of the twentieth century. Our reader is certainly aware
of the beautiful images associated with the name of Mandelbrot whose works have
triggered renewed interest in these questions, now classified as belonging to the field
of “complex dynamics” [31, 156, 443, 473]. In particular, the sets that appear in this
context are often of a fractal nature. Mathematical objects of this sort are occasionally
encountered in analytic combinatorics. We present here the first steps of a classic
analysis of balanced trees published by Odlyzko [459] in 1982.

Example IV.12. Balanced trees. Consider the class E of balanced 2–3 trees defined as trees
whose node degrees are restricted to the set {0, 2, 3}, with the additional property that all leaves
are at the same distance from the root (Note I.67, p. 91). We adopt as notion of size the number
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 0 0.70.60.50.40.30.20.100

1

0.8

0.6

0.4

0.2

0

x0 = 0.6
x1 = 0.576
x2 = 0.522878976
x3

.= 0.416358802
x4

.= 0.245532388
x5

.= 0.075088357
x6

.= 0.006061629
x7

.= 0.000036966
x8

.= 0.000000001
x9

.= 1.867434390 × 10−18

x10
.= 3.487311201 × 10−36

Figure IV.17. The iterates of a point x0 ∈ (0, 1
ϕ ), here x0 = 0.6, by σ(z) = z2 + z3

converge fast to 0.

of leaves (also called external nodes), the list of all 4 trees of size 8 being:

Given an existing tree, a new tree is obtained by substituting in all possible ways to each external
node (�) either a pair (�,�) or a triple (�,�,�), and symbolically, one has

E[�] = � + E
[
� → (�� + ���)

]
.

In accordance with the specification, the OGF of E satisfies the functional equation

(57) E(z) = z + E(z2 + z3),

corresponding to the seemingly innocuous recurrence

En =
n∑

k=0

(
k

n − 2k

)
Ek with E0 = 0, E1 = 1.

Let σ(z) = z2 + z3. Equation (57) can be expanded by iteration in the ring of formal
power series,

(58) E(z) = z + σ(z)+ σ [2](z)+ σ [3](z)+ · · · ,
where σ [ j](z) denotes the j th iterate of the polynomial σ : σ [0](z) = z, σ [h+1](z) = σ [h](σ (z)) =
σ(σ [h](z)). Thus, E(z) is nothing but the sum of all iterates of σ . The problem is to determine
the radius of convergence of E(z), and, by Pringsheim’s theorem, the quest for dominant sin-
gularities can be limited to the positive real line.

For z > 0, the polynomial σ(z) has a unique fixed point, ρ = σ(ρ), at

ρ = 1

ϕ
where ϕ = 1 +√

5

2

is the golden ratio. Also, for any positive x satisfying x < ρ, the iterates σ [ j](x) do converge
to 0; see Figure IV.17. Furthermore, since σ(z) ∼ z2 near 0, these iterates converge to 0 doubly
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Figure IV.18. Left: the fractal domain of analyticity of E(z) (inner domain in white
and gray, with lighter areas representing slower convergence of the iterates of σ )
and its circle of convergence. Right: the ratio En/(ϕ

nn−1) plotted against log n for
n = 1 . . 500 confirms that En /0 ϕn and illustrates the periodic fluctuations of (60).

exponentially fast (Note IV.48). By the triangle inequality, we have |σ(z)| ≤ σ(|z|), so that the
sum in (58) is a normally converging sum of analytic functions, and is thus itself analytic for
|z| < ρ. Consequently, E(z) is analytic in the whole of the open disc |z| < ρ.

It remains to prove that the radius of convergence of E(z) is exactly equal to ρ. To that
purpose it suffices to observe that E(z), as given by (58), satisfies

E(x) → +∞ as x → ρ−.
Let N be an arbitrarily large but fixed integer. It is possible to select a positive xN sufficiently
close to ρ with xN < ρ, such that the N th iterate σ [N ](xN ) is larger than 1

2 (the function

σ [N ](x) admits ρ as a fixed point and it is continuous and increasing at ρ). Given the sum
expression (58), this entails the lower bound E(xN ) >

N
2 for such an xN < ρ. Thus E(x) is

unbounded as x → ρ− and ρ is a singularity.
The dominant positive real singularity of E(z) is thus ρ = ϕ−1, and the Exponential

Growth Formula gives the following estimate.

Proposition IV.6. The number of balanced 2–3 trees satisfies:

(59) [zn] E(z) /0
(

1 +√
5

2

)n

.

It is notable that this estimate could be established so simply by a purely qualitative exam-
ination of the basic functional equation and of a fixed point of the associated iteration scheme.

The complete asymptotic analysis of the En requires the full power of singularity analysis
methods to be developed in Chapter VI. Equation (60) below states the end result, which in-
volves fluctuations that are clearly visible on Figure IV.18 (right). There is overconvergence of
the representation (58), that is, convergence in certain domains beyond the disc of convergence
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of E(z). Figure IV.18 (left) displays the domain of analyticity of E(z) and reveals its fractal
nature (compare with Figure VII.23, p. 536). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IV.48. Quadratic convergence. First, for x ∈ [0, 1
2 ], one has σ(x) ≤ 3

2 x2, so that σ [ j](x) ≤
(3/2)2

j−1 x2 j
. Second, for x ∈ [0, A], where A is any number < ρ, there is a number kA such

that σ [kA](x) < 1
2 , so that σ [k](x) ≤ (3/2) (3/4)2

k−kA
. Thus, for any A < ρ, the series of

iterates of σ is quadratically convergent when z ∈ [0, A]. �

� IV.49. The asymptotic number of 2–3 trees. This analysis is from [459, 461]. The number of
2–3 trees satisfies asymptotically

(60) En = ϕn

n
�(log n)+ O

(
ϕn

n2

)
,

where � is a periodic function with mean value (ϕ log(4−ϕ))−1 .= 0.71208 and period log(4−
ϕ)

.= 0.86792. Thus oscillations are inherent in En ; see Figure IV.18 (right). �

IV. 7.3. Complete asymptotics of a functional equation. George Pólya (1887–
1985) is mostly remembered by combinatorialists for being at the origin of Pólya
theory, a branch of combinatorics that deals with the enumeration of objects invariant
under symmetry groups. However, in his classic article [488, 491] which founded
this theory, Pólya discovered at the same time a number of startling applications of
complex analysis to asymptotic enumeration12. We detail one of these now.

Example IV.13. Pólya’s alcohols. The combinatorial problem of interest here is the determi-
nation of the number Mn of chemical isomeres of alcohols Cn H2n+1 O H without asymmetric
carbon atoms. The OGF M(z) = ∑

n Mnzn that starts as (EIS A000621)

(61) M(z) = 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 39z9 + · · · ,
is accessible through a functional equation,

(62) M(z) = 1

1 − zM(z2)
.

which we adopt as our starting point. Iteration of the functional equation leads to a continued
fraction representation,

M(z) = 1

1 − z

1 − z2

1 − z4

. . .

,

from which Pólya found:

Proposition IV.7. Let M(z) be the solution analytic around 0 of the functional equation

M(z) = 1

1 − zM(z2)
.

Then, there exist constants K , β, and B > 1, such that

Mn = K · βn (
1 + O(B−n)

)
, β

.= 1.68136 75244, K
.= 0.36071 40971.

12In many ways, Pólya can be regarded as the grandfather of the field of analytic combinatorics.
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We offer two proofs. The first one is based on direct consideration of the functional equa-
tion and is of a fair degree of applicability. The second one, following Pólya, makes explicit a
special linear structure present in the problem. As suggested by the main estimate, the dominant
singularity of M(z) is a simple pole.

First proof. By positivity of the functional equation, M(z) dominates coefficientwise any
GF (1 − zM<m(z2))−1, where M<m(z) := ∑

0≤ j<m Mnzn is the mth truncation of M(z). In

particular, one has the domination relation (use M<2(z) = 1 + z)

M(z) 2 1

1 − z − z3
.

Since the rational fraction has its dominant pole at z
.= 0.68232, this implies that the radius ρ

of convergence of M(z) satisfies ρ < 0.69. In the other direction, since M(z2) < M(z)
for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1

1 − zM(z)
, 0 ≤ z < ρ.

This can be used to show (Note IV.50) that the Catalan generating function C(z) = (1 −√
1 − 4z)/(2z) is a majorant of M(z) on the interval (0, 1

4 ), which implies that M(z) is well

defined and analytic for z ∈ (0, 1
4 ). In other words, one has 1

4 ≤ ρ < 0.69. Altogether, the
radius of convergence of M lies strictly between 0 and 1.

� IV.50. Alcohols, trees, and bootstrapping. Since M(z) starts as 1 + z + z2 + · · · while
C(z) starts as 1 + z + 2z2 + · · · , there is a small interval (0, ε) such that M(z) ≤ C(z). By
the functional equation of M(z), one has M(z) ≤ C(z) for z in the larger interval (0,

√
ε).

Bootstrapping then shows that M(z) ≤ C(z) for z ∈ (0, 1
4 ). �

Next, as z → ρ−, one must have zM(z2) → 1. (Indeed, if this was not the case, we would
have zM(z2) < A < 1 for some A. But then, since ρ2 < ρ, the quantity (1−zM(z2))−1 would
be analytic at z = ρ, a clear contradiction.) Thus, ρ is determined implicitly by the equation

ρM(ρ2) = 1, 0 < ρ < 1.

One can then estimate ρ numerically (Note IV.51), and the stated value of β = 1/ρ follows.
(Pólya determined ρ to five decimals by hand!)

The previous discussion also implies that ρ is a pole of M(z), which must be simple (since

∂z(zM(z2)
∣∣∣
z=ρ > 0). Thus

(63) M(z) ∼
z→ρ

K
1

1 − z/ρ
, K := 1

ρM(ρ2)+ 2ρ3 M ′(ρ2)
.

The argument shows at the same time that M(z) is meromorphic in |z| < √
ρ

.= 0.77. That
ρ is the only pole of M(z) on |z| = ρ results from the fact that zM(z2) = z + z3 + · · · can
be subjected to the type of argument encountered in the context of the Daffodil Lemma (see
the discussion of quasi-inverses in the proof of Proposition IV.3, p. 267). The translation of the
singular expansion (63) then yields the statement.

� IV.51. The growth constant of molecules. The quantity ρ can be obtained as the limit of
the ρm satisfying

∑m
n=0 Mnρ

2n+1
m = 1, together with ρ ∈ [ 1

4 , 0.69]. In each case, only a
few of the Mn (provided by the functional equation) are needed. One obtains: ρ10

.= 0.595,
ρ20

.= 0.594756, ρ30
.= 0.59475397, ρ40

.= 0.594753964. This algorithms constitutes a
geometrically convergent scheme with limit ρ

.= 0.59475 39639. �
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Second proof. First, a sequence of formal approximants follows from (62) starting with

1,
1

1 − z
,

1

1 − z

1 − z2

= 1 − z2

1 − z − z2
,

1

1 − z

1 − z2

1 − z4

= 1 − z2 − z4

1 − z − z2 − z4 + z5
,

which permits us to compute any number of terms of the series M(z). Closer examination
of (62) suggests to set

M(z) = ψ(z2)

ψ(z)
,

where ψ(z) = 1 − z − z2 − z4 + z5 − z8 + z9 + z10 − z16 + · · · . Back substitution into (62)
yields

ψ(z2)

ψ(z)
= 1

1 − zψ(z
4)

ψ(z2)

or
ψ(z2)

ψ(z)
= ψ(z2)

ψ(z2)− zψ(z4)
,

which shows ψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2)− zψ(z4), ψ(0) = 1.

The coefficients of ψ satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0,

which implies that their values are all contained in the set {0,−1,+1}.
Thus, M(z) appears to be the quotient of two function, ψ(z2)/ψ(z), each analytic in the

unit disc, and M(z) is meromorphic in the unit disc. A numerical evaluation then shows that
ψ(z) has its smallest positive real zero at ρ

.= 0.59475, which is a simple root. The quantity ρ
is thus a pole of M(z) (since, numerically, ψ(ρ2)  = 0). Thus

M(z) ∼ ψ(ρ2)

(z − ρ)ψ ′(ρ) �⇒ Mn ∼ − ψ(ρ2)

ρψ ′(ρ)

(
1

ρ

)n
.

Numerical computations then yield Pólya’s estimate. Et voilà! . . . . . . . . . . . . . . . . . . . . . . . . . . �

The example of Pólya’s alcohols is exemplary, both from a historical point of
view and from a methodological perspective. As the first proof of Proposition IV.7
demonstrates, quite a lot of information can be pulled out of a functional equation
without solving it. (A similar situation will be encountered in relation to coin foun-
tains, Example V.9, p. 330.) Here, we have made great use of the fact that if f (z) is
analytic in |z| < r and some a priori bounds imply the strict inequalities 0 < r < 1,
then one can regard functions like f (z2), f (z3), and so on, as “known” since they are
analytic in the disc of convergence of f and even beyond, a situation also evocative of
our earlier discussion of Pólya operators in Section IV. 4, p. 249. Globally, the lesson
is that functional equations, even complicated ones, can be used to bootstrap the local
singular behaviour of solutions, and one can often do so even in the absence of any
explicit generating function solution. The transition from singularities to coefficient
asymptotics is then a simple jump.
� IV.52. An arithmetic exercise. The coefficients ψn = [zn]ψ(z) can be characterized simply
in terms of the binary representation of n. Find the asymptotic proportion of the ψn for n ∈
[1 . . 2N ] that assume each of the values 0, +1, and −1. �



“book” — 2008/10/3 — 16:05 — page 286 — #300

286 IV. COMPLEX ANALYSIS, RATIONAL AND MEROMORPHIC ASYMPTOTICS

IV. 8. Perspective

In this chapter, we have started examining generating functions under a new light.
Instead of being merely formal algebraic objects—power series—that encode ex-
actly counting sequences, generating functions can be regarded as analytic objects—
transformations of the complex plane—whose singularities provide a wealth of infor-
mation concerning asymptotic properties of structures.

Singularities provide a royal road to coefficient asymptotics. We could treat here,
with a relatively simple apparatus, singularities that are poles. In this perspective, the
two main statements of this chapter are the theorems relative to the expansion of ra-
tional and meromorphic functions, (Theorems IV.9, p. 256, and IV.10, p. 258). These
are classical results of analysis. Issai Schur (1875–1941) is to be counted among the
very first mathematicians who recognized their rôle in combinatorial enumerations
(denumerants, Example IV.6, p. 257). The complex analytic thread was developed
much further by George Pólya in his famous paper of 1937 (see [488, 491]), which
Read in [491, p. 96] describes as a “landmark in the history of combinatorial analy-
sis”. There, Pólya laid the groundwork of combinatorial chemistry, the enumeration
of objects under group actions, and, last but not least, the complex asymptotic theory
of graphs and trees. Thanks to complex analytic methods, many combinatorial classes
amenable to symbolic descriptions can be thoroughly analysed, with regard to their
asymptotic properties, by means of a selected collection of basic theorems of complex
analysis. The case of structures such as balanced trees and molecules, where only a
functional equation of sorts is available, is exemplary.

The present chapter then serves as the foundation stone of a rich theory to be de-
veloped in future chapters. Chapter V will elaborate on the analysis of rational and
meromorphic functions, and present a coherent theory of paths in graphs, automata,
and transfer matrices in the perspective of analytic combinatorics. Next, the method
of singularity analysis developed in Chapter VI considerably extends the range of ap-
plicability of the Second Principle to functions having singularities appreciably more
complicated that poles (e.g., those involving fractional powers, logarithms, iterated
logarithms, and so on). Applications will be given to recursive structures, including
many types of trees, in Chapter VII. Chapter VIII, dedicated to saddle-point methods
will then complete the picture of univariate asymptotics by providing a unified treat-
ment of counting GFs that are either entire functions (hence, have no singularity at a
finite distance) or manifest a violent growth at their singularities (hence, fall outside
of the scope of meromorphic or singularity-analysis asymptotics). Finally, in Chap-
ter IX, the corresponding perturbative methods will be put to use in order to distil limit
laws for parameters of combinatorial structures.

Bibliographic notes. This chapter has been designed to serve as a refresher of basic com-
plex analysis, with special emphasis on methods relevant for analytic combinatorics. See Fig-
ure IV.19 for a concise summary of results. References most useful for the discussion given
here include the books of Titchmarsh [577] (oriented towards classical analysis), Whittaker and
Watson [604] (stressing special functions), Dieudonné [165], Hille [334], and Knopp [373].
Henrici [329] presents complex analysis under the perspective of constructive and numerical
methods, a highly valuable point of view for this book.
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Basics. The theory of analytic functions benefits from the equivalence between two no-
tions, analyticity and differentiability. It is the basis of a powerful integral calculus, much
different from its real variable counterpart. The following two results can serve as “axioms” of
the theory.

THEOREM IV.1 [Basic Equivalence Theorem] (p. 232): Two fundamental notions are equiv-
alent, namely, analyticity (defined by convergent power series) and holomorphy (defined by
differentiability). Combinatorial generating functions, a priori determined by their expansions
at 0 thus satisfy the rich set of properties associated with these two equivalent notions.
THEOREM IV.2 [Null Integral Property] (p. 234): The integral of an analytic function along a
simple loop (closed path that can be contracted to a single point) is 0. Consequently, integrals
are largely independent of particular details of the integration contour.

Residues. For meromorphic functions (functions with poles), residues are essential. Co-
efficients of a function can be evaluated by means of integrals. The following two theorems
provide connections between local properties of a function (e.g., coefficients at one point) and
global properties of the function elsewhere (e.g., an integral along a distant curve).

THEOREM IV.3 [Cauchy’s residue theorem] (p. 234): In the realm of meromorphic functions,
integrals of a function can be evaluated based on local properties of the function at a few specific
points, its poles.

THEOREM IV.4 [Cauchy’s Coefficient Formula] (p. 237): This is an almost immediate conse-
quence of Cauchy’s residue theorem: The coefficients of an analytic function admit of a repre-
sentation by a contour integral. Coefficients can then be evaluated or estimated using properties
of the function at points away from the origin.

Singularities and growth. Singularities (places where analyticity stops), provide essential
information on the growth rate of a function’s coefficients. The “First Principle” relates the
exponential growth rate of coefficients to the location of singularities.

THEOREM IV.5 [Boundary singularities] (p. 240): A function (given by its series expansion
at 0) always has a singularity on the boundary of its disc of convergence.

THEOREM IV.6 [Pringsheim’s Theorem] (p. 240): This theorem refines the previous one for
functions with non-negative coefficients. It implies that, in the case of combinatorial generating
functions, the search for a dominant singularity can be restricted to the positive real axis.

THEOREM IV.7 [Exponential Growth Formula] (p. 244): The exponential growth rate of co-
efficients is dictated by the location of the singularities nearest to the origin—the dominant
singularities.

THEOREM IV.8 [Computability of growth] (p. 251): For any combinatorial class that is non-
recursive (iterative), the exponential growth rate of coefficients is invariably a computable num-
ber. This statement can be regarded as the first general theorem of analytic combinatorics.

Coefficient asymptotics. The “Second Principle” relates subexponential factors of coef-
ficients to the nature of singularities. For rational and meromorphic functions, everything is
simple.

THEOREM IV.9 [Expansion of rational functions] (p. 256): Coefficients of rational functions
are explicitly expressible in terms of the poles, given their location (values) and nature (multi-
plicity).

THEOREM IV.10 [Expansion of meromorphic functions] (p. 258): Coefficients of meromorphic
functions admit of a precise asymptotic form with exponentially small error terms, given the
location and nature of the dominant poles.

Figure IV.19. A summary of the main results of Chapter IV.
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De Bruijn’s classic booklet [143] is a wonderfully concrete introduction to effective asymp-
totic theory, and it contains many examples from discrete mathematics thoroughly worked out
using a complex analytic approach. The use of such analytic methods in combinatorics was pi-
oneered in modern times by Bender and Odlyzko, whose first publications in this area go back
to the 1970s. The state of affairs in 1995 regarding analytic methods in combinatorial enumer-
ation is superbly summarized in Odlyzko’s scholarly chapter [461]. Wilf devotes Chapter 5 of
his Generatingfunctionology [608] to this question. The books by Hofri [335], Mahmoud [429],
and Szpankowski [564] contain useful accounts in the perspective of analysis of algorithms. See
also our book [538] for a light introduction and the chapter by Vitter and Flajolet [598] for more
on this specific topic.

Despite all appearances they [generating functions] belong to algebra and not to analysis.

Combinatorialists use recurrence, generating functions, and such transformations as the
Vandermonde convolution; others to my horror, use contour integrals,

differential equations, and other resources of mathematical analysis.

— JOHN RIORDAN [513, p. viii] and [512, Pref.]
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V

Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powerful and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [461]

V. 1. A roadmap to rational and meromorphic asymptotics 290
V. 2. The supercritical sequence schema 293
V. 3. Regular specifications and languages 300
V. 4. Nested sequences, lattice paths, and continued fractions 318
V. 5. Paths in graphs and automata 336
V. 6. Transfer matrix models 356
V. 7. Perspective 373

The primary goal of this chapter is to provide combinatorial illustrations of the power
of complex analytic methods, and specifically of the rational–meromorphic frame-
work developed in the previous chapter. At the same time, we shift gears and envisage
counting problems at a new level of generality. Precisely, we organize combinatorial
problems into wide families of combinatorial types amenable to a common treatment
and associated with a common collection of asymptotic properties. Without attempt-
ing a formal definition, we call schema any such family determined by combinatorial
and analytic conditions that covers an infinity of combinatorial classes.

First, we discuss a general schema of analytic combinatorics known as the su-
percritical sequence schema, which provides a neat illustration of the power of mero-
morphic asymptotics (Theorem IV.10, p. 258), while being of wide applicability. This
schema unifies the analysis of compositions, surjections, and alignments; it applies to
any class which is defined as a sequence, provided components satisfy a simple ana-
lytic condition (“supercriticality”). For instance, one can predict very precisely (and
easily) the number of ways in which an integer can be decomposed additively as a
sum of primes (or twin primes), this even though many details of the distribution of
primes are still surrounded in mystery.

The next schema comprises regular specifications and languages, which a priori
lead to rational generating functions and are thus systematically amenable to Theo-
rem IV.9 (p. 256), to the effect that coefficients are described as exponential poly-
nomials. In the case of regular specifications, much additional structure is present,
especially positivity. Accordingly, counting sequences are of a simple exponential–
polynomial form and fluctuations can be systematically circumvented. Applications
presented in this chapter include the analysis of longest runs, attached to maximal

289
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sequences of good (or bad) luck in games of chance, pure birth processes, and the
occurrence of hidden patterns (subsequences) in random texts.

We then consider an important subset of regular specifications, corresponding to
nested sequences, that combinatorially describe a variety of lattice paths. Such nested
sequences naturally lead to nested quasi-inverses, which are none other than continued
fractions. A wealth of combinatorial, algebraic, and analytic properties then surround
such constructions. A prime illustration is the complete analysis of height in Dyck
paths and general Catalan trees; other interesting applications relate to coin fountain
and interconnection networks.

Finally, the last two sections examine positive linear systems of generating func-
tions, starting with the simplest case of finite graphs and automata, and concluding
with the general framework of transfer matrices. Although the resulting generating
functions are once more bound to be rational, there is benefit in examining them as
defined implicitly (rather than solving explicitly) and work out singularities directly.
The spectrum of matrices (the set of eigenvalues) then plays a central rôle. An im-
portant case is the irreducible linear system schema, which is closely related to the
Perron–Frobenius theory of non-negative matrices, whose importance has been long
recognized in the theory of finite Markov chains. A general discussion of singularities
can then be conducted, leading to valuable consequences on a variety of models—
paths in graphs, finite automata, and transfer matrices. The last example discussed
in this chapter treats locally constrained permutations, where rational functions com-
bined with inclusion–exclusion provide an entry to the world of value-constrained
permutations.

In the various combinatorial examples encountered in this chapter, the generating
functions are meromorphic in some domain extending beyond their disc of conver-
gence at 0. As a consequence, the asymptotic estimates of coefficients involve main
terms that are explicit exponential–polynomials and error terms that are exponentially
smaller. This is a situation well summarized by Odlyzko’s aphorism quoted on p. 289:
“Analytic methods [. . . ] often yield estimates of unparalleled precision”.

V. 1. A roadmap to rational and meromorphic asymptotics

The key character in this chapter is the combinatorial sequence construction SEQ.
Since its translation into generating functions involves a quasi-inverse, (1− f )−1, the
construction should in many cases be expected to induce polar singularities. Also,
linear systems of equations, of which the simplest case is X = 1 + AX , are solvable
by means of inverses: the solution is X = (1 − A)−1 in the scalar case, and it is oth-
erwise expressible as a quotient of determinants (by Cramer’s rule) in the matrix case.
Consequently, linear systems of equations are also conducive to polar singularities.

This chapter accordingly develops along two main lines. First, we study non-
recursive families of combinatorial problems that are, in a suitable sense, driven by a
sequence construction (Sections V. 2–V. 4). Second, we examine families of recursive
problems that are naturally described by linear systems of equations (Sections V. 5–
V. 6). Clearly, the general theorems giving the asymptotic forms of coefficients of
rational and meromorphic functions apply. As we shall see, the additional positivity
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structure arising from combinatorics entails notable simplifications in the asymptotic
form of counting sequences.

The supercritical sequence schema. This schema, fully described in Section V. 2
(p. 293) corresponds to the general form F = SEQ(G), together with a simple an-
alytic condition, “supercriticality”, attached to the generating function G(z) of G.
Under this condition, the sequence (Fn) happens to be predictable and an asymptotic
estimate,

(1) Fn = cβn + O(Bn), 0 ≤ B < β, c ∈ R>0,

applies with β such that G(1/β) = 1. Integer compositions, surjections, and align-
ments presented in Chapters I and II can then be treated in a unified manner. The
supercritical sequence schema even covers situations where G is not necessarily con-
structible: this includes compositions into summands that are prime numbers or twin
primes. Parameters, like the number of components and more generally profiles, are
under these circumstances governed by laws that hold with a high probability.

Regular specification and languages. This topic is treated in Section V. 3 (p. 300).
Regular specifications are non-recursive specifications that only involve the construc-
tions (+,×, SEQ). In the unlabelled case, they can always be interpreted as describing
a regular language in the sense of Section I. 4, p. 49. The main result here is the fol-
lowing: given a regular specification R, it is possible to determine constructively a
number D, so that an asymptotic estimate of the form

(2) Rn = P(n)βn + O(Bn), 0 ≤ B < β, P a polynomial,

holds, once the index n is restricted to a fixed congruence class modulo D. (Naturally,
the quantities P, β, B may depend on the particular congruence class considered.) In
other words, a “pure” exponential polynomial form holds for each of the D “sections”
[subsequences defined on p. 302] of the counting sequence (Rn)n≥0. In particular, ir-
regular fluctuations, which might otherwise arise from the existence of several domi-
nant poles sharing the same modulus but having incommensurable arguments (see the
discussion in Subsection IV. 6.1, p. 263 dedicated to multiple singularities), are simply
not present in regular specifications and languages. Similar estimates hold for profiles
of regular specifications, where the profile of an object is understood to be the number
of times any fixed construction is employed.

Nested sequences, lattice paths, and continued fractions. The material consid-
ered in Section V. 4 (p. 318) could be termed the SEQ ◦ · · · ◦SEQ schema, correspond-
ing to nested sequences. The associated GFs are chains of quasi-inverses; that is,
continued fractions. Although the general theory of regular specifications applies, the
additional structure resulting from nested sequences implies, in essence, uniqueness
and simplicity of the dominant pole, resulting directly in an estimate of the form

(3) Sn = cβn + O(Bn), 0 ≤ B < β, c ∈ R>0,

for objects enumerated by nested sequences. This schema covers lattice paths of
bounded height, their weighted versions, as well as several other bijectively equivalent
classes, like interconnection networks. In each case, profiles can be fully character-
ized, the estimates being of a simple form.
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Paths in graphs and automata. The framework of paths in directed graphs ex-
pounded in Section V. 5 (p. 336) is of considerable generality. In particular, it covers
the case of finite automata introduced in Subsection I. 4.2, p. 56. Although, in the
abstract, the descriptive power of this framework is formally equivalent to the one of
regular specifications (Appendix A.7: Regular languages, p. 733), there is great ad-
vantage in considering directly problems whose natural formulation is recursive and
phrased in terms of graphs or automata. (The reduction of automata to regular ex-
pressions is non-trivial so that it does not tend to preserve the original combinatorial
structure.) The algebraic theory is that of matrices of the form (I − zT )−1, where T
is a matrix with non-negative entries. The analytic theory behind the scene is now that
of positive matrices and the companion Perron–Frobenius theory. Uniqueness and
simplicity of dominant poles of generating functions can be guaranteed under easily
testable structural conditions—principally, the condition of irreducibility that corres-
ponds to a strong connectedness of the system. Then a pure exponential polynomial
form holds,

(4) Cn ∼ cλn
1 + O(%n), 0 ≤ % < λ1, c ∈ R>0,

where λ1 is the (unique) dominant eigenvalue of the transition matrix T . Applications
include walks over various types of graphs (the interval graph, the devil’s staircase)
and words excluding one or several patterns (walks on the De Bruijn graph).

Transfer matrices. This framework, whose origins lie in statistical physics, is an
extension of automata and paths in graphs. What is retained is the notion of a finite
state system, but transitions can now take place at different speeds. Algebraically, one
is dealing with matrices of the form (I − T (z))−1, where T is a matrix whose entries
are polynomials (in z) with non-negative coefficients. Perron–Frobenius theory can
be adapted to cover such cases, that, to a probabilist, look like a mixture of Markov
chain and renewal theory. The consequence, for this category of models, is once more
an estimate of the type (4), under irreducibility conditions; namely

(5) Dn ∼ cμn
1 + O(Mn), 0 ≤ M < μ1, c ∈ R>0,

where μ1 = 1/σ and σ is the smallest positive value of z such that T (z) has dominant
eigenvalue 1. A striking application of transfer matrices is a study, with an experi-
mental mathematics flavour, of self-avoiding walks and polygons in the plane: it turns
out to be possible to predict, with a high degree of confidence (but no mathemati-
cal certainty, yet), what the number of polygons is and which distribution of area is
to be expected. A combination of the transfer matrix approach with a suitable use
of inclusion–exclusion (Subsection V. 6.4, p. 367) finally provides a solution to the
classic ménage problem of combinatorial theory as well as to many related questions
regarding value-constrained permutations.

Browsing notes. We, authors, recommend that our gentle reader first gets a bird’s
eye view of this chapter, by skimming through sections, before descending to ground
level and studying examples in detail—some of the latter are indeed somewhat tech-
nically advanced (e.g., they make use of Mellin transforms and/or develop limit laws).
The contents of this chapter are not needed for Chapters VI–VIII, so that the reader
who is impatient to penetrate further the logic of analytic combinatorics can at any
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time have a peek at Chapters VI–VIII. We shall see in Chapter IX (specifically,
Section IX. 6, p. 650) that all the schemas considered here are, under simple non-
degeneracy conditions, associated to Gaussian limit laws.

Sections V. 2 to V. 6 are organized following a common pattern: first, we discuss
“combinatorial aspects”, then “analytic aspects”, and finally “applications”. Each of
Sections V. 2 to V. 5 is furthermore centred around two analytic–combinatorial theo-
rems, one describing asymptotic enumeration, the other quantifying the asymptotic
profiles of combinatorial structures. We examine in this way the supercritical se-
quence schema (Section V. 2), general regular specifications (Section V. 3), nested
sequences (Section V. 4), and path-in-graphs models (Section V. 5). The last section
(Section V. 6) departs slightly from this general pattern, since transfer matrices are
reducible rather simply to the framework of paths in graphs and automata, so that we
do not need specifically new statements.

V. 2. The supercritical sequence schema

This schema is combinatorially the simplest treated in this chapter, since it plainly
deals with the sequence construction. An auxiliary analytic condition, named “super-
criticality” ensures that meromorphic asymptotics applies and entails strong statistical
regularities. The paradigm of supercritical sequences unifies the asymptotic properties
of a number of seemingly different combinatorial types, including integer composi-
tions, surjections, and alignments.

V. 2.1. Combinatorial aspects. We consider a sequence construction, which may
be taken in either the unlabelled or the labelled universe. In either case, we have

F = SEQ(G) �⇒ F(z) = 1

1 − G(z)
,

with G(0) = 0. It will prove convenient to set

fn = [zn]F(z), gn = [zn]G(z),

so that the number of Fn structures is fn in the unlabelled case and n! fn otherwise.
From Chapter III, the BGF of F–structures with u marking the number of G–

components is

(6) F = SEQ(uG) �⇒ F(z, u) = 1

1 − uG(z)
.

We also have access to the BGF of F with u marking the number of Gk–components:

(7) F 〈k〉 = SEQ (uGk + (G \ Gk)) �⇒ F 〈k〉(z, u) = 1

1 − (
G(z)+ (u − 1)gk zk

) .
V. 2.2. Analytic aspects. We restrict attention to the case where the radius of

convergence ρ of G(z) is non-zero, in which case, the radius of convergence of F(z)
is also non-zero by virtue of closure properties of analytic functions. Here is the basic
concept of this section.
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Definition V.1. Let F,G be generating functions with non-negative coefficients that
are analytic at 0, with G(0) = 0. The analytic relation F(z) = (1 − G(z))−1 is
said to be supercritical if G(ρ) > 1, where ρ = ρG is the radius of convergence
of G. A combinatorial schema F = SEQ(G) is said to be supercritical if the relation
F(z) = (1−G(z))−1 between the corresponding generating functions is supercritical.

Note that G(ρ) is well defined in R∪{+∞} as the limit limx→ρ− G(x) since G(x)
increases along the positive real axis, for x ∈ (0, ρ). (The value G(ρ) corresponds
to what has been denoted earlier by τG when discussing “signatures” in Section IV. 4,
p. 249.) From now on we assume that G(z) is strongly aperiodic in the sense that there
does not exist an integer d ≥ 2 such that G(z) = h(zd) for some h analytic at 0. (Put
otherwise, the span of 1 + G(z), as defined on p. 266, is equal to 1.) This condition
entails no loss of analytic generality.

Theorem V.1 (Asymptotics of supercritical sequence). Let the schema F = SEQ(G)
be supercritical and assume that G(z) is strongly aperiodic. Then, one has

[zn]F(z) = 1

σG ′(σ )
· σ−n (

1 + O(An)
)
,

where σ is the root in (0, ρG) of G(σ ) = 1 and A is a number less than 1. The
number X of G–components in a random F–structure of size n has mean and variance
satisfying

En(X) = 1

σG ′(σ )
· (n + 1)− 1 + G ′′(σ )

G ′(σ )2
+ O(An)

Vn(X) = σG ′′(σ )+ G ′(σ )− σG ′(σ )2

σ 2G ′(σ )3
· n + O(1).

In particular, the distribution of X on Fn is concentrated.

Proof. See also [260, 547]. The basic observation is that G increases continuously
from G(0) = 0 to G(ρG) = τG (with τG > 1 by assumption) when x increases from
0 to ρG . Therefore, the positive number σ , which satisfies G(σ ) = 1 is well defined.
Then, F is analytic at all points of the interval (0, σ ). The function G being analytic
at σ , satisfies, in a neighbourhood of σ

G(z) = 1 + G ′(σ )(z − σ)+ 1

2!
G ′′(σ )(z − σ)2 + · · · .

so that F(z) has a pole at z = σ ; also, this pole is simple since G ′(σ ) > 0, by
positivity of the coefficients of G. Thus, we have

F(z) ∼
z→ρ

− 1

G ′(σ )(z − σ)
≡ 1

σG ′(σ )
1

1 − z/σ
.

Pringsheim’s theorem (Theorem IV.6, p. 240) then implies that the radius of conver-
gence of F must coincide with σ .

There remains to show that F(z) is meromorphic in a disc of some radius R > σ

with the point σ as the only singularity inside the disc. This results from the assump-
tion that G is strongly aperiodic. In effect, as a consequence of the Daffodil Lemma
(Lemma IV.3, p. 267), one has G(σeiθ )  = 1, for all θ  ≡ 0 (mod 2π) . Thus, by
compactness, there exists a closed disc of radius R > σ in which F is analytic except
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for a unique pole at σ . We can now apply the main theorem of meromorphic function
asymptotics (Theorem IV.10, p. 258) to deduce the stated formula with A = σ/R.

Next, the number of G–components in a random F structure of size n has BGF
given by (6), and by differentiation, we get

En(X) = 1

fn
[zn]

∂

∂u

1

1 − uG(z)

∣∣∣∣
u=1

= 1

fn
[zn]

G(z)

(1 − G(z))2
.

The problem is now reduced to extracting coefficients in a univariate generating func-
tion with a double pole at z = σ , and it suffices to expand the GF locally at σ :

G(z)

(1 − G(z))2
∼

z→ρ

1

G ′(σ )2(z − σ)2
≡ 1

σ 2G ′(σ )2
1

(1 − z/σ)2
.

The variance calculation is similar, with a triple pole being involved. �
When a sequence construction is supercritical, the number of components is in

the mean of order n while its standard deviation is O(
√

n). Thus, the distribution is
concentrated (in the sense of Section III. 2.2, p. 161). In fact, there results from a
general theorem of Bender [35] that the distribution of the number of components is
asymptotically Gaussian, a property to be established in Section IX. 6, p. 650.

Profiles of supercritical sequences. We have seen in Chapter III that integer
compositions and integer partitions, when sampled at random, tend to assume rather
different aspects. Given a sequence construction, F = SEQ(G), the profile of an
element α ∈ F is the vector (X 〈1〉, X 〈2〉, . . .) where X 〈 j〉(α) is the number of G–
components in α that have size j . In the case of (unrestricted) integer compositions,
it could be proved elementarily (Example III.6, p. 167) that, on average, for size n,
the number of 1-summands is ∼ n/2, the number of 2-summands is ∼ n/4, and so
on. Now that meromorphic asymptotics is available, such a property can be placed in
a much wider perspective.

Theorem V.2 (Profiles of supercritical sequences). Consider a supercritical sequence
construction, F = SEQ(G), with G(z) strongly aperiodic, as in Theorem V.1. The
number of G–components of any fixed size k in a random F–object of size n satisfies

(8) En(X
〈k〉) = gkσ

k

σG ′(σ )
n + O(1), Vn(X

〈k〉) = O(n),

where σ in (0, σG) is such that G(σ ) = 1, and gk = [zk]G(z).

Proof. The BGF with u marking the number of G–components of size k is given in (7).
The mean value is then obtained as a quotient,

En(X
〈k〉) = 1

fn
[zn]

∂

∂u
F(z, u)

∣∣∣∣
u=1

= 1

fn
[zn]

gk zk

(1 − G(z))2
.

The GF of cumulated values has a double pole at z = σ , and the estimate of the mean
value follows. The variance is estimated similarly, after two successive differentiations
and the analysis of a triple pole. �

The total number of components X satisfies X = ∑
X 〈k〉, and, by Theorem V.1,

its mean is asymptotic to n/(σG ′(σ )). Thus, Equation (8) indicates that, at least
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in some average-value sense, the “proportion” of components of size k among all
components is given by gkσ

k .
� V.1. Proportion of k–components and convergence in probability. For any fixed k, the random

variable X 〈k〉
n /Xn converges in probability to the value gkσ

k ,

X 〈k〉
n

Xn

P−→ gkσ
k , i.e., lim

n→∞P

{
gkσ

k(1 − ε) ≤ X 〈k〉
n

Xn
≤ gkσ

k(1 + ε)

}
= 1,

for any ε > 0. The proof is an easy consequence of the Chebyshev inequalities (the distributions

of Xn and X 〈k〉
n are both concentrated). �

V. 2.3. Applications. We examine here two types of applications of the super-
critical sequence schema. Example V.1 makes explicit the asymptotic enumeration
and the analysis of profiles of compositions, surjections and alignments. What stands
out is the way the mean profile of a structure reflects the underlying inner construc-
tion K in schemas of the form SEQ(K(Z)). Example V.2 discusses compositions into
restricted summands, including the striking case of compositions into primes.

Example V.1. Compositions, surjections, and alignments. The three classes of interest here
are integer compositions (C), surjections (R) and alignments (O), which are specified as

C = SEQ(SEQ≥1(Z)), R = SEQ(SET≥1(Z)), O = SEQ(CYC(Z))

and belong to either the labelled universe (C) or to the labelled universe (R and O). The
generating functions (of type OGF, EGF, and EGF, respectively) are

C(z) = 1

1 − z
1−z

, R(z) = 1

1 − (ez − 1)
, O(z) = 1

1 − log(1 − z)−1
.

A direct application of Theorem V.1 (p. 294) gives us back the known results

Cn = 2n−1,
1

n!
Rn ∼ 1

2
(log 2)−n−1,

1

n!
On = e−1(1 − e−1)−n−1,

corresponding to σ equal to 1
2 , log 2, and 1 − e−1, respectively.

Similarly, the expected number of summands in a random composition of the integer n
is ∼ n/2; the expected cardinality of the range of a random surjection whose domain has
cardinality n is asymptotic to βn with β = 1/(2 log 2); the expected number of components in
a random alignment of size n is asymptotic to n/(e − 1).

Theorem V.2 also applies, providing the mean number of components of size k in each
case. The following table summarizes the conclusions.

Structures specification law (gkσ
k) type σ

Compositions SEQ(SEQ≥1(Z))
1

2k
Geometric

1

2

Surjections SEQ(SET≥1(Z))
1

k!
(log 2)k Poisson log 2

Alignments SEQ(CYC(Z)) 1

k
(1 − e−1)k Logarithmic 1 − e−1

Note that the stated laws necessitate k ≥ 1. The geometric and Poisson law are classical; the
logarithmic distribution (also called “logarithmic-series distribution”) of a parameter λ > 0 is
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Figure V.1. Profile of structures drawn at random represented by the sizes of their
components in sorted order: (from left to right) a random composition, surjection,
and alignment of size n = 100.

by definition the law of a discrete random variable Y such that

P(Y = k) = 1

log(1 − λ)−1

λk

k
, k ≥ 1.

The way the internal construction K in the schema SEQ(K(Z)) determines the asymptotic pro-
portion of component of each size,

Sequence 	→ Geometric; Set 	→ Poisson; Cycle 	→ Logarithmic,

stands out. Figure V.1 exemplifies the phenomenon by displaying components sorted by size
and represented by vertical segments of corresponding lengths for three randomly drawn objects
of size n = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example V.2. Compositions with restricted summands, compositions into primes. Unre-
stricted integer compositions are well understood as regards enumeration: their number is ex-
actly Cn = 2n−1, their OGF is C(z) = (1 − z)/(1 − 2z), and compositions with k summands
are enumerated by binomial coefficients. Such simple exact formulae disappear when restricted
compositions are considered, but, as we now show, asymptotics is much more robust to changes
in specifications.

Let S be a subset of the integers Z≥1 such that gcd(S) = 1, i.e., not all members of S are
multiples of a common divisor d ≥ 2. In order to avoid trivialities, we also assume that S has at
least two elements. The class CS of compositions with summands constrained to the set S then
satisfies:

CS = SEQ(SEQS(Z)) �⇒ C S(z) = 1

1 − S(z)
, S(z) =

∑
s∈S

zs .

By assumption, S(z) is strongly aperiodic, so that Theorem V.1 (p. 294) applies directly. There
is a well-defined number σ such that

S(σ ) = 1, 0 < σ < 1,

and the number of S–restricted compositions satisfies

(9) C S
n := [zn]C S(z) = 1

σ S′(σ ) · σ
−n (

1 + O(An)
)
.

Among the already discussed cases, S = {1, 2} gives rise to Fibonacci numbers Fn and, more
generally, S = {1, . . . , r} corresponds to partitions with summands at most r . In this case, the
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10 16 1 5
20 732 73 4
30 36039 360 57
40 1772207 17722 61
50 87109263 871092 48
60 4281550047 42815 49331
70 210444532770 21044453 0095
80 10343662267187 1034366226 5182
90 508406414757253 5084064147 81706

100 24988932929490838 24988932929 612479

Figure V.2. The pyramid relative to compositions into prime summands for n =
10 . . 100: (left: exact values; right: asymptotic formula rounded).

OGF,

C{1,...,r}(z) = 1

1 − z 1−zr

1−z

= 1 − z

1 − 2z + zr+1

is a simple variant of the OGF associated to longest runs in strings, which is studied at length
in Example V.4, p. 308. The treatment of the latter can be copied almost verbatim to the effect
that the largest component in a random composition of n is found to be log2 n + O(1), both on
average and with high probability.

Compositions into primes. Here is a surprising application of the general theory. Consider
the case where S is taken to be the set of prime numbers, Prime = {2, 3, 5, 7, 11, . . .}, thereby
defining the class of compositions into prime summands. The sequence starts as

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105,

corresponding to G(z) = z2+z3+z5+· · · , and is EIS A023360 in Sloane’s Encyclopedia. The
formula (9) provides the asymptotic shape of the number of such compositions (Figure V.2). It
is also worth noting that the constants appearing in (9) are easily determined to great accuracy,
as we now explain.

By (9) and the preceding equation, the dominant singularity of the OGF of compositions
into primes is the positive root σ < 1 of the characteristic equation

S(z) ≡
∑

p Prime

z p = 1.

Fix a threshold value m0 (for instance m0 = 10 or 100) and introduce the two series

S−(z) :=
∑

s∈S, s<m0

zs , S+(z) :=
⎛⎝ ∑

s∈S, s<m0

zs

⎞⎠+ zm0

1 − z
.

Clearly, for x ∈ (0, 1), one has S−(x) < S(x) < S+(x). Define then two constants σ−, σ+ by
the conditions

S−(σ−) = 1, S+(σ+) = 1, 0 < σ−, σ+ < 1.

These constants are algebraic numbers that are accessible to computation. At the same time,
they satisfy σ+ < σ < σ−. As the order of truncation, m0, increases, the values of σ+, σ−
provide better and better approximations to σ , together with an interval in which σ provably
lies. For instance, m0 = 10 is enough to determine that 0.66 < σ < 0.69, and the choice
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Figure V.3. Errors in the approximation of the number of compositions into primes
for n = 70 . . 100: left, the values of CPrime

n − g(n); right, the correction arising
from the next two poles, which are complex conjugate, and its continuous extrapola-
tion g2(n), for n ∈ [70, 100].

m0 = 100 gives σ to 15 guaranteed digits of accuracy, namely, σ
.= 0.67740 17761 30660.

Then, the asymptotic formula (9) instantiates as

(10) CPrime
n ∼ g(n), g(n) := λ · βn, λ

.= 0.30365 52633, β
.= 1.47622 87836.

(The constant β ≡ σ−1 .= 1.47622 is akin to the family of Backhouse constants described
in [211].)

Once more, the asymptotic approximation is very good, as is exemplified by the “pyramid”
of Figure V.2. The difference between CPrime

n and its approximation g(n) from Equation (10) is
plotted on the left-hand part of Figure V.3. The seemingly haphazard oscillations that manifest
themselves are well explained by the principles discussed in Section IV. 6.1 (p. 263). It appears
that the next poles of the OGF are complex conjugate and lie near −0.76 ± 0.44i , having
modulus about 0.88. The corresponding residues then jointly contribute a quantity of the form

g2(n) = c · An sin(ωn + ω0), A
.= 1.13290,

for some constants c, ω, ω0. Comparing the left-hand and right-hand parts of Figure V.3, we
see that this next layer of poles explains quite well the residual error CPrime

n − g(n).
Here is finally a variant of compositions into primes that demonstrates in a striking way

the scope of the method. Define the set Prime2 of “twinned primes” as the set of primes that
belong to a twin prime pair, that is, p ∈ Prime2 if one of p − 2, p + 2 is prime. The set Prime2
starts as 3, 5, 7, 11, 13, 17, 19, 29, 31, . . . (prime numbers like 23 or 37 are thus excluded). The
asymptotic formula for the number of compositions of the integer n into summands that are
twinned primes is

CPrime2
n ∼ 0.18937 · 1.29799n,

where the constants are found by methods analogous to the case of all primes. It is quite
remarkable that the constants involved are still computable real numbers (and of low complexity,
even), this despite the fact that it is not known whether the set of twinned primes is finite or
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infinite. Incidentally, a sequence that starts like CPrime2
n ,

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, . . .

and coincides till index 22 included (!), but not beyond, was encountered by MacMahon1, as the
authors discovered, much to their astonishment, from scanning Sloane’s Encyclopedia, where
it appears as EIS A002124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.2. Random generation of supercritical sequences. Let F = SEQ(G) be a supercritical
sequence scheme. Consider a sequence of i.i.d. (independently identically distributed) random
variables Y1, Y2, . . . each of them obeying the discrete law

P(Y = k) = gkσ
k , k ≥ 1.

A sequence is said to be hitting n if Y1 +· · ·+Yr = n for some r ≥ 1. The vector (Y1, . . . , Yr )
for a sequence conditioned to hit n has the same distribution as the sequence of the lengths of
components in a random F–object of size n.

For probabilists, this explains the shape of the formulae in Theorem V.1, which resemble
renewal relations [205, Sec. XIII.10]. It also implies that, given a uniform random generator for
G–objects, one can generate a random F–object of size n in O(n) steps on average [177]. This
applies to surjections, alignments, and compositions in particular. �

� V.3. Largest components in supercritical sequences. Let F = SEQ(G) be a supercritical
sequence. Assume that gk = [zk ]G(z) satisfies the asymptotic “smoothness” condition

gk ∼
k→∞

cρ−kkβ, c, ρ ∈ R>0, β ∈ R.

Then the size L of the largest G component in a random F–object satisfies, for size n,

EFn (L) =
1

log(ρ/σ)
(log n + β log log n)+ o(log log n).

This covers integer compositions (ρ = 1, β = 0) and alignments (ρ = 1, β = −1). [The
analysis generalizes the case of longest runs in Example V.4 (p. 308) and is based on similar

principles. The GF of F objects with L ≤ m is F〈m〉(z) =
(

1 −∑
k≤m gk zk

)−1
, according to

Section III.7. For m large enough, this has a dominant singularity which is a simple pole at σm
such that σm − σ ∼ c1(σ/ρ)

mmβ . There follows a double-exponential approximation

PFn (L ≤ m) ≈ exp
(
−c2nmβ(σ/ρ)m

)
in the “central” region. See Example V.4 (p. 308) for a particular instance and Gourdon’s
study [305] for a general theory.] �

V. 3. Regular specifications and languages

The purpose of this section is the general study of the (+,×, SEQ) schema, which
covers all regular specifications. As we show now, “pure” exponential–polynomial
forms (ones with a single dominating exponential) can always be extracted. Theo-
rems V.3 and V.4 below provide a universal framework for the asymptotic analysis
of regular classes. Additional structural conditions to be introduced in later sections
(nested sequences, irreducibility of the dependency graph and of transfer matrices)
will then be seen to induce further simplifications in asymptotic formulae.

1See “Properties of prime numbers deduced from the calculus of symmetric functions”, Proc. London
Math. Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to compositions into arbitrary odd
primes, and 23 is the first such prime that is not twinned.
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V. 3.1. Combinatorial aspects. For convenience and without loss of analytic
generality, we consider here unlabelled structures. According to Chapter I (Defini-
tion I.10, p. 51, and the companion Proposition I.2, p. 52), a combinatorial specifica-
tion is regular if it is non-recursive (“iterative”) and it involves only the constructions
of Atom, Union, Product, and Sequence. A language L is S–regular if it is com-
binatorially isomorphic to a class M described by a regular specification. Alterna-
tively, a language is S–regular if all the operations involved in its description (unions,
catenation products and star operations) are unambiguous. The dictionary translating
constructions into OGFs is

(11) F + G 	→ F + G, F × G 	→ F × G, SEQ(F) 	→ (1 − F)−1,

and for languages, under the essential condition of non-ambiguity (Appendix A.7:
Regular languages, p. 733),

(12) L ∪M 	→ L + M, L ·M 	→ L × M, L� 	→ (1 − L)−1.

The rules (11) and (12) then give rise to generating functions that are invariably ra-
tional functions. Consequently, given a regular class C, the exponential–polynomial
form of coefficients expressed by Theorem IV.9 (p. 256) systematically applies, and
one has

(13) Cn ≡ [zn]C(z) =
m∑

j=1

� j (n)α
−n
j ,

for a family of algebraic numbers α j (the poles of C(z)) and a family of polynomi-
als � j .

As we know from the discussion of periodicities in Section IV. 6.1 (p. 263), the
collective behaviour of the sum in (13) depends on whether or not a single α domi-
nates. In the case where several dominant singularities coexist, fluctuations of sorts
(either periodic or irregular) may manifest themselves. In contrast, if a single α dom-
inates, then the exponential–polynomial formula acquires a transparent asymptotic
meaning. Accordingly, we set:

Definition V.2. An exponential–polynomial form
∑m

j=1 � j (n)α
−n
j is said to be pure if

|α1| < |α j |, for all j ≥ 2. In that case, a single exponential dominates asymptotically
all the other ones.

As we see next for regular languages and specifications, the corresponding count-
ing coefficients can always be described by a finite collection of pure exponential–
polynomial forms. The fundamental reason is that we are dealing with a special subset
of rational functions, one that enjoys strong positivity properties.

� V.4. Positive rational functions. Define the class Rat+ of positive rational functions as
the smallest class containing polynomials with positive coefficients (R≥0[z]) and closed under
sum, product, and quasi-inverse, where Q( f ) = (1 − f )−1 is applied to elements f such that
f (0) = 0. The OGF of any regular class with positive weights attached to neutral structures
and atoms is in Rat+. Conversely, any function in Rat+ is the OGF of a positively weighted
regular class. The notion of a Rat+ function is for instance relevant to the analysis of weighted
word models and Bernoulli trials (Section III. 6.1, p. 189). �
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V. 3.2. Analytic aspects. First we need the notion of sections of a sequence.

Definition V.3. Let ( fn) be a sequence of numbers. Its section of parameters D, r ,
where D ∈ Z>0 and r ∈ Z≥0 is the subsequence ( fnD+r ). The numbers D and r are
referred to as the modulus and the base, respectively.

The main theorem describing the asymptotic behaviour of regular classes is a
consequence of Proposition IV.3 (p. 267) and is originally due to Berstel. (See Soit-
tola’s article [546] as well as the books by Eilenberg [189, Ch VII] and Berstel–
Reutenauer [56] for context.)

Theorem V.3 (Asymptotics of regular classes). Let S be a class described by a regular
specification. Then there exists an integer D such that each section of modulus D of
Sn that is not eventually 0 admits a pure exponential–polynomial form: for n larger
than some n0, and any such section of base r , one has

Sn = �(n)βn +
m∑

j=1

Pj (n)β
n
j n ≡ r mod D,

where the quantities β, β j , with β > |β j |, and the polynomials �, Pj , with �(x)  ≡ 0,
depend on the base r .

Proof. (Sketch.) Let α1 be the dominant pole of S(z) that is positive. Proposition IV.3
(p. 267) asserts that any dominant pole, α is such that α/|α| is a root of unity. Let D0

be such that the dominant singularities are all contained in the set {α1ω
j−1}D0

j=1, where
ω = exp(2iπ/D0). By collecting all contributions arising from dominant poles in the
general expansion (13) and by restricting n to a fixed congruence class modulo D0,
namely n = νD0 + r with 0 ≤ r < D0, one gets

(14) SνD0+r = �[r ](n)α−D0ν
1 + O(A−n).

There �[r ] is a polynomial depending on r and the remainder term represents an ex-
ponential polynomial with growth at most O(A−n) for some A > α1.

The sections with modulus D0 that are not eventually 0 can then be categorized
into two classes.

— Let R =0 be the set of those values of r such that �[r ] is not identically 0.
The set R =0 is non-empty (else the radius of convergence of S(z) would be
larger than α1.) For any base r ∈ R =0, the assertion of the theorem is then
established with β = 1/α1.

— Let R0 be the set of those values of r such that �[r ](x) ≡ 0, with �[r ] as
given by (14). Then one needs to examine the next layer of poles of S(z), as
detailed below.

Consider a number r such that r ∈ R0, so that the polynomial�[r ] is identically 0.
First, we isolate in the expansion of S(z) those indices that are congruent to r modulo
D0. This is achieved by means of a Hadamard product, which, given two power series
a(z) = ∑

anzn and b(z) = ∑
bnzn , is defined as the series c(z) = ∑

cnzn such that
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cn = anbn and is written c = a 3 b. In symbols:

(15)

⎛⎝∑
n≥0

anzn

⎞⎠3
⎛⎝∑

n≥0

bnzn

⎞⎠ =
∑
n≥0

anbnzn .

We have:

(16) g(z) = S(z)3
(

zr

1 − zD0

)
.

A classical theorem [57, 189] from the theory of positive rational functions (in the
sense of Note V.4) asserts that such functions are closed under Hadamard product. (A
dedicated construction for (16) is also possible and is left as an exercise to the reader.)
Then the resulting function G(z) is of the form

g(z) = zrγ (zD0),

with the rational function γ (z) being analytic at 0. Note that we have [zν]γ (z) =
SνD0+r , so that γ is exactly the generating function of the section of base r of S(z).
One verifies next that γ (z), which is obtained by the substitution z 	→ z1/D0 in
g(z)z−r , is itself a positive rational function. Then, by a fresh application of Bers-
tel’s Theorem (Proposition IV.3, p. 267), this function, if not a polynomial, has a
radius of convergence ρ with all its dominant poles σ being such that σ/ρ is a root of
unity of order D1, for some D1 ≥ 1. The argument originally applied to S(z) can thus
be repeated, with γ (z) replacing S(z). In particular, one finds at least one section (of
modulus D1) of the coefficients of γ (z) that admits a pure exponential–polynomial
form. The other sections of modulus D1 can themselves be further refined, and so on

In other words, successive refinements of the sectioning process provide at each
stage at least one pure exponential–polynomial form, possibly leaving a few congru-
ence classes open for further refinements. Define the layer index of a rational function
f as the integer κ( f ), such that

κ( f ) = card
{|ζ | ∣∣ f (ζ ) = ∞}

.

(This index is thus the number of different moduli of poles of f .) It is seen that each
successive refinement step decreases by at least 1 the layer index of the rational func-
tion involved, thereby ensuring termination of the whole refinement process. Finally,
the collection of the iterated sectionings obtained can be reduced to a single section-
ing according to a common modulus D, which is the least common multiple of the
collection of all the finite products D0 D1 · · · that are generated by the algorithm. �

For instance the coefficients (Figure V.4) of the function

(17) L(z) = 1

(1 − z)(1 − z2 − z4)
+ z

1 − 3z3
,

associated to the regular language a�(bb+ cccc)�+ d(ddd + eee+ f f f )�, exhibit an
apparently irregular behaviour, with the expansion of L(z) starting as

1 + 2z + 2z2 + 2z3 + 7z4 + 4z5 + 7z6 + 16z7 + 12z8 + 12z9 + 47z10 + 20z11 + · · · .
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Figure V.4. Plots of log Fn with Fn = [zn]F(z) and F(z) as in (17) display fluctua-
tions that disappear as soon as sections of modulus 6 are considered.

The first term in (17) has a periodicity modulo 2, while the second one has an obvious
periodicity modulo 3. In accordance with the theorem, the sections modulo 6 each
admit a pure exponential–polynomial form and, consequently, they become easy to
describe (Note V.5).

� V.5. Sections and asymptotic regimes. For the function L(z) of (17), one finds, with ϕ :=
(1 +√

5)/2 and c1, c2 ∈ R>0,

Ln = 3−1/3 · 3n/3 + O(ϕn/2) (n ≡ 1, 4 mod 6),
Ln = c1ϕ

n/2 + O(1) (n ≡ 0, 2 mod 6),
Ln = c2ϕ

n/2 + O(1) (n ≡ 3, 5 mod 6),

in accordance with the general form predicted by Theorem V.3. �

� V.6. Extension to Rat+ functions. The conclusions of Theorem V.3 hold for any function
in Rat+ in the sense of Note V.4. �

� V.7. Soittola’s Theorem. This is a converse to Theorem V.3 proved in [546]. Assume that
coefficients of an arbitrary rational function f (z) are non-negative and that there exists a sec-
tioning such that each section admits a pure exponential–polynomial form. Then f (z) is in
Rat+ in the sense of Note V.4; in particular, f is the OGF of a (weighted) regular class. �

Theorem V.3 is useful for interpreting the enumeration of regular classes and
languages. It serves a similar purpose with regards to structural parameters of regular
classes. Indeed, consider a regular specification C augmented with a mark u that is, as
usual, a neutral object of size 0 (see Chapter III). We let C(z, u) be the corresponding
BGF of C, so that Cn,k = [znuk]C(z, u) is the number of C–objects of size n that bear k
marks. A suitable placement of marks makes it possible to record the number of times
any given construction enters an object. For instance, in the augmented specification
of binary words,

C = (SEQ<r (b)+ u SEQ≥r (b)) SEQ(a(SEQ<r (b)+ u SEQ≥r (b))),
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all maximal runs of b having length at least r are marked by a u. There results the
following BGF for the corresponding parameter “number of runs of bs of length ≥ r”,

(18) C(z, u) =
(

1 − zr

1 − z
+ uzr

1 − z

)
· 1

1 − z
(

1−zr

1−z + uzr

1−z

) ,
from which mean and variance can be determined. In general, marks make it possible
to analyse profile, with respect to constructions entering the specification, of a random
object.

Theorem V.4 (Profile of regular classes). Consider a regular specification of a class C,
augmented with a mark and let χ be the parameter corresponding to the number of
occurrences of that mark. There exists a sectioning index d such that for any fixed
section of (Cn) of modulus d, the following holds: the moment of integral order s ≥ 1
of χ satisfies an asymptotic formula

(19) ECn [χ s] = Q(n)βn + O(Gn),

where the quantities β, Q,G depend on the particular section considered, with 0 <

β ≤ 1, Q(n) a rational fraction, and G < β.

(Only sections that are not eventually 0 are to be considered.)

Proof. The case of expectations suffices to indicate the lines of a general proof. One
possible approach2 is to build a derived specification E such that

ECn [χ ] = En

Cn
,

which is also a regular specification. To this purpose, define a transformation on
specifications defined inductively by the rules

∂(A + B) = ∂A + ∂B, ∂(A × B) = ∂A × B + A × ∂B,
∂ SEQ(A) = SEQ(A)× ∂A × SEQ(A),

together with the initial conditions ∂u = 1 and ∂Z = ∅. This is a form of combina-
torial differentiation: an object γ ∈ C corresponds to χ(γ ) objects in E , namely, one
for each choice of an occurrence of the mark.

As a consequence, En is the cumulated value of χ over Cn , so that En/Cn =
ECn [χ ]. On the other hand, E is a regular specification to which Theorem V.3 ap-
plies. The result follows upon considering (if necessary) a sectioning that refines the
sectionings of both C and E . The argument extends easily to higher moments. �
� V.8. A rational mean. Consider the regular language C = a�(b + c)�d(b + c)�. Let χ be the
length of the initial run of a’s. Then one finds

C(z) = z

(1 − z)(1 − 2z)2
, E(z) = z2

(1 − z)2(1 − 2z)2
.

Thus the mean of χ satisfies

ECn [χ ] = En

Cn
= (n − 3)2n + (n + 3)

(n − 1)2n + 1
= n − 3

n − 1
+ O

((
3

4

)n)
.

2Equivalently, one may operate at generating function level and observe that the derivative of a Rat+
function is Rat+; cf Notes V.4 and V.6.
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Class Asymptotics
Integer compositions 2n−1

— k summands ∼ nk−1

(k−1)! (§I. 3.1, p. 44)

— summands ≤ r ∼ cβn
r (§I. 3.1, p. 42)

Integer partitions

— k summands ∼ nk−1

k! (k−1)! (§I. 3.1, p. 44)

— summands ≤ r ∼ nr−1

r ! (r−1)! (§I. 3.1, p. 43)

Set partitions, k classes ∼ kn

k! (§I. 4.3, p. 62)
Words excluding a pattern p ∼ cβn

p (§IV. 6.3, p. 271)

Figure V.5. A pot-pourri of regular classes and their asymptotics.

Generally, in the statement of Theorem V.4, let Q(n) = A(n)/B(n) with A, B polynomials and
a = deg(A), b = deg(B). The following combinations prove to be possible (for first moments):
β = 1 and (a, b) any pair such that 0 ≤ a ≤ b + 1; also, β < 1 and (a, b) any pair of elements
≥ 0. �

� V.9. Shuffle products. Let L,M be two languages over two disjoint alphabets. Then, the
shuffle product S of L and M is such that Ŝ(z) = L̂(z) · M̂(z), where Ŝ, L̂, M̂ are the expo-
nential generating functions of S,L,M. Accordingly, if the OGF L(z) and M(z) are rational
then the OGF S(z) is also rational. (This technique may be used to analyse generalized birthday
paradox and coupon collector problems; see [231].) �

V. 3.3. Applications. This subsection details several examples that illustrate the
explicit determination of exponential–polynomial forms in regular specifications, in
accordance with Theorems V.3 and V.4. We start by recapitulating a collection, a
“pot-pourri”, of combinatorial problems already encountered in Part A, where rational
generating functions have been used en passant. We then examine longest runs in
words, walks of the pure-birth type, and subsequence (hidden pattern) statistics.

Example V.3. A pot-pourri of regular specifications. A few combinatorial problems, to be
found scattered across Chapters I–IV, are reducible to regular specifications: see Figure V.5 for
a summary.

Compositions of integers (Section I. 3, p. 39) are specified by C = SEQ(SEQ≥1(Z)),
whence the OGF (1 − z)/(1 − 2z) and the closed form Cn = 2n−1, an especially transpar-
ent exponential–polynomial form. Polar singularities are also present for compositions into k
summands that are described by SEQk(SEQ≥1(Z)) and for compositions whose summands are
restricted to the interval [1 . . r ] (i.e., SEQ(SEQ1 . . r (Z)), with corresponding generating func-
tions

zk

(1 − z)k
,

1 − z

1 − 2z + zr+1
.

In the first case, there is an explicit form for the coefficients,
(n−1
k−1

)
, which constitutes a partic-

ular exponential–polynomial form (with the basis of the exponential being 1). The second case
requires a dedicated analysis of the dominant polar singularity, which is recognizably a variant
of Example V.4 (p. 308 below) dedicated to longest runs in random binary words.
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Integer partitions involve the multiset construction. However, when summands are re-
stricted to the interval [1 . . r ], the specification and the OGF are given by

MSET(SEQ1 . . r (Z)) ∼= SEQ(Z)× SEQ(Z2)× · · · SEQ(Zr ) �⇒
r∏

j=1

1

1 − z j
.

This case, introduced in Section I. 3 (p. 39) also served as a leading example in our discussion
of denumerants in Example IV.6 (p. 257): the analysis of the pole at 1 furnishes the domi-
nant asymptotic behaviour, nr−1/(r !(r − 1)!), for such special partitions. The enumeration of
partitions by number of parts then follows, by duality, from the staircase representation.

Set partitions are typically labelled objects. However, when suitably constrained, they can
be encoded by regular expressions; see Section I. 4.3 (p. 62) for partitions into k classes, where
the OGF found is

S(k)(z) = zk

(1 − z)(1 − 2z) · · · (1 − kz)
implying S(k)n ∼ kn

k!
,

and the asymptotic estimate results from the partial fraction decomposition and the dominant
pole at 1/k.

Words lead to many problems that are prototypical of the regular specification framework.
In Section I. 4 (p. 49), we saw that one could give a regular expression describing the set of
words containing the pattern abb, from which the exact and asymptotic forms of counting
coefficients derive. For a general pattern p, the generating functions of words constrained to
include (or dually exclude) p are rational. The corresponding asymptotic analysis has been
given in Section IV. 6.3 (p. 271).

Words can also be analysed under the Bernoulli model, where letter i is selected with
probability pi ; cf Section III. 6.1, p. 189, for a general discussion including the analysis of
records in random words (p. 190). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.10. Partially commutative monoids. Let W = A� be the set of all words over a finite
alphabet A. Consider a collection C of commutation rules between pairs of elements of A. For
instance, if A = {a, b, c}, then C = {ab = ba, ac = ca} means that a commutes with both b
and c, but bc is not a commuting pair: bc  = cb. Let M = W/[C] be the set of equivalent
classes of words (monomials) under the rules induced by C. The set M is said to be a partially
commutative monoid or a trace monoid [105].

If A = {a, b}, then the two possibilities for C are C = ∅ and C := {ab = ba}. Normal
forms for M are given by the regular expressions (a+b)� and a�b� corresponding to the OGFs

1

1 − a − b
,

1

1 − a − b + ab
.

If A = {a, b, c}, the possibilities for C, the corresponding normal forms, and the OGFs M are
as follows. If C = ∅, then M ∼= (a + b + c)� with OGF (1− a − b − c)−1; the other cases are

ab = ba ab = ba, ac = ca ab = ba, ac = ca, bc = cb
(a�b�c)�a�b� a�(b + c)� a�b�c�

1

1 − a − b − c + ab

1

1 − a − b − c + ab + ac

1

1 − a − b − c + ab + ac + bc − abc
.

Cartier and Foata [105] have discovered the general form (based on extended Möbius inversion),

M =
(∑

F

(−1)|F |F
)−1

,

where the sum is over all monomials F composed of distinct letters that all commute pairwise.
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Viennot [597] has discovered an attractive geometric presentation of partially commutative
monoids in terms of heaps of pieces, which has startling applications to several areas of combi-
natorial theory. (Example I.18, p. 80, relative to animals provides an example.) Goldwurm and
Santini [298] have shown that [zn]M(z) ∼ K · αn for K , α > 0. �

Longest runs. It is possible to develop a complete analysis of runs of consecutive
equal letters in random sequences: this is in theory a special case of the analysis
of patterns in random texts (Section IV. 6.3, p. 271), but the particular nature of the
patterns makes it possible to derive much more explicit results, including asymptotic
distributions.

Example V.4. Longest runs in words Longest runs in words, introduced in Section I. 4.1
(p. 51), provide an illustration of the technique of localizing dominant singularities in rational
functions and of the corresponding coefficient extraction process. The probabilistic problem is
a famous one, discussed by Feller in [205]: it represents a basic question in the analysis of runs
of good (or bad) luck in a succession of independent events. Our presentation closely follows
an insightful note of Knuth [375] whose motivation was the analysis of carry propagation in
certain binary adders.

Start from the class W of all binary words over the alphabet {a, b}. Our interest lies in
the length L of the longest consecutive block of a’s in a word. For the property L < k, the
specification and the corresponding OGF are

W〈k〉 = SEQ<k(a) SEQ(b SEQ<k(a)) �⇒ W 〈k〉(z) = 1 − zk

1 − z
· 1

1 − z 1−zk

1−z

;

that is,

(20) W 〈k〉(z) = 1 − zk

1 − 2z + zk+1
.

This represents a collection of OGFs indexed by k, which contain all the information relative to
the distribution of longest runs in random words. We propose to prove:

Proposition V.1. The longest run parameter L taken over the set of binary words of length n
(endowed with the uniform distribution) satisfies the uniform estimate3

(21) Pn (L < �lg n� + h) = e−α(n)2−h−1 + O

(
log n√

n

)
, α(n) := 2{lg n}.

In particular, the mean satisfies

En(L) = lg n + γ

log 2
− 3

2
+ P(lg n)+ O

(
log2 n√

n

)
,

where P is a continuous periodic function whose Fourier expansion is given by (29). The
variance satisfies Vn(L) = O(1) and the distribution is concentrated around its mean.

The probability distributions appearing in (21) are known as double exponential distributions
(Figure V.6, p. 311). The formula (21) does not represent a single limit distribution in the usual
sense of Chapter IX, but rather a whole family of distributions indexed by the fractional part of
lg n, thus dictated by the way n places itself with respect to powers of 2.

3The symbol lg x denotes the binary logarithm, lg x = log2 x , and {x} is the fractional part function
({π} = 0.14159 · · · ,.
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Proof. The proof consists of the following steps: locate the dominant pole; estimate the cor-
responding contribution; separate the dominant pole from the other poles in order to derive
constructive error terms; finally approximate the main quantities of interest.

(i) Location of the dominant pole. The OGF W 〈k〉 has, by the first form of (20), a dominant
pole ρk , which is a root of the equation 1 = s(ρk), where s(z) = z(1−zk)/(1−z). We consider
k ≥ 2. Since s(z) is an increasing polynomial and s(0) = 0, s(1/2) < 1, s(1) = k, the root ρk
must lie in the open interval (1/2, 1). In fact, as one easily verifies, the condition k ≥ 2
guarantees that s(0.6) > 1, hence the first estimate

(22)
1

2
< ρk <

3

5
(k ≥ 2).

It now becomes possible to derive precise estimates by bootstrapping. (This technique is a
form of iteration for approaching a fixed point—its use in the context of asymptotic expansions
is detailed in De Bruijn’s book [143].) Writing the defining equation for ρk as a fixed point
equation,

z = 1

2
(1 + zk+1),

and making use of the rough estimates (22) yields next

(23)
1

2

(
1 +

(
1

2

)k+1
)
< ρk <

1

2

(
1 +

(
3

5

)k+1
)
.

Thus, ρk is exponentially close to 1
2 , and further iteration from (23) shows

(24) ρk = 1

2
+ 1

2k+2
+ O

(
k

22k

)
,

(i i) Contribution from the dominant pole. A straightforward calculation provides the value
of the residue,

(25) Rn,k := −Res
[
W 〈k〉(z)z−n−1; z = ρk

]
= 1 − ρk

k

2 − (k + 1)ρk
k

ρ−n−1
k ,

which is expected to provide the main approximation to the coefficients of W 〈k〉 as n → ∞.

The quantity in (25) is of the rough form 2ne−n/2k+1
; we shall return to such approximations

shortly.

(i i i) Separation of the subdominant poles. Consider the circle |z| = 3/4 and take the
second form of the denominator of W 〈k〉, namely, that of (20):

1 − 2z + zk+1.

In view of Rouché’s theorem (p. 270), we may regard this polynomial as the sum f (z)+ g(z),
where f (z) = 1 − 2z and g(z) = zk+1. The term f (z) has on the circle |z| = 3/4 a modulus
that varies between 1/2 and 5/2; the term g(z) is at most 27/64 for any k ≥ 2. Thus, on the
circle |z| = 3/4, one has |g(z)| < | f (z)|, so that f (z) and f (z) + g(z) have the same number
of zeros inside the circle. Since f (z) admits z = 1/2 as only zero there, the denominator must
also have a unique root in |z| ≤ 3/4, and that root must coincide with ρk .

Similar arguments also give bounds on the error term when the number of words w satisfy-
ing L(w) < k is estimated by the residue (25) at the dominant pole. On the circle |z| = 3/4, the
denominator of W 〈k〉 stays bounded away from 0 (its modulus is at least 5/64 when k ≥ 2, by
previous considerations). Thus, the modulus of the remainder integral is O((4/3)n), and in fact
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bounded from above by 35(4/3)n . In summary, letting qn,k represent the probability that the
longest run in a random word of length n is less than k, one obtains the main estimate (k ≥ 2)

(26) qn,k := Pn(L < k) = 1 − ρk
k

1 − (k + 1)ρk
k /2

(
1

2ρk

)n+1
+ O

((
2

3

)n)
,

which holds uniformly with respect to k. Here is a table of the numerical values of the quantities
appearing in the approximation of qn,k , written under the form ck · (2ρk)

−n :

k ck · (2ρk)
−n

2 1.17082 · 0.80901n

3 1.13745 · 0.91964n

4 1.09166 · 0.96378n

5 1.05753 · 0.98297n

10 1.00394 · 0.99950n

(iv) Final approximations. There only remains to transform the main estimate (26) into
the limit form asserted in the statement. First, the “tail inequalities” (with lg x ≡ log2 x)

(27) Pn

(
L <

3

4
lg n

)
= O

(
e−

1
2

4√n
)
, Pn (L ≥ 2 lg n + y) = O

(
e−2y

n

)
describe the tail of the probability distribution of Ln . They are derived from simple bounding
techniques applied to the main approximation (26) using (24). Thus, for asymptotic purposes,
only a relatively small region around lg n needs to be considered.

Regarding the central regime, for k = lg n + x and x in [− 1
4 lg n, lg n], the approxima-

tion (24) of ρk and related quantities applies, and one finds

(2ρk)
−n = exp

(
− n

2k+1
+ O(kn2−2k)

)
= e−n/2k+1

(
1 + O

(
log n√

n

))
.

(This results from standard expansions of the form (1 − a)n = e−na exp(O(na2)).) At the
same time, the coefficient in (26) of the quantity (2ρk)

−n is

1 + O(kρk
k ) = 1 + O

(
log n√

n

)
.

Thus a double exponential approximation holds (Figure V.6): for k = lg n + x with x in
[− 1

4 lg n, lg n], one has (uniformly)

(28) qn,k = e−n/2k+1
(

1 + O

(
log n√

n

))
.

In particular, upon setting k = �lg n� + h and making use of the tail inequalities (27), the first
part of the statement, namely Equation (21), follows. (The floor function takes into account the
fact that k must be an integer.)

The mean and variance estimates are derived from the fact that the distribution quickly
decays at values away from lg n (by (27)) while it satisfies Equation (28) in the central region.
The mean satisfies

En(L) :=
∑
h≥1

[1 − Pn(L < h)] = 	(
n

2
)− 1 + O

(
log2 n

n

)
, 	(x) :=

∑
h≥0

[
1 − e−x/2h

]
.

Consider the three cases h < h0, h ∈ [h0, h1], and h > h1 with h0 = lg x − log log x and
h1 = lg x + log log x , where the general term is (respectively) close to 1, between 0 and 1, and
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Figure V.6. The double exponential laws: Left, histograms for n at 2p (black),
2p+1/3 (dark gray), and 2p+2/3 (light gray), where x = k − lg n. Right, empiri-
cal histograms for 1000 simulations with n = 100 (top) and n = 140 (bottom).

close to 0. By summing, one finds elementarily 	(x) = lg x + O(log log x) as x → ∞. (An
elementary way of catching the next O(1) term is discussed for instance in [538, p. 403].)

The method of choice for precise asymptotics is to treat 	(x) as a harmonic sum and apply
Mellin transform techniques (Appendix B.7: Mellin transforms, p. 762). The Mellin transform
of 	(x) is

	�(s) :=
∫ ∞

0
	(x)xs−1 dx = �(s)

1 − 2s -(s) ∈ (−1, 0).

The double pole of 	� at 0 and the simple poles at s = 2ikπ
log 2 are reflected by an asymptotic

expansion that involves a Fourier series:
(29)

	(x) = lg x+ γ

log 2
+ 1

2
+P(lg x)+O(x−1), P(w) := − 1

log 2

∑
k∈Z\{0}

�

(
2ikπ

log 2

)
e−2ikπw.

The oscillating function P(w) is found to have tiny fluctuations, of the order of 10−6; for
instance, the first Fourier coefficient has amplitude: |�(2iπ/ log 2)|/ log 2

.= 7.86 · 10−7. (See
also [234, 311, 375, 564] for more on this topic.) The variance is similarly analysed. This
concludes the proof of Proposition V.1. �

The double exponential approximation in (21) is typical of extremal statistics. What is
striking here is the existence of a family of distributions indexed by the fractional part of lg n.
This fact is then reflected by the presence of oscillating functions in moments of the random
variable L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.11. Longest runs in Bernoulli sequences. Consider an alphabet A = {a j } with letter a j
independently chosen with probability {p j }. The OGF of words where each run of equal letters
has length at most k is derived from the construction of Smirnov words (pp. 204 and 262), and



“book” — 2008/10/3 — 16:05 — page 312 — #326

312 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

it is found to be

W [k](z) =
⎛⎝1 −

∑
i

pi z
1 − (pi z)k

1 − (pi z)k+1

⎞⎠−1

.

Let pmax be the largest of the p j . Then the expected length of the longest run of any letter is
log n/ log pmax + O(1), and precise quantitative information can be derived from the OGFs by
methods akin to Example IV.10 (Smirnov words and Carlitz compositions, p. 262). �

Walks of the pure-birth type. The next two examples develop the analysis of
walks in a special type of graphs. These examples serve two purposes: they illus-
trate further cases of modelling by means of regular specifications, and they provide
a bridge to the analysis of lattice paths in the next section. Furthermore, some spe-
cific walks of the pure-birth type turn out to have applications to the analysis of a
probabilistic algorithm (Approximate Counting).

Example V.5. Walks of the pure-birth type. Consider a walk on the non-negative integers that
starts at 0 and is only allowed either to stay at the same place or move by an increment of +1.
Our goal is to enumerate the walks that start from 0 and reach point m in n steps. A step from j
to j + 1 will be encoded by a letter a j ; a step from j to j will be encoded by c j , in accordance
with the following state diagram:

(30)

a0 a1 a2

c0 c1 c2

The language encoding all legal walks from state 0 to state m can be described by a regular
expression:

H0,m = SEQ(c0)a0 SEQ(c1)a1 · · · SEQ(cm−1)am−1 SEQ(cm).

Symbolicly using letters as variables, the corresponding ordinary multivariate generating func-
tion is then (with a = (a0, . . .) and c = (c0, . . .))

H0,m(a, c) = a0a1 · · · am−1

(1 − c0)(1 − c1) · · · (1 − cm)
.

Assume now that the steps are assigned weights, with α j corresponding to a j and γ j to c j .
Weights of letters are extended multiplicatively to words in the usual way (cf Section III. 6.1,
p. 189). In addition, upon taking γ j = 1−α j , one obtains a probabilistic weighting: the walker
starts from position 0, and, if at j , at each clock tick, she either stays at the same place with
probability 1 − α j or moves to the right with probability α j . The OGF of such weighted walks
then becomes

(31) H0,m(z) =
α0α1 · · ·αm−1zm

(1 − (1 − α0)z)(1 − (1 − α1)z) · · · (1 − (1 − αm)z)
,

and [zn]H0,m is the probability for the walker to be found at position m at (discrete) time n.
This walk process can be alternatively interpreted as a (discrete-time) pure-birth process4 in
the usual sense of probability theory: There is a population of individuals and, at each discrete
epoch, a new birth may take place, the probability of a birth being α j when the population is of
size j .

4 The theory of pure-birth processes is discussed under a calculational and non measure-theoretic
angle in the book by Bharucha-Reid [62]. See also the Course by Karlin and Taylor [363] for a concrete
presentation.
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Figure V.7. A simulation of 10 trajectories of the pure-birth process till n = 1024,
with geometric probabilities corresponding to q = 1/2, compared to the curve log2 x .

The form (31) readily lends itself to a partial fraction decomposition. Assume for simplic-
ity that the α j are all distinct. The poles of H0,m are at the points (1 − α j )

−1 and one finds as

z → (1 − α j )
−1:

H0,m(z) ∼
r j,m

1 − z(1 − α j )
where r j,m := α0α1 · · ·αm−1∏

k∈[0,m], k  = j
(αk − α j )

.

Thus, the probability of being in state m at time n is given by a sum:

(32) [zn]H0,m(z) =
m∑

j=0

r j,m(1 − α j )
n .

An especially interesting case of the pure-birth walk is when the quantities αk are geomet-
ric: αk = qk for some q with 0 < q < 1. In that case, the probability of being in state m after n
transitions becomes (cf (32))

(33)
m∑

j=0

(−1) j q(
j
2)

(q) j (q)m− j
(1 − qm− j )n, (q) j := (1 − q)(1 − q2) · · · (1 − q j ).

This corresponds to a stochastic progression in a medium with exponentially increasing hard-
ness or, equivalently, to the growth of a population whose size adversely affects fertility in an
exponential manner. On intuitive grounds, we expect an evolution of the process to stay reason-
ably close to the curve y = log1/q x ; see Figure V.7 for a simulation confirming this fact, which
can be justified by means of formula (33). This particular analysis is borrowed from [218],
where it was initially developed in connection with the “approximate counting” algorithm to be
studied next. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example V.6. Approximate Counting. Assume you need to keep a counter that is able to
record the number of certain events (say impulses) and should have the capability of keeping
counts till a certain maximal value N . A standard information-theoretic argument (with � bits,
one can only keep track of 2� possibilities) implies that one needs �log2(N +1)4 bits to perform
the task—a standard binary counter will indeed do the job. However, in 1977, Robert Morris
has proposed a way to maintain counters that only requires of the order of log log N bits. What’s
the catch?

Morris’ elegant idea consists in relaxing the constraint of exactness in the counting process
and, by playing with probabilities, tolerate a small error on the counts obtained. Precisely, his
solution maintains a random quantity Q which is initialized by Q = 0. Upon receiving an
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impulse, one updates Q according to the following simple procedure (with q ∈ (0, 1) a design
parameter):

procedure Update(Q);
with probability q Q do Q := Q + 1 (else keep Q unchanged).

When asked the number of impulses (number of times the update procedure was called) at any
moment, simply use the following procedure to return an estimate:

procedure Answer(Q);

output X = q−Q − 1

1 − q
.

Let Qn be the value of the random quantity Q after n executions of the update procedure
and Xn the corresponding estimate output by the algorithm. It is easy to verify (by recurrence
or by generating functions; see Note V.12 below for higher moments) that, for n ≥ 1,

(34) E(q−Qn ) = n(1 − q)+ 1, so that E(Xn) = n.

Thus the answer provided at any instant is an unbiased estimator (in a mean value sense) of
the actual count n. On the other hand, the analysis of the geometric pure-birth process in
the previous example applies. In particular, the exponential approximation (1 − α)n ≈ e−nα

in conjunction with the basic formula (33) shows that for large n and m sufficiently near to
log1/q n, one has (asymptotically) the geometric-birth distribution

(35) P (Qn = m) =
∞∑
j=0

(−1) j q(
j
2)

(q) j (q)∞
exp(−qx− j )+ o(1), x ≡ m − log1/q n.

(We refer to [218] for details.) Such calculations imply that Qn is with high probability (w.h.p.)
close to log1/q n. Thus, if n ≤ N , the value of Qn will be w.h.p. bounded from above by
(1 + ε) log1/q N , with ε a small constant. But this means that the integer Q, which can itself
be represented in binary, will only require

(36) log2 log n + O(1)

bits for storage, for fixed q .
A closer examination of the formulae reveals that the accuracy of the estimate improves

considerably when q becomes close to 1. The standard error is defined as 1
n
√

V(Xn) and it
measures, in a mean-quadratic sense, the relative error likely to be made. The variance of Qn
is, as for the mean, determined by recurrence or generating functions, and one finds

(37) V(q−Qn+1) =
(

n

2

)
(1 − q)3

q
,

1

n

√
V(Xn) ∼

√
1 − q

2q

(see also Note V.12 below). This means that accuracy increases as q approaches 1 and, by
suitably dimensioning q , one can make it asymptotically as small as desired. In summary,
(34), (37), and (36) express the following property: Approximate counting makes it possible to
count till N using only about log log N bits of storage, while achieving a standard error that is
asymptotically a constant and can be set to any prescribed small value. Morris’ trick is now
fully understood.

For instance, with q = 2−1/16, it proves possible to count up to 216 = 65536 using only
8 bits (instead of 16), with an error likely not to exceed 20%. Naturally, there’s not too much
reason to appeal to the algorithm when a single counter needs to be managed (everybody can
afford a few bits!): Approximate Counting turns out to be useful when a very large number of
counts need to be kept simultaneously. It constitutes one of the early examples of a probabilistic
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algorithm in the extraction of information from large volumes of data, an area also known as
data mining; see [224] for a review of connections with analytic combinatorics and references.

Functions akin to those of (35) also surface in other areas of probability theory. Guillemin,
Robert, and Zwart [314] have detected them in processes that combine an additive increase and
a multiplicative decrease (AIMD processes), in a context motivated by the adaptive transmis-
sion of “windows” of varying sizes in large communication networks (the TCP protocol of the
internet). Biane, Bertoin, and Yor [58] encountered a function identical to (35) in their study of
exponential functionals of Poisson processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.12. Moments of q−Qn . It is a perhaps surprising fact that any integral moment of q−Qn is
a polynomial in n, q , and q−1, as in (34), (37). To see it, define

	(w) ≡ 	(w, ξ, q) :=
∑
m≥0

qm(m+1)/2 ξmwm

(1 + ξq)(1 + ξq2) · · · (1 + ξqm+1)
.

By (31), one has ∑
m≥0

H0,m(z)w
m = 1

1 − z
	

(
w; z

1 − z
, q

)
.

On the other hand, 	 satisfies 	(w) = 1 − qξ(1 − w)	(qw), hence the q–identity,

	(w) =
∑
j≥0

(−qξ) j
[
(1 − w)(1 − qw) · · · (1 − q j−1w)

]
,

which belongs to the area of q–calculus5. Thus 	(q−r ; ξ, q) is a polynomial for any r ∈ Z≥0,
as the expansion terminates. See Prodinger’s study [498] for connections with basic hypergeo-
metric functions and Heine’s transformation. �

Hidden patterns: regular expression modelling and moments. We return here
to the analysis of the number of occurrences of a pattern p as a subsequence in a ran-
dom text. The mean number of occurrences can be obtained by enumerating contexts
of occurrences: in a sense we are then enumerating the language of all words by means
of a dedicated regular expression where the ambiguity coefficient (the multiplicity) of
a word is precisely equal to the number of occurrences of the pattern. This technique,
which gives an easy access to expectations, also works for higher moments. It supple-
ments the fact that there is no easy way to get a BGF in such cases, and it appears to
be sufficient to derive a concentration of distribution property.

Example V.7. Occurrences of “hidden” patterns in Bernoulli texts. Fix an alphabet A =
{a1, . . . , ar } of cardinality r and assume a probability distribution on A to be given, with p j
the probability of letter a j . We consider the Bernoulli model on W = SEQ(A), where the
probability of a word is the product of the probabilities of its letters (cf Subsection III. 6.1,
p. 189). A word p = y1 · · · yk called the pattern is fixed. The problem is to gather information
on the random variable X representing the number of occurrences of p in the set Wn , where
occurrences as a “hidden pattern”, i.e., as a subsequence, are counted (see Example I.11, p. 54,
for the case of equiprobable letters).

5By q–calculus is roughly meant the collection of special function identities relating power series of
the form

∑
an(q)zn , where an(q) is a rational fraction whose degree is quadratic in n. See [15, Ch. 10] for

basics and [284] for more advanced (q–hypergeometric) material.
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Mean value analysis. The generating function associated to W endowed with its proba-
bilistic weighting is

W (z) = 1

1 −∑
p j z

= 1

1 − z
.

The regular specification

(38) O = SEQ(A)y1 SEQ(A) · · · SEQ(A)yk−1 SEQ(A)yk SEQ(A)

describes all contexts of occurrences of p as a subsequence in all words. Graphically, this may
be rendered as follows, for a pattern of length 3 such as p = y1 y2 y3:

(39) y1 y2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (SEQ(A)). The corresponding OGF

(40) O(z) = π(p)zk

(1 − z)k+1
, π(p) := py1 · · · pyk−1 pyk

counts elements of W with multiplicity6, where the multiplicity coefficient λ(w) of a word w ∈
W is precisely equal to the number of occurrences of p as a subsequence in w:

O(z) ≡
∑
w∈A�

λ(w)π(w)z|w|.

This shows that the mean value of the number X of hidden occurrences of p in a random word
of length n satisfies

(41) EWn (X) = [zn]O(z) = π(p)

(
n

k

)
,

which is consistent with what a direct probabilistic reasoning would give.

Variance analysis. In order to determine the variance of X over Wn , we need contexts in
which pairs of occurrences appear. Let Q denote the set of all words in W with two occurrences
(i.e., an ordered pair of occurrences) of p as a subsequence being distinguished. Then clearly
[zn]Q(z) represents EWn (X

2). There are several cases to be considered. Graphically, a pair of
occurrences may share no common position, like in what follows:

(42)

{
y1 y2 y3

y1 y2 y3

But they may also have one or several overlapping positions, like in

(43)

{
y1 y2 y3

y1 y2 y3

(44)

{
y1 y2 y3

y1 y2 y3

(This last situation necessitates y2 = y3, typical patterns being abb and aaa.)

6 In language-theoretic terms, we make use of the regular expression O = A�y1A� · · · yk−1A�ykA�

that describes a subset of A� in an ambiguous manner and takes into account the ambiguity coefficients.
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In the first case corresponding to (42), where there are no overlapping positions, the con-
figurations of interest have OGF

(45) Q[0](z) =
(

2k

k

)
π(p)2z2k

(1 − z)2k+1
.

There, the binomial coefficient
(2k

k
)

counts the total number of ways of freely interleaving two

copies of p; the quantity π(p)2z2k takes into account the 2k distinct positions where the letters
of the two copies appear; the factor (1− z)−2k−1 corresponds to all the possible 2k + 1 fillings
of the gaps between letters.

In the second case, let us start by considering pairs where exactly one position is overlap-
ping, like in (43). Say this position corresponds to the r th and sth letters of p (r and s may be
unequal). Obviously, we need yr = ys for this to be possible. The OGF of the configurations is
now (

r + s − 2

r − 1

)(
2k − r − s

k − r

)
π(p)2(pyr )

−1z2k−1

(1 − z)2k
.

There, the first binomial coefficient
(r+s−2

r−1
)

counts the total number of ways of interleaving

y1 · · · yr−1 and y1 · · · ys−1; the second binomial
(2k−r−s

k−r
)

is similarly associated to the inter-
leavings of yr+1 · · · yk and ys+1 · · · yk ; the numerator takes into account the fact that 2k − 1
positions are now occupied by predetermined letters; finally the factor (1 − z)−2k corresponds
to all the 2k fillings of the gaps between letters. Summing over all possibilities for r, s gives the
OGF of pairs with one overlapping position as

(46) Q[1](z) =
⎛⎝ ∑

1≤r,s≤k

(
r + s − 2

r − 1

)(
2k − r − s

k − r

)
[[yr = ys ]]

pyr

⎞⎠ π(p)2z2k−1

(1 − z)2k
.

Similar arguments show that the OGF of pairs of occurrences with at least two shared
positions (see, e.g., (44)) is of the form, with P a polynomial,

(47) Q[≥2](z) = P(z)

(1 − z)2k−1
,

for the essential reason that, in the finitely many remaining situations, there are at most (2k −1)
possible gaps.

We can now examine (45), (46), (47) in the light of singularities. The coefficient [zn]Q[0](z)
is seen to cancel to first asymptotic order with the square of the mean as given in (41). The
contribution of the coefficient [zn]Q[≥2](z) appears to be negligible as it is O(n2k−2). The
coefficient [zn]Q[1](z), which is O(n2k−1), is seen to contribute to the asymptotic growth of
the variance. In summary, after a trite calculation, we obtain:

Proposition V.2. The number X of occurrences of a hidden pattern p in a random text of size n
obeying a Bernoulli model satisfies

EWn (X) = π(p)

(
n

k

)
∼ π(p)

k!
nk , VWn (X) =

π(p)2κ(p)2

(2k − 1)!
n2k−1

(
1 + O(

1

n
)

)
,

where the “correlation coefficient” κ(p)2 is given by

κ(p)2 =
∑

1≤r,s≤k

(
r + s − 2

r − 1

)(
2k − r − s

k − r

)(
[[yr = ys ]]

pyr

− 1

)
.

In particular, the distribution of X is concentrated around its mean.
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This example is based on an article by Flajolet, Szpankowski, and Vallée [263]. There the
authors show further that the asymptotic behaviour of moments of higher order can be worked
out. By the Moment Convergence Theorem (Theorem C.2, p. 778), this calculation entails that
the distribution of X over Wn is asymptotically normal. The method also extends to a much
more general notion of “hidden” pattern; e.g., distances between letters of p can be constrained
in various ways so as to determine a valid occurrence in the text [263]. It also extends to the very
general framework of dynamical sources [81], which include Markov models as a special case.
The two references [81, 263] thus provide a set of analyses that interpolate between the two
extreme notions of pattern occurrence—as a block of consecutive symbols or as a subsequence
(“hidden pattern”). Such studies demonstrate that hidden patterns are with high probability
bound to occur an extremely large number of times in a long enough text—this might cast some
doubts on numerological interpretations encountered in various cultures: see in particular the
critical discussion of the “Bible Codes” by McKay et al. in [433]. . . . . . . . . . . . . . . . . . . . . . . . �

� V.13. Hidden patterns and shuffle relations. To each pairs u, v of words over A associate
the weighted-shuffle polynomial in the indeterminates A denoted by

((u
v

))
t and defined by the

properties ⎧⎪⎪⎪⎨⎪⎪⎪⎩
((

xu

yv

))
t
= x

((
u

yv

))
t
+ y

((
xu

v

))
t
+ t[[x = y]]x

((
u

v

))
t((

1
u

))
t
=

((
u

1

))
t
= u

where t is a parameter, x, y are elements of A, and 1 is the empty word. Then the OGF of Q(z)
above is

Q(z) = σ

[((
p

p

))
(1−z)

]
1

(1 − z)2k+1
,

where σ is the substitution a j 	→ p j z. �

V. 4. Nested sequences, lattice paths, and continued fractions

This section treats the nested sequence schema, corresponding to a cascade of
sequences of the rough form SEQ ◦ SEQ ◦ · · · ◦ SEQ. Such a schema covers Dyck
and Motzkin path, a particular type of Łukasiewicz paths already encountered in Sec-
tion I. 5.3 (p. 73). Equipped with probabilistic weights, these paths appear as trajec-
tories of birth-and-death processes (the case of pure-birth processes has already been
dealt with in Example V.5, p. 312). They also have great descriptive power since,
once endowed with integer weights, they can encode a large variety of combinatorial
classes, including trees, permutations, set partitions, and surjections.

Since a combinatorial sequence translates into a quasi-inverse, Q( f ) = (1 −
f )−1, a class described by nested sequences has its generating function expressed by
a cascade of fractions, that is, a continued fraction7. Analytically, these GFs have
two dominant poles (the Dyck case) or a single pole (the Motzkin case) on their disc
of convergence, so that the implementation of the process underlying Theorem V.3
is easy: we encounter a pure polynomial form of the simplest type that describes all
counting sequences of interest. The profile of a nested sequence can also be easily
characterized.

7 Characteristically, the German term for “continued fraction”, is “Kettenbruch”, literally “chain-
fraction”.
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This section starts with a statement of the “Continued Fraction Theorem” (Propo-
sition V.3, p. 321) taken from an old study of Flajolet [214], which provides the general
set-up for the rest of the section. It then proceeds with the general analytic treatment of
nested sequences. A number of examples from various areas of discrete mathematics
are then detailed, including the important analysis of height in Dyck paths and gen-
eral Catalan trees. Some of these examples make use of structures that are described
as infinitely nested sequences, that is, infinite continued fractions, to which the finite
theory often extends—the analysis of coin fountains below is typical.

V. 4.1. Combinatorial aspects. We discuss here a special type of lattice paths
connecting points of the discrete cartesian plane Z × Z.

Definition V.4 (Lattice path). A Motzkin path υ = (U0,U1, . . . ,Un) is a sequence
of points in the discrete quarter-plane Z≥0 × Z≥0, such that U j = ( j, y j ) and the
jump condition |y j+1 − y j | ≤ 1 is satisfied. An edge 〈U j ,U j+1〉 is called an ascent if
y j+1 − y j = +1, a descent if y j+1 − y j = −1, and a level step if y j+1 − y j = 0. A
path that has no level steps is called a Dyck path.

The quantity n is the length of the path, ini(υ) := y0 is the initial altitude,
fin(υ) := yn is the final altitude. A path is called an excursion if both its ini-
tial and final altitudes are zero. The extremal quantities sup{υ} := max j y j and
inf{υ} := min j y j are called the height and depth of the path.

A path can always be encoded by a word with a, b, c representing ascents, de-
scents, and level steps, respectively. What we call the standard encoding is such a
word in which each step a, b, c is (redundantly) subscripted by the value of the y-
coordinate of its initial point. For instance,

w = c0 a0 a1 a2 b3 c2 c2 a2 b3 b2 b1 a0 c1

encodes a path that connects the initial point (0, 0) to the point (13, 1). Such a path
can also be regarded as the evolution in discrete time of a walk over the integer line
with jumps restricted to {−1, 0,+1}, or equivalently as a path in the graph:

(48) a0 a1 a2

.

c0 c1 c2

b1 b2

Lattice paths can also be interpreted as trajectories of birth-and-death processes, where
a population can evolve at any discrete time by a birth or a death. (Compare with the
pure-birth case in (30), p. 312.)
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As a preparation for later developments, let us examine the description of the
class written H[<1]

0,0 of Motzkin excursions of height < 1. We have

H[<1]
0,0

∼= SEQ(c0) �⇒ H [<1]
0,0 = 1

1 − c0
.

The class of excursions of height < 2 is obtained from here by a substitution

c0 	→ c0 + a0 SEQ(c1)b1,

to the effect that

H[<2]
0,0

∼= SEQ (c0 + a0 SEQ(c1)b1)

�⇒ H [<2]
0,0 = 1

1 − c0 −
a0b1

1 − c1

= 1 − c1

1 − c0 − c1 + c0c1 − a0b1
.

Iteration of this simple mechanism lies at the heart of the calculations performed be-
low. Clearly, generating functions written in this way are nothing but a concise de-
scription of usual counting generating functions: for instance if individual weights8

α j , β j , γ j are assigned to the letters a j , b j , c j , respectively, then the OGF of multi-
plicatively weighted paths with z marking length is obtained by setting

(49) a j = α j z, b j = β j z, c j = γ j z.

The general class of paths of interest in this subsection is defined by arbitrary
combinations of flooring (by m) ceiling (by h), as well as fixing initial (k) and final
(l) altitudes. Accordingly, we define the following subclasses of the class H of all
Motzkin paths:

H[m≤•<h]
k,l := {w ∈ H : ini(w) = k, fin(w) = l, m ≤ inf{w}, sup{w} < h}.

We shall also need the special cases:

H[<h]
k,l = H[0≤•<h]

k,l , H[≥m]
k,l = H[m≤•<∞]

k,l , Hk,l = H[0≤•<∞]
k,l .

(Thus, the supercript indicates the condition that is to be satisfied by all abscissae of
vertices of the path.) Three simple combinatorial decompositions of paths (Figure V.8)
then suffice to derive all the basic formulae.

(i) Arch decomposition: An excursion from and to level 0 consists of a sequence
of “arches”, each made of either a c0 or an a0H[≥1]

1,1 b1, so that

(50) H0,0 = SEQ
(

c0 ∪ a0H[≥1]
1,1 b1

)
,

which relativizes to height < h.
(i i) Last passages decomposition. Recording the times at which each level 0, . . . , k

is last traversed gives

(51) H0,k = H[≥0]
0,0 a0H[≥1]

1,1 a1 · · · ak−1H[≥k]
k,k .

8Throughout this chapter, all weights are assumed to be non-negative.
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Figure V.8. The three major decompositions of lattice paths: the arch decomposition
(top), the last passages decomposition (bottom left), and the first passage decomposi-
tion (bottom right).

(i i i) First passage decomposition. The quantities Hk,l with k ≤ l are implicitly
determined by the first passage through k in a path connecting level 0 to l, so that

(52) H0,l = H[<k]
0,k−1ak−1Hk,l (k ≤ l),

(A dual decomposition holds when k ≥ l.)

The basic results of the theory express the generating functions in terms of a fun-
damental continued fraction and its associated convergent polynomials. They involve
the “numerator” and “denominator” polynomials, denoted by Ph and Qh that are de-
fined as solutions to the second-order (or “three-term”) linear recurrence equation

(53) Yh+1 = (1 − ch)Yh − ah−1bhYh−1, h ≥ 0,

together with the initial conditions (P−1, Q−1) = (−1, 0), (P0, Q0) = (0, 1), and
with the convention a−1b0 = 1. In other words, setting C j = 1−c j and A j = a j−1b j ,
we have:
(54)

P0 = 0, P1 = 1, P2 = C1, P3 = C1C2 − A2
Q0 = 1, Q1 = C0, Q2 = C0C1 − A1, Q3 = C0C1C2 − C2 A1 − C0 A2.

These polynomials are also known as continuant polynomials [379, 601].

� V.14. Combinatorics of continuant polynomials. The polynomial Qh is obtained by the fol-
lowing process: start with the product � := C0C1 · · ·Ch−1; then cross out in all possible ways
pairs of adjacent elements C j−1C j , replacing each such crossed pair by −A j . For instance,
Q4 is obtained as

C0C1C2C3 +
−A1︷ ︸︸ ︷

——C0C1 C2C3 + C0

−A2︷ ︸︸ ︷
——C1C2 C3 + C0C1

−A3︷ ︸︸ ︷
——C2C3 +

−A1︷ ︸︸ ︷
——C0C1

−A3︷ ︸︸ ︷
——C2C3 .

The polynomials Ph are obtained similarly after a shift of indices. (These observations are due
to Euler; see [307, §6.7].) �
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Proposition V.3 (Continued Fraction Theorem [214]). (i) The generating function
H0,0 of all excursions is represented by the fundamental continued fraction:

H0,0 = 1

1 − c0 −
a0b1

1 − c1 −
a1b2

1 − c2 −
a2b3

. . .

.(55)

(i i) The generating function of ceiled excursion H [<h]
0,0 is given by a convergent of the

fundamental continued fraction (55), with Ph, Qh as in Equation (53):

H [<h]
0,0 = 1

1 − c0 −
a0b1

1 − c1 −
a1b2

. . .

1 − ch−1

= Ph

Qh
.(56)

(i i i) The generating function of floored excursions is given by a truncation of the
fundamental fraction:

H [≥h]
h,h = 1

1 − ch − ahbh+1

1 − ch+1 −
ah+1bh+2

. . .

(57)

= 1

ah−1bh

Qh H0,0 − Ph

Qh−1 H0,0 − Ph−1
,(58)

Proof. Repeated use of the arch decomposition (50) provides a form of H [<h]
0,0 with

nested quasi-inverses (1 − f )−1 that is the finite fraction representation (56); for in-
stance,

H[<1]
00

∼= SEQ(c0), H[<2]
00

∼= SEQ(c0 + a0 SEQ(c1)b1),

H[<3]
00

∼= SEQ(c0 + a0 SEQ(c1 + a1 SEQ(c2)b2)b1).

The continued fraction representation for basic paths without height constraints (namely
H0,0) is then obtained by taking the limit h → ∞ in (56). Finally, the continued frac-
tion form (57) for ceiled excursions is nothing but the fundamental form (55), when
the indices are shifted. The three continued fraction expansions (55), (56), (57) are
hence established.

Finding explicit expressions for the fractions H [<h]
0,0 and H [≥h]

h,h next requires de-
termining the polynomials that appear in the convergents of the basic fraction (55).
By definition, the convergent polynomials Ph and Qh are the numerator and denomi-
nator of the fraction H [<h]

0,0 . For the computation of H [<h]
0,0 and Ph, Qh , one classically
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introduces the linear fractional transformations

g j (y) = 1

1 − c j − a j b j+1 y
,

so that

(59) H [<h]
0,0 = g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(0) and H0,0 = g0 ◦ g1 ◦ g2 ◦ · · · , .

Now, linear fractional transformations are representable by 2 × 2 matrices

(60)
ay + b

cy + d
	→

(
a b
c d

)
,

in such a way that the composition corresponds to matrix product. By induction on
the compositions that build up H [<h]

0,0 , there follows the equality

(61) g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(y) = Ph − Ph−1ah−1bh y

Qh − Qh−1ah−1bh y
,

where Ph and Qh are seen to satisfy the recurrence (53). Setting y = 0 in (61)
proves (56).

Finally, H [≥h]
h,h is determined implicitly as the root y of the equation g0 ◦ · · · ◦

gh−1(y) = H0,0, an equation that, when solved using (61), yields the form (58). �

A large number of generating functions can be derived by similar techniques. We
refer to the article [214], where this theory was first systematically developed and to
the synthesis given in [303, Chapter 5]. Our presentation also draws upon [238] where
the theory was put to use in order to develop a formal algebraic theory of general birth-
and-death processes in continuous time.
� V.15. Transitions and crossings. The lattice paths H0,l corresponding to the transitions from
altitude 0 to l and Hk,0 (from k to 0) have OGFs

H0,l =
1

Bl

(
Ql H0,0 − Pl

)
, Hk,0 = 1

Ak
(Qk H0,0 − Pk).

The crossings H[<h]
0,h−1 and H[<h]

h−1,0 have OGFs,

H [<h]
0,h−1 = Ah−1

Qh
, H [<h]

h−1,0 = Bh−1

Qh
.

(Abbreviations used here are: Am = a0 · · · am−1, Bm = b1 · · · bm .) These extensions pro-
vide combinatorial interpretations for fractions of the form 1/Q. They result from the basic
decompositions combined with Proposition V.3; see [214, 238] for details. �

� V.16. Denominator polynomials and orthogonality. Let Hn = [zn]H0,0(z) represent the
number of all excursions of length n equipped with non-negative weights. Define a linear
functional L on the space C(z) of polynomials by L[zn] = Hn . Introduce the reciprocal poly-
nomials: Qh(z) = zh Q(1/z). The fact, deducible from Note V.15, that Ql H0,0 − Pl = O(z2l )

corresponds to the property L[z j Ql ) = 0 for all 0 ≤ j < l. In other words, the polynomials
Ql are orthogonal with respect to the special scalar product 〈 f, g〉 := L[ f g]. (Historically, the
theory of orthogonal polynomials evolved from the theory of continued fractions, before living
a life of its own; see [118, 343, 563] for its many facets.) �
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� V.17. Discrete time birth-and-death processes. Assume that, at discrete times n = 0, 1, 2, . . .,
a population of size j can grow by one element [a birth] with probability α j , decrease by one
element [a death] with probability β j , and stay the same with probability γ j = 1 − α j − β j .
Let ωn be the probability that an initially empty population is again empty at time n. Then the
GF of the sequence (ωn) is∑

n≥0

ωnzn = 1

1 − γ0z − α0β1z2

1 − γ1z − α1β2z2

· · ·

.

This result was found by I. J. Good in 1958: see [302]. �

� V.18. Continuous time birth-and-death processes. Consider a continuous time birth-and-
death process, where a transition from state j to j + 1 takes place according to an exponential
distribution of rate λ j and a transition from j to j − 1 has rate μ j . Let �(t) be the probability
to be in state 0 at time t starting from state 0 at time 0. One has∫ ∞

0
e−st�(t) dt = 1

s + λ0 − λ0μ1

s + λ1 + μ1 − λ1μ2

· · ·

= 1

s + λ0

1 + μ1

s + λ1

· · ·

.

Thus, continued fractions and orthogonal polynomials may be used to analyse birth-and-death
processes. (This fact was originally discovered by Karlin and McGregor [362], with later ad-
ditions due to Jones and Magnus [358]. See [238] for a systematic discussion in relation to
combinatorial theory.) �

V. 4.2. Analytic aspects. We now consider the general asymptotic properties of
lattice paths of height bounded from above by a fixed integer h ≥ 1. Letters denoting
elementary steps are weighted, as previously indicated, with

a j = α j z, b j = β j z, c j = γ j z,

the weights being invariably non-negative. We shall limit the discussion to excursions,
which are often the most interesting objects from the combinatorial point of view.

As a preamble, in the Dyck case, where all γ j are 0 (level steps are disallowed),
the GF H [<h] is a function of z2 only, since it takes an even number of steps to return
to altitude 0 when starting from altitude 0. In such a case, we shall systematically
assume that, when considering [zn]H [<h], the index n = 2ν is even. In order to
avoid trivialities, we also assume that none of the coefficients attached to ascents and
descents are 0.

Theorem V.5 (Asymptotics of nested sequences). Consider the class H[<h]
0,0 of weighted

Motzkin excursions of height < h. In the non-Dyck case (at least one γ j  = 0), their
number satisfies a pure exponential–polynomial formula,

H [<h]
0,0,n = cBn + O(Cn),

where B > 0 and 0 ≤ C < B. In the Dyck case, the formula holds, assuming
furthermore that n ≡ 0 (mod 2).
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Proof. The proof proceeds by induction according to the depth of nesting of the
sequence constructions, starting with the innermost construction. (The present dis-
cussion is similar to the analysis of the supercritical sequence schema in Section V. 2,
p. 293.) Write

f j (z) := H [h− j−1≤•<h]
h− j−1,h− j−1(z),

and let ρ j denote the dominant singularity of f j that is positive (existence is guaran-
teed by Pringsheim’s Theorem).

For ease of discussion, we first examine the case where all γ j are non-zero. The
function f0(z) is

f0(z) = 1

1 − γh−1z
,

and one has ρ0 = 1/γh−1. The function f1 is given by

f1(z) =
1

1 − γh−2z − αh−2βh−1z2 f0(z)
.

The quantity γh−2z + αh−2βh−1z2 f0(z) in its denominator increases continuously
from 0 to +∞ as z increases from 0 to ρ0; consequently, it crosses the value 1 at some
point which must be ρ1. In particular, one must have ρ1 < ρ0. Our assumption that
all the γ j are non-zero implies the absence of periodicities, so that ρ1 is the unique
dominant singularity. The argument can be repeated, implying that the sequence of
radii is decreasing ρ0 > ρ1 > ρ2 > · · · , the corresponding poles are all simple, and
they are uniquely dominating. The statement is thus established in the case that all the
γ j are non-zero.

Dually, in the Dyck case where all the γ j are zero, one can reason in a similar
manner, operating with the collection of “condensed” series f j (

√
z), which are seen

to have a unique dominant singularity. This implies that f j (z) itself has exactly two
dominant singularities, namely ρh and −ρh , both being simple poles.

In the mixed case, the f j are initially of the Dyck type, until a certain γh−1− j0  = 0
is encountered. In that case the function f j0 is aperiodic (its span in the sense of Def-
inition IV.5, p. 266, is equal to 1). The reasoning then continues in a similar manner
to the Motzkin case, with all the subsequent f j (for j ≥ j0) including fh−1(z) ≡
H [<h]

0,0 (z) having a unique dominant singularity. �
Similar devices yield a characterization of the profile of a random path, that is,

the number of times a given step appears in a random excursion.

Theorem V.6 (Profile of nested sequences). Let Xn be the random variable repre-
senting the number of times a given step (of type a j , b j , or c j ) with non-zero weight
appears in a random excursion of length n and height < h. The moments of Xn satisfy

E(Xn) = c1n + d1 + O(Dn), V(Xn) = c2n + d2 + O(Dn),

for constants c1, c2, d1, d2, D, with c1, c2 > 0 and 0 ≤ D < 1. In particular the
distribution of Xn is concentrated.

Proof. Introduce an auxiliary variable u marking the number of designated steps, and
form the corresponding BGF H(z, u). We only detail the case of expectations. The
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function H is a linear fractional transformation in u of the form

H(z, u) = A(z)+ 1

C(z)+ u D(z)
.

(The coefficients A, B,C are a priori in C(z); they are in fact computable from Propo-
sition V.3.) Then, one has

∂

∂u
H(z, u)

∣∣∣∣
u=1

= − D(z)

(C(z)+ D(z))2
.

This function resembles H(z, 1)2. An application of the chain rule permits us to verify
that indeed

∂

∂u
H(z, u)

∣∣∣∣
u=1

= E(z)H(z, 1)2,

where E(z) is analytic in a disc larger than the disc of analyticity of H(z, 1). The
analysis of the dominant double pole then yields the result. (The determination of the
second moment follows along similar lines: a triple pole is involved.) �
� V.19. All poles are real. Assume again α jβ j+1 > 0 and γ j ≥ 0. By Note V.16, the
denominator polynomials Qh are reciprocals of a family of polynomials Qh that are formally
orthogonal with respect to a scalar product. Thus the zeros of any of the Qh are all real, and so

are the zeros of Qh . Consequently: The poles of the OGF of ceiled excursions H [<h]
0,0 are all

real. (See for instance [563, §3.3] for the basic argument.) �

V. 4.3. Applications. Lattice paths have quite a wide range of descriptive power,
especially when weights are allowed. We illustrate this fact by three types of exam-
ples.

Example V.8 provides a complete analysis of height in Dyck paths and general
plane rooted trees, as regards moments as well as distribution. This is the simplest
case of a continued fraction (one with constant coefficients) attached to the OGF of
Catalan numbers and involving Fibonacci-Chebyshev polynomials. Example V.9 dis-
cusses coin fountains. There, we are dealing with an infinite continued fraction to
which the techniques of the previous subsection can be extended. (The developments
take us close to the realm of q–calculus and to the analysis of alcohols seen in Chap-
ter IV.) Example V.10 constitutes a typical application of the possibility of encoding
combinatorial structures—here, interconnection networks—by means of lattice paths
weighted by integers. The enumeration involves Hermite polynomials. (Other ex-
amples related to set partitions and permutations are described in the accompanying
notes.)

Example V.8. Height of Dyck paths and plane rooted trees. In order to count lattice paths of
the Dyck (D) or Motzkin (M) type, it suffices to effect one of the substitutions,

σM : a j 	→ z, b j 	→ z, c j 	→ z; σD : a j 	→ z, b j 	→ z, c j 	→ 0.

We henceforth restrict attention to the case of Dyck paths. See Figure V.9 for three simulations
suggesting that the distribution of height is somewhat spread. Given the parenthesis system
representation (Note I.48, p.77), the height of a Dyck path automatically translates into as height
of the corresponding plane rooted tree.



“book” — 2008/10/3 — 16:05 — page 327 — #341

V. 4. NESTED SEQUENCES, LATTICE PATHS, AND CONTINUED FRACTIONS 327

Figure V.9. Three random Dyck paths of length 2n = 500 have heights, respectively,
20, 31, 24: the distribution is spread, see Proposition V.4.

Expressions of GFs. The continued fraction expressing H0,0 results immediately from
Proposition V.3 and is in this case periodic (here, in the sense that its stages are all alike); it
represents a quadratic function,

H0,0(z) =
1

1 − z2

1 − z2

1 − . . .

= 1

2z2

(
1 −

√
1 − 4z2

)
,

since H0,0 satisfies y = (1−z2 y)−1. The families of polynomials Ph, Qh are in this case deter-
mined by a recurrence with constant coefficients. Define classically the Fibonacci polynomials
by the recurrence

(62) Fh+2(z) = Fh+1(z)− zFh(z), F0(z) = 0, F1(z) = 1.

One finds Qh = Fh+1(z
2) and Ph = Fh(z

2). (The Fibonacci polynomials are reciprocals of
Chebyshev polynomials; see Note V.20, p. 329.) By Proposition V.3, the GF of paths of height
< h is then

H [<h]
00 (z) = Fh(z

2)

Fh+1(z2)
.

(We get more and, for instance, the number of ways of crossing a strip of width h − 1 is
H [<h]

0,h−1(z) = zh−1/Fh+1(z
2).) The Fibonacci polynomials have an explicit form,

Fh(z) =
�(h−1)/2�∑

k=0

(
h − 1 − k

k

)
(−z)k ,

as follows from the generating function expression:
∑

h Fh(z)y
h = y/(1 − y + zy2).

The equivalence between Dyck paths and (general) plane tree traversals discussed in Chap-
ter I (p. 73) implies that trees of height at most h and size n + 1 are equinumerous with Dyck
paths of length 2n and height at most h. Set for convenience

G[h](z) = zH [<h+1]
00 (z1/2) = z

Fh+1(z)

Fh+2(z)
,

which is precisely the OGF of general plane trees having height ≤ h. (This is otherwise in
agreement with the continued fraction forms obtained directly in Chapter III: cf (53), p. 195
and (79), p. 216.) It is possible to go much further as first shown by De Bruijn, Knuth, and Rice
in a landmark paper [145], which also constitutes a historic application of Mellin transforms in
analytic combinatorics. (We refer to this paper for historical context and references.)
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First, solving the linear recurrence (62) with z treated as a parameter yields the alternative
closed form expression

(63) Fh(z) =
Gh − G

h

G − G
, G = 1 −√

1 − 4z

2
, G = 1 +√

1 − 4z

2
.

There, G(z) is the OGF of all trees, and an equivalent form of G[h] is provided by

(64) G − G[h−2] = √
1 − 4z

uh

1 − uh
, where u = 1 −√

1 − 4z

1 +√
1 − 4z

= G2

z
,

as is easily verified. Thus G[h] can be expressed in terms of G(z) and z:

G − G[h−2] = √
1 − 4z

∑
j≥1

z− jh G(z)2 jh .

The Lagrange–Bürmann inversion theorem (p. 732) then gives after a simple calculation

(65) Gn+1 − G[h−2]
n+1 =

∑
j≥1

�2
(

2n

n − jh

)
,

where

�2
(

2n

n − m

)
:=

(
2n

n + 1 − m

)
− 2

(
2n

n − m

)
+

(
2n

n − 1 − m

)
.

Consequently, the number of trees of height ≥ h − 1 admits a closed form: it is a “sampled”
sum, by steps of h, of the 2nth line of Pascal’s triangle (upon taking second-order differences).

Probability distribution of height. The relation (65) leads easily to the asymptotic distribu-
tion of height in random trees of size n. Stirling’s formula yields the Gaussian approximation
of binomial numbers: for k = o(n3/4) and with w = k/

√
n, one finds

(66)

( 2n
n−k

)(2n
n
) ∼ e−w2

(
1 − w4 − 3w2

6n
+ 5w8 − 54w6 + 135w4 − 60w2

360n2
+ · · ·

)
.

The use of the Gaussian approximation (66) inside the exact formula (65) then implies: The
probability that a tree of size n + 1 has height at least h − 1 satisfies uniformly for h ∈
[α
√

n, β
√

n] (for any α, β such that 0 < α < β < ∞) the estimate

(67)
Gn+1 − G[h−2]

n+1

Gn+1
= �

(
h√
n

)
+ O

(
1

n

)
, �(x) :=

∑
j≥1

e− j2x2
(4 j2x2 − 2).

The function �(x) is a “theta function” which classically arises in the theory of elliptic func-
tions [604]. Since binomial coefficients decay rapidly, away from the centre, simple bounds also
show that the probability of the height being at least n1/2+ε decays as exp(−n2ε), so that it is
exponentially small. Note also that the probability distribution of height H itself admits an exact
expression obtained by differencing (65), which is reflected asymptotically by differentiation of
the estimate of (67):
(68)

PGn+1

[
H = �x

√
n�] = − 1√

n
�′ (x)+ O

(
1

n

)
, �′(x) :=

∑
j≥1

e− j2x2
(12 j2x − 8 j4x3).

The forms (67) and (68) also give access to moments of the distribution of height. We find

EGn+1

[
Hr ] ∼ 1√

n
Sr

(
1√
n

)
, where Sr (y) := −

∑
h≥1

hr�′(hy).
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Figure V.10. The limit density of the distribution of height −�′(x).

The quantity yr+1Sr (y) is a Riemann sum relative to the function −xr�′(x), and the step
y = n−1/2 decreases to 0 as n → ∞. Approximating the sum by the integral, one gets:

EGn+1

[
Hr ] ∼ nr/2μr where μr := −

∫ ∞

0
xr�′(x) dx .

The integral giving μr is a Mellin transform in disguise (set s = r + 1) to which the treatment
of harmonic sums applies. We then get upon replacing n + 1 by n:

Proposition V.4. The expected height of a random plane rooted tree comprising n + 1 nodes is

(69)
√
πn − 3

2
+ o(1).

More generally, the moment of order r of height is asymptotic to

(70) μr nr/2 where μr = r(r − 1)�(r/2)ζ(r).

The random variable H/
√

n obeys asymptotically a Theta distribution, in the sense of both the
“central” estimate (67) and the “local” estimate (68). The same asymptotic estimates hold for
height of Dyck paths having length 2n.

The improved estimate of the mean (69) is from [145]. The general form of moments
in (70) is in fact valid for any real r (not just integers). An alternative formula for the Theta
function appears in Note V.20 below. Figure V.10 plots the limit density −�′(x), which surfaces
again in the height of binary and other simple trees (Example VII.27, p. 535). . . . . . . . . . . . . �

� V.20. Height and Fibonacci–Chebyshev polynomials. The reciprocal polynomials Fh(z) =
Fh−1(z) = zh−1 Fh(1/z2) are related to the classical Chebyshev polynomials by Fh(2z) =
Uh(z), where Uh(cos(θ)) = sin((h + 1)θ)/ sin(θ). (This is readily verified from the recur-
rence (62) and elementary trigonometry.) Then, the roots of Fh(z) are (4 cos2 jπ/(h + 1))−1

and the partial fraction expansion of G[h](z) can be worked out explicitly [145]. Thus, for
n ≥ 1,

(71) G[h−2]
n+1 = 4n+1

h

∑
1≤ j<h/2

sin2 jπ

h
cos2n jπ

h
,

which provides in particular an asymptotic form for any fixed h. (This formula can also be
found directly from the sampled sum (65) by multisection of series.) Asymptotic analysis of
this last expression when h = x

√
n yields the alternative expression

lim
n→∞PGn+1

[
H ≤ x

√
n
] = 4π5/2x−3

∑
j≥0

j2e− j2π2/x2
( ≡ 1 −�(x)),
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which, when compared with (67), reflects an important transformation formula of elliptic func-
tions [604]. See the study by Biane, Pitman, and Yor [64] for fascinating connections with
Brownian motion and the functional equation of the Riemann zeta function. Height in simple
varieties of trees also obeys a Theta law, but the proofs (Example VII.27, p. 535) require the
full power of singularity analysis. �

� V.21. Motzkin paths. The OGF of Motzkin paths of height< h is 1
1−z ·DH [<h]

0,0

(
z

1−z

)
, where

DH [<h]
0,0 refers to Dyck paths. Therefore, such paths can be enumerated exactly by formulae

derived from Equations(65) to (71). Accordingly, the mean height is ∼ √
3πn. �

Example V.9. Area under Dyck path and coin fountains. Consider Dyck paths and the area
parameter: area under a lattice path is taken here as the sum of the indices (i.e., the starting
altitudes) of all the variables that enter the standard encoding of the path. Thus, the BGF D(z, q)
of Dyck paths with z marking half-length and q marking area is obtained by the substitution

a j 	→ q j z, b j 	→ q j , c j 	→ 0

inside the fundamental continued fraction (55). (We rederive here Equation (54) of Chapter III,
p. 196.) It proves convenient to operate with the continued fraction

(72) F(z, q) = 1

1 − zq

1 − zq2

. . .

,

so that D(z, q) = F(q−1z, q2). Since F satisfies a difference equation,

(73) F(z, q) = 1

1 − zq F(qz, q)
,

moments of area can be determined by differentiating and setting q = 1 (see Chapter III, p. 184,
for a direct approach.

A general trick from q–calculus is effective for deriving an alternative form of F . Express
the continued fraction F of (72) as a quotient F(z, q) = A(z)/B(z). Then, the relation (73)
implies

A(z)

B(z)
= 1

1 − qz A(qz)
B(qz)

,

and, by identifying numerators and denominators, we get

A(z) = B(qz), B(z) = B(qz)− qzB(q2z),

with q treated as a parameter. The difference equation satisfied by B(z) is then readily solved
by indeterminate coefficients. (This classical technique was introduced in the theory of integer
partitions by Euler.) With B(z) = ∑

bnzn , the coefficients satisfy the recurrence

b0 = 1, bn = qnbn − q2n−1bn−1.

This is a first-order recurrence on bn that unwinds to give

bn = (−1)n
qn2

(1 − q)(1 − q2) · · · (1 − qn)
.
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In other words, introducing the “q–exponential function”,

(74) E(z, q) =
∞∑

n=0

(−z)nqn2

(q)n
, where (q)n = (1 − q)(1 − q2) · · · (1 − qn),

one finds

(75) F(z, q) = E(qz, q)

E(z, q)
.

The exact distribution of area in Dyck paths can then be regarded as known, in the sense that
it is fully characterized by (74) and (75). (Example VII.26, p. 533, presents an analysis of the
corresponding limit distribution, based on “moment pumping”, to the effect that an Airy law
prevails.)

Given the importance of the functions under discussion in various branches of mathemat-
ics, we cannot resist a quick digression. The name of the q–exponential comes form the obvious
property that E(z(1 − q), q) reduces to e−z as q → 1−. The explicit form (74) constitutes in
fact the “easy half” of the proof of the celebrated Rogers–Ramanujan identities, namely,

(76)

E(−1, q) =
∞∑

n=0

qn2

(q)n
=

∞∏
n=0

(1 − q5n+1)−1(1 − q5n+4)−1

E(−q, q) =
∞∑

n=0

qn(n+1)

(q)n
=

∞∏
n=0

(1 − q5n+2)−1(1 − q5n+3)−1,

that relate the q–exponential to modular forms. See Andrews’ book [14, Ch. 7] for context.
Coin fountains. Here is finally a cute application of these ideas to the asymptotic enu-

meration of some special polyominoes. Odlyzko and Wilf define in [461, 464] an (n,m) coin
fountain as an arrangement of n coins in rows in such a way that there are m coins in the bottom
row, and that each coin in a higher row touches exactly two coins in the next lower row. Let
Cn,m be the number of (n,m) fountains and C(z, q) be the corresponding BGF with q mark-
ing n and z marking m. Set C(q) = C(1, q). The question is to determine the total number of
coin fountains of area n, [qn]C(q). The series starts as (this is EIS A005169)

C(q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · · ,
as results from inspection of the first few cases.

.

There is a clear bijection with Dyck paths (do a 135◦ scan) that takes area into account: a
coin fountain of size n with m coins on its base is equivalent to a Dyck path of length 2m and
area 2n − m (with our earlier definition of area of Dyck paths). From this bijection, one has
C(z, q) = F(z, q) (with F as defined earlier) and, in particular, C(q) = F(1, q). Consequently,
by (72) and (75), we find

C(q) = 1

1 − q

1 − q2

1 − q3

. . .

= E(q, q)

E(1, q)
.
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Objects weights (α j , β jγ j ) counting orthogonal pol.
Simple paths 1, 1, 0 Catalan # Chebyshev
Permutations j + 1, j, 2 j + 1 Factorial # Laguerre
Alternating perm. j + 1, j, 0 Secant # Meixner
Involutions 1, j, 0 Odd factorial # Hermite
Set partition 1, j, j + 1 Bell # Poisson–Charlier
Non-overlap. set part. 1, 1, j + 1 Bessel # Lommel

Figure V.11. Some special families of combinatorial objects together with cor-
responding weights, counting sequences, and orthogonal polynomials. (See also
Notes V.23— 25.)

The rest of the discussion is analogous to Section IV. 7.3 (p. 283) relative to alcohols. The
function C(q) is a priori meromorphic in |q| < 1. An exponential lower bound of the form
1.6n holds for [qn]C(q), since (1 − q)/(1 − q − q2) is dominated by C(q) for q > 0. At the
same time, the number [qn]C(q) is majorized by the number of compositions, which is 2n−1.
Thus, the radius of convergence of C(q) has to lie somewhere between 0.5 and 0.61803 . . . . It
is then easy to check by numerical analysis the existence of a simple zero of the denominator,
E(1, q), near ρ

.= 0.57614. Routine computations based on Rouché’s theorem then make it
possible to verify formally that ρ is the only pole in |q| ≤ 3/5 and that this pole is simple (the
process is detailed in [461]). Thus, singularity analysis of meromorphic functions applies.

Proposition V.5. The number of coin fountains made of n coins satisfies asymptotically

[qn]C(q) = cAn + O((5/3)n), c
.= 0.31236, A = ρ−1 .= 1.73566.

This example illustrates the power of modelling by continued fractions as well as the
smooth articulation with meromorphic function asymptotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Lattice path encodings of classical structures. The systematic theory of lattice
path enumerations and continued fractions was developed initially because of the need
to count weighted lattice paths, notably in the context of the analysis of dynamic data
structures in computer science [226]. In this framework, a system of multiplicative
weights α j , β j , γ j is associated with the steps a j , b j , c j , each weight being an in-
teger that represents a number of “possibilities” for the corresponding step type. A
system of weighted lattice paths has counting generating functions given by the usual
substitution from the corresponding multivariate expressions; namely,

(77) a j 	→ α j z, b j 	→ β j z, c j 	→ γ j z,

where z marks the length of paths. One can then attempt to solve an enumeration
problem expressible in this way by reverse-engineering the known collection of con-
tinued fractions as found in reference books such as those by Perron [479], Wall [601],
and Lorentzen–Waadeland [412]. Next, for general reasons, the polynomials P, Q are
always elementary variants of a family of orthogonal polynomials that is determined
by the weights (see Note V.16, p. 323, and [118, 563]). When the multiplicities have
enough structural regularity, the weighted lattice paths are likely to correspond to
classical combinatorial objects and to classical families of orthogonal polynomials;
see [214, 226, 295, 303] and Figure V.11 for an outline. We illustrate this by a simple
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Figure V.12. An interconnection network on 2n = 12 points.

example due to Lagarias, Odlyzko, and Zagier [394], which is relative to involutions
without fixed points.

Example V.10. Interconnection networks and involutions. The problem treated here is the
following [394]. There are 2n points on a line, with n point-to-point connections between pairs
of points. What is the probable behaviour of the width of such an interconnection network?
Imagine the points to be 1, . . . , 2n, the connections as circular arcs between points, and let a
vertical line sweep from left to right; width is defined as the maximum number of arcs met by
such a line. One may freely imagine a tunnel of fixed capacity (this corresponds to the width)
inside which wires can be placed to connect points pairwise (Figure V.12).

Let J2n be the class of all interconnection networks on 2n points, which is precisely the
collection of ways of grouping 2n elements into n pairs, or, equivalently, the class of all invo-
lutions without fixed points, i.e., permutations with cycles of length 2 only. The number J2n
equals the “odd factorial”,

J2n = 1 · 3 · 5 · · · (2n − 1),

whose EGF is ez2/2 (see Chapter II, p. 122). The problem calls for determining the quantity
J [h]

2n that is the number of networks having width ≤ h.
The relation to lattice paths is as follows. First, when sweeping a vertical line across a

network, define an active arc at an abscissa as one that straddles that abscissa. Then build
the sequence of active arc counts at half-integer positions 1

2 ,
3
2 , . . . , 2n − 1

2 , 2n + 1
2 . This

constitutes a sequence of integers in which each member is ±1 the previous one; that is, a
lattice path without level steps. In other words, there is an ascent in the lattice path for each
element that is smaller in its cycle and a descent otherwise. One may view ascents as associated
to situations where a node “opens” a new cycle, while descents correspond to “closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence from
involutions to lattice paths has to be many-to-one. However, one can easily enrich lattice paths,
so that the enriched objects are in one-to-one correspondence with involutions. Consider again
a scanning position at a half-integer where the vertical line crosses � (active) arcs. If the next
node is of the closing type, there are � possibilities to choose from. If the next node is of
the opening type, then there is only one possibility, namely, to start a new cycle. A complete
encoding of a network is accordingly obtained by recording additionally the sequence of the n
possible choices corresponding to descents in the lattice path (some canonical order is fixed, for
instance, oldest first). If we write these choices as superscripts, this means that the set of all
enriched encodings of networks is obtained from the set of standard lattice path encodings by
effecting the substitutions

b j 	→
j∑

k=1

b(k)j .
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Figure V.13. Three simulations of random networks with 2n = 1000 illustrate the
tendency of the profile to conform to a parabola with height close to n/2 = 250.

The OGF of all involutions is obtained from the generic continued fraction of Proposi-
tion V.3 by the substitution

a j 	→ z, b j 	→ j · z,

where z records the number of steps in the enriched lattice path, or equivalently, the number
of nodes in the network. In other words, we have obtained combinatorially a formal continued
fraction representation,

∞∑
n=0

(1 · 3 · · · (2n − 1))z2n = 1

1 − 1 · z2

1 − 2 · z2

1 − 3 · z2

. . .

,

which was originally discovered by Gauss [601]. Proposition V.3 also gives immediately the
OGF of involutions of width at most h as a quotient of polynomials. Define

J [h](z) :=
∑
n≥0

J [h]
2n z2n .

One has

J [h](z) = 1

1 − 1 · z2

1 − 2 · z2

. . .

1 − h · z2

= Ph+1(z)

Qh+1(z)

where Ph and Qh satisfy the recurrence

Yh+1 = Yh − hz2Yh−1.

The polynomials are readily determined by their generating functions that satisfies a first-order
linear differential equation reflecting the recurrence. In this way, the denominator polynomials
are identified to be reciprocals of the Hermite polynomials,

Heh(z) = (2z)h Qh

(
1

z
√

2

)
,
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themselves defined classically [3, Ch. 22] as orthogonal with respect to the measure e−x2
dx

on (−∞,∞) and expressible via

Hem(x) =
�m/2�∑
m=0

(−1) j m!

j!(m − 2 j)!
(2x)m−2 j ,

∑
m≥0

Hem(x)
tm

m!
= e2xt−t2

.

In particular, one finds

J [0] = 1, J [1] = 1

1 − z2
, J [2] = 1 − 2z2

1 − 3z2
, J [3] = 1 − 5z2

1 − 6z2 + 3z4
, &c.

The interesting analysis of the dominant poles of the rational GFs, for any fixed h, is
discussed in the paper [394]. Furthermore, simulations strongly suggest that the width of a ran-
dom interconnection network on 2n nodes is tightly concentrated around n/2; see Figure V.13.
Louchard [418] (see also Janson’s study [353]) succeeded in proving this fact and a good deal
more. With high probability, the altitude (the altitude is defined here as the number of active
arcs as time evolves) of a random network conforms asymptotically to a deterministic parabola
2nx(1 − x) (with x ∈ [0, 1]) to which are superimposed random fluctuations of a smaller am-
plitude, O(

√
n), well-characterized by a Gaussian process. In particular, the width of a random

network of 2n nodes converges in probability to n/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.22. Bell numbers and continued fractions. With Sn = n![zn]eez−1 a Bell number:∑
n≥0

Snzn = 1

1 − 1z − 1z2

1 − 2z − 2z2

· · ·

.

[Hint: Define an encoding like for networks, with level steps representing intermediate elements
of blocks [214].] Refinements include Stirling partition numbers and involution numbers. �

� V.23. Factorial numbers and continued fractions. One has∑
n≥0

n!zn = 1

1 − 1z − 12z2

1 − 3z − 22z2

· · ·

.

Refinements include tangent and secant numbers, as well as Stirling cycle numbers and Euler-
ian numbers. (This continued fraction goes back to Euler [198]; see [214] for a proof based on
a bijection of Françon–Viennot [269] and Biane [63] for an alternative bijection.) �

� V.24. Surjection numbers and continued fractions. Let Rn = n![zn](2 − ez)−1. Then

∞∑
n=0

Rnzn = 1

1 − 1z − 2 · 12z2

1 − 4z − 2 · 22z2

1 − 7z − · · ·

.

This continued fraction is due to Flajolet [216]. �
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� V.25. The Ehrenfest2 two-chambers model. (See Note II.11, p. 118 for context.) The OGF
of the number of evolutions that lead to chamber A full satisfies∑

n≥0

E [N ]
n zn = 1

1 − 1N z2

1 − 2(N − 1)z2

· · ·

= 1

2N

N∑
k=0

(N
k
)

1 − (N − 2k)z
.

This results from the EGF of Note II.11 (p. 118), the Continued Fraction Theorem, and basic
properties of the Laplace transform. (This continued fraction expansion is originally due to
Stieltjes [562] and Rogers [516]. See also [304] for additional formulae.) �

V. 5. Paths in graphs and automata

In this section, we develop the framework of paths in graphs: given a graph,
a source node, and a destination node, the problem is to enumerate all paths from
the source to the destination in the graph. Non-negative weights acting multiplica-
tively (probabilities, multiplicities) may be attached to edges. Applications include
the analysis of walks in various types of graphs as well as languages described by
finite automata. Under a fundamental structural condition, known as irreducibility and
corresponding to strong-connectedness of the graph, generating functions of paths all
have the same dominant singularity, which is a simple pole. This essential property im-
plies simple exponential forms for the asymptotics of coefficients (possibly tempered
by explicit congruence conditions in the periodic case). The corresponding results can
equivalently be formulated in terms of the set of eigenvalues (the spectrum) of the cor-
responding adjacency matrix and are related to the classical Perron–Frobenius theory
of non-negative matrices—under irreducibility, only the largest positive eigenvalue
matters asymptotically.

V. 5.1. Combinatorial aspects. A directed graph or digraph � is determined by
the pair (V, E) of its vertex set V and its edge set E ⊆ V × V . Here, self-loops
corresponding to edges of the form (v, v) are allowed. Given an edge, e = (a, b),
we denote its origin by orig(e) := a and its destination by destin(e) := b. For � a
digraph with vertex set identified to the set {1, . . . ,m}, we allow each edge (a, b) to be
weighted by a quantity ga,b, which we may take as a formal indeterminate for which
we allow the possibility of substituting positive weight values; the matrix G such that

(78) Ga,b = ga,b if the edge (a, b) ∈ �, Ga,b = 0 otherwise,

is called the weighted adjacency matrix of the (weighted) graph � (Figure V.14). The
usual adjacency matrix of � is obtained by the substitution ga,b 	→ 1.

A path is a sequence of edges, � = (e1, . . . , en), such that, for all j with 1 ≤
j < n, one has destin(e j ) = orig(e j+1). The parameter n is called the length of the
path and we define: orig(�) := orig(e1), destin(�) := destin(en). A circuit is a
path whose origin and destination are the same vertex. Note that, with our definition,
a circuit has its origin that is distinguished. We do not identify here two circuits
such that one is obtained by circular permutation from the other: the circuits that we
consider, with such a distinguished root, are rooted circuits.
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� =
3

1 2

4

, G =

⎛⎜⎜⎝
0 g1,2 0 g1,4
0 0 g2,3 0

g3,1 0 0 0
0 g4,2 0 0

⎞⎟⎟⎠ ,

F〈1,1〉(z) = 1 + g1,2g2,3g3,1z3 + g1,4g4,2g2,3g3,1z4 + · · · .

Figure V.14. A graph �, its formal adjacency matrix G, and the generating
function F 〈1,1〉(z) of paths from 1 to 1.

From the standard definition of matrix products, the powers Gn have elements
that are path polynomials. More precisely, one has the simple but essential relation,

(79) (G)ni, j =
∑

w∈F 〈i, j〉
n

w,

where F 〈i, j〉
n is the set of paths in � that connect i to j and have length n, and a path w

is identified with the monomial in indeterminates {gi, j } that represents multiplicatively
the succession of its edges; for instance:

(G)3i, j =
∑

ν1=i,ν2,ν3,ν4= j

gν1,ν2 gν2,ν3 gν3,ν4 .

In other words: powers of the matrix associated to a graph generate all paths in
graph, the weight of a path being the product of the weights of the individual edges
it comprises. (This fact probably constitutes the most basic result of algebraic graph
theory [66, p. 9].) One may then treat simultaneously all lengths of paths (and all
powers of matrices) by introducing the variable z to record length.

Proposition V.6. (i) Let � be a digraph and let G be the formal adjacency matrix
of � as given by (78). The OGF F 〈i, j〉(z) of the set of all paths from i to j in �, with
z marking length and ga,b the weight associated to edge (a, b), is the entry i, j of the
matrix (I − zG)−1; namely

(80) F 〈i, j〉(z) =
(
(I − zG)−1

)
i, j

= (−1)i+ j �
〈i, j〉(z)
�(z)

,

where �(z) = det(I − zG) is the reciprocal polynomial of the characteristic polyno-
mial of G and �〈 j,i〉(z) is the determinant of the minor of index j, i of I − zG.

(i i) The generating function of (rooted) circuits is expressible in terms of a loga-
rithmic derivative:

(81)
∑

i

(F 〈i,i〉(z)− 1) = −z
�′(z)
�(z)

.

In this algebraic statement, if one takes the {ga,b} as formal indeterminates, then
F 〈i, j〉(z) is a multivariate GF of paths in z with the variable {ga,b} marking the num-
ber of occurrences of edge (a, b). The result applies, in particular, to the case where
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the ga,b are assigned numerical values, in which case [zn]F 〈i, j〉(z) becomes the to-
tal weight of paths of length n, which we also refer to as “number of paths” in the
weighted graph.

Proof. For the proof, it is convenient to assume that the quantities ga,b are assigned
arbitrary real numbers, so that usual matrix operations (triangularization, diagonaliza-
tion, and so on) can be easily applied. As the properties expressed by the statement
are ultimately equivalent to a collection of multivariate polynomial identities, their
general validity is implied by the fact that they hold for all real assignments of values.

Part (i) is a consequence of the fundamental equivalence between paths and ma-
trix products (79), which implies

F 〈i, j〉(z) =
∞∑

n=0

zn (
Gn)

i, j =
(
(I − zG)−1

)
i, j
,

and from the cofactor formula of matrix inversion.
Part (i i) results from elementary properties of the matrix trace9functional. With m

the dimension of G and {λ1, . . . , λm} the multiset of its eigenvalues, we have

(82)
m∑

i=1

F 〈i,i〉
n = Tr Gn =

m∑
j=1

λn
j ,

where F 〈i, j〉
n = [zn]F 〈i, j〉(z). Upon taking a generating function, there results that

(83)
m∑

i=1

∞∑
n=1

F 〈i,i〉
n zn =

m∑
j=1

λ j z

1 − λ j z
,

which, up to a factor of −z, is none other than the logarithmic derivative of �(z). �
� V.26. Positivity of inverses of characteristic polynomials. Let G have non-negative coef-
ficients. Then, the rational function ZG(z) := 1/ det(I − zG) has non-negative Taylor co-
efficients. More generally, if G = (ga,b) is a matrix in the formal indeterminates ga,b, then
[zn]ZG(z) is a polynomial in the ga,b with non-negative coefficients. (Hint: The proof proceeds
by integration from (81): we have, for 1/�(z), the equivalent expressions

1

�(z)
≡ exp

(
−

∫ z

0

�′(t)
�(t)

dt

)
= exp

⎛⎝∫ z

0

m∑
i=1

(F〈i,i〉(t)− 1)
dt

t

⎞⎠= exp

⎛⎝∑
n≥1

zn

n
Tr Gn

⎞⎠,
which ensure positivity of the coefficients of ZG.) �

� V.27. MacMahon’s Master Theorem. Let J be the determinant

J (z1, . . . , zm) :=

∣∣∣∣∣∣∣∣
1 − z1g11 −z2g12 · · · −zm g1m−z1g21 1 − z2g22 · · · −zm g2m

...
...

. . .
...

−zm gm1 −zm g2m · · · 1 − zm gmm

∣∣∣∣∣∣∣∣ .
MacMahon’s “Master Theorem” asserts the identity of coefficients,

[zα1
1 · · · zαm

m ]
1

J (z1, . . . , zm)
= [zα1

1 · · · zαm
m ]Yα1

1 · · · Yαm
m , where Y j =

∑
i

gi j z j .

9If H is an m × m matrix with multiset of eigenvalues {μ1, . . . , μm }, the trace is defined by Tr H :=∑m
i=1(H)i i and, by triangularization (Jordan form), it satisfies Tr H = ∑m

j=1 μ j .
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This result can be obtained by a simple change of variables in a multivariate Cauchy integral and
is related to multivariate Lagrange inversion [303, pp. 21–23]. Cartier and Foata [105] provide
a general combinatorial interpretation related to trace monoids of Note V.10, p. 307. �

� V.28. The Jacobi trace formula. this trace formula [303, p. 11] for square matrices is

(84) det ◦ exp(M) = exp ◦Tr(M);
equivalently, with due care paid to determinations: log ◦ det(M) = Tr ◦ log(M). It generalizes
the scalar identities eaeb = ea+b and log ab = log a + log b. (Hint: recycle the computations
of Note V.26.) �

� V.29. Fast computation of the characteristic polynomial. The following algorithm is due
to Leverrier (1811–1877), the astronomer and mathematician who, together with Adams, first
predicted the position of the planet Neptune. Since, by (82) and (83), one has∑

n≥1

zn Tr Gn =
m∑

j=1

λ j z

1 − λ j z
,

it is possible to deduce an algorithm that determines the characteristic polynomial of a matrix
of dimension m in O(m4) arithmetic operations. [Hint: computing the quantities Tr G j for
j = 1, . . . ,m is sufficient and requires precisely m matrix multiplications.] �

� V.30. The Matrix Tree Theorem. Let � be a directed graph without loops and associated
matrix G, with ga,b the weight of edge (a, b). The Laplacian matrix L[G] is defined by

L[G]i, j = −gi, j + [[i = j]]δi , where δi :=
∑

k

gi,k .

Let L1[G] be the matrix obtained by deleting the first row and first column of L[G]. Then, the
“tree polynomial”

T1[G] := det L1[G]

enumerates all (oriented) spanning trees of � rooted at node 1. (This classic result belongs to a
circle of ideas initiated by Kirchhoff, Sylvester, Borchardt and others in the nineteenth century.
See, for instance, the discussions by Knuth [377, p. 582–583] and Moon [445].) �

Weighted graphs, word models, and finite automata. The numeric substitution
σ : ga,b 	→ 1 transforms the formal adjacency matrix G of � into the usual adja-
cency matrix. In particular, the number of paths of length n is obtained, under this
substitution, as [zn](1 − zG)−1. As already noted, it is possible to consider weighted
graphs, where the ga,b are assigned positive real-valued weights; with the weight of a
path being defined by the product of its edge weights. One finds that [zn](I − zG)−1

equals the total weight of all paths of length n. If furthermore the assignment is made
in such a way that

∑
b ga,b = 1, for all a, then the matrix G, which is called a stochas-

tic matrix, can be interpreted as the transition matrix of a Markov chain. Naturally,
the formulae of Proposition V.6 continue to hold in all these cases.

Word problems corresponding to regular languages can be treated by the theory
of regular specifications whenever they have enough structure and an unambiguous
regular expression description is of tractable form. (This is the main theme of Sub-
section I. 4.1, p. 51, further pursued in Sections V. 3 and V. 4.) The dual point of view
of automata theory introduced in Subsection I. 4.2 (p. 56) proves useful whenever no
such direct description is in sight. Finite automata can be reduced to the theory of
paths in graphs, so that Proposition V.6 is applicable to them. Indeed, the language L
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accepted by a finite automaton A, with set of states Q, initial state q0, and Q f the set
of final states, decomposes as

L =
∑

q∈Q f

F 〈q0,q〉,

where F 〈q0,q〉 is the set of paths from the initial state q0 to the final state, q. (The
corresponding graph � is obtained from A by collapsing multiple edges between any
two vertices, i and j , into a single edge equipped with a weight that is the sum of
the weights of all the letters leading from i to j .) Proposition V.6 is then clearly
applicable.

Profiles. The term “profile of a set of paths”, as used here, means the collection
of the m2 statistics N = (N1,1, . . . , Nm,m) where Ni, j is the number of times the
edge (i −→ j) is traversed. This notion is, for instance, consistent with the notion of
profile given earlier for lattice paths in Section V. 4. It also contains the information
regarding the letter composition of words in a regular language and is thus compatible
with the notion of profile introduced in Section V. 3.

Let � be a graph with edge (a, b) weighted by γa,b. Then, the BGF of paths with
u marking the number of times a particular edge (c, d) is traversed is in matrix form

(I − zG̃)−1, with G̃ = G
[
ga,b 	→ ga,bu[[(a,b)=(c,d)]]

]
.

The entry (i, j) in this matrix gives the BGF of paths with origin i and destination j .
The GF of cumulated values (moments of order 1) is then obtained in the usual way,
by differentiation followed by the substitution u = 1. Higher moments are similarly
attainable by successive differentiations.

V. 5.2. Analytic aspects. In full generality, the components of a linear system
of equations may exhibit the whole variety of behaviours obtained for the OGFs of
regular languages in Section V. 3, p. 300. However, positivity coupled with some
simple ancillary conditions (irreducibility and aperiodicity defined below) entails that
the GFs of interest closely resemble the extremely simple rational function,

1

1 − z/ρ
≡ 1

1 − λ1z
,

where ρ is the dominant positive singularity and λ1 = 1/ρ is a well-characterized
eigenvalue of T . Accordingly, the asymptotic phenomena associated with such sys-
tems are highly predictable and coefficients involve the pure exponential form c ·ρ−n .
We propose first to expound the general theory, then treat classical applications to
statistics of paths in graphs and languages recognized by finite automata.

Irreducibility and aperiodicity of matrices and graphs. From this point on, we
only consider matrices with non-negative entries. Two notions are essential, irre-
ducibility and aperiodicity (the terms are borrowed from Markov chain theory and
matrix theory).

For A a scalar matrix of dimension m × m (with non-negative entries), a crucial
rôle is played by the dependency graph (p. 33); this is the (directed) graph with vertex
set V = {1 . .m} and edge set containing the directed edge (a → b) iff Aa,b  = 0.
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Figure V.15. Irreducibility conditions. Left: a strongly connected digraph. Right: a
weakly connected digraph that is not strongly connected decomposes as a collection
of strongly connected components linked by a directed acyclic graph.

The reason for this terminology is the following: Let A represent the linear transfor-

mation
{

y�i = ∑
j Ai, j y j

}
i
; then, the fact that an entry Ai, j is non-zero means that

y�i depends effectively on y j and is translated by the directed edge (i → j) in the
dependency graph.

Definition V.5. The non-negative matrix A is called irreducible if its dependency
graph is strongly connected (i.e., any two vertices are connected by a directed path).

By considering only simple paths, it is then seen that irreducibility is equivalent to
the condition that (I + A)m has all its entries that are strictly positive. See Figure V.15
for a graphical rendering of irreducibility and for the general structure of a (weakly
connected) digraph.

Definition V.6. A strongly connected digraph � is said to be periodic with parameter
d iff the vertex set V can be partitioned into d classes, V = V0 ∪· · ·∪Vd−1, in such a
way that any edge whose source is an element of a Vj has its destination in Vj+1 mod d .

The largest possible d is called the period. If no decomposition exists with d ≥ 2,
so that the period has the trivial value 1, then the graph and all the matrices that admit
it as their dependency graph are called aperiodic.

For instance, a directed 10–cycle is periodic with parameters d = 1, 2, 5, 10
and the period is 10. Figure V.16 illustrates the notion. Periodicity implies that the
existence of paths of length n between any two given nodes i, j is constrained by the
congruence class n mod d. Conversely, aperiodicity entails the existence, for all n
sufficiently large, of paths of length n connecting i, j .
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V0

V1

V2

V3

Figure V.16. Periodicity notions: the overall structure of a periodic graph with d = 4
(left), an aperiodic graph (middle) and a periodic graph of period 2 (right).

From the definition, a matrix A with period d has, up to simultaneous permutation
of its rows and columns, a cyclic block structure⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 A0,1 0 · · · 0

0 0 A1,2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ad−2,d−1

Ad−1,0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where the blocks Ai,i+1 reflect the connectivity between Vi and Vi+1. In the case of a
period d, the matrix Ad admits a diagonal square block decomposition where each of
its diagonal block is aperiodic (and of a smaller dimension than the original matrix).
Then, the matrices Aνd can be analysed block by block, and the analysis reduces to the
aperiodic case. Similarly for powers Aνd+r for any fixed r as ν varies. In other words,
the irreducible periodic case with period d ≥ 2 can always be reduced to a collection
of d irreducible aperiodic subproblems. For this reason, we usually postulate in our
statements both an irreducibility condition and an aperiodicity condition.
� V.31. Sufficient conditions for aperiodicity. Any one of the following conditions suffices to
guarantee aperiodicity of the non-negative matrix T :

(i) T has (strictly) positive entries;
(i i) some power T s has (strictly) positive entries;
(i i i) T is irreducible and at least one diagonal element of T is non-zero;
(iv) T is irreducible and the dependency graph of T is such that there exist two circuits

(closed paths) that are of relatively prime lengths.

(Any such condition implies in turn the existence of a unique dominant eigenvalue of T , which
is simple, according to Theorem V.7 and Note V.34 below.) �

� V.32. Computability of the period. There exists a polynomial time algorithm that determines
the period of a matrix. (Hint: in order to verify that � is periodic with parameter d , develop a
breadth-first search tree, label nodes by their level, and check that edges have endpoints satis-
fying suitable congruence conditions modulo d .) �

Paths in strongly connected graphs. For analytic combinatorics, the importance
of irreducibility and aperiodicity conditions stems from the fact that they guarantee
uniqueness and simplicity of a dominant pole of path generating functions.
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Theorem V.7 (Asymptotics of paths in graphs). Consider the matrix

F(z) = (I − zT )−1,

where T is a scalar non-negative matrix, in particular, the adjacency matrix of a
graph � equipped with positive weights. Assume that T is irreducible. Then all entries
F 〈i, j〉(z) of F(z) have the same radius of convergence ρ, which can be defined in two
equivalent ways:

(i) as ρ = λ−1
1 with λ1 the largest positive eigenvalue of T ;

(i i) as the smallest positive root of the determinantal equation: det(I −zT ) = 0.

Furthermore, the point ρ = λ−1
1 is a simple pole of each F 〈i, j〉(z).

If T is irreducible and aperiodic, then ρ = λ−1
1 is the unique dominant singularity

of each F 〈i, j〉(z), and

[zn]F 〈i, j〉(z) = ϕi. jλ
n
1 + O(%n), 0 ≤ % < λ1,

for computable constants ϕi, j > 0.

Proof. The proof proceeds by stages, building up properties of the F 〈i, j〉 by means
of the relations that bind them, with suitable exploitation of Proposition V.6, p. 337 in
conjunction with Pringsheim’s Theorem (p. 240). In parts(i)–(v), we assume that the
matrix T is aperiodic. Periodicity is finally examined in part (vi).

(i) All F 〈i, j〉 have the same radius of convergence. Simple upper and lower
bounds show that each F 〈i, j〉 has a finite non-zero radius of convergence ρi, j . By
Pringsheim’s Theorem, this ρi, j is necessarily a singularity of the function F 〈i, j〉.
Since each F 〈i, j〉 is a rational function, it then has a pole at ρi, j , hence becomes infi-
nite as z → ρi, j . Now, the matrix F satisfies the identities

(85) F = I + zT F, and F = I + zFT .

Thus, given that T is irreducible, each F 〈i, j〉 is positively (linearly) related to any
other F 〈k,�〉. Then, the F 〈i, j〉 must all become infinite as soon as one of them does.
Consequently, all the ρi, j are equal—we let ρ denote their common value.

(i i) All poles are of the same multiplicity. By a similar argument, we see that all
the F 〈i, j〉 must have the same multiplicity κ of their common pole ρ, since otherwise,
one function would be of slower growth, and a contradiction would result with the
linear relations stemming from (85). We thus have, for some ϕi, j > 0 and κ ≥ 1:

F 〈i, j〉(z) ∼
z→ρ

ϕi, j

(1 − z/ρ)κ
.

(i i i) The common multiplicity of poles is κ = 1. This property results from
the expression of the GF of all rooted circuits (Proposition V.6, Part (i i)) in terms of a
logarithmic derivative, which has by construction only simple poles. Hence, a positive
linear combination of some of the F 〈i, j〉 has only a simple pole, so that κ = 1 and

(86) F 〈i, j〉(z) ∼
z→ρ

ϕi, j

1 − z/ρ
.
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Another consequence is that we have ρ = 1/λ1, where λ1 is an eigenvalue of matrix
T , which then satisfies the property that λ1 ≥ |λ| for any eigenvalue λ of T : in matrix
theory terminology, such an eigenvalue is called dominant10.

(iv) There are positive dominant eigenvectors. From the relations (85) satisfied
by the F 〈i, j〉(z) with j fixed and from (86), one finds as z → ρ

(87)
ϕi, j

1 − z/ρ
∼ ρ

∑
k

ti,kϕk, j

1 − z/ρ
, where T = (Ti, j ).

This expresses the fact that the column vector (ϕ1, j , . . . , ϕm, j )
t is a right eigenvector

corresponding to the eigenvalue λ1 = ρ−1. Similarly, for each fixed i , the row vec-
tor (ϕi,1, . . . , ϕi,m) is found to be a left eigenvector. By part (i i), these eigenvector
have all their components strictly positive.

(v) The eigenvalue λ1 is simple. This property is needed in order to identify the
ϕi, j coefficients. We base our proof on the Jordan normal form and simple inequalities.

Assume first that there are two different Jordan blocks corresponding to the eigen-
value λ1. Then there exist two vectors, v = (v1, . . . , vm)

t and w = (w1, . . . , wm)
t ,

such that

T v = λ1v, Tw = λ1w,

where we may assume that the eigenvector v has positive coordinates, given part (iv).
Let j0 be an index such that

|w j0 |
v j0

= max
j=1 . .m

|w j |
v j

.

By possibly changing w to −w and by rescaling, we may freely assume that w j0 =
v j0 . Also, since v and w are not collinear, there must exist j1 such that |w j1 | < v j1 .
In summary:

(88) w j0 = v j0 , |w j1 | < v j1, ∀ j : |w j | ≤ v j .

Consider finally the two relations T mv = λm
1 v and T mw = λm

1 w, and examine con-
sequences for the j0 components. One has

(89) v j0 =
m∑

k=1

U j0,kvk, w j0 =
m∑

k=1

U j0,kwk,

where each U j,k , the ( j, k) entry of T m , is positive, by the irreducibility and aperi-
odicity assumptions. But then, by the triangle inequality, there is a contradiction be-
tween (89) and (88). Thus, there cannot be two distinct Jordan blocks corresponding
to λ1.

It only remains to exclude the existence of a Jordan block of dimension ≥ 2
associated with λ1. If such a Jordan block were present, there would exists a vector w

10In matrix theory, a dominant eigenvalue (λ1) is one that is largest in modulus, while, for an analytic
function, a dominant singularity (ρ) is one that is smallest in modulus. The two notions are reconciled by
the fact that singularities of generating functions are inverses of eigenvalues of matrices (ρ = 1/λ1).
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such that

(90)

{
T v = λ1w

Tw = λ1w + v
implying

{
T νmv = λνm

1 w,

T νmw = λνm
1 w + νmλνm−1

1 v.

By simple bounds obtained from comparing w to v componentwise, it is found that
the vector T νmw must have all its coordinates that are O(λνm

1 ). Upon taking ν → ∞,
a contradiction is reached with the last relation of (90), where the growth of these
coordinates is of the form νλνm

1 . Thus, a Jordan block of dimension ≥ 2 is also
excluded, and the eigenvalue λ1 is simple.

(vi) Aperiodicity of T is equivalent to the existence of a unique dominant eigen-
value. If λ1 uniquely dominates, meaning that λ1 > |λ| for all eigenvalues λ  = λ1,
then each F 〈i, j〉 has a simple pole at ρ that is its unique dominant singularity. Hence
the coefficients [zn]F 〈i, j〉(z) are non-zero for n large enough, since they are asymp-
totic to ϕi, jρ

−n by (86). This last property ensures aperiodicity.
Conversely, if T is aperiodic, then λ1 uniquely dominates. Indeed, suppose that

μ is an eigenvalue of T such that |μ| = λ1, with w a corresponding eigenvector. We
would have T mv = λm

1 v and T mw = μmw. But then, by an argument similar to the
one used in part (v), upon making use of inequalities (88), we would need to have w
and v collinear, which is absurd.

We leave it as an exercise to the reader to verify the stronger property that identi-
fies the period with the number of dominant eigenvalues: see Note V.33. �

Several of these arguments will inspire the discussion, in Chapter VII, of the
harder problem of analysing coefficients of algebraic functions defined by positive
polynomial systems (Subsection VII. 6.3, p. 488).

� V.33. Periodicities. If T has period d , then the support of each F〈 j, j〉(z) is included in dZ,
hence there are at least d conjugate singularities, corresponding to eigenvalues of the form
λ1e2ikπ/d . There are no other eigenvalues since T d is built out of irreducible blocks, each with
the unique dominant eigenvalue λd

1 . �

� V.34. The classical Perron–Frobenius Theorem. The proof of Theorem V.7 immediately
gives the following famous statement.

Theorem (Perron–Frobenius Theorem). Let A be a matrix with non-negative elements
that is assumed to be irreducible. The eigenvalues of A can be ordered in such a way that

λ1 = |λ2| = · · · = |λd | > |λd+1| ≥ |λd+2| ≥ · · · ,
and all the eigenvalues of largest modulus are simple. Furthermore, the quantity d is precisely
equal to the period of the dependency graph. In particular, in the aperiodic case d = 1, there
is unicity of the dominant eigenvalue. In the periodic case d ≥ 2, the whole spectrum has a
rotational symmetry: it is invariant under the set of transformations

λ 	→ λe2i jπ/d , j = 0, 1, . . . , d − 1.

The properties of positive and of non-negative matrices have been superbly elicited by Per-
ron [478] in 1907 and by Frobenius [271] in 1908–1912. The corresponding theory has far-
reaching implications: it lies at the basis of the theory of finite Markov chains and it extends
to positive operators in infinite-dimensional spaces [390]. Excellent treatments of Perron–
Frobenius theory are to be found in the books of Bellman [34, Ch. 16], Gantmacher [276,
Ch. 13], as well as Karlin and Taylor [363, p. 536–551]. �
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� V.35. Unrooted circuits. Consider a strongly connected weighted graph � with adjacency
matrix G = (gi, j ). Let RC be the class of all rooted circuits and PRC the subclass of those
that are primitive (i.e., they differ from all their cyclic shifts). Let also UC be the class of all
unrooted circuits (no origin distinguished) and PUC the subclass of those that are primitive.
Define the adjacency matrix G3s := (

(gi, j )
s) obtained by raising each entry of G to the sth

power. Set finally �G(z) := det(I − zG). We find⎧⎪⎪⎪⎨⎪⎪⎪⎩
RC(z,G) =

∑
k≥1

P RC(zk ,G3k), PUC(z,G) =
∫ z

0
P RC(t,G)

dt

t
,

UC(z,G) =
∑
k≥1

PUC(zk ,G3k),

upon mimicking the reasoning of Appendix A.4: Cycle construction, p. 729. This results in

UC(z) =
∑
k≥1

ϕ(k)

k
log

(
1/�G3k (z)

)
,

[zn]UC(z) = λn
1

n
+ O(%n), [zn]PUC(z) = λn

1
n

+ O(%n),

where the two asymptotic estimates hold under irreducibility and aperiodicity conditions. These
estimates can be regarded as a Prime Number Theorem for walks in graphs. (See [555] for
related facts and zeta functions of graphs.) �

Profiles. The proof of Theorem V.7 additionally provides the form of a certain
“residue matrix”, from which several probabilistic properties of paths follow.

Lemma V.1 (Iteration of irreducible matrices). Let the non-negative matrix T be ir-
reducible and aperiodic, with λ1 its dominant eigenvalue. Then the residue matrix 	
such that

(91) (I − zT )−1 = 	

1 − zλ1
+ O(1) (z → λ−1

1 )

has entries given by (〈x, y〉 represents the scalar product
∑

i xi yi )

ϕi, j = ri� j

〈r, �〉 ,
where r and � are, respectively, right and left eigenvectors of T corresponding to the
eigenvalue λ1.

Proof. We have seen that the matrix	 = (ϕi, j ) has its rows and columns proportional,
respectively, to right and left eigenvectors belonging to the eigenvalue λ1. Thus, we
have

ϕi, j

ϕ1, j
= ϕi,1

ϕ1,1
,

while the ϕ1, j (respectively, ϕi,1) are the coordinates of a left (respectively, right)
eigenvector. There results that there exists a normalization constant ξ such that

ϕi, j = ξri� j .

That normalization constant is then determined by the fact that the GF of circuits has
residue equal to ρ = λ−1

1 at z = ρ, so that
∑

i ϕ j, j = 1, leading to

1 = ξ
∑

j

r j� j ,
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which implies the statement. �
Equipped with the lemma, we can now state:

Theorem V.8 (Profiles of paths in graphs). Let G be a non-negative matrix associ-
ated to a weighted digraph �, assumed to be irreducible and aperiodic. Let �, r be,
respectively, the left and right eigenvectors corresponding to the dominant (Perron–
Frobenius) eigenvalue λ1. Consider the collection F 〈a,b〉 of (weighted) paths in � with
fixed origin a and final destination b. Then, the number of traversals of edge (s, t) in
a random element of F 〈a,b〉

n has mean

(92) τs,t n + O(1) where τs,t := �s gs,t rt

〈�, r〉 .

In other words, a long random path tends to spend asymptotically a fixed (non-zero)
fraction of its time traversing any given edge. Accordingly, the number of visits to
vertex s is also proportional to n and obtained by summing the expression of (92) over
all the possible values of t .

Proof. First, the total weight (“number”) of paths in Fa,b satisfies

(93) [zn]
[
(I − zG)−1

]
a,b

∼ ra�b

〈�, r〉λ
n
1,

as follows from Lemma V.1. Next, introduce the modified matrix H = (hi, j ) defined
by

hi, j = gi, j u[[i=s∧ j=t]].

In other words, we mark each traversal of edge i, j by the variable u. Then, the
quantity

(94) [zn]

[
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

]
a,b

represents the total number of traversals of edge (s, t), with weights taken into ac-
count. Simple algebra11 shows that

(95)
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

= (I − zG)−1 (zH′) (I − zG),

where H′ := (∂uH)u=1 has all its entries equal to 0, except for the s, t entry whose
value is gs,t . By the calculation of the residue matrix in Lemma V.1, the coefficient
of (94) is then asymptotic to

(96) [zn]
ϕa,s

1 − λ1z
gs,t z

ϕt,b

1 − λ1z
∼ υnλn

1, υ := ra�s gs,t rt�b

〈�, r〉2
.

Comparison of (96) and (93) finally yields the result since the relative error terms are
O(n−1) in each case. �

11 If A is an operator depending on u, one has ∂u(A−1) = −A−1(∂u A)A−1, which is a non-
commutative generalization of the usual differentiation rule for inverses.
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Another consequence of this last proof and Equation (93) is that the numbers of
paths starting at a and ending at either b or c satisfy

(97) lim
n→∞

F 〈a,b〉
n

F 〈a,c〉
n

= �b

�c
.

In other words, the quantity
�b∑
j � j

is the asymptotic probability that a random path with origin fixed at some point a but
otherwise unconstrained will end up at point b after a large number of steps. Such
properties are strongly evocative of Markov chain theory discussed below in Exam-
ple V.13, p. 352.
� V.36. Residues and projections. Let E = Cm be the ambient space, where m is the dimen-
sion of T , assumed to be irreducible and aperiodic. There exists a direct sum decomposition
E = F1 ⊕ F2 where F1 is the one-dimensional eigenspace generated by the eigenvector (r )
corresponding to eigenvalue λ1 and F2 is the supplementary space which is the direct sum of
characteristic spaces corresponding to the other eigenvalues λ2, . . . . (For the purposes of the
present discussion, one may freely think of the matrix as diagonalizable, with F2 the union of
eigenspaces associated to λ2, . . . .) Then T as a linear operator acting on F admits the decom-
position

T = λ1 P + S,

where P is the projector on F1 and S acts on F2 with spectral radius |λ2|, as illustrated by the
diagram:

(98)

O

�v
P�v
(r)

F2S�v
By standard properties of projections, P2 = P and P S = S P = 0 so that T n = λn

1 P + Sn .
Consequently, there holds,

(99) (I − zT )−1 =
∑
n≥0

(
znλn

1 P + zn Sn) = P

1 − λ1z
+ (I − zS)−1.

Thus, the residue matrix 	 coincides with the projector P .
From this, one finds also

(100) (I − zT )−1 = 	

1 − λ1z
+

∑
k≥0

Rk

(
z − λ−1

1

)k
, Rk := Sk(I − λ−1

1 S)−k−1,

which provides a full expansion. �

� V.37. Algebraicity of the residues. One only needs to solve one polynomial equation in
order to determine λ1. Then the entries of 	 and the Rk in (100) are all obtained by rational
operations in the field generated by the entries of T extended by the algebraic quantity λ1: for
instance, in order to get an eigenvector, it suffices to replace one of the equations of the system
T r = λ1r by a normalization condition, like r1 + · · · + rm = 1. (Numerical procedures are
likely to be used instead for large matrices.) �
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Automata and words. By proposition V.6 (p. 337), the OGF of the language de-
fined by a deterministic finite automaton is expressible in terms of the quasi-inverse
(1 − zT )−1, where the matrix T is a direct encoding of the automaton’s transitions.
Corollary V.7 and Lemma V.1 have been precisely custom-tailored for this situation.
We shall allow weights on letters of the alphabet, corresponding to a Bernoulli model
on words. We say that an automaton is irreducible (respectively, aperiodic) if the
underlying graph and the associated matrix are irreducible (respectively, aperiodic).

Proposition V.7 (Random words and automata). Let L be a language recognized by
a deterministic finite automaton A whose graph is irreducible and aperiodic. The
number of words of L satisfies

Ln ∼ cλn
1 + O(%n),

where λ1 is the dominant (Perron–Frobenius) eigenvalue of the transition matrix of A
and c,% are real constants with c > 0 and 0 ≤ % < λ1.

In a random word of Ln, the number of traversals of a designated vertex or edge
has a mean that is asymptotically linear in n, as given by Theorem V.8.

� V.38. Unambiguous automata. A non-deterministic finite state automaton is said to be unam-
biguous if the set of accepting paths for any given words comprises at most one element. The
translation into a generating function as described above also applies to such automata, even
though they are non-deterministic. �

� V.39. Concentration of distribution for the number of passages. Under the conditions of
the theorem, the standard deviation of the number of traversals of a designated node or edge
is O(

√
n). Thus in a random long path, the distribution of the number of such traversals is

concentrated. [Compared to (95), the calculation of the second moment requires taking a further
derivative, which leads to a triple pole. The second moment and the square of the mean, which
are each O(n2), are then found to cancel to main asymptotic order.] �

V. 5.3. Applications. We now provide a few application of Theorems V.7 and V.8.
First, Example V.11 studies briefly the case of words that are locally constrained in
the sense that certain transitions between letters are forbidden; Example V.12 revisits
walks on an interval and develops an alternative matrix view of a problem otherwise
amenable to continued fraction theory. Next, Example V.13 makes explicit the way
the fundamental theorem of finite Markov chain theory can be derived effortlessly as a
consequence of the more general Theorem V.8, and Example V.14 compares on a sim-
ple problem, the devil’s staircase, the combinatorial and the Markovian approaches.
Example V.15 comes back to words and develops simple consequences of an impor-
tant combinatorial construction, that of De Bruijn graphs. This graph is invaluable in
predicting in many cases the shape of the asymptotic results that are to be expected
when confronted with word problems; Finally, Example V.16 concludes this section
with a brief discussion of the special case of words with excluded patterns, thereby
leading to a quantitative version of Borges’ Theorem (Note I.35, p. 61).

In all these cases, the counting estimates are of the form cλn
1, whereas the expec-

tations of parameters of interest have a linear growth.

Example V.11. Locally constrained words. Consider a fixed alphabet A = {a1, . . . , am} and a
set F ⊆ A2 of forbidden transitions between consecutive letters. The set of words over A with
no such forbidden transition is denoted by L and is called a locally constrained language. (The
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⎛⎝ 1 1 0 0
1 0 1 1
1 0 0 0
0 0 1 1

⎞⎠
a b

a

a

b

a

d c
d

c

c

d

Figure V.17. Locally constrained words: The transition matrix (T ) associated to the
forbidden pairs F = {ac, ad, bb, cb, cc, cd, da, db}, the corresponding automaton,
and the graph with widths of vertices and edges drawn in proportion to their asymp-
totic frequencies.

particular case where exactly all pairs of equal letters are forbidden corresponds to Smirnov
words and has been discussed on p. 262.)

Clearly, the words of L are recognized by an automaton whose state space is isomorphic
to A: state q simply memorizes the fact that the last letter read was a q . The graph of the au-
tomaton is then obtained by the collection of allowed transitions (q, r) 	→ a, with (q, r)  ∈ F .
(In other words, the graph of the automaton is the complete graph in which all edges that corre-
spond to forbidden transitions are deleted.) Consequently, the OGF of any locally constrained
language is a rational function. Its OGF is given by

(1, 1, . . . , 1)(I − zT )−1(1, 1, . . . , 1)t ,

where Ti j is 0 if (ai , a j ) ∈ F and 1 otherwise. If each letter can occur later than any other letter
in an accepted word, the automaton is irreducible. Also, the graph is aperiodic except in a few
degenerate cases (e.g., in the case where the allowed transitions would be a → b, c; b → d;
c → d; d → a). Under irreducibility and aperiodicity, the number of words must be ∼ cλn

1
and each letter has on average an asymptotically constant frequency. (See (34) and (35) of
Chapter IV, p. 262, for the case of Smirnov words.)

For the example of Figure V.17, the alphabet is A = {a, b, c, d}. There are eight forbidden
transitions and the characteristic polynomial χG(λ) := det(λI − G) is found to be λ3(λ − 2).
Thus, one has λ1 = 2. The right and left eigenvectors are found to be

r = (2, 2, 1, 1)t , � = (2, 1, 1, 1).

Then, the matrix τ , where τs,t represents the asymptotic frequency of transitions from letter s
to letter t , is found in accordance with Theorem V.8:

τ =

⎛⎜⎜⎜⎝
1
4

1
4 0 0

1
8 0 1

16
1

16
1
8 0 0 0
0 0 1

16
1

16

⎞⎟⎟⎟⎠ .

This means that a random path spends a proportion equal to 1/4 of its time on a transition
between an a and a b, but much less (1/16) on transitions between pairs of letters bc, bd, cc, ca.
The letter frequencies in a random word of L are (1/2, 1/4, 1/8, 1/8), so that an a is four times
more frequent than a c or a d , and so on. See Figure V.17 (right) for a rendering.
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Various specializations, including multivariate GFs and non-uniform letter models, are
readily treated by this method. Bertoni et al. [59] develop related variance and distribution
calculations for the number of occurrences of a symbol in an arbitrary regular language. . . . �

Example V.12. Walks on the interval. As a direct illustration, consider the walks associated
to the graph �(5) with vertex set 1, . . . , 5 and edges being formed of all pairs (i, j) such that
|i − j | ≤ 1. The graph �(5) and its incidence matrix G(5) are

�(5) =
51 2 3 4

, G(5) =

⎛⎜⎝ 1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

⎞⎟⎠.
The characteristic polynomial χG(5)(z) := det(z I − G(5)) factorizes as

χG(5)(z) = z(z − 1)(z − 2)(z2 − 2z − 2),

and its dominant root is λ1 = 1 +√
3. From here, one finds a left eigenvector (which is also a

right eigenvector since the matrix is symmetric):

r = �t = (1,
√

3, 2,
√

3, 1).

Thus a random path (with the uniform distribution over all paths corresponding to the weights
being equal to 1) visits nodes 1, . . . , 5 with frequencies proportional to

1, 1.732, 2, 1.732, 1,

implying that the non-extremal nodes are visited more often—such nodes have higher degrees
of freedom, so that there tend to be more paths that traverse them.

In fact, this example has structure. For instance, the graph �(11) defined by an interval of
length 10, leads to a matrix with a highly factorable characteristic polynomial

χG(11) = z (z − 1) (z − 2)
(

z2 − 2 z − 2
) (

z2 − 2 z − 1
) (

z4 − 4 z3 + 2 z2 + 4 z − 2
)
.

The reader may have recognized here a particular case of lattice paths, which is covered by the
theory presented in Section V. 4, p. 318. Indeed, according to Proposition V.3, the OGF of paths
from vertex 1 to vertex 1 in the graph �(k) with vertex set {1, . . . , k} is given by the continued
fraction

1

1 − z − z2

1 − z − z2

. . .

1 − z − z2

1 − z

.

(The number of fraction bars is k.) From this it can be shown that the characteristic polynomial
of G is an elementary variant of the Fibonacci–Chebyshev polynomial of Example V.8, p. 326.
The analysis based on Theorem V.8 is simpler, albeit more rudimentary, as it only provides a
first-order asymptotic solution to the problem.

This example is typical: whenever combinatorial problems have the appropriate amount of
regularity, all the resources of linear algebra are available, including the vast body of knowledge
gathered over years on calculations of structured determinants, which is well summarized in
Krattenthaler’s survey [391] and the book by Vein and Dale [594]. . . . . . . . . . . . . . . . . . . . . . . �
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G =

⎛⎜⎜⎜⎝
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

⎞⎟⎟⎟⎠ G̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0
1
2 0 0 1

2 0 0
1
2 0 0 0 1

2 0
1
2 0 0 0 0 1

2
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Figure V.18. The devil’s staircase (m = 6) and the two matrices that can model it.

Example V.13. Elementary theory of finite Markov chains. Consider the case where the row
sums of matrix G are all equal to 1, that is,

∑
j gi, j = 1. Such a matrix is called a stochastic

matrix. The quantity gi, j can then be interpreted as the probability of leaving state i for state j ,
assuming one is in state i . Assume that the matrix G is irreducible and aperiodic. Clearly, the
matrix G admits the column vector r = (1, 1, . . . , 1)t as a right eigenvector corresponding to
the dominant eigenvalue λ1 = 1. The left eigenvector � normalized so that its elements sum
to 1 is called the (row) vector of stationary probabilities. It must be calculated by linear algebra
and its determination involves finding an element of the kernel of matrix I − G, which can be
done in a standard way.

Theorem V.8 and Equation (93) immediately imply the following:

Proposition V.8 (Stationary probabilities of Markov chains). Consider a weighted graph cor-
responding to a stochastic matrix G which is irreducible and aperiodic. Let � be the normalized
left eigenvector corresponding to the eigenvalue 1. A random (weighted) path of length n with
fixed origin and destination visits node s a mean number of times asymptotic to �sn and tra-
verses edge (s, t) a mean number of times asymptotic to �s gs,t n. A random path of length n
with fixed origin ends at vertex s with probability asymptotic to �s .

The vector � is also known as the vector of stationary probabilities. The first-order asymp-
totic property expressed by Proposition V.8 certainly constitutes the most fundamental result in
the theory of finite Markov chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example V.14. The devil’s staircase. This example illustrates an elementary technique often
employed in calculations of eigenvalues and eigenvectors. It presupposes that the matrix to be
analysed can be reduced to a sparse form and has a sufficiently regular structure.

You live in a house that has a staircase with m steps. You come back home a bit loaded
and at each second, you can either succeed in climbing a step or fall back all the way down. On
the last step, you always stumble and fall back down (Figure V.18). Where are you likely to be
found at time n?

Precisely, two slightly different models correspond to this informally stated problem. The
probabilistic model views it as a Markov chain with equally likely possibilities at each step and
is reflected by matrix G̃ in Figure V.18. The combinatorial model just assumes all possible
evolutions (“histories”) of the system as equally likely and it corresponds to matrix G. We opt
here for the latter, keeping in mind that the same method basically applies to both cases.

We first write down the constraints expressing the joint properties of an eigenvalue λ and
its right eigenvector x = (x1, . . . , xm)

t . The equations corresponding to (λI − G)x = 0 are
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formed of a first batch of m − 1 relations,

(101) (λ− 1)x1 − x2 = 0, −x1 + λx2 − x3 = 0, · · · ,−x1 + λxm−1 − xm = 0,

together with the additional relation (one cannot go higher than the last step):

(102) −x1 + λxm = 0.

The solution to (101) is readily found by pulling out successively x2, . . . , xm as functions of x1:

(103) x2 = (λ− 1)x1, x3 = (λ2 − λ− 1)x1, · · · , xm = (λm−1 − λm−2 − · · ·− 1)x1.

Combined with the special relation (102), this last relation shows that λmust satisfy the equation

(104) 1 − 2λm + λm+1 = 0.

Let λ1 be the largest positive root of this equation, existence and dominance being guaranteed
by Perron–Frobenius properties. Note that the quantity ρ := 1/λ1 satisfies the characteristic
equation

1 − 2ρ + ρm+1 = 0,

already encountered when discussing longest runs in words; the discussion of Example V.4 then
grants us the existence of an isolated ρ near 1

2 , hence the fact that λ1 is slightly less than 2.
Similar devices yield the left eigenvector y = (y1, . . . , ym). It is found easily that y j must

be proportional to λ− j
1 . We thus obtain from Theorem V.8 and Equation (97): The probability

of being in state j (i.e., being on step j of the stair) at time n tends to the limit

� j = γ λ
− j
1

where λ1 is the root near 2 of the polynomial (104) and the normalization constant γ is deter-
mined by

∑
j � j = 1. In other words, the distribution of the altitude at time n is a truncated

geometric distribution with parameter 1/λ1. For instance, m = 6 leads to λ1 = 1.98358, and
the asymptotic probabilities of being in states 1, . . . , 6 are

(105) 0.50413, 0.25415, 0.12812, 0.06459, 0.03256, 0.01641,

exhibiting a clear geometric decay. Here is the simulation of a random trajectory for n = 100:

0 20 40 60 80 100

5

.

In this case, the frequencies observed are 0.44, 0.26, 0.17, 0.08, 0.04, 0.01, pretty much in
agreement with what is expected.

Finally, the similarity with the longest run problem in words is easily explained. Let u
and d be letters representing steps upwards and downwards, respectively. The set of paths from
state 1 to state 1 is described by the regular expression

P1,1 =
(

d + ud + · · · + um−1d
)�
,

corresponding to the generating function

P1,1(z) =
1

1 − z − z2 − · · · − zm
,

a variant of the OGF of words without m–runs of the letter u, which also corresponds to the
enumeration of compositions with summands ≤ m. (The case of the probabilistic transition
matrix G̃ is left as an exercise to the reader.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Example V.15. De Bruijn graphs. Two thieves want to break into a house whose entrance
is protected by a digital lock with an unknown four-digit code. As soon as the four digits of
the code are typed consecutively, the gate opens. The first thief proposes to try in order all the
four-digit sequences, resulting in as much as 40 000 key strokes in the worst-case. The second
thief, who is a mathematician, says he can try all four-digit combinations with only 10 003 key
strokes. What is the mathematician’s trade secret?

Clearly certain optimizations are possible: for instance, for an alphabet of cardinality 2
and codes of two letters, the sequence 00110 is better than the naı̈ve one, 00 01 10 11, which
is redundant; a few more attempts will lead to an optimal solution for three-digit codes that has
length 10 (rather than 24), for instance,

0001110100.

The general question is then: How far can one go and how to construct such sequences?
Fix an alphabet of cardinality m. A sequence that contains as factors (contiguous blocks)

all the k letter words is called a de Bruijn sequence. Clearly, its length must be at least δ(m, k) =
mk + k − 1, as it must have at least mk positions at distance at least k − 1 from the end. A
sequence of smallest possible length δ(m, k) is called a minimal de Bruijn sequence. Such
sequences were discovered by N. G. de Bruijn [140] in 1946, in response to a question coming
from electrical engineering, where all possible reactions of a device presented as a black box
must be tested at minimal cost. We shall treat here the case of a binary alphabet, m = 2, the
generalization to m > 2 being obvious.

Let � = k−1 and consider the automaton B� that memorizes the last block of length � read
when scanning the input text from left to right. A state is thus assimilated to a string of length �
and the total number of states is 2�. The transitions are easily calculated: let q ∈ {0, 1}� be
a state and let σ(w) be the function that shifts all letters of a word w one position to the left,
dropping the first letter of w in the process (thus σ maps {0, 1}� to {0, 1}�−1); the transitions
are

q
0	→ σ(q)0, q

1	→ σ(q)1.

If one further interprets a state q as the integer in the interval [0 . . 2�−1] that it represents, then
the transition matrix assumes a remarkably simple form:

Ti, j = [[( j ≡ 2i mod 2�) or ( j ≡ 2i + 1 mod 2�)]].

See Figure V.19 for a rendering borrowed from [263].
Combinatorially, the de Bruijn graph is such that each node has indegree 2 and outdegree 2.

By a well known theorem going back to Euler: A necessary and sufficient condition for an
undirected connected graph to have an Eulerian circuit (that is, a closed path that traverses
each vertex exactly once) is that every node has even degree. For a strongly connected digraph,
the condition is that each node has an outdegree equal to its indegree. This last condition is
obviously satisfied here. Take an Eulerian circuit starting and ending at node 0�; its length is
2�+1 = 2k . Then, clearly, the sequence of edge labels encountered when prefixed with the word
0k−1 = 0� constitutes a minimal de Bruijn sequence. In general, the argument gives a de Brujin
sequence with minimal length mk +k −1. Et voilà! The trade secret of the thief-mathematician
is exposed.

Back to enumeration. The de Bruijn matrix is irreducible since a path labelled by suffi-
ciently many zeros always leads any state to the state 0�, while a path ending with the letters
of w ∈ {0, 1}� leads to state w. The matrix is aperiodic since it has a loop on states 0� and 1�.
Thus, by Perron–Frobenius properties, it has a unique dominant eigenvalue, and it is not hard to
check that its value is λ1 = 2, corresponding to the right eigenvector (1, 1, . . . , 1)t . If one fixes
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Figure V.19. The de Bruijn graph: (left) � = 3; (right) � = 7.

a pattern w ∈ {0, 1}�, Theorem V.8 yields back the known fact that a random word contains
on average ∼ n

2�
occurrences of pattern w, while Note V.39, p. 349, further implies that the

distribution of the number of occurrences is concentrated around the mean, as the variance is
O(n). The de Bruijn graph may be used to quantify many properties of occurrences of patterns
in random words: see for instance [43, 240, 263]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example V.16. Words with excluded patterns. Fix a finite set of patterns � = {w1, . . . , wr },
where each w j is a word of A�. The language E ≡ E� of words that contain no factor in � is
described by the extended regular expression

E = A� \
r⋃

j=1

(A�w j A�),

which constitutes a concise but highly ambiguous description. By closure properties of regular
languages, E is itself regular and there must exist a deterministic automaton that recognizes it.

An automaton recognizing E can be constructed starting from the de Bruijn automaton of
index k = −1+max |w j | and deleting all the vertices and edges that correspond to a word of �.
Precisely, vertex q is deleted whenever q contains a factor in �; the transition (edge) from q
associated with letter α gets deleted whenever the word qα contains a factor in �. The pruned
de Bruijn automaton, call it B◦

k , accepts all words of 0kE , when it is equipped with the initial

state 0k and all states are final. Thus, the OGF E(z) is in all cases a rational function.
The matrix of B◦

k is the matrix of the de Bruijn graph Bk with some non-zero entries re-
placed by 0. Assume that B◦

k is irreducible. This assumption only eliminates a few pathological
cases (e.g., � = {01} on the alphabet {0,1}). Then, the matrix of B◦

k admits a simple Perron–
Frobenius eigenvalue λ1. By domination properties (�  = ∅), we must have λ1 < m, where m
is the cardinality of the alphabet. Aperiodicity is automatically granted. We then get by a purely
qualitative argument: The number of words of length n excluding patterns from the finite set �
is, under the assumption of irreducibility, asymptotic to c(λ1/m)n, for some c > 0 and λ1 < m.
This gives us in a simple manner a strong version of what has been earlier nicknamed “Borges’s
Theorem” (Note V.35, p. 61): Almost every sufficiently long text contains all patterns of some
predetermined length �.

The construction of a pruned automaton is clearly a generalization of the case of words
obeying local constraints in Example V.11 above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Transfer matrix method. Let C be a combinatorial class to be enumerated.

(i) Determine a collection C1, C2, . . . , Cm of classes, with C1 ∼= C such that the following
system of equation holds:

(106) C j =
∑

k∈{1,2,...,m}
� j,kCk + I j , j = 1, 2, . . . ,m,

where each � j,k and each I j is a finite class.
(i i) The OGF C(z) = C1(z) is then given by the solution of the linear system

(107) C j (z) =
∑

j

� j,k(z)Ck(z)+ I j (z), j = 1, . . . ,m,

where � j,k(z) and I j (z) are the generating polynomials of � j,k and I j , respectively. Accord-

ingly, C(z) is a C[z]–linear combination of entries of the quasi-inverse matrix (I −�(z))−1.

Figure V.20. A summary of the basic transfer matrix method.

� V.40. Walks on undirected graphs. Consider an undirected graph �, where one moves by
following at each step a random edge of the graph, uniformly at random from the current posi-
tion. Then, the transition matrix P = (pi j ) of the associated Markov chain is: pi, j = 1/ deg(i)
if (i, j) is an edge, where deg(i) is the degree of vertex i . The stationary distribution is given
by πi = (deg(i))/(2||E ||), where ||E || is the number of edges of �. In particular, if the graph
is regular, the stationary distribution is uniform. (See Aldous and Fill’s forthcoming book [11]
for (much) more.) �

� V.41. Words with excluded patterns and digital trees. Let S be a finite set of words. An
automaton recognizing S, considered as a finite language, can be constructed as a tree. The tree
obtained is akin to the classical digital tree or trie that serves as a data structure for maintaining
dictionaries [378]. A modification of the construction yields an automaton of size linear in the
total number of characters that appear in words of S. [Hint. The construction can be based on
the Aho–Corasick automaton [5, 538]). �

V. 6. Transfer matrix models

There exists a cluster of applications of rational functions to problems that are nat-
urally described as paths in digraphs, but with edges that may be of different sizes. In
physics, such models lie at the heart of what is known as the “transfer matrix method”.
Technically, the theory is a simple extension of the standard case of paths in graphs
developed in Section V. 5. Its main interest lies in its expressiveness as regards a num-
ber of combinatorial problems, including trees of bounded width, partial models of
self-avoiding walks, and certain constrained permutation problems.

V. 6.1. Combinatorial aspects. The transfer matrix method constitutes a variant
of the modelling by deterministic automata and by paths in standard graphs. The
general framework is summarized in Figure V.20. The idea is to set up a system
of linear equations that relate a cleverly crafted collection of classes (“states”) C j ,
which are of the same nature as the original class C that is to be enumerated. The
combinatorial system (106) in Figure V.20 can then be visualized as a graph, with
the objects of the � j,k classes attached to edges (“transitions between states”) being
generally of different sizes.
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Definition V.7. Given a directed multigraph � with vertex set V and edge set E, a
size function on � is any function σ : E → Z≥1. A sized graph is a pair (G, σ ),
where σ is a size function.

Paths are defined in the same way as in Section V. 5. The length of a path is, as
usual, the number of edges it comprises; the size of a path is defined to be the sum of
the sizes of its edges. As in the basic case treated in the previous section, we also allow
edges to carry positive weights (multiplicities, probability coefficients), the weight of
a path being the product of the weights of its edges.

Definition V.8. A matrix T (z) is a transfer matrix if each of its entries is a polynomial
in z with non-negative coefficients. A transfer matrix T (z) is said to be proper if T (0)
is nilpotent, that is, T (0)r = 0 for some r ≥ 1.

Examples of transfer matrices are

z

(
1
4

3
4

1
2

1
2

)
,

(
0 1
z3 z + z2

)
,

and both are proper. For the graphs and automata considered in Section V. 5, all edges
were taken to be of unit size. In that case, the associated (weighted) adjacency matrices
are invariably of the form T (z) = zS, with S a scalar matrix having non-negative
entries, and thus are very particular cases of proper transfer matrices.

Given a sized graph � equipped with weight function w : E → R>0 (with
w(e) ≡ 1 in the pure enumerative case), we can associate to it a transfer matrix T (z)
as follows:

(108) Ta,b(z) =
∑

e∈Edge(a,b)

w(e)z|e|.

There, Edge(a, b) represents the set of all edges connecting a to b; w(e) and |e| ≡
σ(e) represent, respectively, the weight and the size of edge e. The matrix T (z) whose
(a, b)–entry is the polynomial Ta,b(z), as given in (108), is called the transfer matrix
of the (weighted, sized) graph. By Definition V.7, the transfer matrix of a sized graph
is always proper. Since T (z)m describes all paths in the graph with z marking size,
the proof techniques of Proposition V.6 (p. 337) immediately provide:

Proposition V.9. Given a sized graph with associated transfer matrix T (z), the OGF
F 〈i, j〉(z) of the set of paths from i to j , where z marks size, is the entry i, j of the
matrix (I − T (z))−1:

F 〈i, j〉(z) =
(
(I − T (z))−1

)
i, j
.

V. 6.2. Analytic aspects. In order to apply the general results from Section V. 5
to transfer matrices, we must first take note of an easy reduction of transfer matrices
to the standard case of paths in graphs where all edges have size 1.

Given a sized graph �, one can build as follows a standard graph Ĝ where all
edges of Ĝ have unit size. The set of vertices of Ĝ is the set of vertices of � augmented
by additional vertices called relay nodes. For each edge e of size σ(e) = m in �,
introduce m − 1 additional relay nodes and connect these in Ĝ by a simple path from
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a to b, with edges all of size 1. Here is for instance the transcription of an edge of
length 4 in � by means of three relay nodes in Ĝ:

Clearly, the vertices of � are a subset of the vertices of Ĝ and all paths of � correspond
to paths of Ĝ. Let T̂ be the (scalar) adjacency matrix of �. Then, the quasi-inverse
(I − zT̂ )−1 describes all the paths in �, with size taken into account, in the sense that
the entry of index (i, j) in this quasi-inverse is the OGF of paths from node numbered i
to node numbered j in the sized graph �.

This construction permits us to apply the main results of Section V. 5 to transfer
matrices and sized graphs. Let us say that the sized graph � and its transfer matrix
T (z) are irreducible (respectively, aperiodic) if Ĝ and T̂ are irreducible (respectively,
aperiodic). We can then immediately transcribe Theorems V.7 and V.8 as follows.

Corollary V.1. (i) Consider a sized graph � that is irreducible and aperiodic. Then,
there exist a computable constant λ1 and numbers ϕi, j such that the OGF of paths
from i to j in � satisfies

(109) [zn]F 〈i, j〉(z) = ϕi, jλ
n
1 + O(%n), 0 ≤ % < λ1.

(i i) In a random path from a to b of large size, the number of occurrences of a
designated edge (s, t) is asymptotically

(110) �s,t n + O(1),

for a computable constant �s,t .

Thus, on general grounds, the behaviour of paths is predictable. The notes be-
low explore some further properties that make it possible to operate directly with the
transfer matrix and the sized graph, without necessitating the explicit construction of
T̂ and Ĝ.
� V.42. Irreducibility for sized graphs. The sized graph � is irreducible if and only if the graph
G1 where all edges of � are taken to be of size 1 is strongly connected. The transfer matrix
T (z) of � is irreducible (in the sense above) if and only if T (1) is irreducible in the usual sense
of scalar transfer matrices. �

� V.43. Aperiodicity for sized graphs. A polynomial p(z) = ∑
j c j ze j , with every c j  = 0,

is said to be primitive if the quantity δ = gcd({e j }) is equal to 1; it is imprimitive otherwise.

Equivalently, p(z) is imprimitive iff p(z) = q(zδ) for some bona fide polynomial q and some
δ > 1. An irreducible sized graph is aperiodic (in the sense above) if and only if at least one
diagonal entry of some power T (z)e is a primitive polynomial. Equivalently: there exist two
circuits of the same length, whose sizes, s1, s2, satisfy gcd(s1, s2) = 1. �

� V.44. Direct determination of the asymptotic growth constant. Let � be a sized graph as-
sumed to be irreducible and aperiodic. Then, one has λ1 = 1/ρ, where ρ is the smallest
positive root of det(I − T (z)) = 0, with T (z) the transfer matrix of �. �

V. 6.3. Applications. The quantitative properties summarized by (109) and (110)
apply with full strength to classes that are amenable to the transfer matrix method. We
shall first illustrate the situation by the width of trees following an early article by
Odlyzko and Wilf [463], then continue with an example that draws its inspiration
from the insightful exposition of domino tilings and generating functions in the book
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Figure V.21. The sized graph corresponding to general plane trees of width at most 3
and its transfer matrix. (For readability, the transitions from a node to itself are omit-
ted.)

of Graham, Knuth, and Patashnik [307], and conclude with an exactly solvable poly-
omino model.

Example V.17. Width of trees. The width of a tree is defined as the maximal number of nodes
that can appear on any layer at a fixed distance from the root. If a tree is drawn in the discrete
plane, then width and height can be seen as the horizontal and vertical dimensions of a bounding
rectangle. Also, width is an indicator of the complexity of traversing the tree in breadth-first
search (by a queue), while height is associated to depth-first search (by a stack).

Transfer matrices are ideally suited to the problem of analysing the number of trees of fixed
width. Consider a simple variety of trees Y corresponding to the equation Y (z) = zφ(Y (z)),
where the “generator” φ describes the basic formation of trees (Proposition I.5, p. 66). Let
C := Y[w] be the subclass of trees of width at most w. Such trees are easily built layer by layer.
Indeed, with reference to our general description of the transfer matrix method at the begin-
ning of the section, let us introduce a collection of classes Ck , where each Ck (k = 1, . . . , w)
comprises all trees of width ≤ w having exactly k nodes at the deepest level. We then have
C = ∑w

k=1 Ck (this is a trivial variant of the case considered in our general description). Thus
the states of the transfer matrix model, equivalently the nodes of the sized graph, correspond to
the number of nodes on the deepest layer of the tree. The transition between configurations C j
corresponding to state j and configurations Ck corresponding to state k is effected by grafting in
all possible ways a forest of j trees, of total height equal to 1, having k leaves. See Figure V.21
for the case of width w = 3.

The number of j–forests of depth 1 having k leaves is the quantity

t j,k = [uk ]φ(y) j .

Let T be the w×w matrix with entry Tj,k = zk t j,k . Then, clearly, the quantity zi (T h)i, j (with
1 ≤ i, j ≤ w) is the number of i–forests of height h and width at most w, having j nodes on
level h. Thus, the GF of Y–trees having width at most w is

Y [w](z) = (z, 0, 0, . . .)(I − T )−1(1, 1, 1, . . .)t .
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For instance, in the case of general Catalan trees, the matrix T has the shape,

T [w](z) =

⎛⎜⎜⎜⎜⎝
z
(1
0
)

z2(2
0
)

z3(3
0
)

z4(4
0
)

z
(2
1
)

z2(3
1
)

z3(4
1
)

z4(5
1
)

z
(3
2
)

z2(4
2
)

z3(5
2
)

z4(6
2
)

z
(4
3
)

z2(5
3
)

z3(6
3
)

z4(7
3
)

⎞⎟⎟⎟⎟⎠ ,

for width 4. The analysis of dominant poles provides asymptotic formulae for [zn]Y [w](z):

w = 2 w = 3 w = 4 w = 5 w = 6
0.0085 · 2.1701n 0.0026 · 2.8050n 0.0012 · 3.1638n 0.0006 · 3.3829n 0.0004 · 3.5259n .

Irreducibility is granted since all entries in the transfer matrix are non-zero. Aperiodicity derives
from aperiodicity of the generator φ, as verified by a simple argument (e.g., using Note V.43).

Proposition V.10. The number of trees of width at most w in a simple family of trees satisfies
an asymptotic estimate of the form

Y [w]
n = cwρ

−n
w + O(n),

for some computable positive constants cw, ρw .

In addition, the exact distribution of height in trees of size n becomes computable in poly-
nomial time.

The character of these generating functions has not been investigated in detail since the
original work [463], so that, at the moment, complex analysis does not lead us any further. For-
tunately, probability theory takes over. Chassaing and Marckert [111] have shown, for Cayley
trees, that the width satisfies

En(W ) =
√
πn

2
+ O

(
n1/4

√
log n

)
, Pn(

√
2W ≤ x) → 1 −�(x),

where �(x) is the Theta function defined in (67), p. 328. This answers very precisely an open
question of Odlyzko and Wilf [463]. The distributional results of [111] extend to trees in any
simple variety (under mild and natural analytic assumptions on the generator φ): see the paper
by Chassaing, Marckert, and Yor [112], which builds upon earlier results of Drmota and Gitten-
berger [173]. In essence, the conclusion of these works is that the breadth first search traversal
of a large tree in a simple variety gives rise to a queue whose size fluctuates asymptotically
like a Brownian excursion, and is thus, in a strong sense, of a complexity comparable to depth-
first search: trees taken uniformly don’t have much of a preference as to the way they may be
traversed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.45. A question on width polynomials. It is unknown whether the following assertion is
true. The smallest positive root ρk of the denominator of Y [k](z) satisfies

ρk = ρ + c

k2
+ o(k−2),

for some c > 0. If such an estimate were established, together with suitable companion bounds,
it would yield a purely analytic proof of the fact that the expected width of n–trees is �(

√
n),

as well as detailed probability estimates. (The classical theory of Fredholm equations may be
useful in this context.) �

Example V.18. Monomer-dimer tilings of a rectangle. Suppose one is given pieces that may
be one of the three forms: monomers (m) that are 1 × 1 squares, and dimers that are dominoes,
either vertically (v) oriented 1 × 2, or horizontally (h) oriented 2 × 1. In how many ways can
an n × 3 rectangle be covered completely and without overlap (‘tiled’) by such pieces?
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The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a 5 × 3 rectangle:

In order to approach this counting problem, one first defines a suitable collection, generi-
cally denoted by C, of combinatorial classes called configurations, in accordance with the strat-
egy summarized in Figure V.20, p. 356. A configuration relative to an n×k rectangle is a partial
tiling, such that all the first n−1 columns are entirely covered by dominoes while between zero
and three unit cells of the last column are covered. Here are for instance, configurations corre-
sponding to the example above.

These diagrams suggest the way configurations can be built by successive addition of
dominoes. Starting with the empty rectangle 0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa 1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary as C000, . . . , C111. For instance C001 represent
configurations such that the first two cells (from top to bottom, by convention) are free, while
the third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 3 �⇒ C101.

In this way, one can set up a system of linear equations (resembling a grammar or a de-
terministic finite automaton) that expresses all the possible constructions of longer rectangles
from shorter ones according to the last layer added. The system contains equations like

C000 = ε + mmmC000 + mvC000 + vmC000
+ ·mmC100 + m·mC010 + mm·C001 + v·C001 + ·vC100
+ m··C011 + ·m·C101 + ··mC110 + ···C111 .

Here, a “letter” like mv represent the addition of dominoes, in top to bottom order, of types
m, v, respectively; the letter m·m means adding two m-dominoes on the top and on the bottom,
etc.
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The system transforms into a linear system of equations with polynomial coefficients, upon
performing the substitutions

m 	→ z, h 	→ z2, v 	→ z2.

Solving it gives the generating functions of configurations with z marking the area covered:

C000(z) =
(1 − 2z3 − z6)(1 + z3 − z6)

(1 + z3)(1 − 5z3 − 9z6 + 9z9 + z12 − z15)
.

In particular, the coefficient [z3n]C000(z) is the number of tilings of an n × 3 rectangle:

C000(z) = 1 + 3z3 + 22z6 + 131z9 + 823z12 + 5096z15 + · · · .
The sequence grows like c αn (for n ≡ 0 (mod 3)) where α

.= 1.83828 (α is the cube root of
an algebraic number of degree 5). (See [109] for a computer algebra session.) On average, for
large n, there is a fixed proportion of monomers and the distribution of monomers in a random
tiling of a large rectangle is asymptotically normally distributed, a result that follows from the
developments of Section IX. 6, p. 650. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The tiling example is a typical illustration of the transfer matrix method as de-
scribed in Figure V.20, p. 356. One seeks to enumerate a “special” set of configura-
tions: in the example above, this is C000 representing complete rectangle coverings.
One determines an extended set of configurations C (the partial coverings, in the ex-
ample) such that: (i) C is partitioned into finitely many classes; (i i) there is a finite set
of “actions” that operate on the classes; (i i i) size is affected in a well-defined additive
way by the actions. The similarity with finite automata is apparent: classes play the
rôle of states and actions the rôle of letters.

Often, the method of transfer matrices is used to approximate a hard combinato-
rial problem that is not known to decompose, the approximation being by means of a
family of models of increasing “widths”. For instance, the enumeration of the number
Tn of tilings of an n × n square by monomers and dimers remains a famous unsolved
problem of statistical physics. Here, transfer matrix methods may be used to solve the
n × w version of the monomer–dimer coverings, in principle at least, for any fixed
width w: the result will always be a rational function, although its degree, dictated by
the dimension of the transfer matrix, will grow exponentially with w. (The “diagonal”
sequence of the n × w rectangular models corresponds to the square model.) It has
been at least determined by computer search that the diagonal sequence Tn starts as
(this is EIS A028420):

1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, . . . .

From this and other numerical data, one estimates numerically that (Tn)
1/n2

tends to
a constant, 1.94021 . . ., for which no expression is known to exist. The difficulty of
coping with the finite-width models is that their complexity (as measured, e.g., by the
number of states) increases exponentially with w—such models are best treated by
computer algebra; see [627]—but no law allowing to take a diagonal is visible. At
least, the finite-width models have the merit of providing provable upper and lower
bounds on the exponential growth rate of the hard “diagonal problem”.

In contrast, for coverings by dimers only, a strong algebraic structure is available
and the number of covers of an n×n square by horizontal and vertical dimers satisfies
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a beautiful formula originally discovered by Kasteleyn (n even):

(111) Un = 2n2/2
n/2∏
j=1

n/2∏
k=1

(
cos2 jπ

n + 1
+ cos2 kπ

n + 1

)
.

This sequence is EIS A004003,

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . . .

It is elementary to prove from (111) that

lim
n→+∞ (Un)

1/n2 = exp

(
1

π

∞∑
n=0

(−1)n

(2n + 1)2

)
= eG/π .= 1.33851 . . . ,

where G is Catalan’s constant. This means in substance that each cell has a number
of degrees of freedom equivalent to 1.33851. See Percus’ monograph [477] for proofs
of this famous result and Finch’s book [211, Sec. 5.23] for context and references.
� V.46. Powers of Fibonacci numbers. Consider the OGFs

G(z) := 1

1 − z − z2
=

∑
n≥0

Fn+1 zn, G[k](z) :=
∑
n≥0

(
Fn+1

)k zn,

where Fn is a Fibonacci number. The OGF of monomer–dimer placements on a k × n board
when only monomers (m) and horizontal dimers (h) are allowed is obviously G[k](z). On the
other hand, it is possible to set up a transfer matrix model with state i (0 ≤ i ≤ k) corresponding
to i positions of the current column occupied by a previous domino. Consequently,

G[k](z) = coeffk,k

(
(I − zT )−1

)
, where Ti, j =

(
i

i + j − k

)
,

for 0 ≤ i, j ≤ k. (The denominator of G[k](z) is known exactly: see [377, Ex. 1.2.8.30].) �

� V.47. Tours on chessboards. The OGF of Hamiltonian tours on an n×w rectangle is rational
(one is allowed to move from any cell to any other vertically or horizontally adjacent cell). The
same holds for king’s tours and knight’s tours. �

� V.48. Cover time of graphs. Given a fixed digraph � assumed to be strongly connected,
and a designated start vertex, one travels at random, moving at each time to any neighbour
of the current vertex, making choices with equal likelihood. The expectation of the time to
visit all the vertices is a rational number that is effectively (though perhaps not efficiently!)
computable. [Hint: set up a transfer matrix, a state of which is a subset of vertices representing
those vertices that have been already visited. For an interval [0, . .m], this can be treated by the
dedicated theory of walks on the integer interval, as in Section V. 4; for the complete graph, this
is equivalent to the coupon collector problem. Most other cases are “hard” to solve analytically
and one has to turn to probabilistic approximations; see Aldous and Fill’s forthcoming book [11]
for a probabilistic approach.] �

Example V.19. Self-avoiding walks and polygons. A long-standing open problem, shared by
statistical physics, combinatorics, and probability theory alike, is that of quantifying properties
of self-avoiding configurations on the square lattice (Figure V.22). Here we consider objects
that, starting from the origin (the “root”), follow a path, and are solely composed of horizontal
and vertical steps of amplitude ±1. The self-avoiding walk or SAW can wander but is subject to
the condition that it never crosses nor touches itself. The self-avoiding polygons or SAPs, whose
class is denoted by P , are self-avoiding walks, with only an exception at the end, where the end-
point must coincide with the origin. We shall focus here on polygons. It proves convenient also
to consider unrooted polygons (also called simply-connected polyominoes), which are polygons
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Figure V.22. A self-avoiding polygon or SAP (left) and a self-avoiding walk or SAW (right).

in which the origin is discarded, so that they plainly represent the possible shapes of SAPs up to
translation. For length 2n, the number pn of unrooted polygons satisfies pn = Pn/(4n) since
the origin (2n possibilities) and the starting vertex (2 possibilities) of the corresponding SAPs
are disregarded in that case. Here is a table, for small values of n, listing polyominoes and the
corresponding counting sequences pn, Pn .

n: 2 3 4 5 6 7 8 9 10
pn (EIS A002931): 1 2 7 28 124 588 2938 15268 81826
Pn (EIS A010566): 8 24 112 560 2976 16464 94016 549648 3273040

Take the (widely open) problem of determining exactly the number Pn of SAPs of peri-
meter 2n. This (intractable) problem can be approached as a limit of the (tractable) problem12

that consists in enumerating the collection P[w] of SAPs of width w, for increasing values of w.
The latter problem is amenable to the transfer matrix method, as first discovered by Enting in
1980; see [192]. Indeed, take a polygon and consider a vertical sweepline, that moves from
left to right. Once width is fixed, there are at most 22w+2 possibilities for the ways such a line
may intersect the polygon’s edges at half integer abscissae. (There are w + 1 edges and for
each of these, one should “remember” whether they connect with the upper or lower boundary.)
The transitions are then themselves finitely described. In this way, it becomes possible to set
up a transfer matrix for any fixed width w. For fixed n, by computing values of P[w]

n with
increasing w, one finally determines (in principle) the exact value of any Pn .

The program suggested above has been carried out to record values by the “Melbourne
School” under the impulse of Tony Guttmann. For instance, Jensen [356] found in 2003 that
the number of unrooted polygons of perimeter 100 is

p50 = 7545649677448506970646886033356862162.

12We limit ourselves here to a succinct description and refer to the original papers [192, 356] for
details.
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Attaining such record values necessitates algorithms that are much more sophisticated than the
naı̈ve approach we have just described, as well as a number of highly ingenious programming
optimizations.

It is an equally open problem to estimate asymptotically the number of SAPs of peri-
meter n. Given the exact values up to perimeter 100 or more, a battery of fitting tests for
asymptotic formulae can be applied, leading to highly convincing (though still heuristic) for-
mulae. Thanks to several workers in this area, we can regard the final answer as “known”. From
the works of Jensen and his predecessors, it results that a reliable empirical estimate is of the
form ⎧⎨⎩ pn = Bμ2n(2n)−β(1 + o(1)),

μ
.= 2.63815 85303, β = −5

2
± 3 · 10−7, B

.= 0.5623013.

Thus, the answer is almost certainly of the form pn 6 μ2nn−5/2 for unrooted polygons and
Pn 6 μ2nn−3/2 for rooted polygons. It is believed that the same connective constant μ dictates
the exponential growth rate of self-avoiding walks. See Finch’s book [211, Sec. 5.10] for a
perspective and numerous references.

There is also great interest in the number pm,n of polyominoes with perimeter 2n and
area m, with area defined as the number of square cells composing the polyomino. Studies
conducted by the Melbourne school yield numerical data that are consistent to an amazing
degree (e.g., moments up to order ten and small-n corrections are considered) with the following
assumption: The distribution of area in a fixed-perimeter polyomino obeys in the asymptotic
limit an “Airy area distribution”. This distribution is defined as the limit distribution of the
area under Dyck paths, a problem that was introduced on p. 330 and to which we propose to
return in Chapter VII (p. 535) and IX (p. 706). See [356, 509, 510] and references therein for a
specific discussion of polyomino area. It is finally of great interest to note that the interpretation
of data was strongly guided by what is already known for exactly solvable models of the type
we are repeatedly considering in this book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example V.20. Horizontally convex polyominoes. Pólya [490] and Temperley [574] inde-
pendently discovered an exactly solvable polyomino model. (See also the text by van Rens-
burg [592] for more.) Define as usual a polyomino as a collection of unit squares with vertices
in Z≥0 × Z≥0 that forms a connected set without articulation points. Such a polyomino is said
to be horizontally convex (H.C.) if its intersection with any horizontal line is either empty or
an interval. An H.C. polyomino is thus a stack of a certain number of rows of squares, where
each row has a segment of length ≥ 1 in common with the next row up. (We imagine H.C.
polyominoes growing from bottom to top.) The enumeration of such polyominoes, following
Temperley [574, p. 66] constitutes a nice extension of the transfer matrix method in the case
when the set of states is infinite.

Let T [k] be the class of polyominoes with exactly k square cells on their top row. The size
of a polyomino is its number of cells. We wish to enumerate the class T := ⋃

k T [k]. In order
to do so, according to the transfer matrix method, one needs to relate the T [k] to one another.
Let z be the variable marking size. The transition from one T [k] to a T [�] has a multiplicity
equal to k + � − 1. Thus the generating functions tk := T [k](z) satisfy an infinite system of
equations, which starts as

(112)
t1 = z + z (t1 + 2t2 + 3t3 + · · · )
t2 = z2 + z2 (2t1 + 3t2 + 4t3 + · · · )
t3 = z3 + z3 (3t1 + 4t2 + 5t3 + · · · ) .



“book” — 2008/10/3 — 16:05 — page 366 — #380

366 V. APPLICATIONS OF RATIONAL AND MEROMORPHIC ASYMPTOTICS

Figure V.23. Five horizontally convex polyominoes of size n = 50 drawn uniformly
at random.

This corresponds to an infinite transfer matrix which is highly structured:

M(z)k,� = (k + �− 1)z�,

and, as shown by Temperley [574, p. 66], the system can be solved by elementary manipula-
tions. We shall however prefer to take another route, more in line with the spirit of this book,

In a case like this, it is well worth trying a bivariate generating function. Define

T (z, u) =
∑
n,k

T [k](z)uk .

The action of “adding a slice” on the top row of a polyomino is reflected by a linear operator
L that transforms uk , representing the top row of the polyomino before addition, into a sum of
monomials u�z�, with the proper multiplicities:

L[uk ] = k(uz)k + (k + 1)(uz)k+1 + · · · = (k − 1)
uz

1 − uz
+ uz

(1 − uz)2
.

(An earlier instance of the technique of “adding a slice” appears in the context of constrained
compositions, Example III.22, p. 199.) A better formula results if one expresses more generally
the quantity L[ f (u)]:

(113) L[ f (u)] = uz

(1 − uz)2
f (1)+ uz

1 − uz

(
f ′(1)− f (1)

)
.

Treat now the BGF T (z, u) as a function of u, keeping z as a parameter, and write for readability
τ(u) := T (z, u). A horizontally convex polyomino is obtained by starting from a bottom row
that can have any number of cells and repeatedly adding a slice. This construction is thus
reflected by the main functional equation

(114)
τ(u) = zu

1 − zu
+ L[τ(u)]

= zu

1 − zu
+ zu

1 − zu
τ ′(1)+ z2u2

(1 − zu)2
τ(1),

upon making use of (113). Instantiating at u = 1 provides the first relation

(115) τ(1) = z

1 − z
+ z

1 − z
τ ′(1)+ z2

(1 − z)2
τ(1),
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while differentiation of (114) with respect to u followed by the specialization u = 1 provides
the second relation

(116) τ ′(1) = z

(1 − z)2
+ z

(1 − z)2
τ ′(1)+ 2

z

(1 − z)3
τ(1).

We now have a linear system of two equations in two unknowns, resulting in an expression
of τ(1) = T (z) = T (z, 1), which enumerates all horizontally convex polyominoes:

(117) T (z) = z(1 − z)3

1 − 5z + 7z2 − 4z3
.

(From (114) to (117), the whole calculation is barely three lines of code under a decent computer
algebra system.) Note that, the original system being infinite, it is far from obvious a priori that
the generating function should be rational—in the present context, rationality devolves from the
highly structured character of the transfer matrix.

The counting sequence obtained by expansion,

T (z) = z + 2 z2 + 6 z3 + 19 z4 + 61 z5 + 196 z6 + 629 z7 + 2017 z8 + · · ·
is EIS A001169 (“Number of board-pile polyominoes with n cells”). The asymptotic form is
then easily obtained: we find

Tn ∼ C An, C
.= 0.18091, A

.= 3.20556,

with A a cubic irrational.
An alternative derivation, which is more sophisticated, is due to Klarner and is presented in

Stanley’s book [552, §4.7]. Hickerson [333] has found a direct construction, which explains the
rationality of the GF by means of a regular language encoding. (The drawings of Figure V.23
have been obtained by an application of the recursive method [264] to Hickerson’s specifica-
tion.) Louchard [420] has conducted an in-depth study of probabilistic properties of several
parameters of H.C. polyominoes, using generating functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� V.49. Height of H.C. polyominoes. Upon introducing an extra variable v to encode height,
one finds that height grows on average linearly with n and the variance is O(n), so that the
distribution is concentrated [420]. (This explains the skinny aspects of polyominoes drawn in
Figure V.23.) �

� V.50. A transfer matrix model for lattice paths. Consider the general context of weighted
lattice paths in Section V. 4. Let α j , β j , γ j be the weights of ascents, descents, and level steps,
respectively, when the starting altitude is j . The infinite transfer matrix,

T =

⎛⎜⎜⎝
γ0 α0 0 0 0 · · ·
β1 γ1 α1 0 0 · · ·
0 β2 γ2 α2 0 · · ·
...

...
...

...
...

. . .

⎞⎟⎟⎠ ,

which has a tridiagonal form, “generates” all lattice paths via the quasi-inverse (I − zT )−1.
In particular, any exactly solvable weighted lattice path model is equivalent to an explicit struc-
tured matrix inversion. �

V. 6.4. Value-constrained permutations. We conclude this chapter with a dis-
cussion of a construction that combines transfer matrix methods with an inclusion–
exclusion argument. We treat a collection of constrained permutation problems whose
origin lies in nineteenth century recreational mathematics. For instance, the ménage
problem solved and popularized by Édouard Lucas in 1891, see [129], has the fol-
lowing quaint formulation: What is the number of possible ways one can arrange n
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married couples (“ménages”) around a table in such a way that men and women al-
ternate, but no woman sits next to her husband?

The ménage problem is equivalent to a permutation enumeration problem. Sit
first conventionally the men at places numbered 1, 2, . . . , n and the wives at positions
3
2 ,

5
2 , . . . , n + 1

2 . Let σi be such that the i th wife is placed at σi + 1
2 . Then, a ménage

placement imposes the conditions σi  = i and σi  = i − 1 for each i . We consider here
a linearly arranged table (see remarks at the end for the other classical formulation
that considers a round table), so that the condition σi  = i − 1 becomes vacuous when
i = 1. Here is a ménage placement for n = 6 and its corresponding permutation

61 2 3 4 5

σ =
[

1 2 3 4 5 6
4 5 6 2 1 3

]
This is a generalization of the derangement problem (for which only the weaker con-
dition σi  = i is imposed and the cycle decomposition of permutations suffices to
provide a direct solution; see Example II.14, p. 122).

Definition V.9. Given a permutation σ = σ1 · · · σn, any quantity σi − i is called an
exceedance of σ . Given a finite set of integers � ⊂ Z≥0, a permutation is said to be
�–avoiding if none of its exceedances lies in �.

The original ménage problem is modelled by � = {−1, 0}, or, up to a simple trans-
formation, by � = {0, 1}.

Inclusion–exclusion. The set � being fixed, consider first for all j the class
of augmented permutations Pn, j that are permutations of size n such that j of the
positions are distinguished and the corresponding exceedances lie in �, the remaining
positions having arbitrary values (but with the permutation property being satisfied).
Loosely speaking, the objects in Pn, j can be regarded as permutations with “at least”
j exceedances in �. For instance, with � = {1} and

σ =
(

1 2 3 4 5 6 7 8 9
2 3 4 8 6 7 1 5 9

)
,

there are 5 exceedances that lie in � (at positions 1, 2, 3, 5, 6) and with 3 of these
distinguished (say by enclosing them in a box), one obtains an element counted by
P9,3, such as

2 3 4 8 6 7 1 5 9.

Let Pn, j be the cardinality of Pn, j . We claim that the number Qn = Q�
n of �–

avoiding permutations of size n satisfies

(118) Qn =
n∑

j=0

(−1) j Pn, j .
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Figure V.24. A graphical rendering of the legal template 20?02?11? relative to � = {0, 1, 2}.

Equation (118) is typically an inclusion–exclusion relation. To prove it formally13,
define the number Rn,k of permutations that have exactly k exceedances in � and the
generating polynomials

Pn(w) =
∑

j

Pn, jw
j , Rn(w) =

∑
k

Rn,kw
k .

The GFs are related by

Pn(w) = Rn(w + 1) or Rn(w) = Pn(w − 1)..

(The relation Pn(w) = Rn(w + 1) simply expresses symbolically the fact that each
�-exceedance in R may or may not be taken in when composing an element of P .)
In particular, we have Pn(−1) = Rn(0) = Rn,0 = Qn as was to be proved.

Transfer matrix model. The preceding discussion shows that everything relies on
the enumeration Pn, j of permutations with distinguished exceedances in �. Introduce
the alphabet A = � ∪ {‘?’}, where the symbol ‘?’ is called the ‘don’t-care symbol’.
A word on A, an instance with � = {0, 1, 2} being 20?02?11?, is called a template.
To an augmented permutation, one associates a template as follows: each exceedance
that is not distinguished is represented by a don’t care symbol; each distinguished
exceedance (thereby an exceedance with value in �) is represented by its value. A
template is said to be legal if it arises from an augmented permutation. For instance a
template 2 1 · · · cannot be legal since the corresponding constraints, namely σ1 − 1 =
2, σ2 − 2 = 1, are incompatible with the permutation structure (one would have
σ1 = σ2 = 3). In contrast, the template 20?02?11? is seen to be legal. Figure V.24 is
a graphical rendering; there, letters of templates are represented by dominoes, with a
cross at the position of a numeric value in �, and with the domino being blank in the
case of a don’t-care symbol.

Let Tn, j be the set of legal templates relative to � that have length n and comprise
j don’t care symbols. Any such legal template is associated to exactly j! permutations,
since n − j position-value pairs are fixed in the permutation, while the j remaining

13See also the discussion in Subsection III. 7.4, p. 206.
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positions and values can be taken arbitrarily. There results that

(119) Pn,n− j = j! Tn, j and Qn =
n∑

j=0

(−1)n− j j! Tn, j ,

by (118). Thus, the enumeration of avoiding permutations rests entirely on the enu-
meration of legal templates.

The enumeration of legal templates is finally effected by means of a transfer ma-
trix method, or equivalently, by a finite automaton. If a template τ = τ1 · · · τn is legal,
then the following condition is met,

(120) τ j + j  = τi + i,

for all pairs (i, j) such that i < j and neither of τi , τ j is the don’t-care symbol. (There
are additional conditions to characterize templates fully, but these only concern a few
letters at the end of templates and we may ignore them in this discussion.) In other
words, a τi with a numerical value preempts the value τi + i . Figure V.24 exempli-
fies the situation in the case � = {0, 1, 2}. The dominoes are shifted one position
each time (since it is the value of σ − i that is represented) and the compatibility con-
straint (120) is that no two crosses should be vertically aligned. More precisely the
constraints (120) are recognized by a deterministic finite automaton whose states are
indexed by subsets of {0, . . . , b − 1} where the “span” b is defined as b = maxω∈� ω.
The initial state is the one associated with the empty set (no constraint is present ini-
tially), the transitions are of the form ( j ∈ {0, . . . , b}):{

(qS, j) 	→ qS′ where S′ = ((S − 1) ∪ { j − 1}) ∩ {0, . . . , b − 1}
(qS, ?) 	→ qS′ where S′ = (S − 1) ∩ {0, . . . , b − 1}.

The initial state (is q{} and it is equal to the final state (this translates the fact that
no domino can protrude from the right, and is implied by the linear character of the
ménage problem under consideration). In essence, the automaton only needs a finite
memory since the dominoes slide along the diagonal and, accordingly, constraints
older than the span can be forgotten. Notice that the complexity of the automaton, as
measured by its number of states, is 2b.

Here are the automata corresponding to � = {0} (derangements) and to � =
{0, 1} (ménages).

.

{ } { } {0}

For the ménage problem, there are two states depending on whether or not the cur-
rently examined value has been preempted at the preceding step.

From the automaton construction, the bivariate GF T�(z, u) of legal templates,
with u marking the position of don’t care symbols, is a rational function that can
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be determined in an automatic fashion from �. For the derangement and ménage
problems, one finds

T {0}(z, u) = 1

1 − z(1 + u)
, T {0,1}(z, u) = 1 − z

1 − z(2 + u)+ z2
.

In general, this gives access to the OGF of the corresponding permutations. Indeed,
the OGF of �–avoiding permutations is obtained from T� by a transformation akin
to the Laplace transform: we have

(121) znu j 	→ (−z)n(−1) j j!, so that Q�(z) =
∫ ∞

0
e−u T�(−z,−u) du,

which transcribes (119) and constitutes a first closed-form solution. In addition, con-
sider the partial expansion of T�(z, u) with respect to u, taken as

(122) T�(z, u) =
∑

r

cr (z)

1 − uur (z)
,

assuming for simplicity only simple poles. There, the sum is finite and it involves
algebraic functions cr and ur of the variable z. Define next the (divergent) OGF of all
permutations,

F(y) =
∞∑

n=0

n! yn = 2 F0[1, 1; y],

in the terminology of hypergeometric functions (Note B.15, p. 751). Then, by (121)
and (122), we find

(123) Q�(z) =
∑

r

cr (−z)F(−u j (−z)).

In other words: the OGF of �–avoiding permutations is expressible both as the
Laplace transform of a bivariate rational function (121) and as a composition (123)
of the OGF of the factorial series with algebraic functions.

The expressions (122) simplify much in the case of ménages and derangements
where the denominators of T are of degree 1 in u. One finds

Q{0}(z) = 1

1 + z
F

(
z

1 + z

)
= 1 + z2 + 2z3 + 9z4 + 44z5 + 265z6 + 1854z7 + · · · ,

for derangements, whence a new derivation of the known formula,

Q{0}
n =

n∑
k=0

(−1)k
(

n

k

)
(n − k)!.

Similarly, for (linear) ménage placements, one finds

Q{0,1}(z) = 1

1 + z
F

(
z

(1 + z)2

)
= 1 + z3 + 3z4 + 16z5 + 96z6 + 675z7 + · · · ,

which is EIS A00027 and corresponds to the formula

Q{0,1}
n =

n∑
k=0

(−1)k
(

2n − k

k

)
(n − k)!.
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Finally, the same techniques adapts to constraints that “wrap around”, that is, con-
straints taken modulo n. (This corresponds to a round table in the ménage problem.)
In that case, what should be considered is the circuits in the automaton recognizing
templates (see also the discussion on p. 337). One obtains in this way the OGF of the
circular (i.e., classical) ménage problem (EIS A000179),

Q̂{0,1}(z) = 1 − z

1 + z
F

(
z

(1 + z)2

)
+2z = 1+z+z3+2z4+13z5+80z6+579z7+· · · ,

which yields the classical solution of the (circular) ménage problem,

Q̂{0,1}
n =

n∑
k=0

(−1)k
2n

2n − k

(
2n − k

k

)
(n − k)!.

This last formula is due to Touchard; see [129, p. 185] for pointers to the vast classical
literature on the subject. The algebraic part of the treatment above is close to the
inspiring discussion found in Stanley’s book [552]. An application to robustness of
interconnections in random graphs is presented in [239].

Asymptotic analysis. For asymptotic analysis purposes, the following property
proves useful. Let F be the OGF of factorial numbers and assume that y(z) is analytic
at the origin where it satisfies y(z) = z − λz2 + O(z3); then the following estimate
holds:

(124) [zn]F(y(z)) ∼ [zn]F(z(1 − λz)) ∼ n!e−λ.

(The proof results from simple manipulations of divergent series in the style of [36,
§5].) This gives at sight the estimates

Q{0}
n ∼ n!e−1, Q{0,1}

n ∼ n!e−2.

Generally, one has:

Proposition V.11. For any set � containing λ elements, the number of permutations
without exceedances in � satisfies

Q{�}
n ∼ n!e−λ.

Furthermore, the number R�
n,k of permutations having exactly k occurrences (k fixed)

of an exceedance in � is asymptotic to

R{�}
n,k ∼ n!e−λ

λk

k!
.

That is, the rare event that an exceedance belongs to � is asymptotically governed by
a Poisson distribution of rate λ = |�|.

This statement is established by means of elementary combinatorial manipula-
tions in Bender’s survey [36, §4.2] and by probabilistic techniques in the book of Bar-
bour, Holst, and Janson [29, Sec. 4.3]. The relation (124) provides a way of arriving
at such estimates by purely analytic–combinatorial techniques.
� V.51. Other constrained permutations. Given a permutation σ = σ1 · · · σn , a succession gap
is defined as any difference σi+1 − σi .
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In how many ways can a kangaroo jump through all points of the integer interval [1, n+1]
starting at 1 and ending at n + 1, while making hops that are restricted to {−1, 1, 2}? (The OGF
is the rational function 1/(1 − z − z3) corresponding to EIS A000930.)

The number Rn of permutations of size n, such that σi+1 −σi  = 1 has OGF F(z/(1+ z)),
the coefficients being EIS A000255, with asymptotics Rn ∼ n!e−1. The number Sn of those,
such that |σi+1−σi |  = 1 has OGF F(z(1−z)/(1+z)). Proof (for Sn): Use inclusion–exclusion
based on configurations with distinguished sequences of ±1 successions, like

←−
8 7 6 10 15

−→
2 3 4 5 9 1 13

←−
12 11 14 ∼=

←−
• • 4 6 10

−→
2 • • 3 5 1 8

←−
• 7 9,

which leads to the OGF⎡⎣∑
m≥0

m!

(
z + 2z2u

1 − zu

)m
⎤⎦

u=−1

=
∑
m≥0

m!

(
z

1 − z

1 + z

)m

= 1 + z + 2 z4 + 14 z5 + 90 z6 + 646 z7 + · · · ;
cf EIS A002464 and [4]; this is the number of placements of n kings on a chessboard, one
per line, one per column, and in non-attacking position. Asymptotically, one has Sn ∼ n!e−2,
see [572], in accordance with (124). In general, what about the counting of permutations whose
succession gaps are constrained to lie outside of a finite set �? �

� V.52. Superménage numbers. Let Tn be the number of permutations of size n such that
(σi+1 − σi ) /∈ {0, 1, 2}. The OGF is

T (z) = 1

1 − z2

(
−z + F

(
z(1 − z)

(1 + z)(1 + z − z3)

))
= 1 + z4 + 5z5 + 33z6 + 236z7 + · · · ;

see [222] and EIS A001887. Asymptotically: Tn ∼ n!e−3. �

V. 7. Perspective

The theorems in this chapter demonstrate the power of the fundamental tech-
niques developed in Chapter IV, which exploit classical theorems in complex analysis
to develop coefficient asymptotics. As we start seeing it here, this approach applies
to many of the generating functions derived from the formal combinatorial techniques
of Part A of this book. By paying careful attention to the types of combinatorial con-
structions involved, we are able to identify abstract schemas that help us solve whole
classes of problems at once. Each schema connects a type of combinatorial construc-
tion to a complex asymptotic method. In this way, it becomes possible to discuss
properties shared by an infinite collection of combinatorial classes. In this chapter,
we have presented the method in detail for classes that involve a sequence construc-
tion and classes recursively defined by a linear system of equations (paths in graphs,
automata, transfer matrices).

In an ideal world, we might wish to have a direct correspondence between com-
binatorial constructions and analytic methods—a theory that would carry all the way
from combinatorial objects of any description to full analysis of all their properties.
The case of paths in graphs and automata, with its strong connectedness condition
leading to Perron–Frobenius theory, is an instance of this ideal situation. Reality is
however usually a bit more complex: theorems for deriving asymptotic results from
combinatorial specifications must often have some sort of analytic side conditions. A
typical example is the radius of convergence condition for supercritical sequences. As
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soon as such side conditions are satisfied, the asymptotic properties of large structures
become highly predictable. This is the very essence of analytic combinatorics.

In the next two chapters, we investigate generating functions whose singularities
are no longer poles—fractional exponents and logarithmic factors become allowed.
This first necessitates investing in general methodology, a task undertaken in Chap-
ter VI where the method known as singularity analysis is developed. Then, a chapter
parallel to the present one, Chapter VII, will present a number of new schemas based
on the set and cycle constructions, as well as on recursion.

Bibliographic notes. Applications of rational functions in discrete and continuous mathemat-
ics are in abundance. Many examples are to be found in Goulden and Jackson’s book [303].
Stanley [552] even devotes a full chapter of his book Enumerative Combinatorics, vol. I, to
rational generating functions. These two books push the theory further than we can do here,
but the corresponding asymptotic aspects which we develop lie outside of their scope. The
analytic theory of positive rational functions starts with the works of Perron and Frobenius at
the beginning of the twentieth century and is explained in books on matrix theory likes those
of Bellman [34] and Gantmacher [276]. Its importance has been long recognized in the theory
of finite Markov chains, so that the basic theory of positive matrices is well developed in many
elementary treatises on probability theory. For such aspects, we refer for instance to the classic
presentations by Feller [205] or Karlin and Taylor [363].

The supercritical sequence schema is the first in a list of abstract schemas that neatly exem-
plify the interplay between combinatorial, analytic, and probabilistic properties of large random
structures. The origins of this approach are to be traced to early works of Bender [35, 36] fol-
lowed by Soria and Flajolet [258, 260, 547].

Turning to more specific topics, we mention in relation to Section V. 4 the first global at-
tempt at a combinatorial theory of continued fractions by Flajolet in [214] together with related
works of Jackson of which an exposition is to be found in [303, Ch. 5] and a synthesis in [238],
in relation to birth and death processes. Walks on graphs from an algebraic standpoint are well
discussed in Godsil’s book [295]; for infinite graphs and groups, see Woess [613]. The discus-
sion of local constraints in permutations based on [239] combines some of the combinatorial
elements bound in Stanley’s book [552] with the general philosophy of analytic combinatorics.
Our treatment of words and languages largely draws its inspiration from the line of research
started by Schützenberger in the early 1960s and on the subsequent account to be found in
Lothaire’s book [413]. A nice review of transfer matrix methods (including a discussion of
limit distributions) is offered by Bender, Richmond, and Williamson in [46].

Applied mathematics is bad mathematics.

— PAUL HALMOS [317]

Good applied mathematics is like the unicorn:
something we can all recognize but seldom actually see.

— DAVID ALDOUS

(in Statistical Science, Vol. 5, No. 4 (Nov., 1990), pp. 446–447)
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Singularity Analysis of Generating
Functions

Es ist eine Tatsache, daß die genauere Kenntnis
des Verhaltens einer analytischen Funktion

in der Nähe ihrer singulären Stellen
eine Quelle von arithmetischen Sätzen ist1.

— ERICH HECKE [326, Kap. VIII]

VI. 1. A glimpse of basic singularity analysis theory 376
VI. 2. Coefficient asymptotics for the standard scale 380
VI. 3. Transfers 389
VI. 4. The process of singularity analysis 392
VI. 5. Multiple singularities 398
VI. 6. Intermezzo: functions amenable to singularity analysis 401
VI. 7. Inverse functions 402
VI. 8. Polylogarithms 408
VI. 9. Functional composition 411
VI. 10. Closure properties 418
VI. 11. Tauberian theory and Darboux’s method 433
VI. 12. Perspective 437

A function’s singularities are reflected in the function’s coefficients. Chapters IV
and V have treated in detail rational fractions and meromorphic functions, where the
local analysis of polar singularities provides contributions to coefficients in the form of
exponential–polynomials (products of polynomials and exponentials). In this chapter,
we present a general approach to the analysis of coefficients of generating functions
that is not restricted to polar singularities and extends to a large class of functions that
have moderate growth or decay at their dominant singularities. It includes a number
of functions coming from combinatorial constructions of Part A. The basic principle
behind the extension is the existence of a general correspondence between

the asymptotic expansion of a function near its dominant singularities
and

the asymptotic expansion of the function’s coefficients.

This mapping preserves orders of growth in the sense that larger functions tend to
have have larger coefficients. It extends considerably the analysis of meromorphic
functions in Chapters IV–V and further justifies the Principles of Coefficient Asymp-
totics enunciated in Chapter IV, p. 227.

1“It is a fact that the precise knowledge of the behaviour of an analytic function in the vicinity of its
singular points is a source of arithmetic properties.”

375
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Precisely, the method of singularity analysis applies to functions whose singular
expansion involves fractional powers and logarithms—one sometimes refers to such
singularities as “algebraic–logarithmic”. It centrally relies on two ingredients.

(i) A catalogue of asymptotic expansions for coefficients of the standard func-
tions that occur in such singular expansions.

(i i) Transfer theorems, which allow us to extract the asymptotic order of coeffi-
cients of error terms in singular expansions.

The developments are based on Cauchy’s coefficient formula, used in conjunction with
special contours of integration known as Hankel contours. The contours come very
close to the singularities then steer away: by design, they capture essential asymptotic
information contained in the functions’ singularities.

The method of singularity analysis is robust: functions amenable to it are closed
under a variety of operations, including sum, product, integration, differentiation, and
composition. Another important feature of the method is that it only necessitates local
asymptotic properties of the function to be analysed. In this way, it often proves instru-
mental in the case of functions that are only indirectly accessible through functional
equations.

This chapter is meant to develop the basic technology of singularity analysis and,
like Chapter IV, it is largely of a methodological nature. We illustrate the approach
with a few combinatorial problems, including simple varieties of trees (e.g, unary–
binary trees), combinatorial sums, the supercritical cycle construction, supertrees,
Pólya’s drunkard walks, and tree recurrences. The next chapter, Chapter VII, will sys-
tematically explore combinatorial structures and schemas as well as functional equa-
tions that can be asymptotically analysed by means of singularity analysis in a way
that parallels the applications of rational and meromorphic asymptotics in Chapter V.

VI. 1. A glimpse of basic singularity analysis theory

Rational and meromorphic functions involve, locally near a singularity ζ , ele-
ments of the form (1 − z/ζ )−r , with r ∈ Z≥1. Accordingly their coefficients in-
volve asymptotically exponential–polynomials, that is, finite linear combinations of
elements of the type ζ−nnr−1, with r a positive integer. We examine here an ap-
proach that takes into account functions whose singularities are of a richer nature than
mere poles found in rational and meromorphic functions. Specifically, we consider
functions whose expansion at a singularity ζ involves elements of the form(

1 − z

ζ

)−α (
log

1

1 − z
ζ

)β

.

Under suitable conditions to be discussed in detail in this chapter, any such element
contributes a term of the form

ζ−nnα−1(log n)β .

Here, α and β can be arbitrary complex numbers.
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Location of singularities and exponential factors. The exponential factor ζ−n

present in earlier expansions is easily accounted for, since the location of the domi-
nant singularities always induces a multiplicative exponential factor for coefficients.
Indeed, if f (z) is singular at z = ζ , then g(z) ≡ f (zζ ) satisfies, by the scaling rule of
Taylor expansions,

[zn] f (z) = ζ−n[zn] f (zζ ) = ζ−n[zn] g(z),

where g(z) now has a singularity at z = 1. Consequently, in the discussion that
follows, we shall examine functions that are singular at 1, a condition that entails no
loss of generality.

Basic scale. Consider the following table of commonly encountered functions
that are singular at 1, together with their coefficients:

(1)

Function coefficient (exact) coefficient (asympt.)

( f1) 1 −√
1 − z

2

n4n

(
2n − 2

n − 1

)
∼ 1

2
√
πn3

( f2)
1√

1 − z

1

4n

(
2n

n

)
∼ 1√

πn

( f3)
1

1 − z
1 ∼ 1

( f4)
1

1 − z
log

1

1 − z
Hn ∼ log n

( f5)
1

(1 − z)2
n + 1 ∼ n.

Some structure is apparent in this table: a logarithmic factor in the function is reflected
by a similar factor in the coefficients, square-roots somehow induce square-roots, and
functions involving larger powers do have larger coefficients.

It is easy to come up at least with a partial explanation of these observations.
Regarding basic functions such as f1, f2, f3, and f5, the Newton expansion

(1 − z)−α =
∞∑

n=0

(
n + α − 1

n

)
zn

when specialized to an integer α = r ∈ Z≥1 immediately gives the asymptotic form
of the coefficients involved,

(2) [zn](1 − z)−r ≡ (n + 1)(n + 2) · · · (n + r − 1)

(r − 1)!
= nr−1

(r − 1)!

(
1 + O

(
1

n

))
.

For general α, it is therefore natural to expect

(3) [zn](1 − z)−α ≡
(

n + α − 1

α − 1

)
= nα−1

(α − 1)!

(
1 + O

(
1

n

))
.

It turns out that this asymptotic formula remains valid for real or complex α, provided
we interpret (α − 1)! suitably. We shall prove the estimate

(4) [zn](1 − z)−α ∼ nα−1

�(α)

(
1 + α(α − 1)

2n
+ · · ·

)
,
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Figure VI.1. The five functions from Equation (1) and a plot of their coefficient
sequences illustrate the tendency of coefficient extraction to be consistent with orders
of growth of functions.

where �(α) is the Euler Gamma function defined as

(5) �(α) :=
∫ ∞

0
e−t tα−1 dt,

for -(α) > 0, which coincides with (α− 1)! whenever α is an integer. (Basic proper-
ties of this function are recalled in Appendix B.3: Gamma function, p. 743.)

We observe from the pair (2)–(3) that functions that are larger at the singularity
z = 1 have indeed larger coefficients (see Figure VI.1). The correspondence that
this observation suggests is general, as we are going to see repeatedly throughout this
chapter. A catalogue of exact or asymptotic forms for coefficients of standard singular
functions is obtained in Section VI. 2 (see Theorem VI.1, p. 381).

Transfer of error terms. An asymptotic expansion of a function f (z) that is sin-
gular at z = 1 is typically of the form

(6) f (z) = σ(z)+ O(τ (z)), where τ(z) = o(σ (z)) as z → 1,

with σ and τ belonging to an asymptotic scale of standard functions such as the col-
lection {(1 − z)−α}α∈R, in simpler cases. Taking formally Taylor coefficients in the
expansion (6), we arrive at

(7) fn ≡ [zn] f (z) = [zn]σ(z)+ [zn]O(τ (z)).

The term [zn]σ(z) is described asymptotically by (4). Therefore, in order to extract
asymptotic informations on the coefficients of f (z), one needs a way of extracting
coefficients of functions known only by their order of growth around the singularity.
Such a translation of error terms from functions to coefficients is achieved by transfer
theorems, which, under conditions of analytic continuation, guarantee that

[zn]O(τ (z)) = O([zn]τ(z));
see Section VI. 3 and Theorem VI.3, p. 390. This relation is much more profound than
its symbolic form would seem to imply.



“book” — 2008/10/3 — 16:05 — page 379 — #393

VI. 1. A GLIMPSE OF BASIC SINGULARITY ANALYSIS THEORY 379

In summary, it is the goal of this chapter to expound the (favorable) conditions
under which we have available the correspondence

(8) f (z) = σ(z)+ O(τ (z)) −→ fn = σn + O(τn),

which defines the process known as singularity analysis: cf Section VI. 4 and Theo-
rem VI.4, p. 393. (This is seen to parallel the analysis of coefficients of rational and
meromorphic functions presented in Chapters IV and V.) We develop the method for
functions from the scale

(1 − z)−α
(

log
1

1 − z

)β

(z → 1),

whose coefficients have subexponential factors of the form

nα−1(log n)β .

(The range of singular behaviours taken into account by singularity analysis is even
considerably larger: iterated logarithms (log log’s) as well as more exotic functions
can be encapsulated in the method.)

Example VI.1. First asymptotics of 2–regular graphs. As an illustration of the modus
operandi of singularity analysis, consider the class R of labelled 2–regular graphs (Note II.22,
p. 133):

R = SET(UCYC≥3(Z)) �⇒ R(z) = exp

(
1

2

(
log(1 − z)−1 − z − z2

2

))
,

where UCYC is the undirected cycle construction.
Singularity analysis permits us to reason as follows. The function

R(z) = e−z/2−z2/4
√

1 − z

is only singular at z = 1 where it has a branch point. Expanding the numerator around z = 1,
we have

(9) R(z) = e−3/4
√

1 − z
+ O((1 − z)1/2).

Therefore (see Theorems VI.1 and VI.3, as well as the discussion in Example VI.2 below,
p. 395), upon translating formally term by term, one obtains

(10) [zn]R(z) = e−3/4
(

n − 1/2

n

)
+ O

(
n − 3/2

n

)
= e−3/4

√
πn

+ O(n−3/2).

Furthermore, a full asymptotic expansion into descending powers of n can be derived in the

same way, from a complete expansion of the numerator e−z/2−z2/4 at z = 1. . . . . . . . . . . . . . �
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Plan of this chapter. The first part of this chapter, Sections VI. 2–VI. 5, is dedi-
cated to the basic technology of singularity analysis along the lines of our foregoing
discussion, and including the case of functions with finitely many singularities on the
boundary of their disc of convergence. An “Intermezzo”, Section VI. 6, serves a pre-
lude to the second part of the chapter, where we investigate operations on generating
functions whose effect on singularities is predictable. The most important of these
is inversion, which, under a broad set of conditions, leads to square-root singularity
and provides a unified asymptotic theory of simple varieties of trees (Section VI. 7).
Polylogarithms are proved to be amenable to singularity analysis in Section VI. 8, a
fact that permits us to take into account weights such as

√
n or log n in combinato-

rial sums. Composition of functions is studied in Section VI. 9. Then Section VI. 10
presents several closure properties of functions of singularity analysis class, includ-
ing differentiation, integration, and Hadamard product. The chapter concludes with a
brief discussion of two classical alternatives to singularity analysis: Tauberian theory
and Darboux’s method (Section VI. 11).

VI. 2. Coefficient asymptotics for the standard scale

This section and the next two present the fundamentals of singularity analysis, a
theory which was developed by Flajolet and Odlyzko in [248]. Technically the theory
relies on a systematic use of Hankel contours in Cauchy coefficient integrals. Such
Hankel contours classically serve to express the Gamma function: see Appendix B.3:
Gamma function, p. 743. Here they are first used to estimate coefficients of a standard
scale of functions, and then to prove transfer theorems for error terms (Section VI. 3).
With this basic process, an asymptotic expansion of a function near a singularity is
directly mapped to a matching asymptotic expansion of its coefficients.

Starting from the binomial expansion, we have for general α,

[zn](1 − z)−α = (−1)n
(−α

n

)
=

(
n + α − 1

n

)
= α(α + 1) · · · (α + n − 1)

n!
.

This quantity is expressible in terms of Gamma factors, and

(11)

(
n + α − 1

n

)
= �(n + α)

�(α)�(n + 1)
,

provided α is neither 0 nor a negative integer. (When α ∈ {0,−1, . . .}, the coefficients(n+α−1
n

)
eventually vanish, so that the asymptotic problem of estimating [zn](1− z)−α

becomes void.) The asymptotic analysis of the coefficients
(n+α−1

n

)
is straightforward,

by means of Stirling’s formula and real integral estimates: see Notes VI.1 and VI.2.

A method far more productive than elementary real analysis techniques consists
in estimating coefficients of a function f (z) by means of Cauchy’s coefficient formula:

[zn] f (z) = 1

2iπ

∫
γ

f (z)
dz

zn+1
.

The basic principle is simple: it consists in choosing a contour of integration γ that
comes at distance 1/n of the singularity z = 1. Under the change of variables
z = 1 + t/n, the kernel z−n−1 in the integral transforms (asymptotically) into an
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0

1
2

0 1 1

R

H−

H+

H◦ 2/n

Figure VI.2. The contours C0, C1, and C2 ≡ H(n) used for estimating the coeffi-
cients of functions from the standard function scale.

exponential, and the function can be expanded locally, with the differential coefficient
only introducing a rescaling factor of 1/n:

(12)
z 	→

(
1 + t

n

)
, dz 	→ 1

n
dt

1

zn+1
	→ e−t , (1 − z)−α 	→ nα(−t)−α.

This gives us for instance (precise justification below):

[zn](1 − z)−α ∼ gαnα−1, gα := 1

2iπ

∫
e−t (−t)−α dt.

The contour and the associated rescaling capture the behaviour of the function near its
singularity, thereby enabling coefficient estimation.

Theorem VI.1 (Standard function scale). Let α be an arbitrary complex number in
C \ Z≤0. The coefficient of zn in

f (z) = (1 − z)−α

admits for large n a complete asymptotic expansion in descending powers of n,

[zn] f (z) ∼ na−1

�(α)

(
1 +

∞∑
k=1

ek

nk

)
,

where ek is a polynomial in α of degree 2k. In particular2:

(13)
[zn] f (z) ∼ nα−1

�(α)

(
1 + α (α − 1)

2 n
+ α (α − 1) (α − 2) (3α − 1)

24 n2

+α2 (α − 1)2 (α − 2) (α − 3)

48 n3
+ O

(
1

n4

))
.

2The quantity ek is a polynomial in α that is divisible by α(α − 1) · · · (α − k), in accordance with the
fact that the asymptotic expansion terminates when α ∈ Z≥0. The factor 1/�(α) vanishes identically when
α ∈ Z≤0, in accordance with the fact that coefficients are asymptotically 0 in that case.
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Proof. The first step is to express the coefficient [zn](1 − z)−α as a complex integral
by means of Cauchy’s coefficient formula,

(14) fn = 1

2iπ

∫
C
(1 − z)−α

dz

zn+1
,

where C is a small enough contour that encircles the origin; see Figure VI.2. We can
start with C ≡ C0, where C0 is the positively oriented circle C0 = {z, |z| = 1

2 }. The
second step is to deform C0 into another simple closed curve C1 around the origin
that does not cross the half-line -(z) ≥ 1: the contour C1 consists of a large circle
of radius R > 1 with a notch that comes back near and to the left of z = 1. Since
the integrand along large circles decreases as O(R−n), we can finally let R tend to
infinity and are left with an integral representation for fn where C has been replaced
by a contour C2 that starts from +∞ in the lower half-plane, winds clockwise around
1, and ends at +∞ in the upper half-plane. The latter is a typical case of a Hankel
contour. A judicious choice of its distance to the half-line R≥1 yields the expansion.

To specify precisely the integration path, we particularize C2 to be the contour
H(n) that passes at a distance 1

n from the half line R≥1:

(15) H(n) = H−(n) ∪H+(n) ∪H◦(n)

where

(16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H−(n) = {z = w − i

n , w ≥ 1}
H+(n) = {z = w + i

n , w ≥ 1}
H◦(n) = {z = 1 − eiφ

n , φ ∈ [−π
2 ,

π
2 ]}.

Now, a change of variable

(17) z = 1 + t

n

in the integral (14) gives the form

(18) fn = nα−1

2iπ

∫
H
(−t)−α

(
1 + t

n

)−n−1

dt.

(The Hankel contour H winds about 0, being at distance 1 from the positive real axis;
it is the same as the one in the proof of Theorem B.1, p. 745.)

We have the asymptotic expansion
(19)(

1 + t

n

)−n−1

= e−(n+1) log(1+t/n) = e−t

[
1 + t2 − 2t

2n
+ 3t4 − 20t3 + 24t2

24n2
+ · · ·

]
,

which tells us that the integrand in (18) converges pointwise (as well as uniformly
in any bounded domain of the t plane) to (−t)−αe−t . Substitution of the asymptotic
form (

1 + t

n

)−n−1

= e−t
(

1 + O

(
1

n

))
,
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as n → ∞ inside the integral (18) suggests (formally) that

[zn](1 − z)−α = nα−1

2iπ

∫
H
(−t)−αe−t dt

(
1 + O

(
1

n

))
= nα−1

�(α)

(
1 + O

(
1

n

))
,

when use is made of Hankel’s formula for the Gamma function (p. 745).
To justify this formal argument, we proceed as follows:

(i) Split the contour H according to -(t) ≤ log2 n and -(t) ≥ log2 n, as in the
corresponding diagram:

(20) 0

log2 n

2.

(i i) Verify that the part corresponding to -(t) ≥ log2 n is negligible in the scale
of the problem; for instance:(

1 + t

n

)−n

= O(exp(− log2 n)) for -(t) ≥ log2 n.

(i i i) Use a terminating form of (19) to develop an expansion to any predeter-
mined order, with uniform error terms, for the part corresponding to -(t) ≤
log2 n. (This is possible because t/n = O(log2 n/n) is small.)

These considerations validate term-by-term integration of expansion (19) within the
integral of (18), so that the full expansion of fn is determined as follows: a term of
the form tr/ns in the expansion (19) induces, by Hankel’s formula, a term of the form
n−s/�(α− r). (The expansion so obtained is non-degenerate provided α differs from
a negative integer or zero; see also Note VI.3 for details.) Since

1

�(α − k)
= 1

�(α)
(α − 1)(α − 2) · · · (α − k).

the expansion in the statement of the theorem eventually follows. �

The asymptotic approximations obtained from Theorem VI.2 differ from the ones
that are associated with meromorphic asymptotics (Chapter IV), where exponentially
small error terms could be derived. However, it is not uncommon to obtain results with
about 10−6 accuracy, already for values of n in the range 101–102 with just a few terms
of the asymptotic expansion. Figure VI.3 exemplifies this situation by displaying the
approximations obtained for the Catalan numbers,

Cn = 4n

n + 1
[zn](1 − z)−1/2,

when C10,C20,C50 are considered and up to eight asymptotic terms are taken into
account.
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n = 10 n = 20 n = 50

4n
√
πn3

(
1 1 8708 6 935533866 2022877684829178931751713264

− 9
8 n−1 16 603 65 45410086 197 7362936920522405787299715

+ 145
128 n−2 16 815 656 5051735 19782 79553371460627490749710

− 1155
1024 n−3 1679 4 6564 073885 1978261 300061101426696482732

+ 36939
32768 n−4 16796 656412 2750 19782616 64919884629357813591

− 295911
262144 n−5 16796 6564120 303 1978261657 612856326190245636

+ 4735445
4194304 n−6 16796 656412042 6 197826165775 9023715384519184

− 37844235
33554432 n−7) 16796 6564120420 19782616577561 03402179527600

Cn 16796 6564120420 1978261657756160653623774456

Figure VI.3. Improved approximations to the Catalan numbers obtained by succes-
sive terms of their asymptotic expansion (with exact digits in boldface).

� VI.1. Stirling’s formula and asymptotics of binomial coefficients. The Gamma function
form (11) of the binomial coefficients yields

[zn](1 − z)−α = nα−1

�(α)

(
1 + O(

1

n
)

)
,

when Stirling’s formula is applied to the Gamma factors. �

� VI.2. Beta integrals and asymptotics of binomial coefficients. A direct way of obtaining the
general asymptotic form of

(n+α−1
n

)
bases itself on the Eulerian Beta integral (see [604, p.254]

and Appendix B.3: Gamma function, p. 743). Consider the quantity (α > 0)

φ(n, α) =
∫ 1

0
tα−1(1 − t)n−1 dt = (n − 1)!

α(α + 1) · · · (α + n − 1)
≡ 1

n
(n+α−1

n
) ,

where the second form results elementarily from successive integrations by parts. The change
of variables t = x/n yields

φ(n, α) = 1

nα

∫ n

0
xα−1(1 − x/n)n−1 dt ∼

n→∞
1

nα

∫ ∞

0
xα−1e−x dx ≡ �(α)

nα
,

where the asymptotic form results from the standard limit formula of the exponential: exp(a) =
limn→∞(1 + a/n)n . �

� VI.3. Computability of full expansions. The coefficients ek of Theorem VI.1 satisfy

ek =
2k∑
�=k

λk,�(α − 1)(α − 2) · · · (α − �),

where λk,� := [vk t�]et (1 + vt)−1−1/v . �

� VI.4. Oscillations and complex exponents. Oscillations occur in the case of singular expan-
sions involving complex exponents. From the consideration of [zn](1 − z)±i 6 n∓i−1, one
finds

[zn] cos

(
log

1

1 − z

)
= P(log n)

n
+ O(

1

n2
),
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where P(u) is a continuous and 1–periodic function. In general, such oscillations are present in
[zn](1 − z)−α for any non-real α. �

Logarithmic factors. The basic principle underlying the method of proof of The-
orem VI.1 (see also the summary Equation (12)) has the advantage of being easily
extended to a wide class of singular functions, most notably the ones that involve
logarithmic terms.

Theorem VI.2 (Standard function scale, logarithms). Let α be an arbitrary complex
number in C \ Z≤0. The coefficient of zn in the function3

f (z) = (1 − z)−α
(

1

z
log

1

1 − z

)β

admits for large n a full asymptotic expansion in descending powers of log n,

(21) fn ≡ [zn] f (z) ∼ nα−1

�(α)
(log n)β

[
1 + C1

log n
+ C2

log2 n
+ · · ·

]
,

where Ck = (
β
k

)
�(α) dk

dsk
1

�(s)

∣∣∣
s=α

.

Proof. The proof is a simple variant of that of Theorem VI.1 (see [248] for details).
The basic expansion used is now

f

(
1 + t

n

)(
1 + t

n

)−n−1

∼ e−t
(−n

t

)α (
log

(−n

t

))β

∼ e−t (−t)−αnα(log n)β
(

1 − log(−t)

log n

)β

∼ e−t (−t)−αnα(log n)β
(

1 − β
log(−t)

log n
+ β(β − 1)

2!

(
log(−t)

log n

)2

+ · · ·
)
.

Again, we are justified in using this expansion inside Cauchy’s integral representa-
tion of coefficients. What comes out from term-by-term integration is a collection of
Hankel integrals of the form

1

2iπ

∫ (0)

+∞
(−t)−se−t (log(−t))k dt = (−1)k

dk

dsk

[
1

2iπ

∫ (0)

+∞
(−t)−se−t dt

]
= (−1)k

dk

dsk

1

�(s)
,

where the reduction to derivatives of 1/�(s) results from differentiation with respect
to s under the integral sign. �

A typical example of application of Theorem VI.2 is the estimate

[zn]
1√

1 − z

1
1
z log 1

1−z

= 1√
πn log n

(
1 − γ + 2 log 2

log n
+ O

(
1

log2 n

))
.

3A coefficient of 1/z is introduced in front of the logarithm since log(1 − z)−1 = z + O(z2): in this
way, f (z) is a bona fide power series in z, even when β is not an integer. Such a factor does not affect
asymptotic expansions in a logarithmic scale near z = 1.
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α  ∈ {0,−1,−2, . . .} (Eq.) α ∈ {0,−1,−2, . . .} (Eq.)

β  ∈ Z≥0
nα−1

�(α)
(log n)β

∞∑
j=0

C j

(log n) j
(21) fn ∼ nα−1(log n)β

∞∑
j=1

D j

(log n) j
(24)

β ∈ Z≥0
nα−1

�(α)

∞∑
j=0

E j (log n)

n j
(25) nα−1

∞∑
j=0

Fj (log n)

n j
(27)

Figure VI.4. The general and special cases of fn ≡ [zn] f (z) when f (z) is as in
Theorem VI.2.

(Such singular functions do occur in combinatorics and analysis of algorithms [257].)
� VI.5. Singularity analysis of slowly varying functions. A function %(u) is said to be slowly
varying towards infinity (in the complex plane) if there exists a φ ∈ (0, π2 ) such that, for any
fixed c > 0 and all θ satisfying |θ | ≤ π − φ, there holds

(22) lim
u→+∞

%(ceiθu)

%(u)
= 1.

(Powers of logarithms and iterated logarithms are typically slowly varying functions.) Under
uniformity assumptions on (22), the following estimate holds [248]:

(23) [zn](1 − z)−α%
(

1

1 − z

)
∼ nα−1

�(α)
%(n).

For instance, we have:

[zn]
exp

(√
1
z log 1

1−z

)
√

1 − z
∼

exp
(√

log n
)

√
πn

.

See also the discussion of Tauberian theory, p. 435. �

� VI.6. Iterated logarithms. For a general α  ∈ Z≤0, the relation (23) admits as a special case

[zn](1 − z)−α
(

1

z
log

1

1 − z

)β (
1

z
log

(
1

z
log

1

1 − z

))δ
∼ nα−1

�(α)
(log n)β(log log n)δ.

A full asymptotic expansion can be derived in this case. �

Special cases. The conditions of Theorems VI.1 and VI.2 exclude explicitly the
case when α is a negative integer: the formulae actually remain valid in this case,
provided one interprets them as limit cases, making use of 1/�(0) = 1/�(−1) =
· · · = 0 . Also, when β is a positive integer, the expansion of Theorem VI.2 terminates:
in that situation, stronger forms are valid. Such cases are summarized in Figure VI.4
and discussed below.

The case of integral α ∈ Z≤0 and general β  ∈ Z≥0. When α is a negative
integer, the coefficients of f (z) = (1 − z)−α eventually reduce to zero, so that the
asymptotic coefficient expansion becomes trivial: this situation is implicitly covered
by the statement of Theorem VI.1 since, in that case, 1/�(α) = 0. When logarithms
are present (with α ∈ Z≤0 still), the expansion of Theorem VI.2 regarding

f (z) = (1 − z)−α
(

1

z
log

1

1 − z

)β
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remains valid provided we again take into account the equality 1/�(α) = 0 in for-
mula (21) after effecting simplifications by Gamma factors: it is only the first term
of (21) that vanishes, and one has

(24) [zn] f (z) ∼ nα−1 (log n)β
[

D1

log n
+ D2

log2 n
+ · · ·

]
,

where Dk is given by Dk =
(
β

k

)
dk

dsk

1

�(s)

∣∣∣∣
s=α

. For instance, we find

[zn]
z

log(1 − z)−1
= − 1

n log2 n
+ 2γ

n log3 n
+ O(

1

n log4 n
).

The case of general α  ∈ Z≤0 and integral β ∈ Z≥0. When β = k is a non-
negative integer, the error terms can be further improved with respect to the ones
predicted by the general statement of Theorem VI.2. For instance, we have:

[zn]
1

1 − z
log

1

1 − z
= log n + γ + 1

2n
− 1

12n2
+ O(

1

n4
)

[zn]
1√

1 − z
log

1

1 − z
∼ 1√

πn

(
log n + γ + 2 log 2 + O(

log n

n
)

)
.

(In such a case, the expansion of Theorem VI.2 terminates since only its first (k + 1)
terms are non-zero.) In fact, in the general case of non-integral α, there exists an
expansion of the form

(25) [zn](1 − z)−α logk 1

1 − z
∼ nα−1

�(α)

[
E0(log n)+ E1(log n)

n
+ · · ·

]
,

where the E j are polynomials of degree k, as can be proved by adapting the argument
employed for general α (Note VI.8).

The joint case of integral α ∈ Z≤0 and integral β ∈ Z≥0. If α is a negative inte-
ger, the coefficients appear as finite differences of coefficients of logarithmic powers.
Explicit formulae are then available elementarily from the calculus of finite differ-
ences when β is a positive integer. For instance, with α = −m for m ∈ Z≥0, one
has

(26) [zn](1 − z)m log
1

1 − z
= (−1)m

m!

n(n − 1) · · · (n − m)
.

The case α = −m and β = k (with m, k ∈ Z≥0) is covered by (28) in Note VI.7
below: there is a formula analogous to (25),

(27) [zn](1 − z)m logk 1

1 − z
∼ n−m−1

[
F0(log n)+ F1(log n)

n
+ · · ·

]
,

but now with deg(Fj ) = k − 1.
Figure VI.5 provides the asymptotic form of coefficients of a few standard func-

tions illustrating Theorems VI.1 and VI.2 as well as some of the “special cases”.
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Function coefficients

(1 − z)3/2 1√
πn5

(
3

4
+ 45

32n
+ 1155

512n2
+ O(

1

n3
))

(1 − z) (0)

(1 − z)1/2 − 1√
πn3

(
1

2
+ 3

16n
+ 25

256n2
+ O(

1

n3
))

(1 − z)1/2 L(z) − 1√
πn3

(
1

2
log n + γ + 2 log 2 − 2

2
+ O(

log n

n
))

(1 − z)1/3 − 1

3�( 2
3 )n

4/3
(1 + 2

9n
+ 7

81n2
+ O(

1

n3
))

z/L(z)
1

n log2 n
(−1 + 2γ

log n
+ π2 − 6γ 2

2 log2 n
+ O(

1

log3 n
))

1 (0)

log(1 − z)−1 1

n

log2(1 − z)−1 1

n
(2 log n + 2γ − 1

n
− 1

6n2
+ O(

1

n4
))

(1 − z)−1/3 1

�( 1
3 )n

2/3
(1 + O(

1

n
))

(1 − z)−1/2 1√
πn

(1 − 1

8n
+ 1

128n2
+ 5

1024n3
+ O(

1

n4
))

(1 − z)−1/2 L(z)
1√
πn

(log n + γ + 2 log 2 − log n + γ + 2 log 2

8n
+ O(

log n

n2
))

(1 − z)−1 1

(1 − z)−1 L(z) log n + γ + 1

2n
− 1

12n2
+ 1

120n4
+ O(

1

n6
))

(1 − z)−1 L(z)2 log2 n + 2γ log n + γ 2 − π2

6
+ O(

log n

n
)

(1 − z)−3/2
√

n

π
(2 + 3

4n
− 7

64n2
+ O(

1

n3
))

(1 − z)−3/2 L(z)

√
n

π
(2 log n + 2γ + 4 log 2 − 4 + 3 log n

4n
+ O(

1

n
))

(1 − z)−2 n + 1

(1 − z)−2 L(z) n log n + (γ − 1)n + log n + 1

2
+ γ + O(

1

n
)

(1 − z)−2 L(z)2 n(log2 n + 2(γ − 1) log n + γ 2 − 2γ + 2 − π2

6
+ O(

log n

n
))

(1 − z)−3 1
2 n2 + 3

2 n + 1

Figure VI.5. A table of some commonly encountered functions and the asymptotic
forms of their coefficients. The following abbreviation is used:

L(z) := log
1

1 − z
.
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� VI.7. The method of Frobenius and Jungen. This is an alternative approach to the case
β ∈ Z≥0 (see [360]). Start from the observation that

(1 − z)−α
(

log
1

1 − z

)k
= ∂k

∂αk
(1 − z)−α,

then let the operators of differentiation ( ∂/∂α ) and coefficient extraction ( [zn] ) commute (this
can be justified by Cauchy’s coefficient formula upon differentiating under the integral sign).
This yields

(28) [zn](1 − z)−α
(

log
1

1 − z

)k
= ∂k

∂αk

�(n + α)

�(α)�(n + 1)
,

which leads to an “exact” formula (Note VI.8 below). �

� VI.8. Shifted harmonic numbers. Define the α-shifted harmonic number by

hn(α) :=
n−1∑
j=0

1

j + α
.

With L(z) := − log(1 − z), still, one has

[zn](1 − z)−α L(z) =
(

n + α − 1

n

)
hn(α)

[zn](1 − z)−α L(z)2 =
(

n + α − 1

n

)(
h′n(α)+ hn(α)

2
)
.

(Note: hn(α) = ψ(α + n)− ψ(α), where ψ(s) := ∂s log�(s).) In particular,

[zn]
1√

1 − z
log

1

1 − z
= 1

4n

(
2n

n

)
[2 H2n −Hn],

where Hn ≡ hn(1) is the usual harmonic number. �

VI. 3. Transfers

Our general objective is to translate an approximation of a function near a sin-
gularity into an asymptotic approximation of its coefficients. What is required at this
stage is a way to extract coefficients of error terms (known usually in O(·) or o(·)
form) in the expansion of a function near a singularity. This task is technically simple
as a fairly coarse analysis suffices. As in the previous section, it relies on contour inte-
gration by means of Hankel-type paths; see for instance the summary in Equation (12),
p. 381, above.

A natural extension of the approach of the previous section is to assume the error
terms to be valid in the complex plane slit along the real half line R≥1. In fact, weaker
conditions suffice: any domain whose boundary makes an acute angle with the half
line R≥1 appears to be suitable.

Definition VI.1. Given two numbers φ, R with R > 1 and 0 < φ < π
2 , the open

domain �(φ, R) is defined as

�(φ, R) = {z ∣∣ |z| < R, z  = 1, | arg(z − 1)| > φ}.
A domain is a �–domain at 1 if it is a �(φ, R) for some R and φ. For a complex
number ζ  = 0, a �–domain at ζ is the image by the mapping z 	→ ζ z of a �–domain
at 1. A function is �–analytic if it is analytic in some �–domain.
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Figure VI.6. A �–domain and the contour used to establish Theorem VI.3.

Analyticity in a �–domain (Figure VI.6, left) is the basic condition for transfer
to coefficients of error terms in asymptotic expansions.

Theorem VI.3 (Transfer, Big-Oh and little-oh). Let α, β be arbitrary real numbers,
α, β ∈ R and let f (z) be a function that is �–analytic.

(i) Assume that f (z) satisfies in the intersection of a neighbourhood of 1 with its
�–domain the condition

f (z) = O

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then one has: [zn] f (z) = O(nα−1(log n)β).
(i i) Assume that f (z) satisfies in the intersection of a neighbourhood of 1 with

its �–domain the condition

f (z) = o

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then one has: [zn] f (z) = o(nα−1(log n)β).

Proof. (i) The starting point is Cauchy’s coefficient formula,

fn ≡ [zn] f (z) = 1

2iπ

∫
γ

f (z)
dz

zn+1
,

where γ is any simple loop around the origin which is internal to the �–domain of f .
We choose the positively oriented contour (Figure VI.6, right) γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4,
with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 =
{

z
∣∣ |z − 1| = 1

n
, | arg(z − 1)| ≥ θ ]

}
(inner circle)

γ2 =
{

z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, arg(z − 1) = θ

}
(top line segment)

γ3 = {
z

∣∣ |z| = r, | arg(z − 1)| ≥ θ ]
}

(outer circle)

γ4 =
{

z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, arg(z − 1) = −θ

}
(bottom line segment).
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If the � domain of f is �(φ, R), we assume that 1 < r < R, and φ < θ < π
2 , so that

the contour γ lies entirely inside the domain of analyticity of f .
For j = 1, 2, 3, 4, let

f ( j)
n = 1

2iπ

∫
γ j

f (z)
dz

zn+1
.

The analysis proceeds by bounding the absolute value of the integral along each of
the four parts. In order to keep notations simple, we detail the proof in the case where
β = 0.

(1) Inner circle (γ1). From trivial bounds, the contribution from γ1 satisfies

| f (1)n | = O(
1

n
) · O

((
1

n

)−α)
= O

(
nα−1

)
,

as the function is O(nα) (by assumption on f (z)), the contour has length
O(n−1), and z−n−1 remains O(1) on this part of the contour.

(2) Rectilinear parts (γ2, γ4). Consider the contribution f (2)n arising from the
part γ2 of the contour. Setting ω = eiθ , and performing the change of
variable z = 1 + ωt

n , we find

| f (2)n | ≤ 1

2π

∫ ∞

1
K

(
t

n

)−α ∣∣∣∣1 + ωt

n

∣∣∣∣−n−1

dt,

for some constant K > 0 such that | f (z)| < K (1−z)−α over the�–domain,
which is granted by the growth assumption on f . From the relation∣∣∣∣1 + ωt

n

∣∣∣∣ ≥ 1 +-(ωt

n
) = 1 + t

n
cos θ,

there results the inequality

| f (2)n | ≤ K

2π
Jnnα−1, where Jn =

∫ ∞

1
t−α

(
1 + t cos θ

n

)−n

dt.

For a given α, the integrals Jn are all bounded above by some constant since
they admit a limit as n tends to infinity:

Jn →
∫ ∞

1
t−αe−t cos θ dt.

The condition on θ that 0 < θ < π/2 precisely ensures convergence of the
integral. Thus, globally, on the part γ2 of the contour, we have

| f (2)n | = O(nα−1).

A similar bound holds for f (4)n relative to γ4.
(3) Outer circle (γ3). There, f (z) is bounded while z−n is of the order of r−n .

Thus, the integral f (3)n is exponentially small.
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In summary, each of the four integrals of the split contour contributes O(nα−1). The
statement of part (i) of the theorem thus follows, when β = 0. Entirely similar
bounding techniques cover the case of logarithmic factors (β  = 0).

(i i) An adaptation of the proof shows that o(.) error terms may be translated
similarly. All that is required is a further break-up of the rectilinear part at a distance
log2 n/n from 1 (see the discussion surrounding Equation (20), p. 383 or [248] for
details). �

An immediate corollary of Theorem VI.3 is the possibility of transferring asymp-
totic equivalence from singular forms to coefficients:

Corollary VI.1 (sim–transfer). Assume that f (z) is �–analytic and

f (z) ∼ (1 − z)−α, as z → 1, z ∈ �,

with α  ∈ {0,−1,−2, · · · }. Then, the coefficients of f satisfy

[zn] f (z) ∼ nα−1

�(α)
.

Proof. It suffices to observe that, with g(z) = (1 − z)−α , one has

f (z) ∼ g(z) iff f (z) = g(z)+ o(g(z)),

then apply Theorem VI.1 to the first term, and Theorem VI.3 (little-oh transfer) to the
remainder. �
� VI.9. Transfer of nearly polynomial functions. Let f (z) be �–analytic and satisfy the sin-
gular expansion f (z) ∼ (1 − z)r , where r ∈ Z≥0. Then, fn = o(n−r−1). [This is a direct
consequence of the little-oh transfer.] �

� VI.10. Transfer of large negative exponents. The �–analyticity condition can be weakened
for functions that are large at their singularity. Assume that f (z) is analytic in the open disc
|z| < 1, and that in the whole of the open disc it satisfies

f (z) = O((1 − z)−α).
Then, provided α > 1, one has

[zn] f (z) = O(nα−1).

[Hint. Integrate on the circle of radius 1 − 1
n ; see also [248].] �

VI. 4. The process of singularity analysis

In Sections VI. 2 and VI. 3, we have developed a collection of statements grant-
ing us the existence of correspondences between properties of a function f (z) sin-
gular at an isolated point (z = 1) and the asymptotic behaviour of its coefficients
fn = [zn] f (z). Using the symbol ‘−→’ to represent such a correspondence4, we

4The symbol “�⇒” represents an unconditional logical implication and is accordingly used in this
book to represent the systematic correspondence between combinatorial specifications and generating func-
tion equations. In contrast, the symbol ‘−→’ represents a mapping from functions to coefficients, under
suitable analytic conditions, like those of Theorems VI.1–VI.3.
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can summarize some of our results relative to the scale {(1 − z)−α, α ∈ C \ Z≤0} as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (z) = (1 − z)−α −→ fn = nα−1

�(α)
+ · · · (Theorem VI.1)

f (z) = O((1 − z)−α) −→ fn = O(nα−1) (Theorem VI.3 (i))

f (z) = o((1 − z)−α) −→ fn = o(nα−1) (Theorem VI.3 (i i))

f (z) ∼ (1 − z)−α −→ fn ∼ nα−1

�(α)
(Corollary VI.1).

The important requirement is that the function should have an isolated singularity (the
condition of �–analyticity) and that the asymptotic property of the function near its
singularity should be valid in an area of the complex plane extending beyond the disc
of convergence of the original series, (in a �–domain). Extensions to logarithmic
powers and special cases like α ∈ Z≤0 are also, as we know, available. We let S
denote the set of such singular functions:

(29) S = {
(1 − z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) := 1

z
log

1

1 − z
≡ 1

z
L(z).

At this stage, we thus have available tools by which, starting from the expansion
of a function at its singularity, also called singular expansion, one can justify the term-
by-term transfer from an approximation of the function to an asymptotic estimate of
the coefficients5. We state the following theorem.

Theorem VI.4 (Singularity analysis, single singularity). Let f (z) be function analytic
at 0 with a singularity at ζ , such that f (z) can be continued to a domain of the form
ζ ·�0, for a �–domain �0, where ζ ·�0 is the image of �0 by the mapping z 	→ ζ z.
Assume that there exist two functions σ, τ , where σ is a (finite) linear combination of
functions in S and τ ∈ S, so that

f (z) = σ (z/ζ )+ O (τ (z/ζ )) as z → ζ in ζ ·�0.

Then, the coefficients of f (z) satisfy the asymptotic estimate

fn = ζ−nσn + O(ζ−nτ �n ),

where σn = [zn]σ(z) has its coefficients determined by Theorems VI.1, VI.2 and τ �n =
na−1(log n)b, if τ(z) = (1 − z)−aλ(z)b.

We observe that the statement is equivalent to τ �n = [zn]τ(z), except when a ∈ Z≤0,
where the 1/�(a) factor should be omitted. Also, generically, we have τ �n = o(σn),
so that orders of growth of functions at singularities are mapped to orders of growth
of coefficients.

Proof. The normalized function g(z) = f (z/ζ ) is singular at 1. It is �–analytic and
satisfies the relation g(z) = σ(z)+ O(τ (z)) as z → 1 within �0. Theorem VI.3, (i)
(the big-Oh transfer) applies to the O-error term. The statement follows finally since
[zn] f (z) = ζ−n[zn]g(z). �

5Functions with a singularity of type (1 − z)−α , possibly with logarithmic factors, are sometimes
called algebraic–logarithmic.
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Let f (z) be a function analytic at 0 whose coefficients are to be asymptotically analysed.
1. Preparation. This consists in locating dominant singularities and checking analytic
continuation.

1a. Locate singularities. Determine the dominant singularities of f (z) (assumed
not to be entire). Check that f (z) has a single singularity ζ on its circle of
convergence.

1b. Check continuation. Establish that f (z) is analytic in some domain of the
form ζ�0.

2. Singular expansion. Analyse the function f (z) as z → ζ in the domain ζ · �0 and
determine in that domain an expansion of the form

f (z) =
z→1

σ(z/ζ )+ O(τ (z/ζ )) with τ(z) = o(σ (z)).

For the method to succeed, the functions σ and τ should belong to the standard scale of
functions S = {(1 − z)−αλ(z)β }, with λ(z) := z−1 log(1 − z)−1.

3. Transfer Translate the main term term σ(z) using the catalogues provided by
TheoremsVI.1 and VI.2. Transfer the error term (Theorem VI.3) and conclude that

[zn] f (z) =
n→+∞ ζ−nσn + O

(
ζ−nτ�n

)
,

where σn = [zn]σ(z) and τ�n = [zn]τ(z) provided the corresponding exponent α  ∈ Z≤0
(otherwise, the factor 1/�(α) = 0 should be dropped).

Figure VI.7. A summary of the singularity analysis process (single dominant singularity).

The statement of Theorem VI.4 can be concisely expressed by the correspon-
dence:

(30) f (z) =
z→1

σ(z/ζ )+ O (τ (z/ζ )) −→ fn =
n→∞ ζ−nσn + O(ζ−nτ �n ).

The conditions of analytic continuation and validity of the expansion in a �–domain
are essential. Similarly, we have

(31) f (z) =
z→1

σ (z/ζ ))+ o (τ (z/ζ )) −→ fn =
n→∞ ζ−nσn + o(ζ−nτ �n ),

as a simple consequence of Theorem VI.3, part (i i) (little-oh transfer). The map-
pings (30) and (31) supplemented by the accompanying analysis constitute the heart
of the singularity analysis process summarized in Figure VI.7.

Many of the functions commonly encountered in analysis are found to be �–
analytic. This fact results from the property of the elementary functions (such as √ ,
log, tan) to be continuable to larger regions than what their expansions at 0 imply, as
well as to the rich set of composition properties that analytic functions satisfy. Fur-
thermore, asymptotic expansions at a singularity initially determined along the real
axis by elementary real analysis often hold in much wider regions of the complex
plane. The singularity analysis process is then likely to be applicable to a large num-
ber of generating functions that are provided by the symbolic method—most notably
the iterative structures described in Section IV. 4 (p. 249). In such cases, singularity
analysis greatly refines the exponential growth estimates obtained in Theorem IV.8
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(p. 251). The condition is that singular expansions should be of a suitably moderate6

growth. We illustrate this situation now by treating combinatorial generating functions
obtained by the symbolic methods of Chapters I and II, for which explicit expressions
are available.

Example VI.2. Asymptotics of 2–regular graphs. This example completes the discussion of
Example VI.1, p. 379 relative to the EGF

R(z) = e−z/2−z2/4
√

1 − z
.

We follow step by step the singularity analysis process, as summarized in Figure VI.7.

1. Preparation. The function R(z) being the product of e−z/2−z2/4 (that is entire) and
of (1 − z)−1/2 (that is analytic in the unit disc) is itself analytic in the unit disc. Also, since
(1− z)−1/2 is �–analytic (it is well-defined and analytic in the complex plane slit along R≥1),
R(z) is itself �–analytic, with a singularity at z = 1.

2. Singular expansion. The asymptotic expansion of R(z) near z = 1 is obtained starting

from the standard (analytic) expansion of e−z/2−z2/4 at z = 1,

e−z/2−z2/4 = e−3/4 + e−3/4(1 − z)+ e−3/4

4
(1 − z)2 − e−3/4

12
(1 − z)3 + · · · .

The factor (1 − z)−1/2 is its own asymptotic expansion, clearly valid in any �–domain. Per-
forming the multiplication yields a complete expansion,

(32) R(z) ∼ e−3/4
√

1 − z
+ e−3/4√1 − z + e−3/4

4
(1 − z)3/2 − e−3/4

12
(1 − z)5/2 + · · · ,

out of which terminating forms, with an O–error term, can be extracted.
3. Transfer. Take for instance the expansion of (32) limited to two terms plus an error

term. The singularity analysis process allows the transfer of (32) to coefficients, which we can
present in tabular form as follows:

R(z) cn ≡ [zn]R(z)

e−3/4 1√
1 − z

e−3/4
(

n − 1/2

−1/2

)
∼ e−3/4

√
πn

[
1 − 1

8n
+ 1

128n2
+ · · ·

]
+ e−3/4√1 − z +e−3/4

(
n − 3/2

−3/2

)
∼ −e−3/4

2
√
πn3

[
1 + 3

8n
+ · · ·

]
+ O((1 − z)3/2) +O

(
1

n5/2

)
.

Terms are then collected with expansions suitably truncated to the coarsest error term, so that
here a three-term expansion results. In the sequel, we shall no longer need to detail such com-
putations and we shall content ourselves with putting in parallel the function’s expansion and
the coefficient’s expansion, as in the following correspondence:

R(z) = e−3/4
√

1 − z
+e−3/4√1 − z+O

(
(1 − z)3/2

)
−→ cn = e−3/4

√
πn

− 5e−3/4

8
√
πn3

+O

(
1

n5/2

)
.

6For functions with fast growth at a singularity, the saddle-point method developed in Chapter VIII
becomes effectual.
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Here is a numerical check. Set c(1)n := e−3/4/
√
πn and let c(2)n represent the sum of the first

two terms of the expansion of cn . One finds:

n 5 50 500

n!c(1)n 14.30212 1.1462888618 · 1063 1.4542120372 · 101132

n!c(2)n 12.51435 1.1319602511 · 1063 1.4523942721 · 101132

n!cn 12 1.1319677968 · 1063 1.4523943224 · 101132

Clearly, a complete asymptotic expansion in descending powers of n can be obtained in this
way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VI.3. Asymptotics of unary–binary trees and Motzkin numbers. Unary–binary trees
are unlabelled plane trees that admit the specification and OGF:

U = Z(1 + U + U × U) �⇒ U (z) = 1 − z −√
(1 + z)(1 − 3z)

2z
.

(See Note I.39 (p. 68) and Subsection V. 4 (p. 318) for the lattice path version.) The GF U (z)
is singular at z = −1 and z = 1/3, the dominant singularity being at z = 1/3. By branching
properties of the square-root function, U (z) is analytic in a �–domain like the one depicted
below:

0
−1 1

3

Around the point 1/3, a singular expansion is obtained by multiplying (1− 3z)1/2 and the
analytic expansion of the factor (1 + z)1/2/(2z). The singularity analysis process then applies
and yields automatically:

U (z) = 1 − 31/2√1 − 3z + O((1 − 3z)) −→ Un =
√

3

4πn3
3n + O(3nn−2).

Further terms in the singular expansion of U (z) at z = 1/3 provide additional terms in the
asymptotic expression of the Motzkin numbers Un ; for instance, the form

Un =
√

3

4πn3
3n

(
1 − 15

16 n
+ 505

512 n2
− 8085

8192 n3
+ 505659

524288n4
+ O

(
1

n5

))
results from an expansion of U (z) till O((1−3z)11/2). The approximation provided by the first
three terms is quite good: for n = 10, it estimates f10 = 835. with an error less than 1. . . . . �

� VI.11. The population of Noah’s Ark. The number of one-source directed lattice animals
(pyramids, Example I.18, p. 80) satisfies

Pn ≡ [zn]
1

2

(√
1 + z

1 − 3z
− 1

)
= 3n

√
3πn

[
1 − 1

16n
+ O

(
1

n2

)]
.
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The expected size of the base of a random animal in An is ∼
√

4n
27π . What is the asymptotic

number of animals with a compact source of size k? �

Example VI.4. Asymptotics of children’s rounds. Stanley [550] has introduced certain combi-
natorial configurations that he has nicknamed “children’s rounds”: a round is a labelled set of
directed cycles, each of which has a centre attached. The specification and EGF are

R = SET(Z � CYC(Z)) �⇒ R(z) = exp

(
z log

1

1 − z

)
= (1 − z)−z .

The function R(z) is analytic in the C-plane slit along R≥1, as is seen by elementary properties
of the composition of analytic functions. The singular expansion at z = 1 is then mapped to an
expansion for the coefficients:

R(z) = 1

1 − z
+ log(1 − z)+ O((1 − z)1/2) −→ [zn]R(z) = 1 − 1

n
+ O(n−3/2).

A more detailed analysis yields

[zn]R(z) = 1 − 1

n
− 1

n2
(log n + γ − 1)+ O

(
log2 n

n3

)
,

and an expansion to any order can be easily obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VI.12. The asymptotic shape of the rounds numbers. A complete asymptotic expansion has
the form

[zn]R(z) ∼ 1 −
∑
j≥1

Pj (log n)

n j
,

where Pj is a polynomial of degree j − 1. (The coefficients of Pj are rational combinations of
powers of γ, ζ(2), . . . , ζ( j −1).) The successive terms in this expansion are easily obtained by
a computer algebra program. �

Example VI.5. Asymptotics of coefficients of an elementary function. Our final example
is meant to show the way rather arbitrary compositions of basic functions can be treated by
singularity analysis, much in the spirit of Section IV. 4, p. 249. Let C = Z �SEQ(C) be the class
of general labelled plane trees. Consider the labelled class defined by substitution

F = C ◦ CYC(CYC(Z)) �⇒ F(z) = C(L(L(z))).

There, C(z) = 1
2 (1 − √

1 − 4z) and L(z) = log 1
1−z . Combinatorially, F is the class of trees

in which nodes are replaced by cycles of cycles, a rather artificial combinatorial object, and

F(z) = 1

2

[
1 −

√
1 − 4 log

1

1 − log 1
1−z

]
.

The problem is first to locate the dominant singularity of F(z), then to determine its nature,
which can be done inductively on the structure of F(z). The dominant positive singularity ρ of
F(z) satisfies L(L(ρ)) = 1/4 and one has

ρ = 1 − ee−1/4−1 .= 0.198443,

given that C(z) is singular at 1/4 and L(z) has positive coefficients. Since L(L(z)) is analytic at
ρ, a local expansion of F(z) is obtained next by composition of the singular expansion of C(z)
at 1/4 with the standard Taylor expansion of L(L(z)) at ρ. We find

F(z) = 1

2
−C1(ρ−z)1/2+O

(
(ρ − z)3/2

)
−→ [zn]F(z) = C1ρ

−n+1/2

2
√
πn3

[
1 + O

(
1

n

)]
,
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with C1 = e
5
8− 1

2 e−1/4 .= 1.26566. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VI.13. The asymptotic number of trains. Combinatorial trains were introduced in Sec-
tion IV. 4 (p. 249) as a way to exemplify the power of complex asymptotic methods. One
finds that, at its dominant singularity ρ, the EGF Tr(z) is of the form Tr(z) ∼ C/(1− z/ρ), and,
by singularity analysis,

[zn]Tr(z) ∼ 0.11768 31406 15497 · 2.06131 73279 40138n .

(This asymptotic approximation is good to 15 significant digits for n = 50, in accordance with
the fact that the dominant singularity is a simple pole.) �

VI. 5. Multiple singularities

The previous section has described in detail the analysis of functions with a single
dominant singularity. The extension to functions that have finitely many (by necessity
isolated) singularities on their circle of convergence follows along entirely similar
lines. It parallels the situation of rational and meromorphic functions in Chapter IV
(p. 263) and is technically simple, the net result being:

In the case of multiple singularities, the separate contributions from each of
the singularities, as given by the basic singularity analysis process, are to
be added up.

As in (29), p. 393, we let S be the standard scale of functions singular at 1, namely

S = {
(1 − z)−αλ(z)β

∣∣ α, β ∈ C
}
, λ(z) := 1

z
log

1

1 − z
.

Theorem VI.5 (Singularity analysis, multiple singularities). Let f (z) be analytic in
|z| < ρ and have a finite number of singularities on the circle |z| = ρ at points
ζ j = ρeiθ j , for j = 1 . . r . Assume that there exists a �–domain �0 such that f (z) is
analytic in the indented disc

D =
r⋂

j=1

(ζ j ·�0),

with ζ ·�0 the image of �0 by the mapping z 	→ ζ z.
Assume that there exists r functions σ1, . . . , σr , each a linear combination of

elements from the scale S, and a function τ ∈ S such that

f (z) = σ j (z/ζ j )+ O
(
τ(z/ζ j )

)
as z → ζ j in D.

Then the coefficients of f (z) satisfy the asymptotic estimate

fn =
r∑

j=1

ζ−n
j σ j,n + O

(
ρ−nτ �n

)
,

where each σ j,n = [zn]σ j (z) has its coefficients determined by Theorems VI.1, VI.2
and τ ∗n = na−1(log n)b, if τ(z) = (1 − z)−aλ(z)b.

A function analytic in a domain like D is sometimes said to be star-continuable, a
notion that naturally generalizes �–analyticity for functions with several dominant
singularities. Furthermore, a similar statement holds with o–error terms replacing Os.
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γ

0 0

D:

Figure VI.8. Multiple singularities (r = 3): analyticity domain (D, left) and com-
posite integration contour (γ , right).

Proof. Just as in the case of a single singularity, the proof bases itself on Cauchy’s
coefficient formula

fn = [zn]
∫
γ

f (z)
dz

zn+1
,

where a composite contour γ depicted on Figure VI.8 is used. Estimates on each part
of the contour obey exactly the same principles as in the proofs of Theorems VI.1–
VI.3. Let γ ( j) be the open loop around ζ j that comes from the outer circle, winds
about ζ j and joins again the outer circle; let r be the radius of the outer circle.

(i) The contribution along the arcs of the outer circle is O(r−n), that is, expo-
nentially small.

(i i) The contribution along the loop γ (1) (say) separates into

1

2iπ

∫
γ (1)

f (z)
dz

zn+1
= I ′ + I ′′

I ′ := 1

2iπ

∫
γ (1)

σ1(z/ζ1)
dz

zn+1
, I ′′ := 1

2iπ

∫
γ (1)

( f (z)− σ1(z/ζ1))
dz

zn+1
.

The quantity I ′ is estimated by extending the open loop to infinity by the
same method as in the proof of Theorems VI.1 and VI.2: it is found to equal
ζ−n

1 σ1,n plus an exponentially small term. The quantity I ′′, corresponding
to the error term, is estimated by the same bounding technique as in the
proof of Theorem VI.3 and is found to be O(ρ−nτ �n ).

Collecting the various contributions completes the proof of the statement. �

Theorem VI.5 expresses that, in the case of multiple singularities, each domi-
nant singularity can be analysed separately; the singular expansions are then each
transferred to coefficients, and the corresponding asymptotic contributions are finally
collected. Two examples illustrating the process follow.

Example VI.6. An artificial example. Let us demonstrate the modus operandi on the simple
function

(33) g(z) = ez√
1 − z2

.
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There are two singularities at z = +1 and z = −1, with

g(z) ∼ e√
2
√

1 − z
z → +1 and g(z) ∼ e−1

√
2
√

1 + z
z → −1.

The function is clearly star-continuable with the singular expansions being valid in an indented
disc. We have

[zn]
e√

2
√

1 − z
∼ e√

2πn
and [zn]

e−1
√

2
√

1 + z
∼ e−1(−1)n√

2πn
.

To obtain the coefficient [zn]g(z), it suffices to add up these two contributions (by Theo-
rem VI.5), so that

[zn]g(z) ∼ 1√
2πn

[e + (−1)ne−1].

If expansions at +1 (respectively −1) are written with an error term, which is of the form
O((z − 1)1/2) (respectively, O((z + 1)1/2), there results an estimate of the coefficients gn =
[zn]g(z), which can be put under the form

g2n = cosh(1)√
πn

+ O
(

n−3/2
)
, g2n+1 = sinh(1)√

πn
+ O

(
n−3/2

)
.

This makes explicit the dependency of the asymptotic form of gn on the parity of the index n.
Clearly a full asymptotic expansion can be obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VI.7. Permutations with cycles of odd length. Consider the specification and EGF

F = SET(CYCodd(Z)) �⇒ F(z) = exp

(
1

2
log

1 + z

1 − z

)
=

√
1 + z

1 − z
.

The singularities of f are at z = +1 and z = −1, the function being obviously star-continuable.
By singularity analysis (Theorem VI.5), we have automatically:

F(z) =

⎧⎪⎨⎪⎩
21/2

√
1 − z

+ O
(
(1 − z)1/2

)
(z → 1)

O
(
(1 + z)1/2

)
(z → −1)

−→ [zn]F(z) = 21/2
√
πn

+ O
(

n−3/2
)
.

For the next asymptotic order, the singular expansions

F(z) =
⎧⎨⎩

21/2
√

1 − z
− 2−3/2√1 − z + O((1 − z)3/2) (z → 1)

2−1/2√1 + z + O((1 + z)3/2) (z → −1)

yield

[zn]F(z) = 21/2
√
πn

− (−1)n2−3/2
√
πn3

+ O(n−5/2).

This example illustrates the occurrence of singularities that have different weights, in the sense
of being associated with different exponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The discussion of multiple dominant singularities ties well with the earlier dis-
cussion of Subsection IV. 6.1, p. 263. In the periodic case where the dominant singu-
larities are at roots of unity, different regimes manifest themselves cyclically depend-
ing on congruence properties of the index n, like in the two examples above. When
the dominant singularities have arguments that are not commensurate to π (a com-
paratively rare situation), irregular fluctuations appear, in which case the situation is
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similar to what was already discussed, regarding rational and meromorphic functions,
in Subsection IV. 6.1.

VI. 6. Intermezzo: functions amenable to singularity analysis

Let us say that a function is amenable to singularity analysis, or SA for short,
if its satisfies the conditions of singularity analysis, as expressed by Theorem VI.4
(single dominant singularity) or Theorem VI.5 (multiple dominant singularities). The
property of being of SA is preserved by several basic operations of analysis: we have
already seen this feature in passing, when determining singular expansions of func-
tions obtained by sums, products, or compositions in Examples VI.2–VI.5.

As a starting example, it is easily recognized that the assumptions of�–analyticity
for two functions f (z), g(z) accompanied by the singular expansions

f (z) ∼
z→1

c(1 − z)−α, g(z) ∼
z→1

d(1 − z)−δ,

and the condition α, δ  ∈ Z≤0 imply for the coefficients of the sum

[zn] ( f (z)+ g(z)) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c
nα−1

�(α)
α > δ

(c + d)
nα−1

�(α)
α = δ, c + d  = 0

d
nδ−1

�(δ)
α < δ.

Similarly, for products, we have

[zn] ( f (z)g(z)) ∼ cd
nα+δ−1

�(α + δ)
,

provided α + δ  ∈ Z≤0.
The simple considerations above illustrate the robustness of singularity analysis.

They also indicate that properties are easy to state in the generic case where no nega-
tive integral exponents are present. However, if all cases are to be covered, there can
easily be an explosion of the number of particular situations, which may render some-
what clumsy the enunciation of complete statements. Accordingly, in what follows,
we shall largely confine ourselves to generic cases, as long as these suffice to develop
the important mathematical technique at stake for each particular problem.

In the remainder of this chapter, we proceed to enlarge the class of functions
recognized to be of SA, keeping in mind the needs of analytic combinatorics. The
following types of functions are treated in later sections.

(i) Inverse functions (Section VI. 7). The inverse of an analytic function is, un-
der mild conditions, of SA type. In the case of functions attached to simple
varieties of trees (corresponding to the inversion of y/φ(y)), the singular
expansion invariably has an exponent of 1

2 attached to it (a square-root sin-
gularity). This applies in particular to the Cayley tree function, in terms of
which many combinatorial structures and parameters can be analysed.
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(i i) Polylogarithms (Section VI. 8). These functions are the generating functions
of simple arithmetic sequences such as (nθ ) for an arbitrary θ ∈ C. The
fact that polylogarithms are SA opens the possibility of estimating a large
number of sums, which involve both combinatorial terms (e.g., binomial co-
efficients) and elements like

√
n and log n. Such sums appear recurrently in

the analysis of cost functionals of combinatorial structures and algorithms.
(i i i) Composition (Section VI. 9). The composition of SA functions often proves

to be itself SA This fact has implications for the analysis of composition
schemas and makes possible a broad extension of the supercritical sequence
schema treated in Section V. 2, (p. 293).

(iv) Differentiation, integration, and Hadamard products (Section VI. 10). These
are three operations on analytic functions that preserve the property for a
function to be SA. Applications are given to tree recurrences and to multi-
dimensional walk problems.

A main theme of this book is that elementary combinatorial classes tend to have
generating functions whose singularity structure is strongly constrained—in most cases,
singularities are isolated. The singularity analysis process is then a prime technique
for extracting asymptotic information from such generating functions.

VI. 7. Inverse functions

Recursively defined structures lead to functional equations whose solutions may
often be analysed locally near singularities. An important case is the one of func-
tions defined by inversion. It includes the Cayley tree function as well as all generat-
ing functions associated to simple varieties of trees (Subsections I. 5.1 (p. 65), II. 5.1
(p. 126), and III. 6.2 (p. 193)). A common pattern in this context is the appearance
of singularities of the square-root type, which proves to be universal among a broad
class of problems involving trees and tree-like structures. Accordingly, by singular-
ity analysis, the square-root singularity induces subexponential factors of the asymp-
totic form n−3/2 in expansions of coefficients—we shall further develop this theme in
Chapter VII, pp. 452–493.

Inverse functions. Singularities of functions defined by inversion have been lo-
cated in Subsection IV. 7.1 (p. 275) and our treatment will proceed from there. The
goal is to estimate the coefficients of a function defined implicitly by an equation of
the form

(34) y(z) = zφ(y(z)) or equivalently z = y(z)

φ(y(z))
.

The problem of solving (34) is one of functional inversion: we have seen (Lem-
mas IV.2 and IV.3, pp. 275–277) that an analytic function admits locally an analytic
inverse if and only if its first derivative is non-zero. We operate here under the follow-
ing assumptions:

Condition (H1). The function φ(u) is analytic at u = 0 and satisfies

(35) φ(0)  = 0, [un]φ(u) ≥ 0, φ(u)  ≡ φ0 + φ1u.
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(As a consequence, the inversion problem is well defined around 0. The
nonlinearity of φ only excludes the case φ(u) = φ0 + φ1u, corresponding
to y(z) = φ0z/(1 − φ1z).)
Condition (H2). Within the open disc of convergence of φ at 0, |z| < R,
there exists a (then necessarily unique) positive solution to the characteristic
equation:

(36) ∃τ, 0 < τ < R, φ(τ )− τφ′(τ ) = 0.

(Existence is granted as soon as lim xφ′(x)/φ(x) > 1 as x → R−,with R
the radius of convergence of φ at 0; see Proposition IV.5, p. 278.)

Then (by Proposition IV.5, p. 278), the radius of convergence of y(z) is the corres-
ponding positive value ρ of z such that y(ρ) = τ , that is to say,

(37) ρ = τ

φ(τ)
= 1

φ′(τ )
.

We start with a calculation indicating in a plain context the occurrence of a square-root
singularity.

Example VI.8. A simple analysis of the Cayley tree function. The situation corresponding
to the function φ(u) = eu , so that y(z) = zey(z) (defining the Cayley tree function T (z)), is
typical of general analytic inversion. From (36), the radius of convergence of y(z) is ρ = e−1

corresponding to τ = 1. The image of a circle in the y–plane, centred at the origin and having
radius r < 1, by the function ye−y is a curve of the z–plane that properly contains the circle
|z| = re−r (see Figure VI.9) as φ(y) = ey , which has non-negative coefficients, satisfies∣∣∣φ(reiθ )

∣∣∣ ≤ φ(r) for all θ ∈ [−π,+π ],

the inequality being strict for all θ  = 0. The following observation is the key to analytic
continuation: Since the first derivative of y/φ(y) vanishes at 1, the mapping y 	→ y/φ(y)
is angle-doubling, so that the image of the circle of radius 1 is a curve C that has a cusp at
ρ = e−1. (See Figure VI.9; Notes VI.18 and 19 provide interesting generalizations.)

This geometry indicates that the solution of z = ye−y is uniquely defined for z inside C,
so that y(z) is �–analytic (see the proof of Theorem VI.6 below). A singular expansion for
y(z) is then derived from reversion of the power series expansion of z = ye−y . We have

(38) ye−y = e−1 − 1

2e
(y − 1)2 + 1

3e
(y − 1)3 − e−1

8
(y − 1)4 + · · · .

Observe both the absence of a linear term and the presence of a quadratic term (boxed). Then,
solving z = ye−y for y gives

y − 1 =
√

2(1 − ez)1/2 + 2

3
(1 − ez)+ O((1 − ez)3/2),

where the square root arises precisely from inversion of the quadratic term. (A full expansion
can furthermore be obtained.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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y :

1

0

0.5

-0.5

10.5-1 0

-1

-0.5

−→ z :

-1

1

0.5

0

-0.5

10-1-1.5 0.5-0.5

Figure VI.9. The images of concentric circles by the mapping y 	→ z = ye−y . It is
seen that y 	→ z = ye−y is injective on |y| ≤ 1 with an image extending beyond the
circle |z| = e−1 [in grey], so that the inverse function y(z) is analytically continuable
in a �–domain around z = e−1. Since the direct mapping ye−y is quadratic at 1
(with value e−1, see (38)), the inverse function has a square-root singularity at e−1

(with value 1).

Analysis of inverse functions. The calculation of Example VI.8 now needs to
be extended to the general case, y = zφ(y). This involves three steps: (i) all the
dominant singularities are to be located; (i i) analyticity of y(z) in a �–domain must
be established; (i i i) the singular expansion, obtained formally so far and involving a
square-root singularity, needs to be determined. Step (i) requires a special discussion
and is related to periodicities.

A basic example like φ(u) = 1 + u2 (binary trees), for which

y(z) = 1 −√
1 − 4z2

2z
,

shows that y(z) may have several dominant singularities—here, two conjugate singu-
larities at − 1

2 and + 1
2 . The conditions for this to happen are related to our discussion

of periodicities in Definition IV.5, p. 266. As a consequence of this definition, φ(u),
which satisfies φ(0)  = 0, is p–periodic if φ(u) = g(u p) for some power series g (see
p. 266) and p ≥ 2; it is aperiodic otherwise. An elementary argument developed in
Note VI.17, p. 407, shows that the aperiodicity assumption entails no loss of analytic
generality (periodicity does not occur for y(z) unless φ(u) is itself periodic, a case
which, in addition, turns out to be reducible to the aperiodic situation).

Theorem VI.6 (Singular Inversion). Let φ be a nonlinear function satisfying the con-
ditions (H1) and (H2) of Equations (35) and (36), and let y(z) be the solution of
y = zφ(y) satisfying y(0) = 0. Then, the quantity ρ = τ/φ(τ) is the radius of con-
vergence of y(z) at 0 (with τ the root of the characteristic equation), and the singular
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expansion of y(z) near ρ is of the form

y(z) = τ − d1
√

1 − z/ρ +
∑
j≥2

(−1) j d j (1 − z/ρ) j/2, d1 :=
√

2φ(τ)

φ′′(τ )
,

with the d j being some computable constants.
Assume that, in addition, φ is aperiodic7. Then, one has

[zn]y(z) ∼
√

φ(τ)

2φ′′(τ )
ρ−n

√
πn3

(
1 +

∞∑
k=1

ek

nk

)
,

for a family ek of computable constants.

Proof. Proposition IV.5, p. 278, shows that ρ is indeed the radius of convergence
of y(z). The Singular Inversion Lemma (Lemma IV.3, p. 277) also shows that y(z)
can be continued to a neighbourhood of ρ slit along the ray R≥ρ .

The singular expansion at ρ is determined as in Example VI.8. Indeed, the rela-
tion between z and y, in the vicinity of (z, y) = (ρ, τ ), may be put under the form

(39) ρ − z = H(y), where H(y) :=
(

τ

φ(τ)
− y

φ(y)

)
,

the function H(y) in the right-hand side being such that H(τ ) = H ′(τ ) = 0. Thus,
the dependency between y and z is locally a quadratic one:

ρ − z = 1

2!
H ′′(τ )(y − τ)2 + 1

3!
H ′′′(τ )(y − τ)3 + · · · .

When this relation is locally inverted: a square-root appears:

−√
ρ − z =

√
H ′′(τ )

2
(y − τ)

[
1 + c1(y − τ)+ c2(y − τ)2 + ...

]
.

The determination with a −√ should be chosen there as y(z) increases to τ− as z →
ρ−. This implies, by solving with respect to y − τ , the relation

y − τ ∼ −d�1(ρ − z)1/2 + d�2(ρ − z)− d�3(ρ − z)3/2 + · · · ,
where d�1 = √

2/H ′′(τ ) with H ′′(τ ) = τφ′′(τ )/φ(τ)2. The singular expansion at ρ
results.

It now remains to exclude the possibility for y(z) to have singularities other than
ρ on the circle |z| = ρ, in the aperiodic case. Observe that y(ρ) is well defined (in
fact y(ρ) = τ ), so that the series representing y(z) converges at ρ as well as on the
whole circle (given positivity of the coefficients). If φ(z) is aperiodic, then so is y(z).
Consider any point ζ such that |ζ | = ρ and ζ  = ρ and set η = y(ζ ). We then have
|η| < τ (by the Daffodil Lemma: Lemma IV.1, p. 266). The function y(z) is analytic

7If φ has maximal period p, then one must restrict n to n ≡ 1 mod p; in that case, there is an extra
factor of p in the estimate of yn : see Note VI.17 and Equation (40).
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Type φ(u) singular expansion of y(z) coefficient [zn]y(z)

binary (1 + u)2 1 − 4
√

1
4 − z + · · · 4n

√
πn3

+ O(n−5/2)

unary–binary 1 + u + u2 1 − 3
√

1
3 − z + · · · 3n+1/2

2
√
πn3

+ O(n−5/2)

general (1 − u)−1 1
2 −

√
1
4 − z

4n−1
√
πn3

+ O(n−5/2)

Cayley eu 1 −√
2e

√
e−1 − z + · · · en

√
2πn3

+ O(n−5/2)

Figure VI.10. Singularity analysis of some simple varieties of trees.

at ζ by virtue of the Analytic Inversion Lemma (Lemma IV.2, p. 275) and the property
that

d

dy

y

φ(y)

∣∣∣∣
y=η

 = 0.

(This last property is derived from the fact that the numerator of the quantity on the
left,

φ(η)− ηφ′(η) = φ0 − φ2η
2 − 2φ3η

3 − 3φ4η
4 − · · · ,

cannot vanish, by the triangle inequality since |η| < τ .) Thus, under the aperiodicity
assumption, y(z) is analytic on the circle |z| = ρ punctured at ρ. The expansion of
the coefficients then results from basic singularity analysis. �

Figure VI.10 provides a table of the most basic varieties of simple trees and the
corresponding asymptotic estimates. With Theorem VI.6, we now have available a
powerful method that permits us to analyse not only implicitly defined functions but
also expressions built upon them. This fact will be put to good use in Chapter VII,
when analysing a number of parameters associated to simple varieties of trees.
� VI.14. All kinds of graphs. In relation with the classes of graphs listed in Figure II.14,
p. 134, one has the following correspondence between an EGF f (z) and the asymptotic form
of n![zn] f (z):

function: eT−T 2/2 log
1

1 − T

1√
1 − T

1

(1 − T )m

coefficient: e1/2nn−2 1

2

√
2πnn−1/2 C1nn−1/4 C2nn+(m−1)/2

(m ∈ Z≥1; C1,C2 represent computable constants). In this way, the estimates of Subsec-
tion II. 5.3, p. 132, are justifiable by singularity analysis. �

� VI.15. Computability of singular expansions. Define

h(w) :=
√
τ/φ(τ)− w/φ(w)

(τ − w)2
,



“book” — 2008/10/3 — 16:05 — page 407 — #421

VI. 7. INVERSE FUNCTIONS 407

so that y(z) satisfies
√
ρ − z = (τ−y)h(y). The singular expansion of y can then be deduced by

Lagrange inversion from the expansion of the negative powers of h(w) atw = τ . This technique
yields for instance explicit forms for coefficients in the singular expansion of y = zey . �

� VI.16. Stirling’s formula via singularity analysis. The solution to T = zeT analytic at 0 is
the Cayley tree function. It satisfies [zn] = nn−1/n! (by Lagrange inversion) and, at the same
time, its singularity is known from Theorem VI.6 and Example VI.8. As a consequence:

nn−1

n!
∼ en

√
2πn3

(
1 − 1

12 n
+ 1

288 n2
+ 139

51840 n3
− · · ·

)
.

Thus Stirling’s formula also results from singularity analysis. �

� VI.17. Periodicities. Assume that φ(u) = ψ(u p)with ψ analytic at 0 and p ≥ 2. Let y =
y(z) be the root of y = zφ(y). Set Z = z p and let Y (Z) be the root of Y = Zψ(Y )p . One has
by construction y(z) = Y (z p)1/p , given that y p = z pφ(y)p . Since Y (Z) = Y1 Z+Y2 Z2+· · · ,
we verify that the non-zero coefficients of y(z) are among those of index 1, 1 + p, 1 + 2p, . . . .

If p is chosen maximal, then ψ(u)p is aperiodic. Then Theorem VI.6 applies to Y (Z):
the function Y (Z) is analytically continuable beyond its dominant singularity at Z = ρ p; it
has a square root singularity at ρ p and no other singularity on |Z | = ρ p . Furthermore, since
Y = Zψ(Y )p , the function Y (Z) cannot vanish on |Z | ≤ ρ p , Z  = 0. Thus, Y (Z)1/p is
analytic in |Z | ≤ ρ p , except at ρ p where it has a √ branch point. All computations done, we
find that

(40) [zn]y(z) ∼ p · d1ρ
−n

2
√
πn3

when n ≡ 1 (mod p).

The argument also shows that y(z) has p conjugate roots on its circle of convergence. (This is
a kind of Perron–Frobenius property for periodic tree functions.) �

� VI.18. Boundary cases I. The case when τ lies on the boundary of the disc of convergence
of φ may lead to asymptotic estimates differing from the usual ρ−nn−3/2 prototype. Without
loss of generality, take φ aperiodic to have radius of convergence equal to 1 and assume that φ
is of the form

(41) φ(u) = u + c(1 − u)α + o((1 − u)α), with 1 < α ≤ 2,

as u tends to 1 within |u| < 1. (Thus, continuation of φ(u) beyond |u| < 1 is not assumed.)
The solution of the characteristic equation φ(τ)− τφ′(τ ) = 0 is then τ = 1. The function y(z)
defined by y = zφ(y) is �–analytic (by a mapping argument similar to the one exemplified by
Figure VI.9 and related to the fact that φ “multiplies” angles near 1). The singular expansion of
y(z) and the coefficients then satisfy

(42) y(z) = 1 − c−1/α(1 − z)1/α + o
(
(1 − z)1/α

)
−→ yn ∼ c−1/α n−1/α−1

−�(−1/α)
.

[The case α = 2 was first observed by Janson [350]. Trees with α ∈ (1, 2) have been investi-
gated in connection with stable Lévy processes [180]. The singular exponent α = 3/2 occurs
for instance in planar maps (Subsection VII. 8.2, p. 513), so that GFs with coefficients of the
form ρ−nn−5/3 would arise, if considering trees whose nodes are themselves maps.] �

� VI.19. Boundary cases II. Let φ(u) be the probability generating function of a random vari-
able X with mean equal to 1 and such that φn ∼ λn−α−1, with 1 < α < 2. Then, by a complex
version of an Abelian theorem (see, e.g., [69, §1.7] and [232]), the singular expansion (41) holds
when u → 1, |u| < 1, within a cone, so that the conclusions of (42) hold in that case. Similarly,
if φ′′(1) exists, meaning that X has a second moment, then the estimate (42) holds with α = 2,
and then coincides with what Theorem VI.6 predicts [350]. (In probabilistic terms, the condi-
tion of Theorem VI.6 is equivalent to postulating the existence of exponential moments for the
one-generation offspring distribution.) �
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VI. 8. Polylogarithms

Generating functions involving sequences such as (
√

n) or (log n) can be sub-
jected to singularity analysis. The starting point is the definition of the generalized
polylogarithm, commonly denoted8 by Liα,r , where α is an arbitrary complex number
and r a non-negative integer:

Liα,r (z) :=
∑
n≥1

(log n)r
zn

nα
,

The series converges for |z| < 1, so that the function Liα,r is a priori analytic in
the unit disc. The quantity Li1,0(z) is the usual logarithm, log(1 − z)−1, hence the
established name, polylogarithm, assigned to these functions [406]. In what follows,
we make use of the abbreviation Liα,0(z) ≡ Liα(z), so that Li1(z) ≡ Li1,0(z) ≡
log(1−z)−1 is the GF of the sequence (1/n). Similarly, Li0,1 is the GF of the sequence
(log n) and Li−1/2(z) is the GF of the sequence (

√
n).

Polylogarithms are continuable to the whole of the complex plane slit along the
ray R≥1, a fact established early in the twentieth century by Ford [268], which results
from the integral representation (48), p. 409. They are amenable to singularity analy-
sis [223] and their singular expansions involve the Riemann zeta function defined by

ζ(s) =
∞∑

n=1

1

ns
,

for -(s) > 1, and by analytic continuation elsewhere [578].

Theorem VI.7 (Singularities of polylogarithms). For all α ∈ Z and r ∈ Z≥0, the
function Liα,r (z) is analytic in the slit plane C \ R≥1. For α  ∈ {1, 2, . . .}, there exists
an infinite singular expansion (with logarithmic terms when r > 0) given by the two
rules:

(43)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Liα(z) ∼ �(1 − α)wα−1 +

∑
j≥0

(−1) j

j!
ζ(α − j)w j , w :=

∞∑
�=1

(1 − z)�

�

Liα,r (z) = (−1)r
∂r

∂αr
Liα(z) (r ≥ 0).

The expansion of Liα is conveniently described by the composition of two expansions
(Figure VI.11, p. 410): the expansion of w = log z at z = 1, namely, w = (1 − z) +
1
2 (1 − z)2 + · · · , is to be substituted inside the formal power series involving powers
of w. The exponents of (1−z) involved in the resulting expansion are {α−1, α, . . .}∪
{0, 1, . . .}. For α < 1, the main asymptotic term of Liα,r is, as z → 1,

Liα,r (z) ∼ �(1 − α)(1 − z)α−1 L(z)r , L(z) := log
1

1 − z
,

8The notation Liα(z) is nowadays well established. It is evocative of the fact that polylogarithms of
integer order m ≥ 2 are expressible by a logarithmic integral:

Lim,0(x) =
(−1)m−1

(m − 1)!

∫ 1

0
log(1 − xt) logm−2 t

dt

t

(not to be confused with the unrelated “logarithmic integral function” li(z) := ∫ z
0

dt
log t ; see [3, p. 228]).
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while, for α > 1, we have Liα,r (z) ∼ (1−)rζ (r)(α), since the sum defining Liα,r
converges at 1.

Proof. The analysis crucially relies on the Mellin transform (see Appendix B.7:
Mellin transforms, p. 762). We start with the case r = 0 and consider several ways
in which z may approach the singularity 1. Step (i) below describes the main ingre-
dient needed in obtaining the expansion, the subsequent steps being only required for
justifying it in larger regions of the complex plane.

(i) When z → 1− along the real line. Set w = − log z and introduce

(44) %(w) := Liα(e
−w) =

∑
n≥1

e−nw

nα
.

This is a harmonic sum in the sense of Mellin transform theory, so that the Mellin
transform of % satisfies (-(s) > max(0, 1 − α))

(45) %�(s) ≡
∫ ∞

0
%(w)ws−1 dw = ζ(s + α)�(s).

The function %(w) can be recovered from the inverse Mellin integral,

(46) %(w) = 1

2iπ

∫ c+i∞

c−i∞
ζ(s + α)�(s)w−s ds,

with c taken in the half-plane in which %�(s) is defined. There are poles at s =
0,−1,−2, . . . due to the Gamma factor and a pole at s = 1 − α due to the zeta
function. Take d to be of the form −m − 1

2 and smaller than 1 − α. Then, a standard
residue calculation, taking into account poles to the left of c and based on

(47)

%(w) =
∑

s0∈{0,−1,...,−m}∪{1−α}
Res

(
ζ(s + α)�(s)w−s)

s=s0

+ 1

2iπ

∫ d+i∞

d−i∞
ζ(s + α)�(s)w−s ds,

then yields a finite form of the estimate (43) of Liα (as w → 0, corresponding to
z → 1−).

(i i) When z → 1− in a cone of angle less than π inside the unit disc. In that case,
we observe that the identity in (46) remains valid by analytic continuation, since the
integral there is still convergent (this property owes to the fast decay of �(s) towards
±i∞). Then the residue calculation (47), on which the expansion of %(w) is based in
the real case w > 0, still makes sense. The extension of the asymptotic expansion of
Liα within the unit disc is thus granted.

(i i i) When z tends to 1 vertically. Details of the proof are given in [223]. What
is needed is a justification of the validity of expansion (43), when z is allowed to tend
to 1 from the exterior of the unit disc. The key to the analysis is a Lindelöf integral
representation of the polylogarithm (Notes IV.8 and IV.9, p. 237), which provides
analytic continuation; namely,

(48) Liα(−z) = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
zs

sα
π

sinπs
ds.
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Li−1/2(z) =
∑
n≥1

√
nzn =

√
π

2(1 − z)3/2
− 3

√
π

8(1 − z)1/2
+ ζ(−1

2
)+ O

(
(1 − z)1/2

)
Li0(z) =

∑
n≥1

zn ≡ 1

1 − z
− 1

Li0,1(z) =
∑
n≥1

log n zn = L(z)− γ

1 − z
− 1

2
L(z)+ γ − 1

2
+ log

√
2π + O ((1 − z)L(z))

Li1/2(z) =
∑
n≥1

zn
√

n
=

√
π

1 − z
+ ζ(

1

2
)− 1

4

√
π
√

1 − z + O
(
(1 − z)3/2

)
Li1/2,1(z) =

∑
n≥1

log n√
n

zn = √
π

L(z)− γ − 2 log 2√
1 − z

− ζ(
1

2
)
(γ

2
+ π

4
+ log

√
8π

)
+ · · ·

Li1(z) =
∑
n≥1

zn

n
≡ L(z)

Li2(z) =
∑
n≥1

zn

n2
= π2

6
− (L(z)+ 1)(1 − z)− (

1

4
+ 1

2
L(z))(1 − z)2 + · · ·

Figure VI.11. Sample expansions of polylogarithms (L(z) := log(1 − z)−1).

The proof then proceeds with the analysis of the polylogarithm when z = ei(w−π) and
s = 1/2 + i t , the integral (48) being estimated asymptotically as a harmonic integral
(a continuous analogue of harmonic sums [614]) by means of Mellin transforms. The
extension to a cone with vertex at 1, having a vertical symmetry and angle less than π ,
then follows by an analytic continuation argument. By unicity of asymptotic expan-
sions (the horizontal cone of parts (i) and (i i) and the vertical cone have a non-empty
intersection), the resulting expansion must coincide with the one calculated explicitly
in part (i), above.

To conclude, regarding the general case r ≥ 0, we may proceed along similar
lines, with each log n factor introducing a derivative of the Riemann zeta function,
hence a multiple pole at s = 1. It can then be checked that the resulting expansion
coincides with what is given by formally differentiating the expansion of Liα a number
of times equal to r . (See also Note VI.20 below.) �

Figure VI.11 provides a table of expansions relative to commonly encountered
polylogarithms (the function Li2 is also known as a dilogarithm). Example VI.9 illus-
trates the use of polylogarithms for establishing a class of asymptotic expansions of
which Stirling’s formula appears as a special case. Further uses of Theorem VI.7 will
appear in the following sections.

Example VI.9. Stirling’s formula, polylogarithms, and superfactorials. One has∑
n≥1

log n! zn = (1 − z)−1 Li0,1(z),
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to which singularity analysis is applicable. Theorem VI.7 then yields the singular expansion

1

1 − z
Li0,1(z) ∼

L(z)− γ

(1 − z)2
+ 1

2

−L(z)+ γ − 1 + log 2π

1 − z
+ · · · ,

from which Stirling’s formula reads off:

log n! ∼ n log n − n + 1

2
log n + log

√
2π + · · · .

(Stirling’s constant log
√

2π comes out as neatly −ζ ′(0).) Similarly, define the superfactorial
function to be 1122 · · · nn . One has∑

n≥1

log(1222 · · · nn)zn = 1

1 − z
Li−1,1(z),

to which singularity analysis is mechanically applicable. The analogue of Stirling’s formula
then reads:

1122 · · · nn ∼ An
1
2 n2+ 1

2 n+ 1
12 e−

1
4 n2

,

A = exp

(
1

12
− ζ ′(−1)

)
= exp

(
− ζ ′(2)

2π2
+ log(2π)+ γ

12

)
.

The constant A is known as the Glaisher–Kinkelin constant [211, p. 135]. Higher order factori-
als can be treated similarly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VI.20. Polylogarithms of integral index and a general formula. Let α = m ∈ Z≥1. Then:

Lim(z) = (−1)m

(m − 1)!
wm−1(logw − Hm−1)+

∑
j≥0, j  =m−1

(−1) j

j!
ζ(m − j)w j ,

where Hm is the harmonic number and w = − log z. [The line of proof is the same as in
Theorem VI.7, only the residue calculation at s = 1 differs.] The general formula,

Liα,r (z) ∼
z→1

(−1)r
∂r

∂αr

∑
s∈Z≥0∪{1−α}

Res
[
ζ(s + α)�(s)w−s], w := − log z,

holds for all α ∈ C and r ∈ Z≥0 and is amenable to symbolic manipulation. �

VI. 9. Functional composition

Let f and g be functions analytic at the origin that have non-negative coefficients.
We consider the composition

h = f ◦ g, h(z) = f (g(z)),

assuming g(0) = 0. Let ρ f , ρg, ρh be the corresponding radii of convergence, and
let τ f = f (ρ f ), and so on. We shall assume that f and g are �–continuable and
that they admit singular expansions in the scale of powers. There are three cases to be
distinguished depending on the value of τg in comparison with ρ f .

— Supercritical case, when τg > ρ f . In that case, when z increases from 0,
there is a value r strictly less than ρg such that g(r) attains the value ρ f ,
which triggers a singularity of f ◦ g. In other words r ≡ ρh = g(−1)(ρ f ).
Around this point, g is analytic and a singular expansion of f ◦g is obtained
by combining the singular expansion of f with the regular expansion of g
at r . The singularity type is that of the external function ( f ).
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— Subcritical case, when τg < ρ f . In this dual situation, the singularity of
f ◦g is driven by that of the inside function g. We have ρh = ρg , τh = f (ρg)

and the singular expansion of f ◦ g is obtained by combining the regular
expansion of f with the singular expansion of g at ρg . The singularity type
is that of the internal function (g).

— Critical case, when τg = ρ f . In this boundary case, there is a confluence
of singularities. We have ρh = ρg , τh = τ f , and the singular expansion
is obtained by applying the composition rules of the singular expansions in-
volved. The singularity type is a mix of the types of the internal and external
functions ( f, g).

This classification extends the notion of a supercritical sequence schema in Section V. 2,
p. 293, for which the external function reduces to f (z) = (1 − z)−1, with ρ f = 1. In
this chapter, we limit ourselves to discussing examples directly, based on the guide-
lines above supplemented by the plain algebra of generalized power series expansions.
Finer probabilistic properties of composition schemas are studied at several places in
Chapter IX starting on p. 629.

Example VI.10. “Supertrees”. Let G be the class of general Catalan trees:

G = Z × SEQ(G) �⇒ G(z) = 1

2
(1 −√

1 − 4z).

The radius of convergence of G(z) is 1/4 and the singular value is G(1/4) = 1/2. The class ZG
consists of planted trees, which are such that to the root is attached a stem and an extra node,
with OGF equal to zG(z). We then introduce two classes of supertrees defined by substitution:

H = G[ZG] �⇒ H(z) = G(zG(z))
K = G[(Z +Z)G] �⇒ K (z) = G(2zG(z)).

These are “trees of trees”: the class H is formed of trees such that, on each node there is grafted
a planted tree (by the combinatorial substitution of Section I. 6, p. 83); the class K similarly
corresponds to the case when the stems can be of any two colours. Incidentally, combinatorial
sum expressions are available for the coefficients,

Hn =
�n/2�∑
k=1

1

n − k

(
2k − 2

k − 1

)(
2n − 3k − 1

n − k − 1

)
, Kn =

�n/2�∑
k=1

2k

n − k

(
2k − 2

k − 1

)(
2n − 3k − 1

n − k − 1

)
,

the initial values being given by

H(z) = z2 + z3 + 3z4 + 7z5 + 21z6 + · · · , K (z) = 2z2 + 2z3 + 8z4 + 18z5 + 64z6 + · · · .
Since ρG = 1/4 and τG = 1/2, the composition scheme is subcritical in the case of H

and critical in the case of K. In the first case, the singularity is of square-root type and one finds
easily:

H(z) ∼
z→ 1

4

2 −√
2

4
− 1√

8

√
1

4
− z, −→ Hn ∼ 4n

8
√

2πn3/2
.

In the second case, the two square-roots combine to produce a fourth root:

K (z) ∼
z→ 1

4

1

2
− 1√

2

(
1

4
− z

)1/4
−→ Kn ∼ 4n

8�( 3
4 )n

5/4
.
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Figure VI.12. A binary supertree is a “tree of trees”, with component trees all binary.
The number of binary supertrees with 2n nodes has the unusual asymptotic form
c4nn−5/4.

On a similar register, consider the class B of complete binary trees:

B = Z + Z × B × B �⇒ B(z) = 1 −
√

1 − 4z2

2z
,

and define the class of binary supertrees (Figure VI.12) by

S = B (Z × B) �⇒ S(z) = 1 −
√

2
√

1 − 4z2 − 1 + 4z2

1 −
√

1 − 4z2
.

The composition is critical since zB(z) = 1
2 at the dominant singularity z = 1

2 . It is enough to
consider the reduced function

S(z) = S(
√

z) = z + z2 + 3z3 + 8z4 + 25z5 + 80z6 + 267z7 + 911z8 + · · · ,
whose coefficients constitute EIS A101490 and occur in Bousquet-Mélou’s study of integrated
superbrownian excursion [83]. We find

S(z) ∼ 1−
√

2(1−4z)1/4+(1−4z)1/2+· · · −→ Sn = 4n

n5/4

( √
2

4�( 3
4 )

− 1

2
√
πn1/4

+ · · ·
)
.

For instance, a seven-term expansion yields a relative accuracy better than 10−4 for n ≥ 100,
so that such approximations are quite usable in practice.

The occurrence of the exponent − 5
4 in the enumeration of bicoloured and binary supertrees

is noteworthy. Related constructions have been considered by Kemp [364] who obtained more
generally exponents of the form −1−2−d by iterating the substitution construction (in connec-
tion with so-called “multidimensional trees”). It is significant that asymptotic terms of the form
n p/q with q  = 1, 2 appear in elementary combinatorics, even in the context of simple algebraic
functions. Such exponents tend to be associated with non-standard limit laws, akin to the stable
distributions of probability theory: see our discussion in Section IX. 12, p. 715. . . . . . . . . . . . �

� VI.21. Supersupertrees. Define supersupertrees by

S[2](z) = B(zB(zB(z))).

We find automatically (with the help of B. Salvy’s program)

[z2n+1]S[2](z) ∼ 2−13/4�

(
7

8

)−1
4nn−9/8,
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and further extensions involving an asymptotic term n−1−2−d
are possible [364]. �

� VI.22. Valuated trees. Consider the family of (rooted) general plane trees, whose vertices
are decorated by integers from Z≥0 (called “values”) and such that the values of two adjacent
vertices differ by ±1. Size is taken to be the number of edges. Let T j be the class of valuated
trees whose root has value j and T = ∪T j . The OGFs Tj (z) satisfy the system of equations

Tj = 1 + z(Tj−1 + Tj+1)Tj ,

so that T (z) solves T = 1 + 2zT and is a simple variant of the Catalan OGF:

T (z) = 1 −√
1 − 8z

4z
.

Bouttier, Di Francesco, and Guitter [90, 91] found an amazing explicit form for the Tj ; namely,

Tj = T
(1 − Y j+1)(1 − Y j+5)

(1 − Y j+2)(1 − Y j+4)
, with Y = z

(1 + Y )4

1 + Y 2
.

In particular, each Tj is an algebraic function. The function T0 counts maps (p. 513) that are
Eulerian triangulations, or dually bipartite trivalent maps. The coefficients of the Tj as well as
the distributions of labels in such trees can be analysed asymptotically: see Bousquet-Mélou’s
article [83] for a rich set of combinatorial connections. �

Schemas. Singularity analysis also enables us to discuss at a fair level of general-
ity the behaviour of schemas, in a way that parallels the discussion of the supercritical
sequence schema, based on a meromorphic analysis (Section V. 2, p. 293). We illus-
trate this point here by means of the supercritical cycle schema. Deeper examples
relative to recursively defined structures are developed in Chapter VII.

Example VI.11. Supercritical cycle schema. The schema H = CYC(G) forms labelled cycles
from basic components in G:

H = CYC(G) �⇒ H(z) = log
1

1 − G(z)
.

Consider the case where G attains the value 1 before becoming singular, that is, τG >

1. This corresponds to a supercritical composition schema, which can be discussed in a way
that closely parallels the supercritical sequence schema (Section V. 2, p. 293): a logarithmic
singularity replaces a polar singularity.

Let σ := ρH , which is determined by G(σ ) = 1. First, one finds:

H(z) ∼
z→σ

log
1

1 − z/σ
− log(σG′(σ ))+ A(z),

where A(z) is analytic at z = σ . Thus:

[zn]H(z) ∼ σ−n

n
.

(The error term implicit in this estimate is exponentially small).
The BGF H(z, u) = log(1 − uG(z))−1 has the variable u marking the number of com-

ponents in H–objects. In particular, the mean number of components in a random H–object of
size n is ∼ λn, where λ = 1/(σG′(σ )), and the distribution is concentrated around its mean.
Similarly, the mean number of components with size k in a random Hn object is found to be
asymptotic to λgkσ

k , where gk = [zk ]G(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Weights

(49)
fk

1
k

1
4k

(2k
k
)

1 Hk k k2

f (z) log 1
1−z

1√
1−z

1
1−z

1
1−z log 1

1−z
z

(1−z)2
z+z2

(1−z)3
.

Triangular arrays

(50)
g(k)n

(n−1
k−1

) kn−k

(n−k)!

( k
n−k

) k
n
(2n−k−1

n−1
) k

n
( 2n
n−k

)
k nn−k−1

(n−k)!

g(z) z
1−z zez z(1 + z) 1−√

1−4z
2

1−2z−√
1−4z

2z T (z)

Figure VI.13. Typical weights (top) and triangular arrays (bottom) illustrating the

discussion of combinatorial sums Sn = ∑n
k=1 fk g(k)n .

Combinatorial sums. Singularity analysis permits us to discuss the asymptotic
behaviour of entire classes of combinatorial sums at a fair level of generality, with
asymptotic estimates coming out rather automatically. We examine here combinatorial
sums of the form

Sn =
n∑

k=0

fk g(k)n ,

where fk is a sequence of numbers, usually of a simple form and called the weights,
while the g(k)n are a triangular array of numbers, for instance Pascal’s triangle.

As weights fk we shall consider sequences such that f (z) is �–analytic with a
singular expansion involving functions of the standard scale of Theorems VI.1, VI.2,
VI.3. Typical examples9 for f (z) and ( fk) are displayed in Figure VI.13, Equa-
tion (49). The triangular arrays discussed here are taken to be coefficients of the
powers of some fixed function, namely,

g(k)n = [zn](g(z))k where g(z) =
∞∑

n=1

gnzn,

with g(z) an analytic function at the origin having non-negative coefficients and sat-
isfying g(0) = 0. Examples are given in Figure VI.13, Equation (50). An interesting
class of such arrays arises from the Lagrange Inversion Theorem (p. 732). Indeed, if
g(z) is implicitly defined by g(z) = zG(g(z)), one has gn,k = k

n [wn−k]G(w)n ; the
last three cases of (50) are obtained in this way (by taking G(w) as 1/(1 − w), (1 +
w)2, ew).

By design, the generating function of the Sn is simply

S(z) =
∞∑

n=0

Snzn = f (g(z)) with f (z) =
∞∑

k=0

fk zk .

Consequently, the asymptotic analysis of Sn results by inspection from the way singu-
larities of f (z) and g(z) get transformed by composition.

9Weights such as log k and
√

k, also satisfy these conditions, as seen in Section VI. 8.
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Example VI.12. Bernoulli sums. Let φ be a function from Z≥0 to R and write fk := φ(k).
Consider the sums

Sn :=
n∑

k=0

φ(k)
1

2n

(
n

k

)
.

If Xn is a binomial random variable10, Xn ∈ Bin(n, 1
2 ), then Sn = E(φ(Xn)) is exactly the

expectation of φ(Xn). Then, by the binomial theorem, the OGF of the sequence (Sn) is:

S(z) = 2

2 − z
f

(
z

2 − z

)
.

Considering weights whose generating function, as in (49), has radius of convergence 1, what
we have is a variant of the composition schema, with an additional prefactor. The composition
scheme is of the supercritical type since the function g(z) = z/(2 − z), which has radius of
convergence equal to 2, satisfies τg = ∞. The singularities of S(z) are then of the same type
as those of the weight generating function f (z) and one verifies, in all cases of (49), that, to
first asymptotic order, Sn ∼ φ(n/2): this is in agreement with the fact that the binomial distri-
bution is concentrated near its mean n/2. Singularity analysis furthermore provides complete
asymptotic expansions; for instance,

E

(
1

Xn

∣∣ Xn > 0

)
= 2

n
+ 2

n2
+ 6

n3
+ O(n−4)

E
(
HXn

) = log
n

2
+ γ + 1

2n
− 1

12n2
+ O(n−3).

See [208, 223] for more along these lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VI.13. Generalized Knuth–Ramanujan Q-functions. For reasons motivated by anal-
ysis of algorithms, Knuth has encountered repeatedly sums of the form

Qn({ fk}) = f0 + f1
n

n
+ f2

n(n − 1)

n2
+ f3

n(n − 1)(n − 2)

n3
+ · · · .

(See, e.g., [384, pp. 305–307].) There ( fk) is a sequence of coefficients (usually of at most
polynomial growth). For instance, the case fk ≡ 1 yields the expected time until the first
collision in the birthday paradox problem (Section II. 3, p. 114).

A closer examination shows that the analysis of such Qn is reducible to singularity analy-
sis. Writing

Qn({ fk}) = f0 + n!

nn−1

∑
k≥1

fk
nn−k−1

(n − k)!

reveals the closeness with the last column of (50). Indeed, setting

F(z) =
∑
k≥1

fk
k

zk ,

one has (n ≥ 1)

Qn = f0 + n!

nn−1
[zn]S(z) where S(z) = F(T (z)),

and T (z) is the Cayley tree function (T = zeT ).
For weights fk = φ(k) of polynomial growth, the schema is critical. Then, the singular

expansion of S is obtained by composing the singular expansion of f with the expansion of T ,

10A binomial random variable (p. 775) is a sum of Bernoulli variables: Xn = ∑n
j=1 Y j , where the

Y j are independent and distributed as a Bernoulli variable Y , with P(Y = 1) = p, P(Y = 0) = q = 1 − p.
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namely, T (z) ∼ 1−√
2
√

1 − ez as z → e−1. For instance, if φ(k) = kr for some integer r ≥ 1
then F(z) has an r th order pole at z = 1. Then, the singularity type of F(T (z)) is Z−r/2 where
Z = (1 − ez), which is reflected by Sn 6 ennr/2−1 (we use ‘6’ to represent order-of-growth
information, disregarding multiplicative constants). After the final normalization, we see that
Qn 6 n(r+1)/2. Globally, for many weights of the form fk = φ(k), we expect Qn to be of
the form

√
nφ(

√
n), in accordance with the fact that the expectation of the first collision in the

birthday problem is on average near
√
πn/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VI.23. General Bernoulli sums. Let Xn ∈ Bin(n; p) be a binomial random variable with
general parameters p, q:

P(Xn = k) =
(

n

k

)
pkqn−k , q = 1 − p.

Then with fk = φ(k), one has

E(φ(Xn)) = [zn]
1

1 − qz
f

(
pz

1 − qz

)
,

so that the analysis develops as in the case Bin(n; 1
2 ). �

� VI.24. Higher moments of the birthday problem. Take the model where there are n days
in the year and let B be the random variable representing the first birthday collision. Then
Pn(B > k) = k!n−k(n

k
)
, and

En(	(B)) = 	(1)+ Qn({�	(k)}), where �	(k) := 	(k + 1)−	(k).

For instance En(B) = 1 + Qn(〈1, 1, . . .〉). We thus get moments of various functionals (here
stated to two asymptotic terms)

	(x) x x2 + x x3 + x2 x4 + x3

En(	(B))
√
πn
2 + 2

3 2n + 2 3
√
πn3

2 − 2n 8n2 − 7
√
πn3

2

via singularity analysis. �

� VI.25. How to weigh an urn? The “shake-and-paint” algorithm. You are given an urn
containing an unknown number N of identical looking balls. How to estimate this number in
much fewer than O(N ) operations? A probabilistic solution due to Brassard and Bratley [92]
uses a brush and some paint. Shake the urn, pull out a ball, then mark it with paint and replace
it into the urn. Repeat until you find an already painted ball. Let X be the number of operations.
One has E(X) ∼ √

πN/2. Furthermore the quantity Y := X2/2 constitutes, by the previous
note, an asymptotically unbiased estimator of N , in the sense that E(Y ) ∼ N . In other words,
count the time till an already painted ball is first found, and return half of the square of this time.
One also has

√
V(Y ) ∼ N . By performing the experiment m times (using m different colours

of paint) and by taking the arithmetic average of the m estimates, one obtains an unbiased
estimator whose typical relative accuracy is

√
1/m. For instance, m = 16 gives an accuracy

of 25%. (Similar principles are used in the design of data mining algorithms.) �

� VI.26. Catalan sums. These are defined by

Sn :=
∑
k≥0

fk

(
2n

n − k

)
, S(z) = 1√

1 − 4z
f

(
1 − 2z −√

1 − 4z

2z

)
.

The case when ρ f = 1 corresponds to a critical composition, which can be discussed much in
the same way as Ramanujan sums. �
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VI. 10. Closure properties

At this stage11, we have available composition rules for singular expansions under
operations such as ±, ×, ÷: these are induced by corresponding rules for extended
formal power series, where generalized exponents and logarithmic factors are allowed.
Also, from Section VI. 7, inversion of analytic functions normally gives rise to square-
root singularities, and, from Section VI. 9, functions amenable to singularity analysis
are essentially closed under composition.

In this section we show that functions amenable to singularity analysis (SA func-
tions) satisfy explicit closure properties under differentiation, integration, and Hada-
mard product. (The contents are liberally borrowed from an article of Fill, Flajolet,
and Kapur [208], to which we refer for details.) In order to keep the developments
simple, we shall mostly restrict attention to functions that are �–analytic and admit a
simple singular expansion of the form

(51) f (z) =
J∑

j=0

c j (1 − z)α j + O((1 − z)A),

or a simple singular expansion with logarithmic terms

(52) f (z) =
J∑

j=0

c j (L(z)) (1 − z)α j + O((1 − z)A), L(z) := log
1

1 − z
,

where each c j is a polynomial. These are the cases most frequently occurring in
applications (the proof techniques are easily extended to more general situations).

Subsection VI. 10.1 treats differentiation and integration; Subsection VI. 10.2 pre-
sents the closure of functions that admit simple expansions under Hadamard prod-
uct. Finally, Subsection VI. 10.3 concludes with an examination of several interesting
classes of tree recurrences, where all the closure properties previously established are
put to use in order to quantify precisely the asymptotic behaviour of recurrences that
are attached to tree models.

VI. 10.1. Differentiation and integration. Functions that are SA happen to be
closed under differentiation, this is in sharp contrast with real analysis. In the sim-
ple cases12 of (51) and (52), closure under integration is also granted. The general
principle (Theorems VI.8 and VI.9 below) is the following: Derivatives and primi-
tives of functions that are amenable to singularity analysis admit singular expansions
obtained term by term, via formal differentiation and integration.

The following statement is a version, tuned to our needs, of well-known differ-
entiability properties of complex asymptotic expansions (see, e.g., Olver’s book [465,
p. 9]).

11This section represents supplementary material not needed elsewhere in the book, so that it may be
omitted on first reading.

12It is possible but unwieldy to treat a larger class, which then needs to include arbitrarily nested
logarithms, since, for instance,

∫
dx/x = log x ,

∫
dx/(x log x) = log log x , and so on.
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1

φ′
φ

z

radius:
κ |1 − z|

Figure VI.14. The geometry of the contour γ (z) used in the proof of the differenti-
ation theorem.

Theorem VI.8 (Singular differentiation). Let f (z) be �–analytic with a singular
expansion near its singularity of the simple form

f (z) =
J∑

j=0

c j (1 − z)α j + O((1 − z)A).

Then, for each integer r > 0, the derivative dr

dzr f (z) is �–analytic. The expansion of
the derivative at the singularity is obtained through term-by-term differentiation:

dr

dzr
f (z) = (−1)r

J∑
j=0

c j
�(α j + 1)

�(α j + 1 − r)
(1 − z)α j−r + O((1 − z)A−r ).

Proof. All that is required is to establish the effect of differentiation on error terms,
which is expressed symbolically as

d

dz
O((1 − z)A) = O((1 − z)A−1).

By bootstrapping, only the case of a single differentiation (r = 1) needs to be consid-
ered.

Let g(z) be a function that is regular in a domain �(φ, η) where it is assumed to
satisfy g(z) = O((1 − z)A) for z ∈ �. Choose a subdomain �′ := �(φ′, η′), where
φ < φ′ < π

2 and 0 < η′ < η. By elementary geometry, for a sufficiently small κ > 0,
the disc of radius κ|z−1| centred at a value z ∈ �′ lies entirely in�; see Figure VI.14.
We fix such a small value κ and let γ (z) represent the boundary of that disc oriented
positively.

The starting point is Cauchy’s integral formula

(53) g′(z) = 1

2π i

∫
C

g(w)
dw

(w − z)2
,

a direct consequence of the residue theorem. Here C should encircle z while lying
inside the domain of regularity of g, and we opt for the choice C ≡ γ (z). Then trivial
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bounds applied to (53) give

|g′(z)| = O
(||γ (z)|| · (1 − z)A|1 − z|−2

)
= O

(
|1 − z|A−1

)
.

The estimate involves the length of the contour, ||γ (z)||, which is O(1 − z) by con-
struction, as well as the bound on g itself, which is O((1− z)A) since all points of the
contour are themselves at a distance exactly of the order of |1 − z| from 1. �
� VI.27. Differentiation and logarithms. Let g(z) satisfy

g(z) = O
(
(1 − z)A L(z)k

)
, L(z) = log

1

1 − z
,

for k ∈ Z≥0. Then, one has

dr

dzr g(z) = O
(
(1 − z)A−r L(z)k

)
.

(The proof is similar to that of Theorem VI.8.) �

It is well known that integration of asymptotic expansions is usually easier than
differentiation. Here is a statement custom-tailored to our needs.

Theorem VI.9 (Singular integration). Let f (z) be�–analytic and admit an expansion
near its singularity of the form

f (z) =
J∑

j=0

c j (1 − z)α j + O((1 − z)A).

Then
∫ z

0 f (t) dt is �–analytic. Assume further that none of the quantities α j and A
equal −1.

(i) If A < −1, then the singular expansion of
∫

f is

(54)
∫ z

0
f (t) dt = −

J∑
j=0

c j

α j + 1
(1 − z)α j+1 + O

(
(1 − z)A+1

)
.

(i i) If A > −1, then the singular expansion of
∫

f is

(55)
∫ z

0
f (t) dt = −

J∑
j=0

c j

α j + 1
(1 − z)α j+1 + L0 + O

(
(1 − z)A+1

)
,

where the “integration constant” L0 has the value

L0 :=
∑

α j<−1

c j

α j + 1
+

∫ 1

0

[
f (t)−

∑
α j<−1

c j (1 − t)α j
]

dt.

Proof. The basic technique consists in integrating term by term the singular expansion
of f . We let r(z) be the remainder term in the expansion of f , that is,

r(z) := f (z)−
J∑

j=0

c j (1 − z)α j .
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0 1

1 + η

φ

z
γ1

γ2

Figure VI.15. The contour used in the proof of the integration theorem.

By assumption, throughout the �–domain one has, for some positive constant K ,

|r(z)| ≤ K |1 − z|A.
(i) Case A < −1. Straight-line integration between 0 and z, provides (54), as

soon as it has been established that∫ z

0
r(t) dt = O

(
|1 − z|A+1

)
.

By Cauchy’s integral formula, we can choose any path of integration that stays within
the region of analyticity of r . We choose the contour γ := γ1 ∪ γ2, shown in Fig-
ure VI.15. Then, one has∣∣∣∣∫

γ

r(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫
γ1

r(t) dt

∣∣∣∣+ ∣∣∣∣∫
γ2

r(t) dt

∣∣∣∣
≤ K

∫
γ1

|1 − t |A |dt | + K
∫
γ2

|1 − t |A| |dt |

= O(|1 − z|A+1),

where the symbol |dt | designates the differential line-length element in the corres-
ponding curvilinear integral. Both integrals are O(|1−z|A+1): for the integral along γ1,
this results from explicitly carrying out the integration; for the integral along γ2, this
results from the trivial bound O(||γ2||(1 − z)A).

(i i) Case A > −1. We let f−(z) represent the “divergence part” of f that gives
rise to non-integrability:

f−(z) :=
∑

α j<−1

c j (1 − z)α j .
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Then with the decomposition f = [ f − f−] + f−, integrations can be performed
separately. First, one finds∫ z

0
f−(t) dt = −

∑
α j<−1

c j

α j + 1
(1 − z)α j+1 +

∑
α j<−1

c j

α j + 1
.

Next, observe that the asymptotic condition guarantees the existence of
∫ 1

0 applied to
[ f − f−], so that∫ z

0

[
f (t)− f−(t)

]
dt =

∫ 1

0

[
f (t)− f−(t)

]
dt +

∫ z

1

[
f (t)− f−(t)

]
dt.

The first of these two integrals is a constant that contributes to L0. As to the second
integral, term-by-term integration yields∫ z

1

[
f (t)− f−(t)

]
dt = −

∑
α j>−1

c j

α j + 1
(1 − z)α j+1 +

∫ z

1
r(t) dt.

The remainder integral is finite, given the growth condition on the remainder term,
and, upon carrying out the integration along the rectilinear segment joining 1 to z,
trivial bounds show that it is indeed O(|1 − z|A+1). �
� VI.28. Logarithmic cases. The case in which either some α j or A is −1 is easily treated by
the additional rules∫ z

0
(1 − t)−1 dt = L(z),

∫ z

0
O((1 − t)−1) dt = O(L(z)).

that are consistent with elementary integration, and similar rules are easily derived for powers
of logarithms. Furthermore, the corresponding O–transfers hold true. (The proofs are simple
modifications of the one given above for the basic case.) �

VI. 10.2. Hadamard Products. The Hadamard product of two functions f (z)
and g(z) analytic at the origin is defined as their term-by-term product,

(56) f (z)3 g(z) =
∑
n≥0

fngnzn, where f (z) =
∑
n≥0

fnzn, g(z) =
∑
n≥0

gnzn .

As we are going to see, following Fill, Flajolet, and Kapur [208], functions amenable
to singularity analysis are closed under Hadamard product. Establishing such a closure
property requires methods for composing functions from the basic scale, namely (1−
z)a , as well as error terms of the form O((1− z)A). We address each problem in turn.

Theorem VI.10 (Hadamard Composition). When neither of a, b, a + b is an integer,
the Hadamard product (1 − z)a 3 (1 − z)b has an infinite expansion, valid in a �–
domain, with exponent scale {0, 1, 2, . . .} ∪ {a + b + 1, a + b + 2, . . .}; namely,

(1 − z)a 3 (1 − z)b ∼
∑
k≥0

λ
(a,b)
k

(1 − z)k

k!
+

∑
k≥0

μ
(a,b)
k

(1 − z)a+b+1+k

k!
,

where the coefficients λ and μ are given by

λ
(a,b)
k = �(1 + a + b)

�(1 + a)�(1 + b)

(−a)k(−b)k

(−a − b)k
, μ

(a,b)
k = �(−a − b − 1)

�(−a)�(−b)

(1 + a)k(1 + b)k

(2 + a + b)k
.
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Here xk is defined for k ∈ Z≥0 by xk := x(x + 1) · · · (x + k − 1).

Proof. The expansion around the origin,

(57) (1 − z)a = 1 + −a

1
z + (−a)(−a + 1)

2!
z2 + · · · ,

gives through term-by-term multiplication

(58) (1 − z)a 3 (1 − z)b = 2 F1[−a,−b; 1; z].

Here 2 F1 represents the classical hypergeometric function of Gauss (p. 751) defined
by

(59) 2 F1[α, β; γ ; z] = 1 + αβ

γ

z

1!
+ α(α + 1)β(β + 1)

γ (γ + 1)

z2

2!
+ · · · .

From their transformation theory (see for instance [604, Ch XIV] and Appendix B.4:
Holonomic functions, p. 748, for proof techniques), hypergeometric functions can gen-
erally be expanded in the vicinity of z = 1 by means of the z 	→ 1− z transformation.
Instantiation of this transformation with γ = 1 yields

(60) 2 F1[α, β; 1; z] = �(1 − α − β)

�(1 − α)�(1 − β)
2 F1[α, β;α + β; 1 − z]

+ �(α + β − 1)

�(α)�(β)
(1 − z)−α−β+1

2 F1[1 − α, 1 − β; 2 − α − β; 1 − z].

The statement follows, upon appealing to the definition (59) of hypergeometric func-
tions. �
� VI.29. Special cases. The case where either a or b is an integer poses no difficulty, since, for
m ∈ Z≥0, the function (1 − z)m 3 g(z) is a polynomial, while (1 − z)−m 3 g(z) is reducible
to a derivative of g, to which the Singular Differentiation Theorem (p. 419) can be applied.

The case a + b ∈ Z needs transformation formulae that extend (60): the principles (based
on a Lindelöf integral representation, p. 237, and developed by Barnes) are described in [604,
§14.53], and the formulae appear explicitly in [3, pp. 559–560]. �

� VI.30. Simple expansions with logarithmic terms. The technique of differentiation with
respect to a parameter,[

(1 − z)a L(z)
]3 (1 − z)b = − ∂

∂a

[
(1 − z)a 3 (1 − z)b

]
,

makes it possible to derive explicit composition rules for expansions involving logarithmic
terms. �

The way Hadamard products preserve �–analyticity and compose error terms in
singular expansions is summarized by the next statement.

Theorem VI.11 (Hadamard closure). (i) Assume that f (z) and g(z) are analytic in
a �–domain, �(ψ0, η). Then, the Hadamard product ( f 3 g)(z) is analytic in a
(possibly smaller) �–domain, �′.

(i i) Assume further that

f (z) = O((1 − z)a) and g(z) = O((1 − z)b), z ∈ �(ψ0, η).

Then the Hadamard product ( f 3 g)(z) admits in �′ an expansion given by the fol-
lowing rules:
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— If a + b + 1 < 0, then

( f 3 g)(z) = O((1 − z)a+b+1).

— If k < a + b + 1 < k + 1, for some integer k ∈ Z≥−1, then

( f 3 g)(z) =
k∑

j=0

(−1) j

j!
( f 3 g)( j) (1)(1 − z) j + O

(
(1 − z)a+b+1

)
.

— If a + b + 1 is a non-negative integer, then (with L(z) = log(1 − z)−1)

( f 3 g)(z) =
k∑

j=0

(−1) j

j!
( f 3 g)( j) (1)(1 − z) j + O

(
(1 − z)a+b+1 L(z)

)
.

Proof. (Sketch) The starting point is an important formula due to Hadamard that
expresses Hadamard products as a contour integral:

(61) f (z)3 g(z) = 1

2iπ

∫
γ

f (w)g
( z

w

) dw

w
.

The contour γ in the w-plane should be chosen such that both factors, f (w) and
g(z/w) are analytic. In other words, given the domain � in which both f and g are
analytic, one should have γ ⊂ � ∩ (z�−1).

In the first case (a + b + 1 < 0), the precise geometry of a feasible contour γ
is described in [208], the principles being similar to those employed in the construc-
tion of Hankel contours elsewhere in this chapter. The integral giving the value of the
Hadamard product is finally estimated trivially, based on the order of growth assump-
tions on f and g, as z → 1. This approach extends to the case a + b + 1 = 0, where
a logarithmic factor comes in,

For the remaining cases, the easy identity

ϑc+d( f 3 g) = (
ϑc f

)3 (
ϑd g

)
, where ϑ ≡ z

d

dz
,

reduces the analysis to the situation where a + b + 1 < 0. It suffices to differen-
tiate sufficiently many times and finally integrate back, as permitted by the Singular
Integration Theorem (p. 420). �

Globally, Theorems VI.10 and VI.11 establish the closure under Hadamard prod-
ucts of functions amenable to singularity analysis, which satisfy an expansion (51). In
practice, in order to derive the singular expansion of a function at a singularity, one
may conveniently appeal to the Zigzag Algorithm described in Figure VI.16, whose
validity is ensured by the a priori knowledge of the existence of an expansion guaran-
teed by Theorems VI.10 and VI.11. (The “zigzag” qualifier reflects the fact that the
algorithm proceeds back and forth, by making a repeated use of the correspondences
between coefficient asymptotics and singularity asymptotics.) A typical application
of this algorithm appears in (64) and (65) below, in the context of Pólya’s drunkard
problem.
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Let f (z) and g(z) be �–analytic and admit simple singular expansions of the form (51) or (52).
What is sought is the singular expansion of

h(z) := f (z)3 g(z).

Step 1. Determine the asymptotic expansions fn = [zn] f (z) and gn = [zn]g(z) induced by
the singular expansions of f and g in accordance with the singularity analysis process. Given
finite singular expansions of f and g, the order C of the error in the expansion of h is known a
priori by Theorem VI.11.

Step 2. Deduce from Step 1 an asymptotic expansion of hn = [zn]h(z) by usual multiplication
from the expansions of fn and gn .

Step 3. Reconstruct by singularity analysis a function H(z) that is singular at 1 and is such that

[zn]H(z) ∼ [zn]h(z).

This can be done by using the expansions of basic functions, as provided by Theorems VI.1
and VI.2 in the reverse direction. By construction, H(z) is a sum of functions of the form
(1 − z)α L(z)k , which are all singular at 1.

Step 4. Output the singular expansion of f 3 g as

h(z) = H(z)+ P(z)+ O
(
(1 − z)C

)
,

where P is a polynomial of degree δ, which is the largest integer < C . The polynomial P(z)
is needed, since polynomials (and more generally functions analytic at 1) do not leave a trace
in asymptotic expansions of coefficients. Since h(z) − H(z) is δ times differentiable at 1, one
must take

P(z) =
δ∑

j=0

(−1) j

j!
∂

j
z (h(z)− H(z))z=1 (1 − z) j .

Figure VI.16. The Zigzag Algorithm for computing singular expansions of
Hadamard products.

Example VI.14. Pólya’s drunkard problem. (This example is taken from Fill et al. [208].) In
the d-dimensional lattice Zd of points with integer coordinates, the drunkard performs a random
walk starting from the origin with steps in {−1,+1}d , each taken with equal likelihood. The
probability that the drunkard is back at the origin after 2n steps is

(62) q(d)n =
(

1

22n

(
2n

n

))d
,

since the walk is a product d independent one-dimensional walks. The probability that 2n is the

epoch of the first return to the origin is the quantity p(d)n , which is determined implicitly by

(63)

⎛⎝1 −
∞∑

n=1

p(d)n zn

⎞⎠−1

=
∞∑

n=0

q(d)n zn,

as results from the decomposition of loops into primitive loops (see also Note I.65, p. 90).
In terms of the associated ordinary generating functions P and Q, this relation reads as (1 −
P(z))−1 = Q(z), implying P(z) = 1 − 1/Q(z).

The asymptotic analysis of the qn is straightforward; that of the pn is more involved and
is of interest in connection with recurrence and transience of the random walk; see, e.g., [170,
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403]. The Hadamard closure theorem provides a direct tool to solve this problem. Define

β(z) :=
∑
n≥0

1

22n

(
2n

n

)
zn ≡ 1√

1 − z
.

Then, Equations (62) and (63) entail

P(z) = 1 − 1

β(z)3d
, where β(z)3d := β(z)3 · · · 3 β(z) (d times).

The singularities of P(z) are found as follows.

Case d = 1: No Hadamard product is involved and

P(z) = 1 −√
1 − z, implying p(1)n = 1

n22n−1

(
2n − 2

n − 1

)
∼ 1

2
√
πn3

.

(This agrees with the classical combinatorial solution expressed in terms of Catalan numbers.)

Case d = 2: By the Hadamard closure theorem, the function Q(z) = β(z)3 β(z) admits
a priori a singular expansion at z = 1 that is composed solely of elements of the form (1 − z)α

possibly multiplied by integral powers of the logarithmic function L(z) = log(1/(1− z)). From
a computational standpoint (cf the Zigzag Algorithm), it is then best to start from the coefficients
themselves,

(64) q(2)n ∼
(

1√
πn

− 1

8
√
πn3

+ · · ·
)2

∼ 1

π

(
1

n
− 1

4n2
+ · · ·

)
,

and reconstruct the only singular expansion that is compatible, namely

(65) Q(z) = 1

π
L(z)+ K + O((1 − z)1−ε),

where ε > 0 is an arbitrarily small constant and K is fully determined as the limit as z →
1 of Q(z) − π−1 L(z). Then it can be seen that the function P is �–continuable. (Proof:
Otherwise, there would be complex poles arising from zeros of the function Q on the unit disc,

and this would entail in p(2)n the presence of terms oscillating around 0, a fact that contradicts
the necessary positivity of probabilities.) The singular expansion of P(z) at z = 1 results
immediately from that of Q(z):

P(z) ∼ 1 − π

L(z)
+ π2 K

L(z)2
+ · · · .

so that, by Theorems VI.2 and VI.3, one has

p(2)n = π

n log2 n
− 2π

γ + πK

n log3 n
+ O

(
1

n log4 n

)
K = 1 +

∞∑
n=1

(
16−n

(
2n

n

)2
− 1

πn

)
.= 0.8825424006106063735858257 .

(See the study by Louchard et al. [422, Sec. 4] for somewhat similar calculations.)

Case d = 3: This case is easy since Q(z) remains finite at its singularity z = 1 where it
admits an expansion in powers of (1 − z)1/2, with the consequence that

q(3)n ∼
(

1√
πn

− 1

8
√
πn3

+ · · ·
)3

∼ 1

π3/2

(
1

n3/2
− 3

8n5/2
+ · · ·

)
.
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The function Q(z) is a priori �–continuable and its singular expansion can be reconstructed
from the form of coefficients:

Q(z) ∼
z→1

Q(1)− 2

π

√
1 − z + O(|1 − z|),

leading to

P(z) =
(

1 − 1

Q(1)

)
− 2

πQ(1)2
√

1 − z + O(|1 − z|).
By singularity analysis, the last expansion gives

p(3)n = 1

π3/2 Q(1)2
1

n3/2
+ O

(
1

n2

)
Q(1) = π

�
(

3
4

)4
.= 1.3932039296856768591842463.

A complete asymptotic expansion in powers n−3/2, n−5/2, . . . can be obtained by the same de-
vices. In particular this improves the error term above to O(n−5/2). The explicit form of Q(1)
results from its expression as the generalized hypergeometric 3 F2[ 1

2 ,
1
2 ,

1
2 ; 1, 1; 1], which eval-

uates by Clausen’s theorem and Kummer’s identity to the square of a complete elliptic integral.
(See the papers by Larry Glasser for context, for instance [293]; nowadays, several computer
algebra systems even provide this value automatically.)

Higher dimensions are treated similarly, with logarithmic terms surfacing in asymptotic
expansions for all even dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

VI. 10.3. Applications to tree recurrences. To conclude with singularity anal-
ysis theory, we present the general framework of tree recurrences, also known as
probabilistic divide-and-conquer recurrences, which are of the general form

(66) fn = tn +
∑

k

pn,k( fk + fn−a−k), (n ≥ n0).

There, ( fn) is the sequence implicitly determined by the recurrence, assuming known
initial conditions f0, . . . , fn0−1; the sequence (tn) is known as the sequence of tolls;
the array (pn,k) is a triangular array of numbers that are probabilities in the sense that,
for each fixed n ≥ 0, one has

∑
k pn,k = 1; the number a is a small fixed integer

(usually 0 or 1).
The interpretation of the recurrence is in the form of a splitting process: a col-

lection of n elements is given; a number a of these is put aside and what remains is
partitioned into two subgroups, a “left” subgroup of cardinality Kn and a “right” sub-
group of cardinality n−a−Kn . The quantity Kn is a random variable with probability
distribution

P(Kn = k) = pn,k .

The splitting is repeated (recursively) till only groups of size less than the threshold
n0 are obtained. Assuming stochastic independence of all the random variables K
involved, it is seen that fn represents the expectation of the (total) cost Cn of a random
(recursive) splitting, when a single stage involving n elements incurs a toll equal to tn .
In symbols:

fn = E(Cn), Cn = tn + CKn + Cn−a−Kn .
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Clearly, a particular realization of the splitting process can be represented by a
binary tree. With a suitable choice of probabilities, such processes can be used to anal-
yse cost functional of increasing binary trees, and binary Catalan trees, for instance.
A prime motivation is the analysis of divide-and-conquer algorithms in computer sci-
ence, like quicksort, mergesort, union-find algorithms, and so on [132, 383, 384, 537,
538, 598]. Our treatment once more follows the article [208].

A general approach to the asymptotic solution of a tree recurrence goes as fol-
lows. First, introduce generating functions,

f (z) =
∑

n

fnωnzn, t (z) =
∑

n

tnω
′
nzn,

for some normalization sequences (ωn) and (ω′
n) that are problem-specific. (So, ωn ≡

1 gives rise to an OGF, ωn ≡ 1/n! to an EGF, with other normalizations being also
useful.) Then, by linearity of the original recurrence, there exists a linear operator L

on series (and functions), such that

f (z) = L[t (z)].

Provided the splitting probabilities pn,k have expressions of a tractable form, it is rea-
sonable to attempt expressing L in terms of the usual operations of analysis. One may
then investigate the way L affects singularities and deduce the asymptotic form of the
cost sequence ( fn) from the singularities of its generating function, f (z). An inter-
esting feature of this approach is to allow for a powerful discussion of the relationship
between tolls and induced costs, in a way that parallels composition of singularities in
Section VI. 9. Closure properties discussed earlier in this section are a crucial ingre-
dient in the intervening singularity analysis process.

The three examples that we present combine closure properties with the singu-
larity analysis of polylogarithms of Section VI. 8. Example VI.15 is relative to in-
creasing binary trees (defined in Example II.17, p. 143), which model binary search
trees of computer science. Example VI.16 discusses additive costs of random binary
Catalan trees in the perspective of tree recurrences. Finally, Example VI.17 shows the
applicability of singularity analysis to a basic coalescence–fragmentation process.

Example VI.15. The binary search tree recurrence. One of the simplest random tree models
is defined as follows: a random binary tree of size n ≥ 1 is obtained by taking a root and
appending to it a left subtree of size Kn and a right subtree of size n − 1 − Kn , where Kn
is uniformly distributed over the set of permissible values {0, 1, . . . , n − 1}. (Trees under this
model are equivalent to increasing binary trees encountered in Example II.17, p. 143, and to
binary search trees of Note III.33, p. 203.) In the notations of (66), this process corresponds to

pn,k ≡ P(Kn = k) = 1

n
, 0 ≤ k ≤ n − 1.

The associated tree recurrence is then

fn = tn + 2

n

n−1∑
k=0

fk , f0 = t0,
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which translates for OGFs,

f (z) :=
∑
n≥0

fn zn, t (z) =
∑
n≥0

tnzn,

into a linear integral equation:

(67) f (z) = t (z)+ 2
∫ z

0
f (w)

dw

1 − w
.

Differentiation yields the ordinary differential equation

f ′(z) = t ′(z)+ 2

1 − z
f (z), f (0) = t0,

which is then solved by the variation-of-constants method. In this way, it is found that an
integral transform expresses the relation between the GF of tolls and the GF of total costs.
Assuming without loss of generality t0 = 0, we have (with ∂w ≡ d

dw )

(68) f (z) = L[t (z)], where L[t (z)] = 1

(1 − z)2

∫ z

0
(∂wt (w)) (1 − w)2 dw.

First, simple toll sequences that admit generating functions of a simple form can be em-
ployed to build a repertoire13 that already provides useful indications on the relations between
the orders of growth of (tn) and ( fn). For instance, we find, for the rising-factorial tolls⎧⎪⎪⎨⎪⎪⎩

tαn :=
(

n + α

α

)
, tα(z) = (1 − z)−α−1,

f α(z) = α − 1

α + 1

[
(1 − z)−α−1 − (1 − z)−2

]
, f αn = α − 1

α + 1

[(
n + α

α

)
− n − 1

]
,

for α  = 1, while α = 1 corresponding to t1
n = n + 1 leads to

f 1(z) = 2

(1 − z)2
log

1

1 − z
, f 1

n = 2(n + 1)(Hn+1 −1) = 2n log n + O(n),

with Hn a harmonic number. The emergence of an extra logarithmic factor for α = 1 is to
be noted: it corresponds to the fact that path length in an increasing binary tree of size n is
∼ 2n log n. Such elementary techniques provide the top two entries of Figure VI.17.

Singularity analysis furthermore permits us to develop a complete asymptotic expansion
for tolls of the form

√
n, log n, and many others. Consider for instance the toll tαn = nα , for

which the generating function t (z) is recognized to be a polylogarithm. From Theorem VI.7
(p. 408), the function t (z) admits a singular expansions in terms of elements of the form (1−z)β ,
with the main term corresponding to β = −α − 1 when α > −1. The L transformation of (68)
reads as a succession of operations, ”differentiate, multiply by (1 − z)2, integrate, multiply by
(1 − z)−2”, which are covered by Theorems VI.8 and VI.9. Consequently, the chain on any
particular element starts as

c(1 − z)β
∂−→ cβ(1 − z)β−1 ×(1−z)2−→ cβ(1 − z)β+1.

At this stage, integration intervenes: according to Theorem VI.9, assuming β  = −2 and ignor-
ing integration constants, we find

cβ(1 − z)β+1
∫

−→ −c
β

β + 2
(1 − z)β+2 ×(1−z)−2

−→ −c
β

β + 2
(1 − z)β .

13The repertoire approach is developed in an attractive manner by Greene and Knuth in [310].
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Tolls (tn) costs ( fn)

tn =
(

n + α

α

)
(α > 1)

α − 1

α + 1

[(
n + α

α

)
− n + 1

]
∼ α + 1

α − 1

nα

�(α + 1)

tn =
(

n + α

α

)
(α < 1)

1 − α − 1

1 + α

[
n + 1 −

(
n + α

α

)]
∼ 1 + α

1 − α
n

tn = nα (2 < α) fn = α + 1

α − 1
nα + O(nα−1)

tn = nα (1 < α < 2) fn = α + 1

α − 1
nα + O(n)

tn = nα (0 < α < 1) Kαn + O(nα)

tn = log n K ′
0n − log n + O(1)

Figure VI.17. Tolls and costs for the binary search tree recurrence, with t0 = 0.

Thus, the singular element (1 − z)β corresponds to a contribution

−c
β

β + 2

(
n − β − 1

−β − 1

)
,

which is of order O(n−β−1). This chain of operations suffices to determine the leading order
of fn when tn = nα and α > 1.

The derivation above is representative of the main lines of the analysis, but it has left aside
the determination of integration constants, which play a dominant rôle when tn = nα and α < 1
(because a term of the form K/(1− z)2 then dominates in f (z)). Introduce, in accordance with
the statement of the Singular Integration Theorem (Theorem VI.9, p. 420) the quantity

K[t] :=
∫ 1

0

[
t ′(w)(1 − w)2 −

(
t ′(w)(1 − w)2

)
−

]
dw,

where f− represents the sum of singular terms of exponent < −1 in the singular expansion of
f (z). Then, for tn = nα with 0 < α < 1, taking into account the integration constant (which
gets multiplied by (1 − z)−2, given the shape of L), we find for α < 1:

fn ∼ Kαn, Kα = K[Li−α] = 2
∞∑

n=1

nα

(n + 1)(n + 2)
.

Similarly, the toll tn = log n gives rise to

fn ∼ K ′
0n, K ′

0 = 2
∞∑

n=1

log n

(n + 1)(n + 2)
.= 1.2035649167.

This last estimate quantifies the entropy of the distribution of binary search trees, which is stud-
ied by Fill in [207], and discussed in the reference book by Cover and Thomas on information
theory [134, p. 74-76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VI.16. The binary tree recurrence. Consider a procedure that, given a (pruned)
binary tree, performs certain calculations (without affecting the tree itself) at a cost of tn , for
size n, then recursively calls itself on the left and right subtrees. If the binary tree to which the
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Tolls (tn) costs ( fn)

nα ( 3
2 < α)

�(α − 1
2 )

�(α)
nα+1/2 + O(nα−1/2)

n3/2 2√
π

n2 + O(n log n)

nα ( 1
2 < α < 3

2 )
�(α − 1

2 )

�(α)
nα+1/2 + O(n)

n1/2 1√
π

n log n + O(n)

nα (0 < α < 1
2 ) Kαn + O(1)

log n K
′
0n + O(

√
n

Figure VI.18. Tolls and costs for the binary tree recurrence.

procedure is applied is drawn uniformly among all binary trees of size n the expectation of the
total cost of the procedure satisfies the recurrence

(69) fn = tn +
n−1∑
k=0

CkCn−1−k

Cn
( fk + fn−k) with Cn = 1

n + 1

(
2n

n

)
.

Indeed, the quantity

pn,k = CkCn−1−k

Cn

represents the probability that a random tree of size n has a left subtree of size k and a right
subtree of size n − k. It is then natural to introduce the generating functions

t (z) =
∑
n≥0

tnCnzn, f (z) =
∑
n≥0

fnCnzn,

and the recurrence (69) translates into a linear equation:

f (z) = t (z)+ 2zC(z) f (z),

with C(z) the OGF of Catalan numbers. Now, given a toll sequence (tn) with ordinary genera-
tion function

τ(z) :=
∑
n≥0

tn zn,

the function t (z) is a Hadamard product: t (z) = τ(z)3C(z). Furthermore, C(z) is well known,
so that the fundamental relation is

(70) f (z) = L[τ(z)], where L[τ(z)] = τ(z)3 C(z)√
1 − 4z

, C(z) = 1 −√
1 − 4z

2z
.

This transform relates the ordinary generating function of tolls to the normalized generating
function of the total costs via a Hadamard product.
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Tolls (tn) costs ( fn)

nα ( 3
2 < α)

�(α − 1
2 )√

2�(α)
nα+1/2 + O(nα−1/2)

n3/2

√
2

π
n2 + O(n log n)

nα ( 1
2 < α < 3

2 )
�(α − 1

2 )√
2�(α)

nα+1/2 + O(n)

n1/2 1√
2π

n log n + O(n)

nα (0 < α < 1
2 ) K̂αn + O(1)

log n K̂ ′
0n + O(

√
n)

Figure VI.19. Tolls and costs for the Cayley tree recurrence.

The calculation for simple tolls like nr with r ∈ Z≥0 can be carried out elementarily. For
the tolls tαn = nα what is required is the singular expansion of

τ(z)3 C
( z

4

)
= Li−α(z)3 C

( z

4

)
=

∞∑
n=1

nα

n + 1

(
2n

n

)( z

4

)n
.

This is precisely covered by Theorems VI.7 (p. 408), VI.10 (p. 422), and VI.11 (p. 423). The
results of Figure VI.18 follow, after routine calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VI.17. The Cayley tree recurrence. Consider n vertices labelled 1, . . . , n. There are
(n − 1)!nn−2 sequences of edges,

〈u1, v1, 〉, 〈u2, v2, 〉, · · · , 〈un−1, vn−1〉,
that give rise to a tree over {1, . . . , n}, and the number of such sequences is (n − 1)!nn−2 since
there are nn−2 unrooted trees of size n. At each stage k, the edges numbered 1 to k determine
a forest. Each addition of an edge connects two trees [that then become rooted] and reduces the
number of trees in the forest by 1, so that the forest evolves from the totally disconnected graph
(at time 0) to an unrooted tree (at time n−1). If we consider each of the sequences to be equally
likely, the probability that un−1 and vn−1 belong to components of size k and (n − k) is

1

2(n − 1)

(
n

k

)
kk−1(n − k)n−k−1

nn−2
.

(The reason is that there are kk−1 rooted trees of size k; the last added edge has n−1 possibilities
and 2 possible orientations.)

Assume that the aggregation of two trees into a tree of size equal to � incurs a toll of t�.
The total cost of the aggregation process for a final tree of size n satisfies the recurrence

(71) fn = tn +
∑

0<k<n

pn,k( fk + fn−k), pn,k = 1

2(n − 1)

(
n

k

)
kk−1(n − k)n−k−1

nn−2
.

The recurrence (71) has been studied in detail by Knuth and Pittel [383], building upon an earlier
analysis of Knuth and Schönhage [384]. A prime motivation of the cited works is the emergence
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of this recurrence in the study algorithms that dynamically manage equivalence relations (the
so-called union-find algorithm [384]).

Given the sequence of tolls (tn), we introduce the generating function

τ(z) =
∑
n≥1

tn zn,

and let T be the Cayley tree function (T = zeT ). For total costs, the generating function
adopted is

f (z) =
∑
n≥1

fnnn−1zn .

The basic recurrence (71) can then be rephrased as a linear ordinary differential equation, which
is solved by the variation-of-constant method. This gives rise to an integral transform involving
a Hadamard product, namely,

(72) f (z) = L[τ(z)], with L[τ ](z) = 1

2

T (z)

1 − T (z)

∫ z

0
∂w

(
τ(w)3 T (w)2

) dw

T (w)
.

Though the expression of the transform looks formidable at first sight, it is really nothing but a
short sequence of basic operations, “Hadamard product, multiplication, differentiation, division,
integration, multiplication”, each of which has a quantifiable effect on functions of singularity
analysis class. (The singularity structure of T (z) is itself determined by the Singular Inversion
Theorem, Theorem VI.6, p. 404.)

The net result is that the effect of tolls of the form nα , log n, and so on, can be analysed:
see Figure VI.19 for a listing of estimates. Details of the proof are left as an exercise to our
reader and are otherwise found in [208, §5.3]. The analogy of behaviour with the Catalan
tree recurrence stands out. This example is also of interest since it furnishes an analytically
tractable model of a coalescence-fragmentation process, which is of great interest in several
areas of science, for which we refer to Aldous’ survey [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

VI. 11. Tauberian theory and Darboux’s method

There are several alternative approaches to the analysis of coefficients of func-
tions that are of moderate growth. Naturally, all such methods must provide estimates
compatible with singularity analysis theory (Theorems VI.1, VI.2, and VI.3). Each
one requires some sort of “regularity condition” either on the part of the function or
on the part of the coefficient sequence, the regularity condition of singularity analysis
being in essence analytic continuation.

The methods briefly surveyed here fall into three broad categories: (i) Elementary
real analytic methods; (i i) Tauberian theorems; (i i i) Darboux’s method.

Elementary real analytic methods assume some a priori smoothness conditions on
the coefficient sequence; they are included here for the sake of completeness, though
properly speaking they do not belong to the galaxy of complex asymptotic methods.
Their scope is mostly limited to the analysis of products while the other methods
permit one to approach more general functional composition patterns. Tauberian the-
orems belong to the category of advanced real analysis methods; they also need some
a priori regularity on the coefficients, typically positivity or monotonicity. Darboux’s
method requires some smoothness of the function on the closed unit disc, and, by its
techniques and scope, it is the closest to singularity analysis.
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We content ourselves with a brief discussion of the main results. For more infor-
mation, the reader is referred to Odlyzko’s excellent survey [461].

Elementary real analytic methods. An asymptotic equivalent of the coefficients
of a function can sometimes be worked out elementarily from simple properties of the
component functions. The regularity conditions are a smooth asymptotic behaviour of
the coefficients of one of the two factors in a product of generating functions. A prime
source for these techniques is Bender’s survey [36].

Theorem VI.12 (Real analysis asymptotics). Let a(z) = ∑
anzn and b(z) = ∑

bnzn

be two power series with radii of convergence α > β ≥ 0, respectively. Assume that
b(z) satisfies the ratio test,

bn−1

bn
→ β as n → ∞.

Then the coefficients of the product f (z) = a(z) · b(z) satisfy, provided a(β)  = 0:

[zn] f (z) ∼ a(β)bn as n → ∞.

Proof. (Sketch) The basis of the proof is the following chain:

fn = a0bn + a1bn−1 + a2bn−2 + · · · + anb0)

= bn

(
a0 + a1

bn−1

bn
+ a2

bn−2

bn
+ · · · + an

b0

bn

)
= bn

(
a0 + a1

(
bn−1

bn

)
+ a2

(
bn−2

bn−1

)(
bn−1

bn

)
+ · · ·

)
∼ bn(a0 + a1β + a2β

2 + · · · ).
There, only the last line requires a little elementary analysis that is left as an exercise
to the reader (see Pólya–Szegő [492], Problem 178, Part I, Volume I). �

This theorem applies for instance to the EGF of 2–regular graphs:

f (z) = a(z) · b(z) with a(z) = e−z/2−z2/4, b(z) = 1√
1 − z

,

for which it gives fn ∼ e−3/4
(n−1/2

n

) ∼ e−3/4√
πn

, in accordance with Example VI.2

(p. 395). Clearly, a whole collection of lemmas can be stated in the same vein. Singu-
larity analysis usually provides more complete expansions, although Theorem VI.12
does apply to a few situations not covered by it.

Tauberian theory. Tauberian methods apply to functions whose growth is only
known along the positive real line. The regularity conditions are in the form of ad-
ditional assumptions on the coefficients (positivity or monotonicity) known under the
name of Tauberian “side conditions”. An insightful introduction to the subject may
be found in Titchmarsh’s book [577], and a detailed exposition in Postnikov’s mono-
graph [494] and Korevaar’s compendium [389]. We cite the most famous of all Taube-
rian theorems due to Hardy, Littlewood, and Karamata. For the purpose of this sec-
tion, a function is said to be slowly varying at infinity iff, for any c > 0, one has
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%(cx)/%(x) → 1 as x → +∞. (Examples of slowly varying functions are provided
by powers of logarithms or iterated logarithms.)

Theorem VI.13 (The HLK Tauberian theorem). Let f (z) be a power series with
radius of convergence equal to 1, satisfying

(73) f (z) ∼ 1

(1 − z)α
%(

1

1 − z
),

for some α ≥ 0 with % a slowly varying function. Assume that the coefficients fn =
[zn] f (z) are all non-negative (this is the “side condition”). Then

(74)
n∑

k=0

fk ∼ nα

�(α + 1)
%(n).

The conclusion (74) is consistent with the result given by singularity analysis:
under the conditions, and if in addition analytic continuation is assumed, then

(75) fn ∼ nα−1

�(α)
%(n),

which by summation yields the estimate (74).
It must be noted that a Tauberian theorem requires very little on the part of the

function. However, it gives little, since it does not include error estimates. Also, the
result it provides is valid in the more restrictive sense of mean values, or Cesàro aver-
ages. (If further regularity conditions on the fn are available, for instance monotonic-
ity, then the conclusion of (75) can then be deduced from (74) by purely elementary
real analysis.) The method applies only to functions that are large enough at their
singularity (the assumption α ≥ 0), and despite numerous efforts to improve the con-
clusions, it is the case that Tauberian theorems do not have much to offer in terms of
error estimates.

Appeal to a Tauberian theorem may be justified when a function has, apart from
the positive half line, a very irregular behaviour near its circle of convergence, for
instance when each point of the unit circle is a singularity. (The function is then said
to admit the unit circle as a natural boundary.) An interesting example of this situation
is discussed by Greene and Knuth [309] who consider the function

(76) f (z) =
∞∏

k=1

(
1 + zk

k

)
,

which is the EGF of permutations having cycles all of different lengths. A little com-
putation shows that

log
∞∏

k=1

(
1 + zk

k

)
=

∞∑
k=1

zk

k
− 1

2

∞∑
k=1

z2k

k2
+ 1

3

∞∑
k=1

z3k

k3
− · · ·

∼ log
1

1 − z
− γ + o(1).

(Only the last line requires some care, see [309].) Thus, we have

f (z) ∼ e−γ

1 − z
−→ 1

n
( f0 + f1 + · · · + fn) ∼ e−γ ,
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by virtue of Theorem VI.12. In fact, Greene and Knuth were able to supplement this
argument by a “bootstrapping” technique and show a stronger result, namely

fn → e−γ .
� VI.31. Fine asymptotics of the Greene–Knuth problem. With f (z) as in (76), we have

[zn] f (z) = e−γ + e−γ
n

+ e−γ
n2

(− log n − 1 − γ + log 2)

+ 1

n3

[
e−γ log2 n + c1 log n + c2 + 2(−1)n +�(n)

]
+ O

(
1

n4

)
,

where c1, c2 are computable constants and �(n) has period 3. (The paper [227] derives a
complete expansion based on a combination of Darboux’s method and singularity analysis.) �

Darboux’s method. The method of Darboux (also known as the Darboux–Pólya
method) requires, as regularity condition, that functions be sufficiently differentiable
(“smooth”) on their circle of convergence. What lies at the heart of the method is a
simple relation between the smoothness of a function and the decrease of its Taylor
coefficients.

Theorem VI.14 (Darboux’s method). Assume that f (z) is continuous in the closed
disc |z| ≤ 1 and is, in addition, k times continuously differentiable (k ≥ 0) on |z| = 1.
Then

(77) [zn] f (z) = o

(
1

nk

)
.

Proof. Start from Cauchy’s coefficient formula

fn = 1

2iπ

∫
C

f (z)
dz

zn+1
.

Because of the continuity assumption, one may take as integration contour C the unit
circle. Setting z = eiθ yields the Fourier version of Cauchy’s coefficient formula,

(78) fn = 1

2π

∫ 2π

0
f (eiθ )e−niθ dθ.

The integrand in (78) is strongly oscillating. The Riemann–Lebesgue lemma of clas-
sical analysis [577, p. 403] shows that the integral tends to 0 as n → ∞.

The argument above covers the case k = 0. For a general k, successive integra-
tions by parts give

[zn] f (z) = 1

2π(in)k

∫ 2π

0
f (k)(eiθ )e−niθ dθ,

a quantity that is o(nk), by Riemann–Lebesgue again. �
Various consequences of Theorem VI.14 are given in reference texts also under

the name of Darboux’s method. See for instance [129, 309, 329, 608]. We shall only
illustrate the mechanism by rederiving in this framework the analysis of the EGF of
2–regular graphs (Example VI.2, p. 395). We have

(79) f (z) = e−z/2−z2/4

√
1 − z

= e−3/4

√
1 − z

+ e−3/4
√

1 − z + R(z).
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There R(z) is the product of (1 − z)3/2 with a function analytic at z = 1 that is
a remainder in the Taylor expansion of e−z/2−z2/4. Thus, R(z) is of class C1, i.e.,
continuously differentiable once. By Theorem VI.14, we have

[zn]R(z) = o

(
1

n

)
,

so that

(80) [zn] f (z) = e−3/4

√
πn

+ o

(
1

n

)
.

Darboux’s method bears some resemblance to singularity analysis in that the es-
timates are derived from translating error terms in expansions. However, smoothness
conditions, rather than plain order of growth information, are required by it. The
method is often applied, in situations similar to (79)–(80), to functions that are prod-
ucts of the type h(z)(1−z)α with h(z) analytic at 1. In such particular cases, Darboux’s
method is however subsumed by singularity analysis.

It is inherent in Darboux’s method that it cannot be applied to functions whose
singular expansion only involves terms that become infinite, while singularity analy-
sis can. A clear example arises in the analysis of the common subexpression prob-
lem [257] where there occurs a function with a singular expansion of the form

1√
1 − z

1√
log 1

1−z

[
1 + c1

log 1
1−z

+ · · ·
]
.

� VI.32. Darboux versus singularity analysis. This note provides an instance where Darboux’s
method applies whereas singularity analysis does not. Let

Fr (z) =
∞∑

n=0

z2n

(2n)r
.

The function F0(z) is singular at every point of the unit circle, and the same property holds for
any Fr with r ∈ Z≥0. [Hint: F0, which satisfies the functional equation F(z) = z + F(z2),
grows unboundedly near 2n th roots of unity.] Darboux’s method can be used to derive

[zn]
1√

1 − z
F5(z) =

c√
πn

+ o

(
1

n

)
, c := 32

31
.

What is the best error term that can be obtained? �

VI. 12. Perspective

The method of singularity analysis expands our ability to extract coefficient asymp-
totics to a far wider class of functions than the meromorphic and rational functions of
Chapters IV and V. This ability is the fundamental tool for analysing many of the
generating functions provided by the symbolic method of Part A, and it is applicable
at a considerable level of generality.

The basic method is straightforward and appealing: we locate singularities, es-
tablish analyticity in a domain around them, expand the functions around the singular-
ities, and apply general transfer theorems to take each term in the function expansion
to a term in the asymptotic expansion of its coefficients. The method applies directly
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to a large variety of explicitly given functions, for instance combinations of ratio-
nal functions, square roots, and logarithms, as well as to functions that are implicitly
defined, like generating functions for tree structures, which are obtained by analytic
inversion. Functions amenable to singularity analysis also enjoy rich closure prop-
erties, and the corresponding operations mirror the natural operations on generating
functions implied by the combinatorial constructions of Chapters I–III.

This approach again sets us in the direction of the ideal situation of having a
theory where combinatorial constructions and analytic methods fully correspond, but,
again, the very essence of analytic combinatorics is that the theorems that provide
asymptotic results cannot be so general as to be free of analytic side conditions. In
the case of singularity analysis, these side conditions have to do with establishing an-
alyticity in a domain around singularities. Such conditions are automatically satisfied
by a large number of functions with moderate (at most polynomial) growth near their
dominant singularities, justifying precisely what we need: the term-by-term transfer
from the expansion of a generating function at its singularity to an asymptotic form of
coefficients, including error terms. The calculations involved in singularity analysis
are rather mechanical. (Salvy [528] has indeed succeeded in automating the analysis
of a large class of generating functions in this way.)

Again, we can look carefully at specific combinatorial constructions and then ap-
ply singularity analysis to general abstract schemas, thereby solving whole classes of
combinatorial problems at once. This process, along with several important examples,
is the topic of Chapter VII, to come next. After that, we introduce, in Chapter VIII,
the saddle-point method, which is appropriate for functions without singularities at a
finite distance (entire functions) as well as those whose growth is rapid (exponential)
near their singularities. Singularity analysis will surface again in Chapter IX, given
its crucial technical rôle in obtaining uniform expansions of multivariate generating
functions near singularities.

Bibliographic notes. Excellent surveys of asymptotic methods in enumeration have been given
by Bender [36] and more recently Odlyzko [461]. A general reference to asymptotic analy-
sis that has a remarkably concrete approach is De Bruijn’s book [143]. Comtet’s [129] and
Wilf’s [608] books each devote a chapter to these questions.

This chapter is largely based on the theory developed by Flajolet and Odlyzko in [248],
where the term “singularity analysis” originates. An important early (and unduly neglected)
reference is the study by Wong and Wyman [615]. The theory draws its inspiration from classi-
cal analytic number theory, for instance the prime number theorem where similar contours are
used (see the discussion in [248] for sources). Another area where Hankel contours are used
is the inversion theory of integral transforms [168], in particular in the case of algebraic and
logarithmic singularities. Closure properties developed here are from the articles [208, 223] by
Flajolet, Fill, and Kapur.

Darboux’s method can often be employed as an alternative to singularity analysis. Al-
though it is still widely used technique in the literature, the direct mapping of asymptotic scales
afforded by singularity analysis appears to us to be much more transparent. Darboux’s method is
well explained in the books by Comtet [129], Henrici [329], Olver [465], and Wilf [608]. Taube-
rian theory is treated in detail in Postnikov’s monograph [494] and Korevaar’s encyclopaedic
treatment [389], with an excellent introduction to be found in Titchmarsh’s book [577].
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Applications of Singularity Analysis

Mathematics is being lazy. Mathematics is letting the principles do the work for you
so that you do not have to do the work for yourself 1.

— GEORGE PÓLYA

I wish to God these calculations had been executed by steam.

— CHARLES BABBAGE (1792–1871)

— The Bhagavad Gita XV.12
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VII. 11. Perspective 538

Singularity analysis paves the way to the analysis of a large quantity of generating
functions, as provided by the symbolic method expounded in Chapters I–III. In accor-
dance with Pólya’s aphorism quoted above, it makes it possible to “be lazy” and “let
the principles work for you”. In this chapter we illustrate this situation with numerous
examples related to languages, permutations, trees, and graphs of various sorts. As in
Chapter V, most analyses are organized into broad classes called schemas.

First, we develop the general exp–log schema, which covers the set construc-
tion, either labelled or unlabelled, applied to generators whose dominant singularity
is of logarithmic type. This typically non-recursive schema parallels in generality
the supercritical schema of Chapter V, which is relative to sequences. It permits us to
quantify various constructions of permutations, derangements, 2–regular graphs, map-
pings, and functional graphs, and provides information on factorization properties of
polynomials over finite fields.

1Quoted in M Walter, T O’Brien, Memories of George Pólya, Mathematics Teaching 116 (1986)
2“There is an imperishable tree, it is said, that has its roots upward and its branches down and whose

leaves are the Hymns [Vedas]. He who knows it possesses knowledge.”

439
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Next, we deal with recursively defined structures, whose study constitutes the
main theme of this chapter. In that case, generating functions are accessible by means
of equations or systems that implicitly define them. A distinctive feature of many
such combinatorial types is that their generating functions have a square-root sin-
gularity, that is, the singular exponent equals 1/2. As a consequence, the counting
sequences characteristically involve asymptotic terms of the form Ann−3/2, where the
latter asymptotic exponent, −3/2, precisely reflects the singular exponent 1/2 in the
function’s singular expansion, in accordance with the general principles of singularity
analysis presented in Chapter VI.

Trees are the prototypical recursively defined combinatorial type. Square-root
singularities automatically arise for all varieties of trees constrained by a finite set of
allowed node degrees, including binary trees, unary–binary trees, ternary trees, and
many more. The counting estimates involve the characteristic n−3/2 subexponential
factor, a property that holds in the labelled and unlabelled frameworks alike.

Simple varieties of trees have many properties in common, beyond the subexpo-
nential growth factor of tree counts. Indeed, in a random tree of some large size n,
almost all nodes are found to be at level about

√
n, path length grows on average like

n
√

n, and height is of order
√

n, with high probability. These results serve to unify
classical tree types—we say that such properties of random trees are universal3 among
all simply generated families sharing the square-root singularity property. (This notion
of universality, borrowed from physics, is also nowadays finding increasing popularity
among probabilists, for reasons much similar to ours.) In this perspective, the motiva-
tion for organizing the theory along the lines of major schemas fits perfectly with the
quest of universal laws in analytic combinatorics.

In the context of simple varieties of trees, the square-root singularity arises from
general properties of the inverse of an analytic function. Under suitable conditions,
this characteristic feature can be extended to functions defined implicitly by a func-
tional equation. Consequences are the general enumeration of non-plane unlabelled
trees, including isomers of alkanes in theoretical chemistry, as well as secondary struc-
tures of molecular biology.

Much of this chapter is devoted to context-free specifications and languages. In
that case, a priori, generating functions are algebraic functions, meaning that they sat-
isfy a system of polynomial equations, itself optionally reducible (by elimination) to
a single equation. For solutions of positive polynomial systems, square-root singular-
ities are found to be the rule under a simple technical condition of irreducibility that is
evocative of the Perron–Frobenius conditions encountered in Chapter V in relation to
finite-state and transfer-matrix models. As an illustration, we show how to develop a

3The following quotation illustrates well the notion of universality in physics: “[. . . ] this echoes the
notion of universality in statistical physics. Phenomena that appear at first to be unconnected, such as mag-
netism and the phase changes of liquids and gases, share some identical features. This universal behaviour
pays no heed to whether, say, the fluid is argon or carbon dioxide. All that matters are broad-brush charac-
teristics such as whether the system is one-, two- or three-dimensional and whether its component elements
interact via long- or short-range forces. Universality says that sometimes the details do not matter.” [From
“Utopia Theory”, in Physics World, August 2003].
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coherent theory of topological configurations in the plane (trees, forests, graphs) that
satisfy a non-crossing constraint.

For arbitrary algebraic functions (the ones that are not necessarily associated with
positive coefficients and equations, or irreducible positive systems), a richer set of sin-
gular behaviours becomes possible: singular expansions involve fractional exponents
(not just 1/2, corresponding to the square-root paradigm above). Singularity analysis
is invariably applicable: algebraic functions are viewed as plane algebraic curves, and
the famous Newton–Puiseux theorem of elementary algebraic geometry completely
describes the types of singularities thay may occur. Algebraic functions also surface
as solutions of various types of functional equations: this turns out to be the case for
many classes of walks that generalize Dyck and Motzkin paths, via what is known
as the kernel method, as well as for many types of planar maps (embedded planar
graphs), via the so-called quadratic method. In all these cases, singular exponents of a
predictable (rational) form are bound to occur, implying in turn numerous quantitative
properties of random discrete structure and universality phenomena..

Differential equations and systems are associated to recursively defined structure,
when either pointing constructions or order constraints appear. For counting generat-
ing functions, the equations are nonlinear, while the GFs associated to additive param-
eters lead to linear versions. Differential equations are also central in connection with
the holonomic framework4, which intervenes in the enumeration of many classes of
“hard” objects, like regular graphs and Latin rectangles. Singularity analysis is once
more instrumental in working out precise asymptotic estimates—the appearance of
singular exponents that are algebraic (rather than rational) numbers is a characteristic
feature of many such estimates. We examine here applications relative to quadtrees
and to varieties of increasing trees, some of which are closely related to permutations
as well as to algorithms and data structures for sorting and searching.

VII. 1. A roadmap to singularity analysis asymptotics

The singularity analysis theorems of Chapter VI, which may be coarsely summa-
rized by the correspondence

(1) f (z) ∼ (1 − z/ρ)−α −→ fn ∼ 1

�(α)
ρ−nnα−1,

serve as our main asymptotic engine throughout this chapter. Singularity analysis is
instrumental in quantifying properties of non-recursive as well as recursive structures.
Our reader might be surprised not to encounter integration contours anymore in this
chapter. Indeed, it now suffices to work out the local analysis of functions at their
singularities, then the general theorems of singularity analysis (Chapter VI) effect the
translation to counting sequences and parameters automatically.

4Holonomic functions (Appendix B.4: Holonomic functions, p. 748) are defined as solutions of linear
differential equations with coefficients that are rational functions.
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The exp–log schema. This schema, examined in Section VII. 2, is relative to the
labelled set construction,

(2) F = SET(G) �⇒ F(z) = exp (G(z)) ,

as well as its unlabelled counterparts, MSET and PSET: an F–structure is thus con-
structed (non-recursively) as an unordered assembly of G–components. In the case
where the GF of components is logarithmic at its dominant singularity,

(3) G(z) ∼ κ log
1

1 − z/ρ
+ λ,

an immediate computation shows that F(z) has a singularity of the power type,

F(z) ∼ eλ (1 − z/ρ)−κ ,
which is clearly in the range of singularity analysis. The construction (2), supple-
mented by simple technical conditions surrounding (3), defines the exp–log schema.
Then, for such F–structures that are assemblies of logarithmic components, the asymp-
totic counting problem is systematically solvable (Theorem VII.1, p. 446): the number
of G–components in a large random F–structure is O(log n), both in the mean and in
probability, while more refined estimates describe precisely the likely shape of pro-
files. This schema has a generality comparable to the supercritical schema examined
in Section V. 2, p. 293, but the probabilistic phenomena at stake appear to be in sharp
contrast: the number of components is typically small, being logarithmic for exp–log
sets, as opposed to a linear growth in the case of supercritical sequences. The schema
can be used to analyse properties of permutations, functional graphs, mappings, and
polynomial over finite fields.

Recursion and the universality of square-root singularity. A major theme of
this chapter is the study of asymptotic properties of recursive structures. In a large
number of cases, functions with a square root singularity are encountered, and given
the usual correspondence,

f (z) ∼ −(1 − z)1/2 −→ fn ∼ 1

2
√
πn3

;

the corresponding coefficients are of the asymptotic form Cρ−nn−3/2. Several schemas
can be described to capture this phenomenon; we develop here, in order of increas-
ing structural complexity, the ones corresponding to simple varieties of trees, implicit
structures, Pólya operators, and irreducible polynomial systems.

Simple varieties of trees and inverse functions. Our treatment of recursive com-
binatorial types starts with simple varieties of trees, studied in Section VII. 3. In the
basic situation, that of plane unlabelled trees, the equation is

(4) Y = Z × SEQ�(Y) �⇒ Y (z) = zφ(Y (z)),

with, as usual, φ(w) = ∑
ω∈� wω. Thus, the OGF Y (z) is determined as the inverse

of w/φ(w), where the function φ reflects the collection of all allowed node degrees
(�). From analytic function theory, we know that singularities of the inverse of an
analytic function are generically of the square-root type (Subsection IV. 7.1, p. 275
and Section VI. 7, p. 402), and such is the case whenever � is a “well-behaved” set
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of integers, in particular, a finite set. Then, the number of trees invariably satisfies an
estimate of the form

(5) Yn = [zn]Y (z) ∼ C Ann−3/2.

Square-root singularity is also attached to several universality phenomena, as evoked
in the general introduction to this chapter.

Tree-like structures and implicit functions. Functions defined implicitly by an
equation of the form

(6) Y (z) = G(z,Y (z))

where G is bivariate analytic, has non-negative coefficients, and satisfies a natural set
of conditions also lead to square-root singularity (Section VII. 4 and Theorem VII.3,
p. 468)). The schema (6) obviously generalizes (4): simply take G(z, y) = zφ(y).
Again, such functions invariably satisfy an estimate (5).

Trees under symmetries and Pólya operators. The analytic methods mentioned
above can be further extended to Pólya operators, which translate unlabelled set and
cycle constructions; see Section VII. 5. A typical application is to the class of non-
plane unlabelled trees whose OGF satisfies the infinite functional equation,

H(z) = z exp

(
H(z)

1
+ H(z2)

2
+ · · ·

)
.

Singularity analysis applies more generally to varieties of non-plane unlabelled trees
(Theorem VII.4, p. 479), which covers the enumeration of various types of interesting
molecules in combinatorial chemistry.

Context-free structures and polynomial systems. The generating function of any
context-free class or language is known to be a component of a system of positive
polynomial equations ⎧⎪⎨⎪⎩

y1 = P1(z, y1, . . . , yr )
...

...
...

yr = Pr (z, y1, . . . , yr ).

The n−3/2 counting law is once more universal among such combinatorial classes
under a basic condition of “irreducibility” (Section VII. 6 and Theorem VII.5, p. 483).
In that case, the GFs are algebraic functions satisfying a strong positivity constraint;
the corresponding analytic statement constitutes the important Drmota–Lalley–Woods
Theorem (Theorem VII.6, p. 489).

Note that there is a progression in the complexity of the schemas leading to
square-root singularity. From the analytic standpoint, this can be roughly rendered
by a chain

inverse functions −→ implicit functions −→ systems.

It is, however, often meaningful to treat each combinatorial problem at its minimal
level of generality, since expressions tend to become less and less explicit as complex-
ity increases.
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General algebraic functions. In essence, the coefficients of all algebraic func-
tions can be analysed asymptotically (Section VII. 7). There are only minor limitations
arising from the possible presence of several dominant singularities, like in the ratio-
nal function case. The starting point is the characterization of the local behaviour of
an algebraic function at any of its singularities, which is provided by the Newton–
Puiseux theorem: if ζ is a singularity, then the branch Y (z) of an algebraic function
admits near ζ a representation of the form

(7) Y (z) = Zr/s

⎛⎝∑
k≥0

ck Zk/s

⎞⎠ , Z := (1 − z/ζ ),

for some r/s ∈ Q, so that the singular exponent is invariably a rational number.
Singularity analysis is systematically applicable, so that the nth coefficient of Y is
expressible as a finite linear combination of terms, each of the asymptotic form

(8) ζ−nn p/q ,
p

q
∈ Q \ {−1,−2, . . .};

see also Figure VII.1. The various quantities (like ζ, r, s) entering the asymptotic
expansion of the coefficients of an algebraic function turn out to be effectively com-
putable.

Beside providing a wide-encompassing conceptual framework of independent in-
terest, the general theory of algebraic coefficient asymptotics is applicable whenever
the combinatorial problems considered are not amenable to any of the special schemas
previously described. For instance, certain kinds of supertrees (these are defined as
trees composed with trees, Example VII.10, p. 412) lead to the singular type Z1/4,
which is reflected by an unusual subexponential factor of n−5/4 present in asymptotic
counts. Maps, which are planar graphs drawn in the plane (or on the sphere), satisfy a
universality law with a singular exponent equal to 3/2, which is associated to counting
sequences involving an asymptotic n−5/2 factor.

Differential equations and systems. When recursion is combined with point-
ing or with order constraints, enumeration problems translate into integro-differential
equations. Section VII. 9 examines the types of singularities that may occur in two
important cases: (i) linear differential equations; (i i) nonlinear differential equations.

Linear differential equations arise from the analysis of parameters of splitting
processes that extend the framework of tree recurrences (Subsection VI. 10.3, p. 427),
and we treat the geometric quadtree structure in this perspective. An especially notable
source of linear differential equations is the class of holonomic functions (solutions of
linear equations with rational coefficients, cf Appendix B.4: Holonomic functions,
p. 748), which includes GFs of Latin rectangles, regular graphs, permutations con-
strained by the length of their longest increasing subsequence, Young tableaux and
many more structures of combinatorial theory. In an important case, that of a “regu-
lar” singularity, asymptotic forms can be systematically extracted. The singularities
that may occur extend the algebraic ones (7), and the corresponding coefficients are
then asymptotically composed of elements of the form

(9) ζ−nnθ (log n)�,
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Rational Irred. linear system ζ−n Perron–Frob., merom. fns,
Ch. V

— General rational ζ−nn� meromorphic functions,
Ch. V

Algebraic Irred. positive sys. ζ−nn−3/2 DLW Th., sing. analysis,
this chapter, §VII. 6, p. 482

— General algebraic ζ−nn p/q Puiseux, sing. analysis,
this chapter, §VII. 7, p. 493

Holonomic Regular sing. ζ−nnθ log� n ODE, sing. analysis,
this chapter, §VII. 9.1, p. 518

— Irregular sing. ζ−neP(n1/r )nθ log� n ODE, saddle-point,
§VIII. 7, p. 581

Figure VII.1. A telegraphic summary of a hierarchy of special functions by increas-
ing level of generality: asymptotic elements composing coefficients and the coeffi-
cient extraction method (with �, r ∈ Z≥0, p/q ∈ Q, ζ and θ algebraic, and P a
polynomial).

(θ an algebraic quantity, � ∈ Z≥0), a type which is much more general than (8).
Nonlinear differential equations are typically attached to the enumeration of trees

satisfying various kinds of order constraints. A global treatment is intrinsically not
possible, given the extreme diversity of singular expansions that may occur. Accord-
ingly, we restrict attention to first-order nonlinear equations of the form

d

dz
Y (z) = φ(Y (z)),

which covers varieties of increasing trees and certain urn processes, including several
models closely related to permutations.

Figure VII.1 summarizes three classes of special functions encountered in this
book, namely, rational, algebraic, and holonomic. When structural complexity in-
creases, a richer set of asymptotic coefficient behaviours becomes possible. (The com-
plex asymptotic methods employed extend much beyond the range summarized in the
figure. For instance, the class of irreducible positive systems of polynomial equations
are part of the general square-root singularity paradigm, also encountered with Pólya
operators, as well as inverse and implicit functions in non-algebraic cases.)

VII. 2. Sets and the exp–log schema

We begin by examining a schema that is structurally comparable to the supercrit-
ical sequence schema of Section V. 2, p. 293, but one that requires singularity analysis
for coefficient extraction. The starting point is the construction of permutations (P) as
labelled sets of cyclic permutations (K):

(10) P = SET(K) �⇒ P(z) = exp (K (z)) , where K (z) = log
1

1 − z
,
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which gives rise to many easy explicit calculations. For instance, the probability that
a random permutation consists of a unique cycle is 1/n (since it equals Kn/Pn); the
number of cycles is asymptotic to log n, both on average (p. 122) and in probability
(Example III.4, p. 160); the probability that a random permutation has no singleton
cycle is ∼ e−1 (the derangement problem; see pp. 123 and 228).

Similar properties hold true under surprisingly general conditions. We start with
definitions that describe the combinatorial classes of interest.

Definition VII.1. A function G(z) analytic at 0, having non-negative coefficients and
finite radius of convergence ρ is said to be of (κ, λ)-logarithmic type, where κ  = 0, if
the following conditions hold:

(i) the number ρ is the unique singularity of G(z) on |z| = ρ;
(i i) G(z) is continuable to a �–domain at ρ;
(i i i) G(z) satisfies

(11) G(z) = κ log
1

1 − z/ρ
+ λ+ O

(
1

(log(1 − z/ρ))2

)
, as z → ρ in �.

Definition VII.2. The labelled construction F = SET(G) is said to be a labelled
exp–log schema (“exponential–logarithmic schema”) if the exponential generating
function G(z) of G is of logarithmic type. The unlabelled construction F = MSET(G)
is said to be an unlabelled exp–log schema if the ordinary generating function G(z)
of G is of logarithmic type, with ρ < 1. In each case, the quantities (κ, λ) of (11) are
referred to as the parameters of the schema.

By the fact that G(z) has positive coefficients, we must have κ > 0, while the sign
of λ is arbitrary. The definitions and the main properties to be derived for unlabelled
multisets easily extend to the powerset construction: see Notes VII.1 and VII.5 below.

Theorem VII.1 (Exp–log schema). Consider an exp–log schema with parameters
(κ, λ).

(i) The counting sequences satisfy⎧⎪⎨⎪⎩
[zn]G(z) = κ

n
ρ−n

(
1 + O

(
(log n)−2

))
,

[zn]F(z) = eλ+r0

�(κ)
nκ−1ρ−n

(
1 + O

(
(log n)−2

))
,

where r0 = 0 in the labelled case and r0 = ∑
j≥2 G(ρ j )/j in the case of unlabelled

multisets.
(i i) The number X of G–components in a random F–object satisfies

EFn (X) = κ(log n − ψ(κ))+ λ+ r1 + O
(
(log n)−1

)
(ψ(s) ≡ d

ds�(s)),

where r1 = 0 in the labelled case and r1 = ∑
j≥2 G(ρ j ) in the case of unlabelled

multisets. The variance satisfies VFn (X) = O(log n), and, in particular, the distribu-
tion5 of X is concentrated around its mean.

5We shall see in Subsection IX. 7.1 (p. 667) that, in addition, the asymptotic distribution of X is
invariably Gaussian under such exp–log conditions.
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Proof. This result is from an article by Flajolet and Soria [258], with a correction
to the logarithmic type condition given by Jennie Hansen [318]. We first discuss the
labelled case, F = SET(G), so that F(z) = exp G(z).

(i) The estimate for [zn]G(z) follows directly from singularity analysis with log-
arithmic terms (Theorem VI.4, p. 393). Regarding F(z), we find, by exponentiation,

(12) F(z) = eλ

(1 − z/ρ)κ

[
1 + O

(
1

(log(1 − z/ρ))2

)]
.

Like G, the function F = eG has an isolated singularity at ρ, and is continuable to
the �–domain in which the expansion (11) is valid. The basic transfer theorem then
provides the estimate of [zn]F(z).

(i i) Regarding the number of components, the BGF of F with u marking the
number of G–components is F(z, u) = exp(uG(z)), in accordance with the general
developments of Chapter III. The function

f1(z) := ∂

∂u
F(z, u)

∣∣∣∣
u=1

= F(z)G(z),

is the EGF of the cumulated values of X . It satisfies near ρ

f1(z) = eλ

(1 − z/ρ)κ

(
κ log

1

1 − z/ρ
+ λ

)[
1 + O

(
1

(log(1 − z/ρ))2

)]
,

whose translation, by singularity analysis theory is immediate:

[zn] f1(z) ≡ EFn (X) =
eλ

�(κ)
ρ−n

(
κ log n − κψ(κ)+ λ+ O

(
(log n)−1

))
.

This provides the mean value estimate of X as [zn] f1(z)/[zn]F(z). The variance
analysis is conducted in the same way, using a second derivative.

For the unlabelled case, the analysis of [zn]G(z) can be recycled verbatim. First,
given the assumptions, we must have ρ < 1 (since otherwise [zn]G(z) could not be
an integer). The classical translation of multisets (Chapter I) rewrites as

F(z) = exp (G(z)+ R(z)) , R(z) :=
∞∑
j=2

G(z j )

j
,

where R(z) involves terms of the form G(z2), . . ., each being analytic in |z| < ρ1/2.
Thus, R(z) is itself analytic, as a uniformly convergent sum of analytic functions, in
|z| < ρ1/2. (This follows the usual strategy for treating Pólya operators in asymptotic
theory.) Consequently, F(z) is �–analytic. As z → ρ, we then find

(13) F(z) = eλ+r0

(1 − z/ρ)κ

[
1 + O

(
1

(log(1 − z/ρ))2

)]
, r0 ≡

∞∑
j=2

G(ρ j )

j
.

The asymptotic expansion of [zn]F(z) then results from singularity analysis.
The BGF F(z, u) of F , with u marking the number of G–components, is

F(z, u) = exp

(
uG(z)

1
+ u2G(z2)

2
+ · · ·

)
.
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F κ n = 100 n = 272 n = 739

Permutations 1 5.18737 6.18485 7.18319

Derangements 1 4.19732 5.18852 6.18454

2–regular 1
2 2.53439 3.03466 3.53440

Mappings 1
2 2.97898 3.46320 3.95312

Figure VII.2. Some exp–log structures (F ) and the mean number of G–components
for n = 100, 272 ≡ �100 · e�, 739 ≡ �100 · e2�: the columns differ by about κ , as
expected.

Consequently,

f1(z) := ∂

∂u
F(z, u)

∣∣∣∣
u=1

= F(z) (G(z)+ R1(z)) , R1(z) =
∞∑
j=2

G(z j ).

Again, the singularity type is that of F(z) multiplied by a logarithmic term,

(14) f1(z) ∼
z→ρ

F(z)(G(z)+ r1), r1 ≡
∞∑
j=2

G(ρ j ).

The mean value estimate results. Variance analysis follows similarly. �
� VII.1. Unlabelled powersets. For the powerset construction F = PSET(G), the statement of
Theorem VII.1 holds with

r0 =
∑
j≥2

(−1) j−1 G(ρ j )

j
,

as seen by an easy adaptation of the proof technique of Theorem VII.1. �

As we see below, beyond permutations, mappings, unlabelled functional graphs,
polynomials over finite fields, 2–regular graphs, and generalized derangements belong
to the exp–log schema; see Figure VII.2 for representative numerical data. Further-
more, singularity analysis gives precise information on the decomposition of large F
objects into G components.

Example VII.1. Cycles in derangements. The case of all permutations,

P(z) = exp(K (z)), K (z) = log
1

1 − z
,

is immediately seen to satisfy the conditions of Theorem VII.1: it corresponds to the radius of
convergence ρ = 1 and parameters (κ, λ) = (1, 0).

Let � be a finite set of integers and consider next the class D ≡ D� of permutations
without any cycle of length in �. This includes standard derangements (where � = {1}). The
specification is then{

D = SET(K)
G = CYCZ>0\�(Z)

�⇒

⎧⎪⎨⎪⎩
D(z) = exp(K (z))

G(z) = log
1

1 − z
−

∑
ω∈�

zω

ω
.
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The theorem applies, with κ = 1, λ := −∑
ω∈� ω−1. In particular, the mean number of cycles

in a random generalized derangement of size n is log n + O(1). . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VII.2. Connected components in 2–regular graphs. The class of (undirected) 2–
regular graphs is obtained by the set construction applied to components that are themselves
undirected cycles of length ≥ 3 (see p. 133 and Example VI.2, p. 395). In that case:⎧⎨⎩ F = SET(G)

G = UCYC≥3(Z)
�⇒

⎧⎨⎩
F(z) = exp(G(z))

G(z) = 1

2
log

1

1 − z
− z

2
− z2

4
.

This is an exp–log scheme with κ = 1/2 and λ = −3/4. In particular the number of compo-
nents is asymptotic to 1

2 log n, both in the mean and in probability. . . . . . . . . . . . . . . . . . . . . . . �

Example VII.3. Connected components in mappings. The class F of mappings (functions
from a finite set to itself) was introduced in Subsection II. 5.2, p. 129. The associated digraphs
are described as labelled sets of connected components (K), themselves (directed) cycles of
trees (T ), so that the class of all mappings has an EGF given by

F(z) = exp(K (z)), K (z) = log
1

1 − T (z)
, T (z) = zeT (z),

with T the Cayley tree function. The analysis of inverse functions (Section VI. 7 and Exam-
ple VI.8, p. 403) has shown that T (z) is singular at z = e−1, where it admits the singular
expansion T (z) ∼ 1−√

2
√

1 − ez. Thus G(z) is logarithmic with κ = 1/2 and λ = − log
√

2.
As a consequence, the number of connected mappings satisfies

Kn ≡ n![zn]K (z) = nn
√
π

2n

(
1 + O(n−1/2)

)
.

In other words: the probability for a random mapping of size n to consist of a single component

is ∼
√

π
2n . Also, the mean number of components in a random mapping of size n is

1

2
log n + log

√
2eγ + O(n−1/2).

Similar properties hold for mappings without fixed points, which are analogous to derangements
and were discussed in Chapter II, p. 130. We shall establish below, p. 480, that unlabelled
functional graphs also belong to the exp–log schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VII.4. Factors of polynomials over finite fields. Factorization properties of ran-
dom polynomials over finite fields are of importance in various areas of mathematics and have
applications to coding theory, symbolic computation, and cryptography [51, 599, 541]. Exam-
ple I.20, p. 90, offers a preliminary discussion.

Let Fp be the finite field with p elements and P ⊂ Fp[X ] the set of monic polynomials
with coefficients in the field. We view these polynomials as (unlabelled) combinatorial objects
with size identified to degree. Since a polynomial is specified by the sequence of its coefficients,
one has, with A the “alphabet” of coefficients, A = Fp treated as a collection of atomic objects:

(15) P = SEQ(A) �⇒ P(z) = 1

1 − pz
,

On the other hand, the unique factorization property of polynomials entails that the class I of all
monic irreducible polynomials and the class P of all polynomials are related by P = MSET(I).
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(X + 1)
(

X10 + X9 + X8 + X6 + X4 + X3 + 1
) (

X14 + X11 + X10 + X3 + 1
)

X3 (X + 1)
(

X2 + X + 1
)2 (

X17 + X16 + X15 + X11 + X9 + X6 + X2 + X + 1
)

X5(X + 1)
(

X5 + X3 + X2 + X + 1
) (

X12 + X8 + X7 + X6 + X5 + X3 + X2 + X + 1
) (

X2 + X + 1
)

X2
(

X2 + X + 1
)2 (

X3 + X2 + 1
) (

X8 + X7 + X6 + X4 + X2 + X + 1
) (

X8 + X7 + X5 + X4 + 1
)(

X7 + X6 + X5 + X3 + X2 + X + 1
) (

X18 + X17 + X13 + X9 + X8 + X7 + X6 + X4 + 1
)

Figure VII.3. The factorizations of five random polynomials of degree 25 over F2.
One out of five polynomials in this sample has no root in the base field (the asymptotic
probability is 1

4 by Note VII.4).

As a consequence of Möbius inversion, one then gets (Equation (94) of Chapter I, p. 91):

(16) I (z) = log
1

1 − z
+ R(z), R(z) :=

∑
k≥2

μ(k)

k
log

1

1 − pzk
.

Regarding complex asymptotics, the function R(z) of (16) is analytic in |z| < p−1/2.
Thus I (z) is of logarithmic type with radius of convergence 1/p and parameters

κ = 1, λ =
∑
k≥2

μ(k)

k
log

1

1 − p1−k
.

As already noted in Chapter I, a consequence is the asymptotic estimate In ∼ pn/n, which
constitutes a “Prime Number Theorem” for polynomials over finite fields: a fraction asymptotic
to 1/n of the polynomials in Fp[X ] are irreducible. Furthermore, since I (z) is logarithmic and
P is obtained by a multiset construction, we have an unlabelled exp–log scheme, to which
Theorem VII.1 applies. As a consequence:

The number of factors of a random polynomial of degree n has mean and variance each asymp-
totic to log n; its distribution is concentrated.

(See Figure VII.3 for an illustration; the mean value estimate appears in [378, Ex. 4.6.2.5].) We
shall revisit this example in Chapter IX, p. 672, and establish a companion Gaussian limit law
for the number of irreducible factors in a random polynomial of large degree. This and similar
developments lead to a complete analysis of some of the basic algorithms known for factoring
polynomials over finite fields; see [236]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.2. The divisor function for polynomials. Let δ(�) for � ∈ P be the total number of
monic polynomials (not necessarily irreducible) dividing � : if � = ι

e1
1 · · · ιek

k , where the ι j
are distinct irreducibles, then δ(�) = (e1 + 1) · · · (ek + 1). One has

EPn (δ) =
[zn]

∏
j≥1(1 + 2z j + 3z2 j + · · · )

[zn]
∏

j≥1(1 + z j + z2 j + · · · ) = [zn]P(z)2

[zn]P(z)
,

so that the mean value of δ over Pn is exactly (n + 1). This evaluation is relevant to poly-
nomial factorization over Z since it gives an upper bound on the number of irreducible factor
combinations that need to be considered in order to lift a factorization from Fp(X) to Z(X);
see [379, 599]. �

� VII.3. The cost of finding irreducible polynomials. Assume that it takes expected time t (n) to
test a random polynomial of degree n for irreducibility. Then it takes expected time ∼ nt (n) to
find a random irreducible polynomial of degree n: simply draw a polynomial at random and test
it for irreducibility. (Testing for irreducibility can itself be achieved by developing a polynomial
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factorization algorithm which is stopped as soon as a non-trivial factor is found. See works by
Panario et al. for detailed analyses of this strategy [468, 469].) �

Profiles of exp–log structures. Under the exp–log conditions, it is also possible
to analyse the profile of structures, that is, the number of components of size r for
each fixed r . The Poisson distribution (Appendix C.4: Special distributions, p. 774)
of parameter ν is the law of a discrete random variable Y such that

E(uY ) = e−ν(1−u), P(Y = k) = e−ν
νk

k!
.

A variable Y is said to be negative binomial of parameter (m, α) if its probability
generating function and its individual probabilities satisfy:

E(uY ) =
(

1 − α

1 − αu

)m

, P(Y = k) =
(

m + k − 1

k

)
αk(1 − α)m .

(The quantity P(Y = k) is the probability that the mth success in a sequence of inde-
pendent trials with individual success probability α occurs at time m + k; see [206,
p. 165] and Appendix C.4: Special distributions, p. 774.)

Proposition VII.1 (Profiles of exp–log structures). Assume the conditions of Theo-
rem VII.1 and let X (r) be the number of G–components of size r in an F–object. In
the labelled case, X (r) admits a limit distribution of the Poisson type: for any fixed k,

(17) lim
n→∞PFn (X

(r) = k) = e−ν
νk

k!
, ν = grρ

r , gr ≡ [zr ]G(z).

In the unlabelled case, X (r) admits a limit distribution of the negative-binomial type:
for any fixed k,
(18)

lim
n→∞PFn (X

(r) = k) =
(

Gr + k − 1

k

)
αk(1 − α)Gr , α = ρr , Gr ≡ [zr ]G(z).

Proof. In the labelled case, the BGF of F with u marking the number X (r) of r–
components is

F(z, u) = exp
(
(u − 1)gr zr ) F(z).

Extracting the coefficient of uk leads to

φk(z) := [uk]F(z, u) = exp
(−gr zr ) (gr zr )k

k!
F(z).

The singularity type of φk(z) is that of F(z) since the prefactor (an exponential mul-
tiplied by a polynomial) is entire, so that singularity analysis applies directly. As a
consequence, one finds

[zn]φk(z) ∼ exp
(−grρ

r ) (grρ
r )k

k!
· ([zn]F(z)

)
,

which provides the distribution of X (r) under the form stated in (17).
In the unlabelled case, the starting BGF equation is

F(z, u) =
(

1 − zr

1 − uzr

)Gr

F(z),
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and the analytic reasoning is similar to the labelled case. �

Proposition VII.1 will be revisited in Example IX.23, p. 675, when we examine
continuity theorems for probability generating functions. Its unlabelled version covers
in particular polynomials over finite fields; see [236, 372] for related results.

� VII.4. Mean profiles. The mean value of X (r) satisfies

EFn (X
(r)) ∼ grρ

r , EFn (X
(r)) ∼ Gr

ρr

1 − ρr ,

in the labelled and unlabelled (multiset) case, respectively. In particular: the mean number of
roots of a random polynomial over Fp that lie in the base field Fp is asymptotic to p

p−1 . Also:

the probability that a polynomial has no root in the base field is asymptotic to (1− 1/p)p . (For
random polynomials with real coefficients, a famous result of Kac (1943) asserts that the mean
number of real roots is ∼ 2

π log n; see [185].) �

� VII.5. Profiles of powersets. In the case of unlabelled powersets F = PSET(G) (no repeti-
tions of elements allowed), the distribution of X (r) satisfies

lim
n→∞PFn (X

(r) = k) =
(

Gr

k

)
αk(1 − α)Gr−k , α = ρr

1 + ρr ;

i.e., the limit is a binomial law of parameters (Gr , ρ
r/(1 + ρr )). �

VII. 3. Simple varieties of trees and inverse functions

A unifying theme in this chapter is the enumeration of rooted trees determined
by restrictions on the collection of allowed node degrees (Sections I. 5, p. 64 and II. 5,
p. 125). Some set � ⊆ Z≥0 containing 0 (for leaves) and at least another num-
ber d ≥ 2 (to avoid trivialities) is fixed; in the trees considered, all outdegrees of
nodes are constrained to lie in �. Corresponding to the four combinations, unla-
belled/labelled and plane/non-plane, there are four types of functional equations sum-
marized by Figure VII.4. In three of the four cases, namely,

unlabelled plane, labelled plane, and labelled non-plane,

the generating function (OGF for unlabelled, EGF for labelled) satisfies an equation
of the form

(19) y(z) = zφ(y(z)).

In accordance with earlier conventions (p. 194), we name simple variety of trees any
family of trees whose GF satisfies an equation of the form (19). (The functional equa-
tion satisfied by the OGF of a degree-restricted variety of unlabelled non-plane trees
furthermore involves a Pólya operator 	, which implies the presence of terms of the
form y(z2), y(z3), . . .: such cases are discussed below in Section VII. 5.)

The relation y = zφ(y) has already been examined in Section VI. 7, p. 402,
from the point of view of singularity analysis. For convenience, we encapsulate into a
definition the conditions of the main theorem of that section, Theorem VI.6, p. 404.
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plane non-plane

Unlabelled (OGF)

V = Z × SEQ�(V)

V (z) = zφ(V (z))

φ(u) := ∑
ω∈� uω

V = Z × MSET�(V)

V (z) = z	(V (z)))

(	 a Pólya operator)

Labelled (EGF)

V = Z � SEQ�(V)

V̂ (z) = zφ(V̂ (z))

φ(u) := ∑
ω∈� uω

V = Z � SET�(V)

V̂ (z) = zφ(V̂ (z))

φ(u) := ∑
ω∈� uω

ω!

Figure VII.4. Functional equations satisfied by generating functions (OGF V (z) or
EGF V̂ (z)) of degree-restricted families of trees.

Definition VII.3. Let y(z) be a function analytic at 0. It is said to belong to the
smooth inverse-function schema if there exists a function φ(u) analytic at 0, such
that, in a neighbourhood of 0, one has

y(z) = zφ(y(z)),

and φ(u) satisfies the following conditions.
(H1) The function φ(u) is such that

(20) φ(0)  = 0, [un]φ(u) ≥ 0, φ(u)  ≡ φ0 + φ1u.

(H2) Within the open disc of convergence of φ at 0, |z| < R, there exists a (nec-
essarily unique) positive solution to the characteristic equation:

(21) ∃τ, 0 < τ < R, φ(τ )− τφ′(τ ) = 0.

A class Y whose generating function y(z) (either ordinary or exponential) satisfies
these conditions is also said to belong to the smooth inverse-function schema.

The schema is said to be aperiodic if φ(u) is an aperiodic function of u (Defini-
tion IV.5, p. 266).

VII. 3.1. Asymptotic counting. As we saw on general grounds in Chapters IV
and VI, inversion fails to be analytic when the first derivative of the function to be
inverted vanishes. The heart of the matter is that, at the point of failure y = τ ,
corresponding to z = τ/φ(τ) (the radius of convergence of y(z) at 0), the dependency
y 	→ z becomes quadratic, so that its inverse z 	→ y gives rise to a square-root
singularity (hence the characteristic equation). From here, the typical n−3/2 term in
coefficient asymptotics results (Theorem VI.6, p. 404). In view of our needs in this
chapter, we rephrase Theorem VI.6 as follows.

Theorem VII.2. Let y(z) belong to the smooth inverse-function schema in the ape-
riodic case. Then, with τ the positive root of the characteristic equation and ρ =
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τ/φ(τ), one has

[zn]y(z) =
√

φ(τ)

2φ′′(τ )
ρ−n

√
πn3

[
1 + O

(
1

n

)]
.

As we also know from Theorem VI.6 (p. 404), a complete (and locally conver-
gent) expansion of y(z) in powers of

√
1 − z/ρ exists, starting with

(22) y(z) = τ − γ
√

1 − z/ρ + O (1 − z/ρ) , γ :=
√

2φ(τ)

φ′′(τ )
,

which implies a complete asymptotic expansion for yn = [zn]y(z) in odd powers of
1/
√

n. (The statement extends to the aperiodic case, with the necessary condition
that n ≡ 1 mod p, when φ has period p.)

We have seen already that this framework covers binary, unary–binary, general
Catalan, as well as Cayley trees (Figure VI.10, p. 406). Here is another typical appli-
cation.

Example VII.5. Mobiles. A (labelled) mobile, as defined by Bergeron, Labelle, and Ler-
oux [50, p. 240], is a (labelled) tree in which subtrees dangling from the root are taken up to
cyclic shift:

1 2 3! + 3 = 9 4! + 4 × 2 + 4 × 3 + 4 × 3 × 2 = 68

(Think of Alexander Calder’s creations.) The specification and EGF equation are

M = Z � (1 + CYC M) �⇒ M(z) = z

(
1 + log

1

1 − M(z)

)
.

(By definition, cycles have at least one components, so that the neutral structure must be added

to allow for leaf creation.) The EGF starts as M(z) = z + 2 z2

2! + 9 z3

3! + 68 z4

4! + 730 z5

5! + · · · ,
whose coefficients constitute EIS A038037.

The verification of the conditions of the theorem are immediate. We have φ(u) = 1 +
log(1 − u)−1, whose radius of convergence is 1. The characteristic equation reads

1 + log
1

1 − τ
− τ

1 − τ
= 0,

which has a unique positive root at τ
.= 0.68215. (In fact, one has τ = 1 − 1/T (e−2), with T

the Cayley tree function.) The radius of convergence is ρ ≡ 1/φ′(τ ) = 1 − τ . The asymptotic
formula for the number of mobiles then results:

1

n!
Mn ∼ C · Ann−3/2, where C

.= 0.18576, A
.= 3.14461.

(This example is adapted from [50, p. 261], with corrections.) . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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� VII.6. Trees with node degrees that are prime numbers. Let P be the class of all unlabelled
plane trees such that the (out)degrees of internal nodes belong to the set of prime numbers,
{2, 3, 5, . . .}. One has P(z) = z + z3 + z4 + 2 z5 + 6 z6 + 8 z7 + 29 z8 + 50 z9 + · · · , and
Pn ∼ C Ann−3/2, with A

.= 2.79256 84676. The asymptotic form “forgets” many details of the
distribution of primes, so that it can be obtained to great accuracy. (Compare with Example V.2,
p. 297 and Note VII.24, p. 480.) �

VII. 3.2. Basic tree parameters. Throughout this subsection, we consider a sim-
ple variety of trees V , whose generating function (OGF or EGF, as the case may be)
will be denoted by y(z), satisfying the inverse relation y = zφ(y). In order to place
all cases under a single umbrella, we shall write yn = [zn]y(z), so that the number of
trees of size n is either Vn = yn (unlabelled case) or Vn = n!yn (labelled case). We
postulate throughout that y(z) belongs to the smooth inverse-function schema and is
aperiodic.

As already seen on several occasions in Chapter III (Section III. 5, p. 181), addi-
tive parameters lead to generating functions that are expressible in terms of the basic
tree generating function y(z). Now that singularity analysis is available, such gen-
erating functions can be exploited systematically, with a wealth of asymptotic esti-
mates relative to trees of large sizes coming within easy reach. The universality of the
square-root singularity among varieties of trees that satisfy the smoothness assump-
tion of Definition VII.3 then implies universal behaviour for many tree parameters,
which we now list.

(i) Node degrees. The degree of the root in a large random tree is O(1) on
average and with high probability, and its asymptotic distribution can be
generally determined (Example VII.6). A similar property holds for the
degree of a random node in a random tree (Example VII.8).

(i i) Level profiles can also be determined. The quantity of interest is the mean
number of nodes in the kth layer from the root in a random tree. It is seen
for instance that, near the root, a tree from a simple variety tends to grow
linearly (Example VII.7), this in sharp contrast with other random tree mod-
els (for instance, increasing trees, Subsection VII. 9.2, p. 526), where the
growth is exponential. This property is one of the numerous indications that
random trees taken from simple varieties are skinny and far from having a
well-balanced shape. A related property is the fact that path length is on
average O(n

√
n) (Example VII.9), which means that the typical depth of a

random node in a random tree is O(
√

n).

These basic properties are only the tip of an iceberg. Indeed, Meir and Moon, who
launched the study of simple varieties of trees (the seminal paper [435] can serve as
a good starting point) have worked out literally several dozen analyses of parameters
of trees, using a strategy similar to the one presented here6. We shall have occasion,
in Chapter IX, to return to probabilistic properties of simple varieties of trees satisfy-
ing the smooth inverse-function schema—we only indicate here for completeness that

6The main difference is that Meir and Moon appeal to the Darboux–Pólya method discussed in Sec-
tion VI. 11 (p. 433) instead of singularity analysis.
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Tree φ(w) τ, ρ PGF of root degree (type)

simple variety — — uφ′(τu)/φ′(τ )
binary (1 + w)2 1, 1

4
1
2 u + 1

2 u2 (Bernoulli)

unary–binary 1 + w + w2 1, 1
3

1
3 u + 2

3 u2 (Bernoulli)

general (1 − w)−1 1
2 ,

1
4 u/(2 − u)2 (sum of two geometric)

Cayley ew 1, e−1 ueu−1 (shifted Poisson)

Figure VII.5. The distribution of root degree in simple varieties of trees of the
smooth inverse-function schema.

height is known generally to scale as
√

n and is associated to a limiting theta distribu-
tion (see Proposition V.4, p. 329 for the case of Catalan trees and Subsection VII. 10.2,
p. 535, for general results), with similar properties holding true for width as shown by
Odlyzko–Wilf and Chassaing–Marckert–Yor [112, 463].

Example VII.6. Root degrees in simple varieties. Here is an immediate application of
singularity analysis, one that exemplifies the synthetic type of reasoning that goes along with
the method. Take for notational simplicity a simple family V that is unlabelled, with OGF
V (z) ≡ y(z). Let V[k] be the subset of V composed of all trees whose root has degree equal
to k. Since a tree in V[k] is formed by appending a root to a collection of k trees, one has

V [k](z) = φk zy(z)k , φk := [wk ]φ(w).

For any fixed k, a singular expansion results from raising both members of (22) to the kth power;
in particular,

(23) V [k](z) = φk z

[
τ k − kγ τ k−1

√
1 − z

ρ
+ O

(
1 − z

ρ

)]
.

This is to be compared with the basic estimate (22): the ratio V [k]
n /Vn is then asymptotic to

the ratio of the coefficients of
√

1 − z/ρ in the corresponding generating functions, V [k](z) and
V (z) ≡ y(z). Thus, for any fixed k, we have found that

(24)
V [k]

n

Vn
= ρkφkτ

k−1 + O(n−1/2).

(The error term can be strengthened to O(n−1) by pushing the expansion one step further.)

The ratio V [k]
n /Vn is the probability that the root of a random tree of size n has degree k.

Since ρ = 1/φ′(τ ), one can rephrase (24) as follows: In a smooth simple variety of trees, the
random variable � representing root-degree admits a discrete limit distribution given by

(25) lim
n→∞PVn (� = k) = kφkτ

k−1

φ′(τ ) .

(By general principles expounded in Chapter IX, convergence is uniform.) Accordingly, the
probability generating function (PGF) of the limit law admits the simple expression

EVn

(
u�

)
= uφ′(τu)/φ′(τ ).
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The distribution is thus characterized by the fact that its PGF is a scaled version of the derivative
of the basic tree constructor φ(w). Figure VII.5 summarizes this property together with its
specialization to our four pilot examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Additive functionals. Singularity analysis applies to many additive parameters of
trees. Consider three tree parameters, ξ, η, σ satisfying the basic relation,

(26) ξ(t) = η(t)+
deg(t)∑

j=1

σ(t j ),

which can be taken to define ξ(t) in terms of the simpler parameter η(t) (a “toll”, cf
Subsection VI. 10.3, p. 427) and the sum of values of σ over the root subtrees of t
(with deg(t) the degree of the root and t j the j th root-subtree of t). In the case of a
recursive parameter, ξ ≡ σ , unwinding the recursion shows that ξ(t) := ∑

s1t η(s),
where the sum is extended to all subtrees s of t . As we are interested in average-case
analysis, we introduce the cumulative GFs,

(27) �(z) =
∑

t

ξ(t)z|t |, H(z) =
∑

t

η(t)z|t |, #(z) =
∑

t

σ(t)z|t |,

assuming again an unlabelled variety of trees for simplicity.
We first state a simple algebraic result which formalizes several of the calculations

of Section III. 5, p. 181, dedicated to recursive tree parameters.

Lemma VII.1 (Iteration lemma for trees). For tree parameters from a simple variety
with GF y(z) that satisfy the additive relation (26), the cumulative generating func-
tions (27), are related by

(28) �(z) = H(z)+ zφ′(y(z))#(z).

In particular, if ξ is defined recursively in terms of η, that is, σ ≡ ξ , one has

(29) �(z) = H(z)

1 − zφ′(y(z))
= zy′(z)

y(z)
H(z).

Proof. We have

�(z) = H(z)+ �̃(z), where �̃(z) :=
∑
t∈V

⎛⎝z|t |
deg(t)∑

j=1

σ(t j )

⎞⎠ .

Spitting the expression of �̃(z) according to the values r of root degree, we find

�̃(z) =
∑
r≥0

φr z1+|t1|+···+|tr | (σ (t1)+ σ(t2)+ · · · + σ(tr ))

= z
∑
r≥0

φr

(
#(z)y(z)r−1 + y(z)#(z)y(z)r−2 + · · · y(z)r−1#(z)

)
= z#(z) ·

∑
r≥0

(
rφr y(z)r−1

)
,

which yields the linear relation expressing � in (28).



“book” — 2008/10/3 — 16:05 — page 458 — #472

458 VII. APPLICATIONS OF SINGULARITY ANALYSIS

In the recursive case, the function � is determined by a linear equation, namely
�(z) = H(z) + zφ′(y(z))�(z), which, once solved, provides the first form of (29).
Differentiation of the fundamental relation y = zφ(y) yields the identity

y′(1 − zφ′(y)) = φ(y) = y

z
, i.e., 1 − zφ′(y) = y

zy′
,

from which the second form results. �
� VII.7. A symbolic derivation. For a recursive parameter, we can view �(z) as the GF of trees
with one subtree marked, to which is attached a weight of η. Then (29) can be interpreted as
follows: point to an arbitrary node at a tree in V (the GF is zy′(z)), remove the tree attached to
this node (a factor of y(z)−1), and replace it by the same tree but now weighted by η (the GF is
H(z)). �

� VII.8. Labelled varieties. Formulae (28) and (29) hold verbatim for labelled trees (either
of the plane or non-plane type), provided we interpret y(z),�(z), H(z) as EGFs: �(z) :=∑

t∈V ξ(t)z|t |/|t |!, and so on. �

Example VII.7. Mean level profile in simple varieties. The question we address here is that
of determining the mean number of nodes at level k (i.e., at distance k from the root) in a
random tree of some large size n. (An explicit expression for the joint distribution of nodes at
all levels has been developed in Subsection III. 6.2, p. 193, but this multivariate representation
is somewhat hard to interpret asymptotically.)

Let ξk(t) be the number of nodes at level k in tree t . Define the generating function of
cumulated values,

Xk(z) :=
∑
t∈V

ξk(t)z
|t |.

Clearly, X0(z) ≡ y(z) since each tree has a unique root. Then, since the parameter ξk is the sum
over subtrees of parameter ξk−1, we are in a situation exactly covered by (28), with η(t) ≡ 0.
The recurrence Xk(z) = zφ′(y(z))�k−1(z), is then immediately solved, to the effect that

(30) Xk(z) =
(
zφ′(y(z))

)k y(z).

Making use of the (analytic) expansion of φ′ at τ , namely, φ′(y) ∼ φ′(τ )+ φ′′(τ )(y − τ) and
of ρφ′(τ ) = 1, one obtains, for any fixed k:

Xk(z) ∼
(

1 − kγρφ′′(τ )
√

1 − z

ρ

)(
τ − γ

√
1 − z

ρ

)
∼ τ − γ (τρφ′′(τ )k + 1)

√
1 − z

ρ
.

Thus comparing the singular part of Xk(z) to that of y(z), we find: For fixed k, the mean
number of nodes at level k in a tree is of the asymptotic form

EVn [ξk ] ∼ Ak + 1, A := τρφ′′(τ ).
This result was first given by Meir and Moon [435]. The striking fact is that, although the
number of nodes at level k can at least double at each level, growth is only linear on average.
In figurative terms, the immediate vicinity of the root starts like a “cone”, and trees of simple
varieties tend to be rather skinny near their base.

When used in conjunction with saddle-point bounds (p. 246), the exact GF expression
of (30) additionally provides a probabilistic upper bound on the height of trees of the form
O(n1/2+δ) for any δ > 0. Indeed restrict z to the interval (0, ρ) and assume that k = n1/2+δ .
Let χ be the height parameter. First, we have

(31) PVn (χ ≥ k) ≡ EVn ([[ξk ≥ 1]]) ≤ EVn (ξk).
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Figure VII.6. Three random 2–3 trees (� = {0, 2, 3}) of size n = 500 have height,
respectively, 48, 57, 47, in agreement with the fact that height is typically O(

√
n).

Next by saddle-point bounds, for any legal positive x (that is, 0 < x < Rconv(φ)),

(32) EVn (ξk) ≤
(
xφ′(y(x))

)k y(x)x−n ≤ τ
(
xφ′(y(x))

)k x−n .

Fix now x = ρ − nδ
n . Local expansions then show that

(33) log
((

xφ′(y(x))
)k x−n

)
≤ −K n3δ/2 + O

(
nδ

)
,

for some positive constant K . Thus, by (31) and (33): In a smooth simple variety of trees,
the probability of height exceeding n1/2+δ is exponentially small, being of the rough form
exp(−n3δ/2). Accordingly, the mean height is O(n1/2+δ) for any δ > 0. The moments of
height were characterized in [246]: the mean is asymptotic to λ

√
n and the limit distribution is

of the Theta type encountered in Example V.8, p. 326, in the particular case of general Catalan
trees, where explicit expressions are available. (Further local limit and large deviation estimates
appear in [230]; we shall return to the topic of tree height in Subsection VII. 10.1, p. 532.)
Figure VII.6 displays three random trees of size n = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.9. The variance of level profiles. The BGF of trees with u marking nodes at level k
has an explicit expression, in accordance with the developments of Chapter III. For instance
for k = 3, this is zφ(zφ(zφ(uy(z)))). Double differentiation followed by singularity analysis
shows that

VVn [ξk ] ∼ 1

2
A2k2 − 1

2
A(3 − 4A)k + τ A − 1,

another result of Meir and Moon [435]. The precise analysis of the mean and variance in
the interesting regime where k is proportional to

√
n is also given in [435], but it requires

either the saddle-point method (Chapter VIII) or the adapted singularity analysis techniques of
Theorem IX.16, p. 709. �

Example VII.8. Mean degree profile. Let ξ(t) ≡ ξk(t) be the number of nodes of degree k
in random tree of some variety V . The analysis extends that of the root degree seen earlier. The
parameter ξ is an additive functional induced by the basic parameter η(t) ≡ ηk(t) defined by
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ηk(t) := [[deg(t) = k]]. By the analysis of root degree, we have for the GF of cumulated values
associated to η

H(z) = φk zy(z)k , φk := [wk ]φ(w),

so that, by the fundamental formula (29),

X (z) = φk zy(z)k
zy′(z)
y(z)

= z2φk y(z)k−1 y′(z).

The singular expansion of zy′(z) can be obtained from that of y(z) by differentiation (Theo-
rem VI.8, p. 419),

zy′(z) = 1

2
γ

1√
1 − z/ρ

+ O(1),

the corresponding coefficient satisfying [zn](zy′) = nyn . This gives immediately the singularity
type of X , which is of the form of an inverse square root. Thus,

X (z) ∼ ρφkτ
k−1(zy′(z))

implying (ρ = τ/φ(τ))

Xn

nyn
∼ φkτ

k

φ(τ)
.

Consequently, one has:

Proposition VII.2. In a smooth simple variety of trees, the mean number of nodes of degree k
is asymptotic to λkn, where λk := φkτ

k/φ(τ). Equivalently, the probability distribution of the
degree �� of a random node in a random tree of size n satisfies

lim
n→∞Pn(�

�) = λk ≡ φkτ
k

φ(τ)
, with PGF :

∑
k

λkuk = φ(uτ)

φ(τ)
.

For the usual tree varieties this gives:

Tree φ(w) τ, ρ probability distribution (type)

binary (1 + w)2 1, 1
4 PGF: 1

4 + 1
2 u + 1

4 u2 (Bernoulli)

unary–binary 1 + w + w2 1, 1
3 PGF: 1

3 + 1
3 u + 1

3 u2 (Bernoulli)

general (1 − w)−1 1
2 ,

1
4 PGF: 1/(2 − u) (Geometric)

Cayley ew 1, e−1 PGF: eu−1 (Poisson)

For instance, asymptotically, a general Catalan tree has on average n/2 leaves, n/4 nodes of
degre 1 n/8 of degree 2, and so on; a Cayley tree has ∼ ne−1/k! nodes of degree k; for binary
(Catalan) trees, the four possible types of nodes each appear with asymptotic frequency 1/4.
(These data agree with the fact that a random tree under Vn is distributed like a branching
process tree determined by the PGF φ(uτ)/φ(τ); see Subsection III. 6.2, p. 193.) . . . . . . . . . �

� VII.10. Variances. The variance of the number of k–ary nodes is ∼ νn, so that the distribu-
tion of the number of nodes of this type is concentrated, for each fixed k. The starting point is
the BGF defined implicitly by

Y (z, u) = z
(
φ(Y (z, u))+ φk(u − 1)Y (z, u)k

)
,

upon taking a double derivative with respect to u, setting u = 1, and finally performing singu-
larity analysis on the resulting GF. �
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� VII.11. The mother of a random node. The discrepancy in distributions between the root
degree and the degree of a random node deserves an explanation. Pick up a node distinct from
the root at random in a tree and look at the degree of its mother. The PGF of the law is in
the limit uφ′(uτ)/φ′(τ ). Thus the degree of the root is asymptotically the same as that of the
mother of any non-root node.

More generally, let X have distribution pk := P(X = k). Construct a random variable Y
such that the probability qk := P(Y = k) is proportional both to k and pk . Then for the
associated PGFs, the relation q(u) = p′(u)/p′(1) holds. The law of Y is said to be the size-
biased version of the law of X . Here, a mother is picked up with an importance proportional to
its degree. In this perspective, Eve appears to be just like a random mother. �

Example VII.9. Path length. Path length of a tree is the sum of the distances of all nodes to
the root. It is defined recursively by

ξ(t) = |t | − 1 +
deg(t)∑

j=1

ξ(t j )

(Example III.15, p. 184 and Subsection VI. 10.3, p. 427). Within the framework of additive
functional of trees (28), we have η(t) = |t | − 1 corresponding to the GF of cumulated values
H(z) = zy′(z)− y(z), and the fundamental relation (29) gives

X (z) = (zy′(z)− y(z))
zy′(z)
y(z)

= z2 y′(z)2
y(z)

− zy′(z).

The type of y′(z) at its singularity is Z−1/2, where Z := (1 − z/ρ). The formula for X (z)
involves the square of y′, so that the singularity of X (z) is of type Z−1, resembling a simple
pole. This means that the cumulated value Xn = [zn]X (z) grows like ρ−n , so that the mean
value of ξ over Vn has growth n3/2. Working out the constants, we find

X (z)+ zy′(z) ∼ γ 2

4τ

1

Z
+ O(Z−1/2).

As a consequence:

Proposition VII.3. In a random tree of size n from a smooth simple variety, the expectation of
path length satisfies

(34) EVn (ξ) = λ
√
πn3 + O(n), λ :=

√
φ(τ)

2τ2φ′′(τ )
.

For our classical varieties, the main terms of (34) are then:

Binary unary–binary general Cayley

∼
√
πn3 ∼ 1

2

√
3πn3 ∼ 1

2

√
πn3 ∼

√
1
2πn3 .

Observe that the quantity 1
n EVn (ξ) represents the expected depth of a random node in a random

tree (the model is then [1 . . n]×Vn), which is thus ∼ λ
√

n. (This result is consistent with height
of a tree being with high probability of order O(n1/2).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
� VII.12. Variance of path length. Path length can be analysed starting from the bivariate gen-
erating function given by a functional equation of the difference type (see Chapter III, p. 185),
which allows for the computation of higher moments. The standard deviation is found to be
asymptotic to %2n3/2 for some computable constant %2 > 0, so that the distribution is spread.
Louchard [416] and Takács [566] have additionally worked out the asymptotic form of all mo-
ments, leading to a characterization of the limit law of path length that can be described in terms
of the Airy function: see Subsection VII. 10.1, p. 532. �
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# components ∼ 1
2 log n

# cyclic nodes ∼ √
πn/2

# terminal nodes ∼ ne−1

# nodes of in-degree k ∼ ne−k/k!

Tail length (λ) ∼ √
πn/8

Cycle length (μ) ∼ √
πn/8

Tree size ∼ n/3

Component size ∼ 2n/3

Figure VII.7. Expectations of the main additive parameters of random mappings of size n.

� VII.13. Generalizations of path length. Define the subtree size index of order α ∈ R≥0
to be ξ(t) ≡ ξα(t) := ∑

s1t |s|α , where the sum is extended to all the subtrees s of t . This
corresponds to a recursively defined parameter with η(t) = |t |α . The results of Section VI. 10
relative to Hadamard products and polylogarithms make it possible to analyse the singularities
of H(z) and X (z). It is found that there are three different regimes

α > 1
2 α = 1

2 α < 1
2

EVn (ξ) ∼ Kαnα EVn (ξ) ∼ K1/2n log n EVn (ξ) ∼ Kαn

where each Kα is a computable constant. (This extends the results of Subsection VI. 10.3,
p. 427 to all simple varieties of trees that are smooth.) �

VII. 3.3. Mappings. The basic construction of mappings (Chapter II, p. 129),

(35)

⎧⎨⎩
F = SET(K)
K = CYC(T )
T = Z � SET(T )

�⇒

⎧⎪⎨⎪⎩
F = exp(K )

K = log
1

1 − T
T = zeT ,

builds maps from Cayley trees, which constitute a smooth simple variety. The con-
struction lends itself to a number of multivariate extensions. For instance, we al-
ready know from Example VII.3, p. 449, that the number of components is asymptotic
to 1

2 log n, both on average and in probability.
Take next the parameter χ equal to the number of cyclic points, which gives rise

to the BGF

F(z, u) = exp

(
log

1

1 − uT

)
= (1 − uT )−1.

The mean number of a cyclic points, for a random mapping of size n, is accordingly

(36) μn ≡ EFn [χ ] = n!

nn
[zn]

(
∂

∂u
F(z, u)

∣∣∣∣
u=1

)
= n!

nn
[zn]

T

(1 − T )2
.

Singularity analysis is immediate, since

T

(1 − T )2
∼

z→e−1

1

2

1

1 − ez
−→ [zn]

T

(1 − T )2
∼

n→∞
1

2
en .

Thus: The mean number of cyclic points in a random mapping of size n is asymptotic
to

√
πn/2.
Many parameters can be similarly analysed in a systematic manner, thanks to

generating function, as shown in the survey [247]: see Figure VII.7 for a summary
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Figure VII.8. Two views of a random mapping of size n = 100. The random map-
ping has three connected components, with cycles of respective size 2, 4, 4; it is made
of fairly skinny trees, has a giant component of size 75, and its diameter equals 14.

of results whose proofs we leave as exercises to the reader. The left-most table de-
scribes global parameters of mappings; the right-most table is relative to properties of
random point in random n-mapping: λ is the distance to its cycle of a random point,
μ the length of the cycle to which the point leads, tree size and component size are,
respectively, the size of the largest tree containing the point and the size of its (weakly)
connected component. In particular, a random mapping of size n has relatively few
components, some of which are expected to be of a large size.

The estimates of Figure VII.7 are in fair agreement with what is observed on
the single sample of size n = 100 of Figure VII.8: this particular mapping has 3
components (the average is about 2.97), 10 cyclic points (the average, as calculated
in (36), is about 12.20), but a fairly large diameter—the maximum value of λ + μ,
taken over all nodes—equal to 14, and a giant component of size 75. The proportion
of nodes of degree 0, 1, 2, 3, 4 turns out to be, respectively, 39%, 33%, 21%, 7%,
1%, to be compared against the asymptotic values given by a Poisson law of rate 1
(analogous to the degree profile of Cayley trees found in Example VII.8); namely
36.7%, 36.7%, 18.3%, 6.1%, 1.5%.
� VII.14. Extremal statistics on mappings. Let λmax, μmax, and ρmax be the maximum val-
ues of λ, μ, and ρ, taken over all the possible starting points, where ρ = λ + μ. Then, the
expectations satisfy [247]

EFn (λ
max) ∼ κ1

√
n, EFn (μ

max) ∼ κ2
√

n, EFn (ρ
max) ∼ κ3

√
n,

where κ1 = √
2π log 2

.= 1.73746, κ2
.= 0.78248 and κ3

.= 2.4149. (For the estimate relative
to ρmax, see also [12].)

The largest tree and the largest components have expectations asymptotic, respectively, to
δ1n and δ2n, where δ1

.= 0.48 and δ2
.= 0.7582. �
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The properties outlined above for the class of all mappings also prove to be uni-
versal for a wide variety of mappings defined by degree restrictions of various sorts:
we outline the basis of the corresponding theory in Example VII.10, then show some
surprising applications in Example VII.11.

Example VII.10. Simple varieties of mappings. Let � be a subset of the integers containing 0
and at least another integer greater than 1. Consider mappings φ ∈ F such that the number of
preimages of any point is constrained to lie in �. Such special mappings may serve to model
the behaviour of special classes of functions under iteration, and are accordingly of interest in
various areas of computational number theory and cryptography. For instance, the quadratic
functions φ(x) = x2 + a over Fp have the property that each element y has either zero, one,
or two preimages (depending on whether y − a is a quadratic non-residue, 0, or a quadratic
residue).

The basic construction of mappings needs to be amended. Start with the family of trees T
that are the simple variety corresponding to �:

(37) T = zφ(T ), φ(w) :=
∑
ω∈�

uω

ω!
.

At any vertex on a cycle, one must graft r trees with the constraint that r + 1 ∈ � (since one
edge is coming from the cycle itself). Such legal tuples with a root appended are represented by

(38) U = zφ′(T ),
since φ is an exponential generating function and shift (r 	→ (r + 1)) corresponds to differenti-
ation. Then connected components and components are formed in the usual way by

(39) K = log
1

1 − U
, F = exp(K ) = 1

1 − U
.

The three relations (37), (38), (39) fully determine the EGF of �–restricted mappings.
The function φ is a subseries of the exponential function; hence, it is entire and it satisfies

automatically the smoothness conditions of Theorem VII.2, p. 453. With τ the characteristic
value, the function T (z) then has a square-root singularity at ρ = τ/φ(τ). The same holds for
U , which admits the singular expansion (with γ1 a constant simply related to γ of equation (22))

(40) U (z) ∼ 1 − γ1

√
1 − z

ρ
,

since U = zφ′(T ). Thus, eventually:

F(z) ∼ κ√
1 − z

ρ

, κ := 1

γ1
.

There results the universality of an n−1/2 counting law in such constrained mappings:

Proposition VII.4. Consider mappings with node degrees in a set � ⊆ Z≥0, such that the
corresponding tree family belongs to the smooth implicit function schema and is aperiodic. The
number of mappings of size n satisfies

1

n!
Fn ∼ κ√

πn
ρ−n, κ =

√
φ′(τ )2

2φ(τ)φ′′(τ ) .

This statement nicely extends what is known to hold for unrestricted mappings. The anal-
ysis of additive functionals can then proceed on lines very similar to the case of standard map-
pings, to the effect that the estimates of the same form as in Figure VII.7 hold, albeit with
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different multiplicative factors. The programme just sketched has been carried out in a thor-
ough manner by Arney and Bender [18], whose paper provides a detailed treatment. . . . . . . �

Example VII.11. Applications of random mapping statistics. There are interesting conse-
quences of the foregoing asymptotic theory of random mappings in several areas of computa-
tional mathematics, as we now briefly explain.

Random number generators. Many (pseudo) random number generators operate by iterat-
ing a given function ϕ over a finite domaine E ; usually, E is a large integer interval [0 . . N − 1].
Such a scheme produces a pseudo-random sequence u0, u1, u2, . . ., where u0 is the “seed” and

un+1 = ϕ(un).

Particular strategies are known for the choice of ϕ, which ensure that the “period” (the maxi-
mum of ρ = λ+ μ, where λ is the distance to cycle and μ is the cycle’s length) is of the order
of N : this is for instance granted by linear congruential generators and feedback register algo-
rithms; see Knuth’s authoritative discussion in [379, Ch. 3]. By contrast, a randomly chosen
function ϕ has expected O(

√
N ) cycle time (Figure VII.7, p. 462), so that it is highly likely to

give rise to a poor generator. As the popular adage says: “A random random number generator
is bad!”. Accordingly, one can make use of the results of Figure VII.7 and Example VII.10 in
order to compare statistical properties of a proposed random number generator to properties of
a random function, and discard the former if there is a manifest closeness.

For instance, take ϕ to be

ϕ(x) := x2 + 1 mod (106 + 3),

where the modulus is a prime number. A random mapping of size (106+3) is expected to cycle
on average after about 1250 steps (the expectation of ρ = λ+μ is ∼ √

πN/2 by Figure VII.7).
From five starting values u0, we observe the following periods

(41)
u0 : 3 31 314 3141 31415 314159

ρ ≡ λ+ μ : 1569 687 985 813 557 932

whose magnitude looks suspiciously like
√

N . Such a random number generator is thus to be
discarded. For similar reasons, von Neumann’s well-known “middle-square” procedure (start
from an �-digit number, then repeatedly square and extract the middle digits) makes for a rather
poor random number generator [379, p. 5]. (Related applications to cryptography are presented
by Quisquater and Delescaille in [501].)

Floyd’s cycle detection. There is a spectacular algorithm due to Floyd [379, Ex. 3.1.6],
for cycle detection, which is well worth knowing when one needs to experiment with large
mappings. Given an initial seed x0 and a mapping ϕ, Floyd’s algorithm determines, up to a
small factor, the value of ρ(x0) = λ(x0)+ μ(x0), using only two registers. The principle is as
follows. Start a tortoise and a hare on u0 at time 0; then, let the tortoise move at speed 1 along
the rho-shaped path and let the hare move at twice the speed. After λ(x0) steps, the tortoise
joins the cycle, from which time on, the hare, which is already on the cycle, will catch the
tortoise after at most μ(x0) steps, since their speed differential on the cycle is one. Pictorially:

λ μ
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In more dignified terms, setting

X0 = u0, Xn+1 = ϕ(Xn), and Y0 = u0, Yn+1 = ϕ(ϕ(Xn)),

we have the property that the first value ν such that Xν = Yν ≡ X2ν must satisfy the inequalities

(42) λ ≤ ν ≤ λ+ μ ≤ 2ν.

The corresponding algorithm is then extremely short:

Algorithm: Floyd’s Cycle Detector:
tortoise := x0; hare := x0; ν := 0;
repeat

tortoise :=ϕ(tortoise); hare := ϕ(ϕ(hare)); ν := ν + 1;
until tortoise = hare {ν is an estimate of λ+ μ in the sense of (42)}.

Pollard’s rho method for integer factoring. Pollard [487] had the insight to exploit Floyd’s
algorithm in order to develop an efficient integer factoring method. Assume heuristically that a
quadratic function x 	→ x2 +a mod p, with p a prime number, has statistical properties similar
to those of a random function (we have verified a particular case by (41) above). It must then
tend to cycle after about

√
p steps. Let N be a (large) number to be factored, and assume for

simplicity that N = pq , with p and q both prime (but unknown!). Choose a random a and a
random initial value x0, fix

ϕ(x) = x2 + a (modN ),

and run the hare-and-tortoise algorithm. By the Chinese Remainder Theorem, the value of a
number x mod N is determined by the pair (x mod p, x mod q); the tortoise T and the hare H
can then be seen as running two simultaneous races, one modulo p, the other modulo q . Say
that p < q . After about

√
p steps, one is likely to have

H ≡ T (mod p),

while, most probably, hare and tortoise will be non-congruent mod q . In other words, the
greatest common divisor of the difference (H − T ) and N will provide p; hence it factors N .
The resulting algorithm is also extremely short:

Algorithm: Pollard’s Integer Factoring:
choose a, x0 randomly in [0 . . N − 1];
T := x0; H := x0;
repeat

T := (T 2 + a) mod N ; H := (H2 + a)2 + a mod N ;
D := gcd(H − T, N );

until D  = 1 {if D  = 0, a non-trivial divisor has been found}.
The agreement with what the theory of random mappings predicts is excellent: one indeed
obtains an algorithm that factors large numbers N in O(N 1/4) operations with high probability
(see for instance the data in [538, p. 470]).

Although Pollard’s algorithm is, for very large N , subsumed by other factoring methods, it
is still the best for moderate values of N or for numbers with small divisors, where it proves far
superior to trial divisions. Equally importantly, similar ideas serve in many areas of computa-
tional number theory; for instance the determination of discrete logarithms. (Proving rigorously
what one observes in simulations is another story: it often requires advanced methods of number
theory [23, 442].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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� VII.15. Probabilities of first-order sentences. A beautiful theorem of Lynch [426], much
in line with the global aims of analytic combinatorics, gives a class of properties of random
mappings for which asymptotic probabilities are systematically computable. In mathematical
logic, a first-order sentence is built out of variables, equality, boolean connectives (∨,∧,¬,
etc), and quantifiers (∀, ∃). In addition, there is a function symbol ϕ, representing a generic
mapping.

Theorem. Given a property P expressed by a first-order sentence, let μn(P) be the
probability that P is satisfied by a random mapping ϕ of size n. Then the quantity
μ∞(P) = limn→∞ μn(P) exists and its value is given by an expression consisting
of integer constants and the operators +,−,×,÷, and ex .

For instance:

P : ϕ is perm. ϕ without fixed pt. ϕ has #leaves ≥ 2

∀x∃yϕ(y) = x ∀x¬ϕ(x) = x ∃x, y [x  = y ∧ ∀z[ϕ(z)  = x ∧ ϕ(z)  = y]]

μ∞(P) : 0 e−1 1

One can express in this language a property like P12 : “all cycles of length 1 are attached to

trees of height at most 2”, for which the limit probability is e−1+e−1+e−1
. The proof of the theo-

rem is based on Ehrenfeucht games supplemented by ingenious inclusion–exclusion arguments.
(Many cases, like P12, can be directly treated by singularity analysis.) Compton [125, 126, 127]
has produced lucid surveys of this area, known as finite model theory. �

VII. 4. Tree-like structures and implicit functions

The aim of this section is to demonstrate the universality of the square-root sin-
gularity type for classes of recursively defined structures, which considerably extend
the case of (smooth) simple varieties of trees. The starting point is the investigation of
recursive classes Y , with associated GF y(z), that correspond to a specification:

(43) Y = G[Z,Y] �⇒ y(z) = G(z, y(z)).

In the labelled case, y(z) is an EGF and G may be an arbitrary composition of basic
constructors, which is reflected by a bivariate function G(z, w); in the unlabelled case,
y(z) is an OGF and G may be an arbitrary composition of unions, products, and se-
quences. (Pólya operators corresponding to unlabelled sets and cycles are discussed in
Section VII. 5, p. 475.) This situation covers structures that we have already seen, like
Schröder’s bracketing systems (Chapter I, p. 69) and hierarchies (Chapter II, p. 128),
as well as new ones to be examined here; namely, paths with diagonal steps and trees
with variable node sizes or edge lengths.

VII. 4.1. The smooth implicit-function schema. The investigation of (43) ne-
cessitates certain analytic conditions to be satisfied by the bivariate function G, which
we first encapsulate into the definition of a schema.

Definition VII.4. Let y(z) be a function analytic at 0, y(z) = ∑
n≥0 ynzn, with y0 = 0

and yn ≥ 0. The function is said to belong to the smooth implicit-function schema if
there exists a bivariate G(z, w) such that

y(z) = G(z, y(z)),

where G(z, w) satisfies the following conditions.
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(I1): G(z, w) = ∑
m,n≥0 gm,nzmwn is analytic in a domain |z| < R and |w| < S,

for some R, S > 0.
(I2): The coefficients of G satisfy

(44)
gm,n ≥ 0, g0,0 = 0, g0,1  = 1,
gm,n > 0 for some m and for some n ≥ 2.

(I3): There exist two numbers r, s, such that 0 < r < R and 0 < s < S, satisfying
the system of equations,

(45) G(r, s) = s, Gw(r, s) = 1, with r < R, s < S,

which is called the characteristic system.
A class Y with a generating y(z) satisfying y(z) = G(z, y(z)) is also said to

belong to the smooth implicit-function schema.

Postulating that G(z, w) is analytic and with non-negative coefficients is a min-
imal assumption in the context of analytic combinatorics. The problem is assumed
to be normalized, so that y(0) = 0 and G(0, 0) = 0, the condition g0,1  = 1 being
imposed to avoid that the implicit equation be of the reducible form y = y + · · · (first
line of (44)). The second condition of (44) means that in G(z, y), the dependency on y
is nonlinear (otherwise, the analysis reduces to rational and meromorphic asymptotic
methods of Chapter V). The major analytic condition is (I3), which postulates the
existence of positive solutions r, s to the characteristic system within the domain of
analyticity of G.

The main result7 due to Meir and Moon [439] expresses universality of the square-
root singularity together with its usual consequences regarding asymptotic counting.

Theorem VII.3 (Smooth implicit-function schema). Let y(z) belong to the smooth
implicit-function schema defined by G(z, w), with (r, s) the positive solution of the
characteristic system. Then, y(z) converges at z = r , where it has a square-root
singularity,

y(z) =
z→r

s − γ
√

1 − z/r + O(1 − z/r), γ :=
√

2rGz(r, s)

Gww(r, s)
,

the expansion being valid in a �–domain. If, in addition, y(z) is aperiodic8, then r is
the unique dominant singularity of y and the coefficients satisfy

[zn]y(z) =
n→∞

γ

2
√
πn3

r−n
(

1 + O(n−1
)
.

7This theorem has an interesting history. An overly general version of it was first stated by Bender
in 1974 (Theorem 5 of [36]). Canfield [102] pointed out ten years later that Bender’s conditions were
not quite sufficient to grant square-root singularity. A corrected statement was given by Meir and Moon
in [439] with a further (minor) erratum in [438]. We follow here the form given in Theorem 10.13 of
Odlyzko’s survey [461] with the correction of another minor misprint (regarding g0,1 which should read
g0,1  = 1). A statement concerning a restricted class of functions (either polynomial or entire) already
appears in Hille’s book [334, vol. I, p. 274].

8In the usual sense of Definition IV.5, p. 266. Equivalently, there exist three indices i < j < k such
that yi y j yk  = 0 and gcd( j − i, k − i) = 1.
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Observe that the statement implies the existence of exactly one root of the char-
acteristic system within the part of the positive quadrant where G is analytic, since,
obviously, yn cannot admit two asymptotic expressions with different parameters. A
complete expansion exists in powers of (1 − z/r)1/2 (for y(z)) and in powers of 1/n
(for yn), while periodic cases can be treated by a simple extension of the technical
apparatus to be developed.

The proof of this theorem first necessitates two lemmas of independent interest:
(i) Lemma VII.2 is logically equivalent to an analytic version of the classical Im-
plicit Function Theorem found in Appendix B.5: Implicit Function Theorem, p. 753.
(i i) Lemma VII.3 supplements this by describing what happens at a point where the
implicit function theorem “fails”. These two statements extend the analytic and sin-
gular inversion lemmas of Subsection IV. 7.1, p. 275.

Lemma VII.2 (Analytic Implicit Functions). Let F(z, w) be z bivariate function
analytic at (z, w) = (z0, w0). Assume that F(z0, w0) = 0 and Fw(z0, w0)  = 0.
Then, there exists a unique function y(z) analytic in a neighbourhood of z0 such that
y(z0) = w0 and F(z, y(z)) = 0.

Proof. This is a restatement of the Analytic Implicit Function Theorem of Appen-
dix B.5: Implicit Function Theorem, p. 753, upon effecting a translation z 	→ z + z0,
w 	→ w + w0. �
Lemma VII.3 (Singular Implicit Functions). Let F(z, w) be a bivariate function an-
alytic at (z, w) = (z0, w0). Assume the conditions: F(z0, w0) = 0, Fz(z0, w0)  = 0,
Fw(z0, w0) = 0, and Fww(z0, w0)  = 0. Choose an arbitrary ray of angle θ ema-
nating from z0. Then there exists a neighbourhood � of z0 such that at every point z
of � with z  = z0 and z not on the ray, the equation F(z, y) = 0 admits two analytic
solutions y1(z) and y2(z) that satisfy, as z → z0:

y1(z) = y0 − γ
√

1 − z/z0 + O (1 − z/z0)) , γ :=
√

2z0 Fz(z0, w0)

Fww(z0, w0)
,

and similarly for y2 whose expansion is obtained by changing
√

to −√
.

Proof. Locally, near (r, s), the function F(z, w) behaves like

(46) F + (w − s)Fw + (z − r)Fz + 1

2
(w − s)2 Fww,

(plus smaller order terms), where F and its derivatives are evaluated at the point (r, s).
Since F = Fw = 0, cancelling (46) suggests for the solutions of F(z, w) = 0 near
z = r the form

w − s = ±γ√r − z + O(z − r),

which is consistent with the statement. This informal argument can be justified by the
following steps (details omitted): (a) establish the existence of a formal solution in
powers of ±(1− z/r)1/2; (b) prove, by the method of majorant series, that the formal
solutions also converge locally and provide a solution to the equation.

Alternatively, by the Weierstrass Preparation Theorem (Appendix B.5: Implicit
Function Theorem, p. 753) the two solutions y1(z), y2(z) that assume the value s
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Figure VII.9. The connection problem for the equation w = 1
4 z +w2 (with explicit

forms w = (1 ±√
1 − z)/2): the combinatorial solution y(z) near z = 0 and the two

analytic solutions y1(z), y2(z) near z = 1.

at z = r are solutions of a quadratic equation

(Y − s)2 + b(z)(Y − s)+ c(z) = 0,

where b and c are analytic at z = r , with b(r) = c(r) = 0. The solutions are then
obtained by the usual formula for solving a quadratic equation,

Y − s = 1

2

(
−b(z)±

√
b(z)2 − 4c(z)

)
,

which provides for y1(z) an expression as the square-root of an analytic function and
yields the statement. �

It is now possible to return to the proof of our main statement.

Proof. [Theorem VII.3] Given the two lemmas, the general idea of the proof of The-
orem VII.3 can be easily grasped. Set F(z, w) = w − G(z, w). There exists a unique
analytic function y(z) satisfying y = G(z, y) near z = 0, by the analytic lemma. On
the other hand, by the singular lemma, near the point (z, w) = (r, s), there exist two
solutions y1, y2, both of which have a square root singularity. Given the positive char-
acter of the coefficients of G, it is not hard to see that, of y1, y2, the function y1(z) is
increasing as z approaches z0 from the left (assuming the principal determination of
the square root in the definition of γ ). A simple picture of the situation regarding the
solutions to the equation y = G(z, y) is exemplified by Figure VII.9.

The problem is then to show that a smooth analytic curve (the thin-line curve
in Figure VII.9) does connect the positive-coefficient solution at 0 to the increasing-
branch solution at r . Precisely, one needs to check that y1(z) (defined near r ) is the
analytic continuation of y(z) (defined near 0) as z increases along the positive real
axis. This is indeed a delicate connection problem whose technical proof is discussed
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in Note VII.16. Once this fact is granted and it has been verified that r is the unique
dominant singularity of y(z) (Note VII.17), the statement of Theorem VII.3 follows
directly by singularity analysis. �
� VII.16. The connection problem for implicit functions. A proof that y(z) and y1(z) are well
connected is given by Meir and Moon in the study [439], from which our description is adapted.

Let ρ be the radius of convergence of y(z) at 0 and τ = y(ρ). The point ρ is a singularity
of y(z) by Pringsheim’s Theorem. The goal is to establish that ρ = r and τ = s. Regarding the
curve

C = {
(z, y(z))

∣∣ 0 ≤ z ≤ ρ
}
,

this means that three cases are to be excluded:

(a) C stays entirely in the interior of the rectangle

R := {
(z, y)

∣∣ 0 ≤ z ≤ r, 0 ≤ y ≤ s
}
.

(b) C intersects the upper side of the rectangle R at some point of abscissa r0 < r where
y(r0) = s.

(c) C intersects the right-most side of the rectangle R at the point (r, y(r))with y(r) < s.

Graphically, the three cases are depicted in Figure VII.10.

(a)
(b)

(c)

Figure VII.10. The three
cases (a), (b), and (c), to be
excluded (solid lines).

In the discussion, we make use of the fact that G(z, w), which has non-negative coefficients
is an increasing function in each of its argument. Also, the form

(47) y′ = Gz(z, y)

1 − Gw(z, y)
,

shows differentiability (hence analyticity) of the solution y as soon as Gw(z, y)  = 1.
Case (a) is excluded. Assume that 0 < ρ < r and 0 < τ < s. Then, we have Gw(r, s) =

1, and by monotonicity properties of Gw , the inequality Gw(ρ, τ) < 1 holds. But then y(z)
must be analytic at z = ρ, which contradicts the fact that ρ is a singularity.

Case (b) is excluded. Assume that 0 < r0 < r and y(r0) = s. Then there are two distinct
points on the implicit curve y = G(z, y) at the same altitude, namely (r0, s) and (r, s), implying
the equalities

y(r0) = G(r0, y(r0)) = s = G(r, s),

which contradicts the monotonicity properties of G.
Case (c) is excluded. Assume that y(r) < s. Let a < r be a point chosen close enough to r .

Then above a, there are three branches of the curve y = G(z, y), namely y(a), y1(a), y2(a),
where the existence of y1, y2 results from Lemma VII.3. This means that the function y 	→
G(a, y) has a graph that intersects the main diagonal at three points, a contradiction with the
fact that G(a, y) is a convex function of y. �
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� VII.17. Unicity of the dominant singularity. From the previous note, we know that y(r) = s,
with r the radius of convergence of y. The aperiodicity of y implies that |y(ζ )| < y(r) for all
|ζ | such that |ζ | = r and |ζ |  = r (see the Daffodil Lemma IV.1, p. 266). One then has for any
such ζ the property: |Gw(ζ, y(ζ ))| < G(r, s) = 1, by monotonicity of Gw . But then by (47)
above, this implies that y(ζ ) is analytic at ζ . �

The solutions to the characteristic system (45) can be regarded as the intersection
points of two curves, namely,

G(r, s)− s = 0, Gw(r, s) = 1.

Here are plots in the case of two functions G: the first one has non-negative coeffi-
cients whereas the second one (corresponding to a counterexample of Canfield [102])
involves negative coefficients. Positivity of coefficients implies convexity properties
that avoid pathological situations.

G(z, y) = 1

1 − z − y
− 1 − y − y3 G(z, y) = z

24 − 9y + y2

(positive) (not positive)

0

0.2

0.4

(s)

0.1 0.2
(r)

0

2

4

(s)

10 20
(r)

VII. 4.2. Combinatorial applications. Many combinatorial classes, which ad-
mit a recursive specification of the form Y = G(Z,Y), as in (43), p. 467, can be
subjected to Theorem VII.3. The resulting structures are, to varying degrees, avatars
of tree structures. In what follows, we describe a few instances in which the square-
root universality holds.

(i) Hierarchies are trees enumerated by the number of their leaves (Exam-
ples VII.12 and VII.13).

(i i) Trees with variable node sizes generalize simple families of trees; they oc-
cur in particular as mathematical models of secondary structures in biology
(Example VII.14).

(i i i) Lattice paths with variable edge lengths are attached to some of the most
classical objects of combinatorial theory (Note VII.19).

Example VII.12. Labelled hierarchies. The class L of labelled hierarchies, as defined in
Note II.19, p. 128, satisfies

L = Z + SET≥2(L) �⇒ L = z + eL − 1 − L .
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Indo-European

Celtic Germanic Italic Greek Armenian BaSl InIr

Irish WG NG

German English Danish

French Italian Slavic Baltic

Polish Russian Lithuanian

Persian Urdu Hindi

Figure VII.11. A hierarchy placed on some of the modern Indo-European languages.

These occur in statistical classification theory: given a collection of n distinguished items, Ln
is the number of ways of superimposing a non-trivial classification (cf Figure VII.11). Such
abstract classifications usually have no planar structure, hence our modelling by a labelled set
construction.

In the notations of Definition VII.4, p. 467, the basic function is G(z, w) = z+ew−1−w,
which is analytic in |z| < ∞, |w| < ∞. The characteristic system is

r + es − 1 − s = s, es − 1 = 1,

which has a unique positive solution, s = log 2, r = 2 log 2− 1, obtained by solving the second
equation for s, then propagating the solution to get r . Thus, hierarchies belong to the smooth
implicit-function schema, and, by Theorem VII.3, the EGF L(z) has a square-root singularity.
One then finds mechanically

1

n!
Ln ∼ 1

2
√
πn3

(2 log 2 − 1)−n+1/2 .

(The unlabelled counterpart is the object of Note VII.23, p. 479.) . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.18. The degree profile of hierarchies. Combining BGF techniques and singularity anal-
ysis, it is found that a random hierarchy of some large size n has on average about 0.57n nodes
of degree 2, 0.18n nodes of degree 3, 0.04n nodes of degree 4, and less than 0.01n nodes of
degree 5 or higher. �

Example VII.13. Trees enumerated by leaves. For a (non-empty) set � ⊂ Z≥0 that does not
contain 0,1, it makes sense to consider the class of labelled trees,

C = Z + SEQ�(C) or C = Z + SET�(C).
(A similar discussion can be conducted for unlabelled plane trees, with OGFs replacing EGFs.)
These are rooted trees (plane or non-plane, respectively), with size determined by the number
of leaves and with degrees constrained to lie in �. The EGF is then of the form

C(z) = z + η(C(z)).

This variety of trees includes the labelled hierarchies, which correspond to η(w) = ew−1−w.
Assume for simplicity η to be entire (possibly a polynomial). The basic function is

G(z, w) = z + η(w), and the characteristic system is s = r + η(s), η′(s) = 1. Since η′(0) = 0
and η′(+∞) = +∞, this system always has a solution:

s = η[−1](1), r = s − η(s).
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A fragment of RNA is, in first approximation, a tree-
like structure with edges corresponding to base pairs
and “loops” corresponding to leaves. There are con-
straints on the sizes of leaves (taken here between 4 and
7) and length of edges (here between 1 and 4 base pairs).
We model such an RNA fragment as a planted tree P at-
tached to a binary tree (Y) with equations:{

P = AY, Y = AY 2 + B,
A = z2 + z4 + z6 + z8, B = z4 + z5 + z6 + z7.

Figure VII.12. A simplified combinatorial model of RNA structures analogous to
those considered by Waterman et al.

Thus Theorem VII.3 applies, giving

(48) [zn]C(z) ∼ γ

2
√
πn3

r−n, γ =
√

1

2
rη′′(s),

and a complete expansion can be obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VII.14. Trees with variable edge lengths and node sizes. Consider unlabelled plane
trees in which nodes can be of different sizes: what is given is a set �̂ of ordered pairs (ω, σ ),
where a value (ω, σ ) means that a node of degree ω and size σ is allowed. Simple varieties
in their basic form correspond to σ ≡ 1; trees enumerated by leaves (including hierarchies)
correspond to σ ∈ {0, 1} with σ = 1 iff ω = 0. Figure VII.12 suggests the way such trees can
model the self-bonding of single-stranded nucleic acids like RNA, according to Waterman et
al. [336, 453, 534, 558]. Clearly an extremely large number of variations are possible.

The fundamental equation in the case of a finite �̂ is

Y (z) = P(z, Y (z)), P(z, w) :=
∑

(ω,σ )∈�̂
zσwω,

with P a polynomial. In the aperiodic case, there is invariably a formula of the form

Yn ∼ κ · Ann3/2,

corresponding to the universal square-root singularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.19. Schröder numbers. Consider the class Y of unary–binary trees where unary nodes
have size 2, while leaves and binary nodes have the usual size 1. The GF satisfies Y = z +
z2Y + zY 2, so that

Y (z) = zD(z2), D(z) = 1 − z −
√

1 − 6z + z2

2z
.

We have D(z) = 1+ 2 z + 6 z2 + 22 z3 + 90 z4 + 394 z5 + · · · , which is EIS A006318 (“Large
Schröder numbers”). By the bijective correspondence between trees and lattice paths, Y2n+1 is
in correspondence with excursions of length n made of steps (1, 1), (2, 0), (1,−1). Upon tilting
by 45◦, this is equivalent to paths connecting the lower left corner to the upper right corner of
an (n × n) square that are made of horizontal, vertical, and diagonal steps, and never go under
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the main diagonal. The series S = z
2 (1 + D) enumerates Schröder’s generalized parenthesis

systems (Chapter I, p. 69): S := z + S2/(1 − S), and the asymptotic formula

Y2n−1 = Sn = 1

2
Dn−1 ∼ 1

4
√
πn3

(
3 − 2

√
2
)−n+1/2

follows straightforwardly. �

VII. 5. Unlabelled non-plane trees and Pólya operators

Essentially all the results obtained earlier for simple varieties of trees can be ex-
tended to the case of non-plane unlabelled trees. Pólya operators are central, and
their treatment is typical of the asymptotic theory of unlabelled objects obeying sym-
metries (i.e., involving the unlabelled MSET, PSET, CYC constructions), as we have
seen repeatedly in this book.

Binary and general trees. We start the discussion by considering the enumer-
ation of two classes of non-plane trees following Pólya [488, 491] and Otter [466],
whose articles are important historic sources for the asymptotic theory of non-plane
tree enumeration—a brief account also appears in [319]. (These authors used the
more traditional method of Darboux instead of singularity analysis, but this distinc-
tion is immaterial here, as calculations develop under completely parallel lines under
both theories.) The two classes under consideration are those of general and binary
non-plane unlabelled trees. In both cases, there is a fairly direct reduction to the enu-
meration of Cayley trees and of binary trees, which renders explicit several steps of
the calculation. The trick is, as usual, to treat values of f (z2), f (z3), . . . , arising from
Pólya operators, as “known” analytic quantities.

Proposition VII.5 (Special unlabelled non-plane trees). Consider the two classes of
unlabelled non-plane trees

H = Z × MSET(H), W = Z × MSET{0,2}(W),

respectively, of the general and binary type. Then, with constants γH , AH and γW , AW

given by Notes VII.21 and VII.22, one has

(49) Hn ∼ γH

2
√
πn3

An
H , W2n−1 ∼ γW

2
√
πn3

An
W .

Proof. (i) General case. The OGF of non-plane unlabelled trees is the analytic solu-
tion to the functional equation

(50) H(z) = z exp

(
H(z)

1
+ H(z2)

2
+ · · ·

)
.

Let T be the solution to

(51) T (z) = zeT (z),

that is to say, the Cayley function. The function H(z) has a radius of convergence ρ
strictly less than 1 as its coefficients dominate those of T (z), the radius of convergence
of the latter being exactly e−1 .= 0.367. The radius ρ cannot be 0 since the number of
trees is bounded from above by the number of plane trees whose OGF has radius 1/4.
Thus, one has 1/4 ≤ ρ ≤ e−1.
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Rewriting the defining equation of H(z) as

H(z) = ζeH(z) with ζ := z exp

(
H(z2)

2
+ H(z3)

3
+ · · ·

)
,

we observe that ζ = ζ(z) is analytic for |z| < ρ1/2; that is, ζ is analytic in a disc that
properly contains the disc of convergence of H(z). We may thus rewrite H(z) as

H(z) = T (ζ(z)).

Since ζ(z) is analytic at z = ρ, a singular expansion of H(z) near z = ρ results from
composing the singular expansion of T at e−1 with the analytic expansion of ζ at ρ.
In this way, we get:

(52) H(z) = 1 − γ

(
1 − z

ρ

)1/2

+ O

((
1 − z

ρ

))
, γ =

√
2eρζ ′(ρ).

Thus,
[zn]H(z) ∼ γ

2
√
πn3

ρ−n .

(i i) Binary case. Consider the functional equation

(53) f (z) = z + 1

2
f (z)2 + 1

2
f (z2).

This enumerates non-plane binary trees with size defined as the number of external
nodes, so that W (z) = 1

z f (z2). Thus, it suffices to analyse [zn] f (z), which dispenses
us from dealing with periodicity phenomena arising from the parity of n.

The OGF f (z) has a radius of convergence ρ that is at least 1/4 (since there are
fewer non-plane trees than plane ones). It is also at most 1/2, which is seen from a
comparison of f with the solution to the equation g = z + 1

2 g2. We may then proceed
as before: treat the term 1

2 f (z2) as a function analytic in |z| < ρ1/2, as though it were
known, then solve. To this effect, set

ζ(z) := z + 1

2
f (z2),

which exists in |z| < ρ1/2. Then, the equation (53) becomes a plain quadratic equa-
tion, f = ζ + 1

2 f 2, with solution

f (z) = 1 −
√

1 − 2ζ(z).

The singularity ρ is the smallest positive solution of ζ(ρ) = 1/2. The singular expan-
sion of f is obtained by combining the analytic expansion of ζ at ρ with

√
1 − 2ζ .

The usual square-root singularity results:

f (z) ∼ 1 − γ
√

1 − z/ρ, γ :=
√

2ρζ ′(ρ).
This induces the ρ−nn−3/2 form for the coefficients [zn] f (z) ≡ [z2n−1]W (z). �

The argument used in the proof of the proposition may seem partly non-constructive.
However, numerically, the values of ρ and γ can be determined to great accuracy.
See the notes below as well as Finch’s section on “Otter’s tree enumeration con-
stants” [211, Sec. 5.6].
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� VII.20. Complete asymptotic expansions for Hn,W2n−1. These can be determined since the
OGFs admit complete asymptotic expansions in powers of

√
1 − z/ρ. �

� VII.21. Numerical evaluation of constants I. Here is an unoptimized procedure controlled
by a parameter m ≥ 0 for evaluating the constants γH , ρH of (49) relative to general unlabelled
non-plane trees.
Procedure Get value of ρ(m : integer);

1. Set up a procedure to compute and memorize the Hn on demand;
(this can be based on recurrence relations implied by H ′(z); see [456])
2. Define f [m](z) := ∑m

j=1 Hnzn ;

3. Define ζ [m](z) := z exp
(∑m

k=2
1
k f [m](zk)

)
;

4. Solve numerically ζ [m](x) = e−1 for x ∈ (0, 1) to max(m, 10) digits of accuracy;
5. Return x as an approximation to ρ.

For instance, a conservative estimate of the accuracy attained for m = 0, 10, . . . , 50 (in a few
billion machine instructions) is:

m = 0 m = 10 m = 20 m = 30 m = 40 m = 50

3 · 10−2 10−6 10−11 10−16 10−21 10−26

Accuracy appears to be a little better than 10−m/2. This yields to 25D:

ρ
.= 0.3383218568992076951961126, AH ≡ ρ−1 .= 2.955765285651994974714818,

γH
.= 1.559490020374640885542206.

The formula of Proposition VII.5 estimates H100 with a relative error of 10−3. �

� VII.22. Numerical evaluation of constants II. The procedure of the previous note adapts
easily to binary trees, giving:

ρ
.= 0.4026975036714412909690453, AW ≡ ρ−1 .= 2.483253536172636858562289,

γW
.= 1.130033716398972007144137.

The formula of Proposition VII.5 estimates [z100] f (z) with a relative error of 7 · 10−3. �

The results relative to general and binary trees are thus obtained by a modification
of the method used for simple varieties of trees, upon treating the Pólya operator part
as an analytic variant of the corresponding equations of simple varieties of trees.

Alkanes, alcohols, and degree restrictions. The previous two examples suggest
that a general theory is possible for varieties of unlabelled non-plane trees, T =
Z MSET�(T ), determined by some � ⊂ Z≥0. First, we examine the case of spe-
cial regular trees defined by � = {0, 3}, which, when viewed as alkanes and alcohols,
are of relevance to combinatorial chemistry (Example VII.15). Indeed, the problem
of enumerating isomers of such chemical compounds has been at the origin of Pólya’s
foundational works [488, 491]. Then, we extend the method to the general situation
of trees with degrees constrained to an arbitrary finite set � (Proposition VII.5).

Example VII.15. Non-plane trees and alkanes. In chemistry, carbon atoms (C) are known
to have valency 4 while hydrogen (H ) has valency 1. Alkanes, also known as paraffins (Fig-
ure VII.13), are acyclic molecules formed of carbon and hydrogen atoms according to this rule
and without multiple bonds; they are thus of the type Cn H2n+2. In combinatorial terms, we
are talking of unrooted trees with (total) node degrees in {1, 4}. The rooted version of these
trees are determined by the fact that a root is chosen and (out)degrees of nodes lie in the set
� = {0, 3}; such rooted ternary trees then correspond to alcohols (with the OH group marking
one of the carbon atoms).
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H H H H H H H OH H
| | | | | | | | |
| | | | | | | | |

H--C--H H--C--C--H H--C--C--C--H H--C--C--C--H
| | | | | | | | |
| | | | | | | | |
H H H H H H H H H

Methane Ethane Propane Propanol

Figure VII.13. A few examples of alkanes (C H4,C2 H6,C3 H8) and an alcohol.

Alcohols (A) are the simplest to enumerate, since they correspond to rooted trees. The
OGF starts as (EIS A000598)

A(z) = 1 + z + z2 + z3 + 2 z4 + 4 z5 + 8 z6 + 17 z7 + 39 z8 + 89 z9 + · · · ,
with size being taken here as the number of internal nodes. The specification is

A = {ε} +Z MSET3(A).
(Equivalently A+ := A \ {ε} satisfies A+ = Z MSET0,1,2,3(A+).) This implies that A(z)
satisfies the functional equation:

A(z) = 1 + z

(
1

3
A(z3)+ 1

2
A(z)A(z2)+ 1

6
A(z)3

)
.

In order to apply Theorem VII.3, introduce the function

(54) G(z, w) = 1 + z

(
1

3
A(z3)+ 1

2
A(z2)w + 1

6
w3

)
,

which exists in |z| < |ρ|1/2 and |w| < ∞, with ρ the (yet unknown) radius of convergence
of A. Like before, the Pólya terms A(z2), A(z3) are treated as known functions. By methods
similar to those earlier in the analysis of binary and general trees, we find that the characteristic
system admits a solution,

r
.= 0.3551817423143773928, s

.= 2.1174207009536310225,

so that ρ = r and y(ρ) = s. Thus the growth of the number of alcohols is of the form
κρ−nn−3/2, with ρ−1 .= 2.81546.

Let B(z) be the OGF of alkanes (EIS A000602), which are unrooted trees:

B(z) = 1 + z + z2 + z3 + 2 z4 + 3 z5 + 5 z6 + 9 z7 + 18 z835 z9 + 75 z10 + · · · .
For instance, B6 = 5 because there are five isomers of hexane, C6 H14, for which chemists had
to develop a nomenclature system, interestingly enough based on a diameter of the tree:

Hexane 3-Methylpentane 2-Methylpentane

2,3-Dimethylbutane 2,2-Dimethylbutane
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The number of structurally different alkanes can then be found by an adaptation of the
dissimilarity formula (Equation (57) below and Note VII.26). This problem has served as a
powerful motivation for the enumeration of graphical trees and its fascinating history goes back
to Cayley. (See Rains and Sloane’s article [502] and [491]). The asymptotic formula of (un-
rooted) alkanes is of the global form ρ−nn−5/2, which represents roughly a proportion 1/n of
the number of (rooted) alcohols: see below. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The pattern of analysis should by now be clear, and we state:

Theorem VII.4 (Non-plane unlabelled trees). Let � ' 0 be a finite subset of Z≥0
and consider the variety V of (rooted) unlabelled non-plane trees with outdegrees of
nodes in �. Assume aperiodicity (gcd(�) = 1) and the condition that � contains at
least one element larger than 1. Then the number of trees of size n in V satisfies an
asymptotic formula:

Vn ∼ C · Ann−3/2.

Proof. The argument given for alcohols is transposed verbatim. Only the existence of
a root of the characteristic system needs to be established.

The radius of convergence of V (z) is a priori ≤ 1. The fact that ρ is strictly less
than 1 is established by means of an exponential lower bound; namely, Vn > Bn , for
some B > 1 and infinitely many values of n. To obtain this “exponential diversity” of
the set of trees, first choose an n0 such that Vn0 > 1, then build a perfect d–ary tree
(for some d ∈ �, d  = 0, 1) of height h, and finally graft freely subtrees of size n0 at
n/(4n0) of the leaves of the perfect tree. Choosing d such that dh > n/(4n0) yields
the lower bound. That the radius of convergence is non-zero results from the upper
bound provided by corresponding plane trees whose growth is at most exponential.
Thus, one has 0 < ρ < 1.

By the translation of multisets of bounded cardinality, the function G is polyno-
mial in finitely many of the quantities {V (z), V (z2), . . .}. Thus the function G(z, w)
constructed as in the case of alcohols, in Equation (54), converges in |z| < ρ1/2, |w| <
∞. As z → ρ−1, we must have τ := V (ρ) finite, since otherwise, there would be a
contradiction in orders of growth in the nonlinear equation V (z) = · · ·+· · · V (z)d · · ·
as z → ρ. Thus (ρ, τ ) satisfies τ = G(ρ, τ ). For the derivative, one must have
Gw(ρ, τ ) = 1 since: (i) a smaller value would mean that V is analytic at ρ (by the
Implicit Function Theorem); (i i) a larger value would mean that a singularity has
been encountered earlier (by the usual argument on failure of the Implicit Function
Theorem). Thus, Theorem VII.3 on positive implicit functions is applicable. �

A large number of variations are clearly possible as evidenced by the sugges-
tive title of an article [320] published by Harary, Robinson, and Schwenk in 1975:
“Twenty-step algorithm for determining the asymptotic number of trees of various
species”.

� VII.23. Unlabelled hierarchies. The class H of unlabelled hierarchies is specified by H =
Z + MSET≥2(H); see Note I.45, p. 72. One has

H̃n ∼ γ

2
√
πn3

ρ−n, ρ
.= 0.29224.

(Compare with the labelled case of Example VII.12, p. 472.) What is the asymptotic proportion
of internal nodes of degree r , for a fixed r > 0? �
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� VII.24. Trees with prime degrees and the BBY theory. Bell, Burris, and Yeats [33] develop
a general theory meant to account for the fact that, in their words, “almost any family of trees
defined by a recursive equation that is nonlinear [. . . ] lead[s] to an asymptotic law of the Pólya
form t (n) ∼ Cρ−nn−3/2”. Their most general result [33, Th. 75] implies for instance that the
number of unlabelled non-plane trees whose node degrees are restricted to be prime numbers
admits such a Pólya form (see also Note VII.6, p. 455). �

Unlabelled functional graphs (mapping patterns). Unlabelled functional graphs
(named “functions” in [319, pp. 69–70]) are denoted here by F ; they correspond to
unlabelled digraphs with loops allowed, in which each vertex has outdegree equal to 1.
They can be specified as multisets of components (L) that are cycles of non-plane
unlabelled trees (H),

F = MSET(L); L = CYC(H); H = Z × MSET(H),

a specification that entirely parallels that of mappings in Equation (35), p. 462. Indeed,
an unlabelled functional graph can be used to represent the “shape” of a mapping, as
obtained when labels are discarded. That is, functional graphs result when mappings
are identified up to a possible permutation of their underlying domain. This explains
the alternative term of “mapping pattern” [436] sometimes employed for such graphs.
The counting sequence starts as 1, 1, 3, 7, 19, 47, 130, 343, 951 (EIS A001372).

The OGF H(z) has a square-root singularity by virtue of (52) above, with addi-
tionally H(ρ) = 1. The translation of the unlabelled cycle construction,

L(z) =
∑
j≥1

ϕ( j)

j
log

1

1 − H(z j )
,

implies that L(z) is logarithmic, and F(z) has a singularity of type 1/
√

Z where Z :=
1 − z/ρ. Thus, unlabelled functional graphs constitute an exp–log structure in the
sense of Section VII. 2, p. 445, with κ = 1/2. The number of unlabelled functional
graphs thus grows like Cρ−nn−1/2 and the mean number of components in a random
functional graph is ∼ 1

2 log n, as for labelled mappings; see [436] for more on this
topic.
� VII.25. An alternative form of F(z). Arithmetical simplifications associated with the Euler
totient function (APPENDIX A, p. 721) yield:

F(z) =
∞∏

k=1

(
1 − H(zk)

)−1
.

A similar form applies generally to multisets of unlabelled cycles (Note I.57, p. 85). �

Unrooted trees. All the trees considered so far have been rooted and this version
is the one most useful in applications. An unrooted tree9 is by definition a connected
acyclic (undirected) graph. In that case, the tree is clearly non-plane and no special
root node is distinguished.

The counting of the class U of unrooted labelled trees is easy: there are plainly
Un = nn−2 of these, since each node is distinguished by its label, which entails that

9Unrooted trees are also called sometimes free trees.
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nUn = Tn , with Tn = nn−1 by Cayley’s formula. Also, the EGF U (z) satisfies

(55) U (z) =
∫ z

0
T (y)

dy

y
= T (z)− 1

2
T (z)2,

as already seen when we discussed labelled graphs in Subsection II. 5.3, p. 132.
For unrooted unlabelled trees, symmetries are present and a tree can be rooted

in a number of ways that depends on its shape. For instance, a star graph leads to a
number of different rooted trees that equals 2 (choose either the centre or one of the
peripheral nodes), while a line graph gives rise to �n/24 structurally different rooted
trees. With H the class of rooted unlabelled trees and I the class of unrooted trees,
we have at this stage only a general inequality of the form

In ≤ Hn ≤ nIn .

A table of values of the ratio Hn/In suggests that the answer is close to the upper
bound:

(56)
n 10 20 30 40 50 60

Hn/In 6.78 15.58 23.89 32.15 40.39 48.62

The solution is provided by a famous exact formula due to Otter (Note VII.26):

(57) I (z) = H(z)− 1

2

(
H(z)2 − H(z2)

)
,

which gives in particular (EIS A000055) I (z) = z + z2 + z3 + 2 z4 + 3 z5 + 6 z6 +
11 z7 + 23 z8 + · · · . Given (57), it is child’s play to determine the singular expansion
of I knowing that of H . The radius of convergence of I is the same as that of H , since
the term H(z2) only introduces exponentially small coefficients. Thus, it suffices to
analyse H − 1

2 H2:

H(z)− 1

2
H(z)2 ∼ 1

2
− δ2 Z + δ3 Z3/2 + O

(
Z2

)
, Z =

(
1 − z

ρ

)
.

What is noticeable is the cancellation in coefficients for the term Z1/2 (since 1 − x −
1
2 (1 − x)2 = 1

2 + O(x2)), so that Z3/2 is the actual singularity type of I . Clearly,
the constant δ3 is computable from the first four terms in the singular expansion of H
at ρ. Then singularity analysis yields: The number of unrooted trees of size n satisfies
the formula

(58) In ∼ 3δ3

4
√
πn5

ρ−n, In ∼ (0.5349496061 . . .) (2.9955765856 . . .)nn−5/2.

The numerical values are from [211] and the result is Otter’s original [466]: an un-
rooted tree of size n gives rise to about different 0.8n rooted trees on average. (The
formula (58) corresponds to an error slightly under 10−2 for n = 100.)
� VII.26. Dissimilarity theorem for trees. Here is how combinatorics justifies (57), follow-
ing [50, §4.1]. Let I• (and I•–•) be the class of unrooted trees with one vertex (respectively, one
edge) distinguished. We have I• ∼= H (rooted trees) and I•–• ∼= SET2(H). The combinatorial
isomorphism claimed is

(59) I• + I•–• ∼= I + (I × I) .
Proof. A diameter of an unrooted tree is a simple path of maximal length. If the length of
any diameter is even, call “centre” its mid-point; otherwise, call “bicentre” its mid-edge. (For
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each tree, there is either one centre or one bicentre.) The left-hand side of (59) corresponds to
trees that are pointed either at a vertex (I•) or an edge (I•–•). The term I on the right-hand
side corresponds to cases where the pointing happens to coincide with the canonical centre or
bicentre. If there is not coincidence, then, an ordered pair of trees results from a suitable surgery
of the pointed tree. [Hint: cut in some canonical way near the pointed vertex or edge.] �

VII. 6. Irreducible context-free structures

In this section, we discuss an important variety of context-free classes, one that
gives rise to the universal law of square-root singularities, itself attached to count-
ing sequences that are of the general asymptotic form Ann−3/2. First, we enunciate
an abstract structural result (Theorem VII.5, p. 483) that connects “irreducibility” of
context-free systems to the square-root singularity phenomenon. Before engaging into
a proof, we first illustrate its scope by describing applications to non-crossing configu-
rations in the plane (these are richer than triangulations introduced in Chapter I) and to
random boolean expressions. Finally, we prove an important complex analytic result,
the Drmota–Lalley–Woods Theorem (Theorem VII.6, p. 489), which provides the un-
derlying analytic engine needed to establish Theorem VII.5 and justify the asymptotic
properties of irreducible context-free specifications. General algebraic functions are
to be treated next, in Section VII. 7, p. 493.

VII. 6.1. Context-free specifications and the irreducibility schema. We start
from the notion of a context-free class already introduced in Subsection I. 5.4, p. 79,
which we recall: a class is context-free if it is determined as the first component of a
system of combinatorial equations

(60)

⎧⎪⎨⎪⎩
Y1 = F1(Z,Y1, . . . ,Yr )
...

...
...

Yr = Fr (Z,Y1, . . . ,Yr ),

where each F j is a construction that only involves the combinatorial constructions of
disjoint union and cartesian product. (This repeats Equation (83) of Chapter I, p. 79.)
As seen in Subsection I. 5.4, binary and general trees, triangulations, as well as Dyck
and Łukasiewicz languages are typical instances of context-free classes.

As a consequence of the symbolic rules of Chapter I, the OGF of a context-free
class C is the first component (C(z) ≡ y1(z)) of the solution of a polynomial system
of equations of the form

(61)

⎧⎪⎨⎪⎩
y1(z) = 	1(z, y1(z), . . . , yr (z))
...

...
...

yr (z) = 	r (z, y1(z), . . . , yr (z)),

where the 	 j are polynomials. By elimination (Cf Appendix B.1: Algebraic elimina-
tion, p. 739), it is always possible to find a bivariate polynomial P(z, y) such that

(62) P(z,C(z)) = 0,

and C(z) is an algebraic function. (Algebraic functions are discussed in all generality
in the next section.)
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The case of linear systems has been dealt with in Chapter V, when examining
the transfer matrix method. Accordingly, we only need to consider here nonlinear
systems (of equations or specifications) defined by the condition that at least one 	 j

in (61) is a polynomial of degree 2 or more in the y j , corresponding to the fact that at
least one of the constructions F j in (60) involves at least a product YkY�.
Definition VII.5. A context-free specification (60) is said to belong to the irreducible
context-free schema if it is nonlinear and its dependency graph (p. 33) is strongly
connected. It is said to be aperiodic if all the y j (z) are aperiodic10.

Theorem VII.5 (Irreducible context-free schema). A class C that belongs to the irre-
ducible context-free schema has a generating function that has a square-root singu-
larity at its radius of convergence ρ:

C(z) = τ − γ

√
1 − z

ρ
+ O

(
1 − z

ρ

)
,

for computable algebraic numbers ρ, τ, γ . If, in addition, C(z) is aperiodic, then the
dominant singularity is unique and the counting sequence satisfies

(63) Cn ∼ γ

2
√
πn3

ρ−n .

This theorem is none other than a transcription, at the combinatorial level, of a
remarkable analytic statement, Theorem VII.6, due to Drmota, Lalley, and Woods,
which is proved below (p. 489), is slightly stronger, and is of independent interest.

Computability issues. There are two complementary approaches to the calcula-
tion of the quantities that appear in (63), one based on the original system (61), the
other based on the single equation (62) that results from elimination. We offer at this
stage a brief pragmatic discussion of computational aspects, referring the reader to
Subsection VII. 6.3, p. 488, and Section VII. 7, p. 493, for context and justifications.

(a) System: Considering the proof of Theorem VII.6 below, one should solve, in
positive real numbers, a polynomial system of m+1 equations in the m+1 unknowns
ρ, τ1, . . . , τm ; namely,

(64)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

τ1 = 	1(ρ, τ1, . . . , τm)

...
...

...

τm = 	m(ρ, τ1, . . . , τm)

0 = J (ρ, τ1, . . . , τm),

which one can call the characteristic system. There J is the Jacobian determinant:

(65) J (z, y1, . . . , ym) := det

(
δi, j − ∂

∂y j
	i (z, y1, . . . , ym)

)
,

10An aperiodic function is such that the span of the coefficient sequence is equal to 1 (Definition IV.5,
p. 266). For an irreducible system, it can be checked that all the y j are aperiodic if and only if at least one
of the y j is aperiodic.
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with δi, j ≡ [[i = j]] being the usual Kronecker symbol. The quantity ρ represents the
common radius of convergence of all the y j (z) and τ j = y j (ρ). (In case several pos-
sibilities present themselves for ρ, as in Note VII.28, then one can use either a priori
combinatorial bounds to filter out the spurious ones11 or make use of the reduction to a
single equation as in point (b) below.) The constant γ ≡ γ1 in Theorem VII.5 is then
a component of the solution to a linear system of equations (with coefficients in the
field generated by ρ, τ j ) and is obtained by the method of undetermined coefficients,
since each y j is of the form

(66) y j (z) ∼ τ j − γ j

√
1 − z/ρ, z → ρ.

(b) Equation: The general techniques are going to be described in Section, §VII. 7,
p. 493. They give rise to the following algorithm: (i) determine the exceptional set,
identify the proper branch of the algebraic curve and the dominant positive singularity;
(i i) determine the coefficients in the singular (Puiseux) expansion, knowing a priori
that the singularity is of the square-root type.

In all events, symbolic algebra systems prove invaluable in performing the re-
quired algebraic eliminations and isolating the combinatorially relevant roots (see, in
particular, Pivoteau et al. [485] for a general symbolic–numeric approach). Exam-
ple VII.16 serves to illustrate some of these computations.

� VII.27. Catalan and the Jacobian determinant. For the Catalan GF, defined by y = 1+ zy2,
the characteristic system (64) instantiates to

τ − 1 − ρτ2 = 0, 1 − 2ρτ = 0,

giving back as expected: ρ = 1
4 , τ = 2. �

� VII.28. Burris’ Caveat. As noted by Stanley Burris (private communication), even some
very simple context-free specifications may be such that there exist several positive solutions to
the characteristic system (64). Consider

(B) :

⎧⎪⎨⎪⎩ y1 = z(1 + y2 + y2
1 )

y2 = z(1 + y1 + y2
2 ),

which is clearly associated to a redundant way of counting unary–binary trees (via a determin-
istic 2-colouring). The characteristic system is{

τ1 = ρ(1 + τ2 + τ2
1 ), τ2 = ρ(1 + τ1 + τ2

2 ), (1 − 2ρτ1)(1 − 2ρτ2)− ρ2 = 0
}
.

The positive solutions are{
ρ = 1

3
, τ1 = τ2 = 1

}
∪

{
ρ = 1

7
(2
√

2 − 1), τ1 = τ2 =
√

2 + 1

}
.

Only the first solution is combinatorially significant. (A somewhat similar situation, though it
relates to a non-irreducible context-free specification, arises with supertrees of Example VII.20,
p. 503: see Figure VII.19, p. 504.) �

11This is once more a connection problem, in the sense of p. 470.
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VII. 6.2. Combinatorial applications. Lattice animals (Example I.18, p. 80),
random walks on free groups [395], directed walks in the plane (see references [27,
392, 395] and p. 506 below), coloured trees [616], and boolean expression trees (refer-
ence [115] and Examples VII.17) are only some of the many combinatorial structures
belonging to the irreducible context-free schema. Stanley presents in his book [554,
Ch. 6] several examples of algebraic GFs, and an inspiring survey is provided by
Bousquet-Mélou in [84]. We limit ourselves here to a brief discussion of non-crossing
configurations and random boolean expressions.

Example VII.16. Non-crossing configurations. Context-free descriptions can model naturally
very diverse sorts of objects including particular topological-geometric configurations—we ex-
amine here non-crossing planar configurations. The problems considered have their origin in
combinatorial musings of the Rev. T.P. Kirkman in 1857 and were revisited in 1974 by Domb
and Barett [169] for the purpose of investigating certain perturbative expansions of statistical
physics. Our presentation follows closely the synthesis offered by Flajolet and Noy in [245].

Consider, for each value of n, graphs built on vertices that are all the nth complex roots
of unity, numbered 0, . . . , n − 1. A non-crossing graph is a graph such that no two of its
edges cross. One can also define connected non-crossing graphs, non-crossing forests (acyclic
graphs), and non-crossing trees (acyclic connected graphs); see Figure VII.14. Note that the
various graphs considered can always be considered as rooted in some canonical way (e.g., at
the vertex of smallest index) .

Trees. A non-crossing tree is rooted at 0. To the root vertex is attached an ordered collec-
tion of vertices, each of which has an end-node ν that is the common root of two non-crossing
trees, one on the left of the edge (0, ν) the other on the right of (0, ν). Let T denote the class
of trees and U denote the class of trees whose root has been severed. With • ≡ Z denoting a
generic node, we have

T = • × U , U = SEQ(U × • × U),
which corresponds graphically to the “butterfly decomposition”:

U
UU

U U

U = T = 

The reduction to a pure context-free form is obtained by noticing that U = SEQ(V) is
equivalent to U = 1 + UV: a specification and the associated polynomial system are then

(67) {T = ZU , U = 1 + UV, V = ZUU} �⇒ {T = zU, U = 1 + U V, V = zU2}.
This system relating U and V is irreducible (then, T is immediately obtained from U ), and
aperiodicity is obvious from the first few values of the coefficients. The Jacobian (65) of the
{U, V }-system (obtained by z → ρ, U → υ, V → β), is∣∣∣∣ 1 − β υ

2ρυ 1

∣∣∣∣ = 1 − β − 2ρυ2.

Thus, the characteristic system (64) giving the singularity of U, V is

{υ = 1 + υβ, β = ρυ2, 1 − β − 2ρυ2 = 0},
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(connected graph)

(tree) (forest)

(graph)

Configuration / OGF coefficients (exact / asymptotic)

Trees (EIS: A001764) z + z2 + 3z3 + 12z4 + 55z5 + · · ·
T 3 − zT + z2 = 0

1

2n − 1

(
3n − 3

n − 1

)
∼

√
3

27
√
πn3

(
27

4
)n

Forests (EIS: A054727) 1 + z + 2z2 + 7z3 + 33z4 + 181z5 · · ·

F3 + (z2 − z − 3)F2 + (z + 3)F − 1 = 0
n∑

j=1

1

2n − j

(
n

j − 1

)(
3n − 2 j − 1

n − j

)
∼ 0.07465√

πn3
(8.22469)n

Connected graphs (EIS: A007297) z + z2 + 4z3 + 23z4 + 156z5 + · · ·

C3 + C2 − 3zC + 2z2 = 0
1

n − 1

2n−3∑
j=n−1

(
3n − 3

n + j

)(
j − 1

j − n + 1

)
∼ 2

√
6 − 3

√
2

18
√
πn3

(
6
√

3
)n

Graphs (EIS: A054726) 1 + z + 2z2 + 8z3 + 48z4 + 352z5 + · · ·

G2 + (2z2 − 3z − 2)G + 3z + 1 = 0
1

n

n−1∑
j=0

(−1) j
(

n

j

)(
2n − 2 − j

n − 1 − j

)
2n−1− j

∼
√

140 − 99
√

2

4
√
πn3

(
6 + 4

√
2
)n

Figure VII.14. (Top) Non-crossing graphs: a tree, a forest, a connected graph, and a
general graph. (Bottom) The enumeration of non-crossing configurations by algebraic
functions.
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whose positive solution is ρ = 4
27 , υ = 3

2 , β = 1
3 . The complete asymptotic formula is

displayed in Figure VII.14. (In a simple case like this, we have more: T satisfies T 3−zT +z2 =
0, which, by Lagrange inversion, gives Tn = 1

2n−1

(3n−3
n−1

)
.)

Forests. A (non-crossing) forest is a non-crossing graph that is acyclic. In the present con-
text, it is not possible to express forests simply as sequences of trees, because of the geometry of
the problem. Starting conventionally from the root vertex 0 and following all connected edges
defines a “backbone” tree. To the left of every vertex of the tree, a forest may be placed. There
results the decomposition (expressed directly in terms of OGFs)

(68) F = 1 + T [z 	→ zF],

where T is the OGF of trees and F is the OGF of forests. In (68), the term T [z 	→ zF] denotes
a functional composition. A context-free specification in standard form results mechanically
from (67) upon replacing z by zF :

(69) { F = 1 + T, T = zFU, U = 1 + U V, V = zFU2 }.
This system is irreducible and aperiodic, so that the asymptotic shape of Fn is a priori of the
form γωnn−3/2 according to Theorem VII.5. The characteristic system is found to have three
solutions, of which only one has all its components positive, corresponding to ρ

.= 0.12158, a
root of the cubic equation 5ρ3 − 8ρ2 − 32ρ + 4 = 0. (The values of constants are otherwise
worked out in Example VII.19, p. 502, by means of the equational approach.)

Graphs. Similar constructions (see [245]) give the OGFs of connected and general graphs,
with the results tabulated in Figure VII.14. In summary:

Proposition VII.6. The number of non-crossing trees, forests, connected graphs, and graphs
each satisfy an asymptotic formula of the form

C√
πn3

An .

The common shape of the asymptotic estimates is worthy of note, as is the fact that bino-
mial expressions are available in each particular case (Note VII.34, p. 495, introduces a general
framework that “explains” the existence of such binomial expressions). . . . . . . . . . . . . . . . . . . �

Example VII.17. Random boolean expressions. We reconsider boolean expressions in
the form of and–or trees introduced in Example I.15, p. 69, in connection with Hipparchus of
Rhodes and Schröder, and in Example I.17, p. 77. Such an expression is described by a binary
tree whose internal nodes can be tagged with “∨” (or-function) or “∧” (and-function); external
nodes are formal variables and their negations (“literals”). We fix the number of variables to
some number m. The class E of all such boolean expressions satisfies a symbolic equation of
the form

E =
∨

↙ ↘
E E

+
∧

↙ ↘
E E

+
m∑

j=1

(
x j + ¬x j

)
.

Size is taken to be the number of internal (binary) nodes; that is, the number of boolean con-
nectives. Each boolean expression given in the form of such an and–or tree represents a certain
boolean function of m variables, among the 22m

functions. The corresponding OGF and coeffi-
cients are

E(z) = 1 −√
1 − 16mz

4z
, En ≡ [zn]E(z) = 2n(2m)n+1 1

n + 1

(
2n

n

)
∼ 2m√

πn3
(16m)n,

the radius of convergence of E(z) being ρ = 1/(16m).
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Our purpose is to establish the following result due to Lefmann and Savický [405], our line
of proof following [115].

Proposition VII.7. Let f be a boolean function of m variables (m fixed). Then the probability
that a random and–or formula of size n computes f converges, as n tends to infinity, to a
constant value �( f )  = 0.

Proof. Consider, for each f , the subclass Y f ⊂ E of expressions that compute f . We thus

have 22m
such classes. It is then immediate to write combinatorial equations describing the Y f ,

by considering all the ways in which a function f can arise. Indeed, if f is not a literal, then

Y f =
∑

(g∨h)= f

∨
↙ ↘

Yg Yh
+

∑
(g∧h)= f

∨
↙ ↘

Yg Yh ,

while, if f = x j (say), then

Y f = x j +
∑

(g∨h)= f

∨
↙ ↘

Yg Yh
+

∑
(g∧h)= f

∨
↙ ↘

Yg Yh .

Thus, at generating function level, we have a system of 22m
polynomial equations. This system

is irreducible: given two functions f and g represented by 	 and � (say), we can always
construct an expression for f involving the expression � by building a tree of the form

(	 ∧ (True∨�)) = ((	 ∧ ((x1 ∨ ¬x1) ∨ �)).

Thus any Y f depends on any other Yg . Similar arguments, based on the fact that

True = (True∧True) = (True∧True∧True) = · · · ,
with “True” itself representable as (x1 ∨ ¬x1) = ((x1 ∧ x1) ∨ ¬x1) = · · · , guarantee aperi-
odicity. Thus Theorem VII.5 applies: the Y f all have the same radius of convergence, and that
radius must be equal to that of E(z) (namely ρ = 1/(16m)), since E = ∑

f Y f . Thereby the
proposition is established. �

It is an interesting and largely open problem to characterize the relation between the limit
probability �( f ) of a function f and its structural complexity. At least, the cases m = 1, 2, 3
can be solved exactly and numerically: it appears that functions of low complexity tend to occur
much more frequently, as shown by the data of [115]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

VII. 6.3. The analysis of irreducible polynomial systems. The analytic engine
behind Theorem VII.5 is a fundamental result, the “Drmota–Lalley–Woods” (DLW)
Theorem, due to independent research by several authors: Drmota [172] developed a
version of the theorem in the course of studies relative to limit laws in various families
of trees defined by context-free grammars; Woods [616], motivated by questions of
boolean complexity and finite model theory, gave a form expressed in terms of colour-
ing rules for trees; finally, Lalley [395] came across a similarly general result when
quantifying return probabilities for random walks on groups. Drmota and Lalley show
how to pull out limit Gaussian laws for simple parameters (by a perturbative analysis;
see Chapter IX); Woods shows how to deduce estimates of coefficients even in some
periodic or non-irreducible cases.

In the treatment that follows we start from a polynomial system of equations,{
y j = 	 j (z, y1, . . . , ym)

}
, j = 1, . . . ,m,
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in accordance with the notations adopted at the beginning of the section. We only
consider nonlinear systems defined by the fact that at least one polynomial 	 j is non-
linear in some of the indeterminates y1, . . . , ym . (Linear systems have been discussed
extensively in Chapter V.)

For applications to combinatorics, we define four possible attributes of a polyno-
mial system. The first one is a natural positivity condition.

(i) Algebraic positivity (or a-positivity). A polynomial system is said to be a-
positive if all the component polynomials	 j have non-negative coefficients.

Next, we want to restrict consideration to systems that determine a unique so-
lution vector (y1, . . . , ym) ∈ (C[[z]])m . Define the z-valuation val(�y) of a vector
�y ∈ C[[z]]m as the minimum over all j’s of the individual valuations12 val(y j ). The
distance between two vectors is defined as usual by d(�u, �v) = 2− val(�u−�v). Then:

(i i) Algebraic properness (or a-properness). A polynomial system is said to be
a-proper if it satisfies a Lipschitz condition

d(	(�y),	(�y ′)) < K d(�y, �y ′) for some K < 1.

In that case, the transformation 	 is a contraction on the complete metric space of
formal power series and, by the general fixed point theorem, the equation �y = 	(�y)
admits a unique solution. This solution may be obtained by the iterative scheme,

�y(0) = (0, . . . , 0)t , �y(h+1) = 	(y(h)), �y = lim
h→∞

�y(h).
in accordance with our discussion of the semantics of recursion, on p. 31.

The key notion is irreducibility. To a polynomial system, �y = 	(�y), associate its
dependency graph defined in the usual way as a graph whose vertices are the numbers
1, . . . ,m and the edges ending at a vertex j are k → j , if y j figures in a monomial of
	k .

(i i i) Algebraic irreducibility (or a-irreducibility). A polynomial system is said to
be a-irreducible if its dependency graph is strongly connected.

(This notion matches that of Definition VII.5, p. 483.)
Finally, one needs the usual technical notion of aperiodicity:

(iv) Algebraic aperiodicity (or a-aperiodicity). A proper polynomial system is
said to be aperiodic if each of its component solutions y j is aperiodic in the
sense of Definition IV.5, p. 266.

We can now state:

Theorem VII.6 (Irreducible positive polynomial systems, DLW Theorem). Consider
a nonlinear polynomial system �y = 	(�y) that is a-positive, a-proper, and a-irreducible.
Then, all component solutions y j have the same radius of convergence ρ < ∞, and
there exist functions h j analytic at the origin such that, in a neighbourhood of ρ:

(70) y j = h j

(√
1 − z/ρ

)
.

12Let f = ∑∞
n=β fn zn with fβ  = 0 and f0 = · · · = fβ−1 = 0; the valuation of f is by definition

val( f ) = β; see Appendix A.5: Formal power series, p. 730.
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In addition, all other dominant singularities are of the form ρω with ω a root of unity.
If furthermore the system is a-aperiodic, all y j have ρ as unique dominant singularity.
In that case, the coefficients admit a complete asymptotic expansion,

(71) [zn]y j (z) ∼ ρ−n

⎛⎝∑
k≥0

dkn−3/2−k

⎞⎠ ,

for computable dk.

Proof. The proof consists in gathering by stages consequences of the assumptions.
It is essentially based on a close examination of “failure” of the multivariate implicit
function theorem and the way this situation leads to square-root singularities.

(a) As a preliminary observation, we note that each component solution y j is an
algebraic function that has a non-zero radius of convergence. This can be checked
directly by the method of majorant series (Note IV.20, p. 250), or as a consequence
of the multivariate version of the implicit function theorem (Appendix B.5: Implicit
Function Theorem, p. 753).

(b) Properness together with the positivity of the system implies that each y j (z)
has non-negative coefficients in its expansion at 0, since it is a formal limit of ap-
proximants that have non-negative coefficients. In particular, by positivity, ρ j is a
singularity of y j (by virtue of Pringsheim’s theorem). From the known nature of sin-
gularities of algebraic functions (e.g., the Newton–Puiseux Theorem, p. 498 below),
there must exist some order R ≥ 0 such that each Rth derivative ∂ R

z y j (z) becomes
infinite as z → ρ−j .

We establish now that ρ1 = · · · = ρm . In effect, differentiation of the equations
composing the system implies that a derivative of arbitrary order r , ∂r

z y j (z), is a linear
form in other derivatives ∂r

z y j (z) of the same order (and a polynomial form in lower
order derivatives); also the linear combination and the polynomial form have non-
negative coefficients. Assume a contrario that the radii were not all equal, say ρ1 =
· · · = ρs , with the other radii ρs+1, . . . being strictly greater. Consider the system
differentiated a sufficiently large number of times, R. Then, as z → ρ1, we must have
∂ R

z y j tending to infinity for j ≤ s. On the other hand, the quantities ys+1, etc., being
analytic, their Rth derivatives that are analytic as well must tend to finite limits. In
other words, because of the irreducibility assumption (and again positivity), infinity
has to propagate and we have reached a contradiction. Thus: all the y j have the same
radius of convergence. We let ρ denote this common value.

(c1) The key step consists in establishing the existence of a square-root singularity
at the common singularity ρ. Consider first the scalar case, that is

(72) y − φ(z, y) = 0,

where φ is assumed to be a nonlinear polynomial in y and have non-negative coeffi-
cients. This case belongs to the smooth implicit function schema, whose argument we
briefly revisit under our present perspective.

Let y(z) be the unique branch of the algebraic function that is analytic at 0. Com-
parison of the asymptotic orders in y inside the equality y = φ(z, y) shows that (by
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nonlinearity) we cannot have y → ∞ when z tends to a finite limit. Let now ρ be the
radius of convergence of y(z). Since y(z) is necessarily finite at its singularity ρ, we
set τ = y(ρ) and note that, by continuity, τ − φ(ρ, τ) = 0.

By the implicit function theorem, a solution (z0, y0) of (72) can be continued
analytically as (z, y0(z)) in the vicinity of z0 as long as the derivative with respect to y
(the simplest form of a Jacobian),

J (z0, y0) := 1 − φ′
y(z0, y0),

remains non-zero. The quantity ρ being a singularity, we must thus have J (ρ, τ ) = 0.
On the other hand, the second derivative −φ′′

yy is non-zero at (ρ, τ ) (by nonlinearity
and positivity). Then, the local expansion of the defining equation (72) at (ρ, τ ) binds
(z, y) locally by

−(z − ρ)φ′
z(ρ, τ )−

1

2
(y − τ)2φ′′

yy(ρ, τ )+ · · · = 0,

implying the singular expansion

y − τ = −γ (1 − z/ρ)1/2 + · · · .
This establishes the first part of the assertion in the scalar case.

(c2) In the multivariate case, we graft Lalley’s ingenious argument [395] that is
based on a linearized version of the system to which Perron–Frobenius theory is appli-
cable. First, irreducibility implies that any component solution y j depends positively
and nonlinearly on itself (by possibly iterating 	), so that a contradiction in asymp-
totic regimes would result, if we suppose that any y j tends to infinity. Each y j (z)
remains finite at the positive dominant singularity ρ.

Now, the multivariate version of the implicit function theorem (Theorem B.6,
p. 755) grants us locally the analytic continuation of any solution y1, y2, . . . , ym at z0
provided there is no vanishing of the Jacobian determinant

J (z0, y1, . . . , ym) := det

(
δi, j − ∂

∂y j
	i (z0, y1, . . . , ym)

)
i, j=1 . .m

.

Thus, we must have

(73) J (ρ, τ1, . . . , τm) = 0 where τ j := y j (ρ).

The next argument uses Perron–Frobenius theory (Subsection V. 5.2 and Note V.34,
p. 345) and linear algebra. Consider the Jacobian matrix

K (z, y1, . . . , ym) :=
(

∂

∂y j
	i (z, y1, . . . , ym)

)
i, j=1 . .m

,

which represents the “linear part” of 	. For z, y1, . . . , ym all non-negative, the matrix
K has positive entries (by positivity of 	) so that it is amenable to Perron–Frobenius
theory. In particular it has a positive eigenvalue λ(z, y1, . . . , ym) that dominates all
the other in modulus. The quantity

λ(z) := λ(z, y1(z), . . . , ym(z))
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is increasing, as it is an increasing function of the matrix entries that themselves in-
crease with z for z ≥ 0.

We propose to prove that λ(ρ) = 1, In effect, λ(ρ) < 1 is excluded since
otherwise (I − K ) would be invertible at z = ρ and this would imply J  = 0,
thereby contradicting the singular character of the y j (z) at ρ. Assume a contrario
λ(ρ) > 1 in order to exclude the other case. Then, by the monotonicity and continuity
of λ(z), there would exist ρ < ρ such that λ(ρ) = 1. Let v be a left eigenvector
of K (ρ, y1(ρ), . . . , ym(ρ)) corresponding to the eigenvalue λ(ρ). Perron–Frobenius
theory guarantees that such a vector v has all its coefficients that are positive. Then,
upon multiplying on the left by v the column vectors corresponding to y and 	(y)
(which are equal), one gets an identity; this derived identity, upon expanding near ρ,
gives

(74) A(z − ρ) = −
∑
i, j

Bi, j (yi (z)− yi (ρ))(y j (z)− y j (ρ))+ · · · ,

where · · · hides lower order terms and the coefficients A, Bi, j are non-negative with
A > 0. There is a contradiction in the orders of growth if each yi is assumed to be
analytic at ρ, since the left-hand side of (74) is of exact order (z − ρ) while the right-
hand side is at least as small as (z − ρ)2. Thus, we must have λ(ρ) = 1 and λ(x) < 1
for x ∈ (0, ρ).

A calculation similar to (74) but with ρ replaced by ρ shows finally that, if

yi (z)− yi (ρ) ∼ γi (ρ − z)α,

then consistency of asymptotic expansions implies 2α = 1, that is α = 1
2 . We have

thus proved: All the component solutions y j (z) have a square-root singularity at ρ.
(The existence of a complete expansion in powers of (ρ − z)1/2 results from a refine-
ment of this argument.) The proof of the general case (70) is thus complete.

(d) In the aperiodic case, we first observe that each y j (z) cannot assume an in-
finite value on its circle of convergence |z| = ρ, since this would contradict the
boundedness of |y j (z)| in the open disc |z| < ρ (where y j (ρ) serves as an upper
bound). Consequently, by singularity analysis, the Taylor coefficients of any y j (z) are
O(n−1−η) for some η > 1 and the series representing y j at the origin converges on
|z| = ρ.

For the rest of the argument, we observe that, if �y = 	(z, �y), then �y = 	〈m〉(z, �y)
where the superscript denotes iteration of the transformation 	 in the variables �y =
(y1, . . . , ym). By irreducibility, 	〈m〉 is such that each of its component polynomials
involves all the variables.

Assume a contrario the existence of a singularity ρ∗ of some y j (z) on |z| = ρ.
The triangle inequality yields |y j (ρ

∗)| ≤ y j (ρ), and the stronger form |y j (ρ
∗)| <

y j (ρ) results from the Daffodil Lemma (p. 267). Then, the modified Jacobian matrix
K 〈m〉 of 	〈m〉 taken at the y j (ρ

∗) has entries dominated strictly by the entries of K 〈m〉
taken at the y j (ρ). Therefore, the dominant eigenvalue of K 〈m〉(z, �y j (ρ

∗)) must be
strictly less than 1. This would imply that I − K 〈m〉(z, �y j (ρ

∗)) is invertible so that
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the y j (z) would be analytic at ρ∗. A contradiction has been reached: ρ is the sole
dominant singularity of each y j and this concludes the argument. �

Many extensions of the DLW Theorem are possible, as indicated by the notes and
references below—the underlying arguments are powerful, versatile, and highly gen-
eral. Consequences regarding limit distributions, as obtained by Drmota and Lalley,
are further explored in Chapter IX (p. 681).
� VII.29. Analytic systems. Drmota [172] has shown that the conclusions of the DLW The-
orem regarding universality of the square-root singularity hold more generally for 	 j that are

analytic functions of Cm+1 to C, provided there exists a positive solution of the characteris-
tic system within the domain of analyticity of the 	 j (see the original article [172] and the
note [99] for a discussion of precise conditions). This extension then unifies the DLW theorem
and Theorem VII.3 relative to the smooth implicit function schema. �

� VII.30. Pólya systems. Woods [616] has shown that several systems built from Pólya opera-
tors of the form MSETk can also be treated by an extension of the DLW Theorem, which then
unifies this theorem and Theorem VII.4. �

� VII.31. Infinite systems. Lalley [398] has extended the conclusions of the DLW Theorem to
certain infinite systems of generating function equations. This makes it possible to quantify the
return probabilities of certain random walks on infinite free products of finite groups. �

The square-root singularity property ceases to be universal when the assumptions
of Theorems VII.5 and VII.6, in essence, positivity or irreducibility, fail to be satis-
fied. For instance, supertrees that are specified by a positive but reducible system have
a singularity of the fourth-root type (Example VII.10, p. 412 to be revisited in Exam-
ple VII.20, p. 503). We discuss next, in Section VII. 7, general methods that apply to
any algebraic function and are based on the minimal polynomial equation (rather than
a system) satisfied by the function. Note that the results there do not always subsume
the present ones, since structure is not preserved when a system is reduced, by elimi-
nation, to a single equation. It would at least be desirable to determine directly, from
a positive (but reducible) system, the type of singular behaviour of the solution, but
the systematic research involved in such a programme is yet to be carried out.

VII. 7. The general analysis of algebraic functions

Algebraic series and algebraic functions are simply defined as solutions of a poly-
nomial equation or system. Their singularities are strongly constrained to be branch
points, with the local expansion at a singularity being a fractional power series known
as a Newton–Puiseux expansion (Subsection VII. 7.1). Singularity analysis then turns
out to be systematically applicable to algebraic functions, to the effect that their coef-
ficients are asymptotically composed of elements of the form

(75) C · ωnn p/q ,
p

q
∈ Q \ {−1,−2, . . .},

see Subsection VII. 7.2. This last form includes as a special case the exponent p/q =
−3/2, that was encountered repeatedly, when dealing with inverse functions, implicit
functions, and irreducible systems. In this section, we develop the basic structural
results that lead to the asymptotic forms (75). However, designing effective methods
(i.e., decision procedures) to compute the characteristic constants in (75) is not obvi-
ous in the algebraic case. Several algorithms will be described in order to locate and
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analyse singularities (e.g., Newton’s polygon method). In particular, the multivalued
character of algebraic functions creates a need to solve what are known as connection
problems.

Basics. We adopt as the starting point of the present discussion the following
definition of an algebraic function or series (see also Note VII.32 for a variant).

Definition VII.6. A function f (z) analytic in a neighbourhood V of a point z0 is said
to be algebraic if there exists a (non-zero) polynomial P(z, y) ∈ C[z, y], such that

(76) P(z, f (z)) = 0, z ∈ V.

A power series f ∈ C[[z]] is said to be an algebraic power series if it coincides with
the expansion of an algebraic function at 0.

The degree of an algebraic series or function f is by definition the minimal value
of degy P(z, y) over all polynomials that are cancelled by f (so that rational series
are algebraic of degree 1). One can always assume P to be irreducible over C (that is
P = Q R implies that one of Q or R is a scalar) and of minimal degree.

An algebraic function may also be defined by starting with a polynomial system
of the form

(77)

⎧⎪⎨⎪⎩
P1(z, y1, . . . , ym) = 0

...
...

...

Pm(z, y1, . . . , ym) = 0,

where each Pj is a polynomial. A solution of the system (77) is by definition an m–
tuple ( f1, . . . , fm) that cancels each Pj ; that is, Pj (z, f1, . . . , fm) = 0. Any of the
f j is called a component solution. A basic but non-trivial result of elimination theory
is that any component solution of a non-degenerate polynomial system is an algebraic
series (Appendix B.1: Algebraic elimination, p. 739). In other words, one can elimi-
nate the auxiliary variables y2, . . . , ym and construct a single bivariate polynomial Q
such that Q(z, y1) = 0.

We stress the point that, in the definitions by an equation (76) or a system (77),
no positivity of any sort nor irreducibility is assumed. The analysis which is now pre-
sented applies to any algebraic function, whether or not it comes from combinatorics.

� VII.32. Algebraic definition of algebraic series. It is also customary to define f to be an
algebraic series if it satisfies P(z, f ) = 0 in the sense of formal power series, without a priori
consideration of convergence issues. Then the technique of majorant series may be used to
prove that the coefficients of f grow at most exponentially. Thus, the alternative definition is
indeed equivalent to Definition VII.6. �

� VII.33. “Alg is in Diag of Rat”. Every algebraic function F(z) over C(z) is the diagonal of
a rational function G(x, y) = A(x, y)/B(x, y) ∈ C(x, y). Precisely:

F(z) =
∑
n≥0

Gn,nzn, where G(x, y) =
∑

m,n≥0

Gm,n xm yn .

This is implied by a theorem of Denef and Lipshitz [154], which is related to the holonomic
framework (Appendix B.4: Holonomic functions, p. 748). �
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0−1 +1

Figure VII.15. The real section of the lemniscate of Bernoulli defined by P(z, y) =
(z2 + y2)2 − (z2 − y2) = 0: the origin is a double point where two analytic branches
meet; there are also two real branch points at z = ±1.

� VII.34. Multinomial sums and algebraic coefficients. Let F(z) be an algebraic function.
Then Fn = [zn]F(z) is a (finite) linear combination of “multinomial forms” defined as

Sn(C; h; c1, . . . , cr ) :=
∑
C

(
n0 + h

n1, . . . , nr

)
cn1

1 · · · cnr
r ,

where the summation is over all values of n0, n1, . . . , nr satisfying a collection of linear in-
equalities C involving n. [Hint: a consequence of Denef–Lipshitz.] Consequently: coefficients
of any algebraic function over Q(z) invariably admit combinatorial (i.e., binomial) expres-
sions”. (Eisenstein’s lemma, p. 505, can be used to establish algebraicity over Q(z).) An
alternative proof can be based on Note IV.39, p. 270, and Equation (31), p. 753. �

VII. 7.1. Singularities of general algebraic functions. Let P(z, y) be an irre-
ducible polynomial of C[z, y],

P(z, y) = p0(z)y
d + p1(z)y

d−1 + · · · + pd(z).

The solutions of the polynomial equation P(z, y) = 0 define a locus of points (z, y)
in C × C that is known as a complex algebraic curve. Let d be the y-degree of P .
Then, for each z there are at most d possible values of y. In fact, there exist d values
of y “almost always”, that is except for a finite number of cases.

— If z0 is such that p0(z0) = 0, then there is a reduction in the degree in y and
hence a reduction in the number of finite y-solutions for the particular value
of z = z0. One can conveniently regard the points that disappear as “points
at infinity” (formally, one then operates in the projective plane).

— If z0 is such that P(z0, y) has a multiple root, then some of the values of y
will coalesce.

Define the exceptional set of P as the set (R is the resultant of Appendix B.1: Alge-
braic elimination, p. 739):

(78) �[P] := {z ∣∣ R(z) = 0}, R(z) := R(P(z, y), ∂y P(z, y), y).

The quantity R(z) is also known as the discriminant of P(z, y), with y as the main
variable and z a parameter. If z  ∈ �[P], then we have a guarantee that there exist
d distinct solutions to P(z, y) = 0, since p0(z)  = 0 and ∂y P(z, y)  = 0. Then, by
the Implicit Function Theorem, each of the solutions y j lifts into a locally analytic
function y j (z). A branch of the algebraic curve P(z, y) = 0 is the choice of such a
y j (z) together with a simply connected region of the complex plane throughout which
this particular y j (z) is analytic.
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Singularities of an algebraic function can thus only occur if z lies in the excep-
tional set �[P]. At a point z0 such that p0(z0) = 0, some of the branches escape to
infinity, thereby ceasing to be analytic. At a point z0 where the resultant polynomial
R(z) vanishes but p0(z)  = 0, then two or more branches collide. This can be either
a multiple point (two or more branches happen to assume the same value, but each
one exists as an analytic function around z0) or a branch point (some of the branches
actually cease to be analytic). An example of an exceptional point that is not a branch
point is provided by the classical lemniscate of Bernoulli: at the origin, two branches
meet while each one is analytic there (see Figure VII.15).

A partial knowledge of the topology of a complex algebraic curve may be ob-
tained by first looking at its restriction to the reals. Consider for instance the polyno-
mial equation P(z, y) = 0, where

P(z, y) = y − 1 − zy2,

which defines the OGF of the Catalan numbers. A rendering of the real part of the
curve is given in Figure VII.16. The complex aspect of the curve, as given by .(y) as
a function of z, is also displayed there. In accordance with earlier observations, there
are normally two sheets (branches) above each point. The exceptional set is given by
the roots of the discriminant,

R = z(1 − 4z),

that is, z = 0, 1
4 . For z = 0, one of the branches escapes at infinity, while for z = 1/4,

the two branches meet and there is a branch point: see Figure VII.16.
In summary the exceptional set provides a set of possible candidates for the sin-

gularities of an algebraic function.

Lemma VII.4 (Location of algebraic singularities). Let y(z), analytic at the origin,
satisfy a polynomial equation P(z, y) = 0. Then, y(z) can be analytically continued
along any simple path emanating from the origin that does not cross any point of the
exceptional set defined in (78).

Proof. At any z0 that is not exceptional and for a y0 satisfying P(z0, y0) = 0, the fact
that the discriminant is non-zero implies that P(z0, y) has only a simple root at y0, and
we have Py(z0, y0)  = 0. By the Implicit Function Theorem, the algebraic function
y(z) is analytic in a neighbourhood of z0. �

Nature of singularities. We start the discussion with an exceptional point that
is placed at the origin (by a translation z 	→ z + z0) and assume that the equation
P(0, y) = 0 has k equal roots y1, . . . , yk where y = 0 is this common value (by a
translation y 	→ y + y0 or an inversion y 	→ 1/y, if points at infinity are consid-
ered). Consider a punctured disc |z| < r that does not include any other exceptional
point relative to P . In the argument that follows, we let y1, (z), . . . , yk(z) be analytic
determinations of the root that tend to 0 as z → 0.

Start at some arbitrary value interior to the real interval (0, r), where the quantity
y1(z) is locally an analytic function of z. By the implicit function theorem, y1(z) can
be continued analytically along a circuit that starts from z and returns to z while simply
encircling the origin (and staying within the punctured disc). Then, by permanence of
analytic relations, y1(z) will be taken into another root, say, y(1)1 (z). By repeating the
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Figure VII.16. The real section of the Catalan curve (top). The complex Catalan
curve with a plot of .(y) as a function of z = (-(z),.(z)) (bottom left); a blow-up
of .(y) near the branch point at z = 1/4 (bottom right).

process, we see that, after a certain number of times κ with 1 ≤ κ ≤ k, we will have
obtained a collection of roots y1(z) = y(0)1 (z), . . . , y(κ)1 (z) = y1(z) that form a set of
κ distinct values. Such roots are said to form a cycle. In this case, y1(tκ) is an analytic
function of t except possibly at 0 where it is continuous and has value 0. Thus, by
general principles (regarding removable singularities, see Morera’s Theorem, p. 743),
it is in fact analytic at 0. This in turn implies the existence of a convergent expansion
near 0:

(79) y1(t
κ) =

∞∑
n=1

cntn .

(The parameter t is known as the local uniformizing parameter, as it reduces a multi-
valued function to a single-valued one.) This translates back into the world of z: each
determination of z1/κ yields one of the branches of the multivalued analytic function
as

(80) y1(z) =
∞∑

n=1

cnzn/κ .



“book” — 2008/10/3 — 16:05 — page 498 — #512

498 VII. APPLICATIONS OF SINGULARITY ANALYSIS

Alternatively, with ω = e2iπ/κ a root of unity, the κ determinations are obtained as

y( j)
1 (z) =

∞∑
n=1

cnω
nzn/κ ,

each being valid in a sector of opening < 2π . (The case κ = 1 corresponds to an
analytic branch.)

If κ = k, then the cycle accounts for all the roots which tend to 0. Otherwise,
we repeat the process with another root and, in this fashion, eventually exhaust all
roots. Thus, all the k roots that have value 0 at z = 0 are grouped into cycles of size
κ1, . . . , κ�. Finally, values of y at infinity are brought to zero by means of the change
of variables y = 1/u, then leading to negative exponents in the expansion of y.

Theorem VII.7 (Newton–Puiseux expansions at a singularity). Let f (z) be a branch
of an algebraic function P(z, f (z)) = 0. In a circular neighbourhood of a singu-
larity ζ slit along a ray emanating from ζ , f (z) admits a fractional series expansion
(Puiseux expansion) that is locally convergent and of the form

f (z) =
∑
k≥k0

ck(z − ζ )k/κ ,

for a fixed determination of (z − ζ )1/κ , where k0 ∈ Z and κ is an integer ≥ 1, called
the “branching type”13.

Newton (1643–1727) discovered the algebraic form of Theorem VII.7 and pub-
lished it in his famous treatise De Methodis Serierum et Fluxionum (completed in
1671). This method was subsequently developed by Victor Puiseux (1820–1883) so
that the name of Puiseux series is customarily attached to fractional series expansions.
The argument given above is taken from the neat presentation offered by Hille in [334,
Ch. 12, vol. II]. It is known as a “monodromy argument”, meaning that it consists in
following the course of values of an analytic function along paths in the complex plane
till it returns to its original value.

Newton polygon. Newton also described a constructive approach to the determi-
nation of branching types near a point (z0, y0), that, by means of the previous dis-
cussion, can always be taken to be (0, 0). In order to introduce the discussion, let us
examine the Catalan generating function near z0 = 1/4. Elementary algebra gives the
explicit form of the two branches

y1(z) = 1

2z

(
1 −√

1 − 4z
)
, y2(z) = 1

2z

(
1 +√

1 − 4z
)
,

whose forms are consistent with what Theorem VII.7 predicts. If however one starts
directly with the equation,

P(z, y) ≡ y − 1 − zy2 = 0

13From the general discussion, if k0 < 0, then κ = 1 is possible (case f (ζ ) = ∞, with a polar
singularity); if k0 ≥ 0, then a singularity only exists if κ ≥ 2 (case of a branch point with | f (ζ )| < ∞).
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then, the translation z = 1/4 − Z (the minus sign is a mere notational convenience),
y = 2 + Y yields

(81) Q(Z ,Y ) ≡ −1

4
Y 2 + 4Z + 4ZY + ZY 2.

Look for solutions of the form Y = cZα(1 + o(1)) with c  = 0, whose existence is a
priori granted by Theorem VII.7 (Newton–Puiseux). Each of the monomials in (81)
gives rise to a term of a well-determined asymptotic order, respectively, Z2α , Z1,
Zα+1, Z2α+1. If the equation is to be identically satisfied, then the main asymptotic
order of Q(Z ,Y ) should be 0. Since c  = 0, this can only happen if two or more of the
exponents in the sequence (2α, 1, α + 1, 2α + 1) coincide and the coefficients of the
corresponding monomial in P(Z , Y ) is zero, a condition that is an algebraic constraint
on the constant c. Furthermore, exponents of all the remaining monomials have to be
larger since by assumption they represent terms of lower asymptotic order.

Examination of all the possible combinations of exponents leads one to discover
that the only possible combination arises from the cancellation of the first two terms
of Q, namely − 1

4 Y 2 + 4Z , which corresponds to the set of constraints

2α = 1, −1

4
c2 + 4 = 0,

with the supplementary conditions α + 1 > 1 and 2α + 1 > 1 being satisfied by this
choice α = 1/2. We have thus discovered that Q(Z ,Y ) = 0 is consistent asymptoti-
cally with

Y ∼ 4Z1/2, Y ∼ −4Z1/2.

The process can be iterated upon subtracting dominant terms. It invariably gives
rise to complete formal asymptotic expansions that satisfy Q(Z ,Y ) = 0 (in the Cata-
lan example, these are series in ±Z1/2). Furthermore, elementary majorizations estab-
lish that such formal asymptotic solutions represent indeed convergent series. Thus,
local expansions of branches have indeed been determined.

An algorithmic refinement (also due to Newton) is known as the method of New-
ton polygons. Consider a general polynomial

Q(Z ,Y ) =
∑
j∈J

Za j Y b j ,

and associate to it the finite set of points (a j , b j ) in N×N, which is called the Newton
diagram. It is easily verified that the only asymptotic solutions of the form Y ∝ Z τ

correspond to values of τ that are inverse slopes (i.e., �x/�y) of lines connecting
two or more points of the Newton diagram (this expresses the cancellation condition
between two monomials of Q) and such that all other points of the diagram are on this
line or to the right of it (as the other monomials must be of smaller order). In other
words:

Newton’s polygon method. Any possible exponent τ such that Y ∼ cZ τ is
a solution to a polynomial equation corresponds to one of the inverse slopes
of the left-most convex envelope of the Newton diagram. For each viable τ ,
a polynomial equation constrains the possible values of the corresponding
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Figure VII.17. The real algebraic curve defined by the equation P = (y − z2)(y2 −
z)(y2 − z3)− z3 y3 near (0, 0) (left) and the corresponding Newton diagram (right).

coefficient c. Complete expansions are obtained by repeating the process,
which means deflating Y from its main term by way of the substitution Y 	→
Y − cZ τ .

Figure VII.17 illustrates what goes on in the case of the curve P = 0 where

P(z, y) = (y − z2)(y2 − z)(y2 − z3)− z3 y3

= y5 − y3z − y4z2 + y2z3 − 2 z3 y3 + z4 y + z5 y2 − z6,

considered near the origin. As the factored part suggests, the curve is expected to
resemble (locally) the union of two orthogonal parabolas and of a curve y = ±z3/2

having a cusp, i.e., the union of

y = z2, y = ±√
z, y = ±z3/2,

respectively. It is visible on the Newton diagram that the possible exponents y ∝ zτ

at the origin are the inverse slopes of the segments composing the envelope, that is,

τ = 2, τ = 1

2
, τ = 3

2
.

For computational purposes, once determined the branching type κ , the value of
k0 that dictates where the expansion starts, and the first coefficient, the full expansion
can be recovered by deflating the function from its first term and repeating the New-
ton diagram construction. In fact, after a few initial stages of iteration, the method
of indeterminate coefficients can always be eventually applied [Bruno Salvy, private
communication, August 2000]. Computer algebra systems usually have this routine
included as one of the standard packages; see [531].

VII. 7.2. Asymptotic form of coefficients. The Newton–Puiseux theorem de-
scribes precisely the local singular structure of an algebraic function. The expansions
are valid around a singularity and, in particular, they hold in indented discs of the type
required in order to apply the formal translation mechanisms of singularity analysis.
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Theorem VII.8 (Algebraic asymptotics). Let f (z) = ∑
n fnzn be the branch of an

algebraic function that is analytic at 0. Assume that f (z) has a unique dominant
singularity at z = α1 on its circle of convergence. Then, in the non-polar case, the
coefficient fn satisfies the asymptotic expansion,

(82) fn ∼ α−n
1

⎛⎝∑
k≥k0

dkn−1−k/κ

⎞⎠ ,

where k0 ∈ Z and κ is an integer ≥ 2. In the polar case, κ = 1 and k0 < 0, the
estimate (82) is to be interpreted as a terminating (exponential–polynomial) form.

If f (z) has several dominant singularities |α1| = |α2| = · · · = |αr |, then there
exists an asymptotic decomposition (where ε is some small fixed number, ε > 0)

(83) fn =
r∑

j=1

φ( j)(n)+ O((|α1| + ε))−n,

where each φ( j)(n) admits a complete asymptotic expansion,

φ( j)(n) ∼ α−n
j

⎛⎜⎝ ∑
k≥k( j)

0

d( j)
k n−1−k/κ j

⎞⎟⎠ ,

with either k( j)
0 in Z and κ j an integer ≥ 2 or κ j = 1 and k0 < 0.

Proof. An early version of this theorem appeared as [220, Th. D, p. 293]. The expan-
sions granted by Theorem VII.7 are of the exact type required by singularity analysis
(Theorem VI.4, p. 393). For multiple singularities, Theorem VI.5 (p. 398) based on
composite contours is to be used: in that case each φ( j)(n) is the contribution obtained
by transfer of the corresponding local singular element. �

In the case of multiple singularities, partial cancellations may occur in some of
the dominant terms of (83): consider for instance the case of

1√
1 − 6

5 z + z2
= 1 + 0.60z + 0.04z2 − 0.36z3 − 0.408z4 − · · · ,

where the function has two complex conjugate singularities with an argument not
commensurate to π , and refer to the corresponding discussion of rational coefficients
asymptotics (Subsection IV. 6.1, p. 263). Fortunately, such delicate arithmetic situa-
tions tend not to arise in combinatorial situations.

Example VII.18. Branches of unary–binary trees. The generating function of unary–binary
trees (Motzkin numbers, pp. 68 and 396) is f (z) defined by P(z, f (z)) = 0 where

P(z, y) = y − z − zy − zy2,

so that

f (z) = 1 − z −
√

1 − 2z − 3z2

2z
= 1 − z −√

(1 + z)(1 − 3z)

2z
.

There exist only two branches: f and its conjugate f that form a 2–cycle at z = 1/3. The
singularities of all branches are at 0,−1, 1/3 as is apparent from the explicit form of f or from
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Figure VII.18. The real algebraic curve corresponding to non-crossing forests.

the defining equation. The branch representing f (z) at the origin is analytic there (by a general
argument or by the combinatorial origin of the problem). Thus, the dominant singularity of f (z)
is at 1/3 and it is unique in its modulus class. The “easy” case of Theorem VII.8 then applies
once f (z) has been expanded near 1/3. As a rule, the organization of computations is simpler
if one makes use of the local uniformizing parameter with a choice of sign in accordance to the
direction along which the singularity is approached. In this case, we set z = 1/3 − δ2 and find

f (z) = 1 − 3 δ + 9

2
δ2 − 63

8
δ3 + 27

2
δ4 − 2997

128
δ5 + · · · , δ =

(
1

3
− z

)1/2
.

This translates immediately into

fn ≡ [zn] f (z) ∼ 3n+1/2

2
√
πn3

(
1 − 15

16n
+ 505

512n2
− 8085

8192n3
+ · · ·

)
,

which agrees with the direct derivation of Example VI.3, p. 396. . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.35. Meta-asymptotics. Estimate the growth of the coefficients in the asymptotic expan-
sions of Catalan and Motzkin (unary–binary trees) numbers. �

Example VII.19. Branches of non-crossing forests. Consider the polynomial equation P(z, y) =
0, where

P(z, y) = y3 + (z2 − z − 3)y2 + (z + 3)y − 1,

(see Figure VII.18 for the real branches) and the combinatorial GF satisfying P(z, F) = 0
determined by the initial conditions,

F(z) = 1 + 2z + 7z2 + 33z3 + 181z4 + 1083z5 + · · · .
(EIS A054727). F(z) is the OGF of non-crossing forests defined in Example VII.16, p. 485.

The exceptional set is mechanically computed: its elements are roots of the discriminant

R = −z3(5z3 − 8z2 − 32z + 4).

Newton’s algorithm shows that two of the branches at 0, say y0 and y2, form a cycle of length 2
with y0 = 1−√

z+O(z), y2 = 1+√
z+O(z)while it is the “middle branch” y1 = 1+z+O(z2)

that corresponds to the combinatorial GF F(z).
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The non-zero exceptional points are the roots of the cubic factor of R; namely

�
.= {−1.93028, 0.12158, 3.40869}.

Let ξ
.= 0.1258 be the root in (0, 1). By Pringsheim’s theorem and the fact that the OGF

of an infinite combinatorial class must have a positive dominant singularity in [0, 1], the only
possibility for the dominant singularity of y1(z) is ξ .

For z near ξ , the three branches of the cubic give rise to one branch that is analytic with
value approximately 0.67816 and a cycle of two conjugate branches with value near 1.21429 at
z = ξ . The expansion of the two conjugate branches is of the singular type,

α ± β
√

1 − z/ξ,

where

α = 43

37
+ 18

37
ξ − 35

74
ξ2 .= 1.21429, β = 1

37

√
228 − 981ξ − 5290ξ2 .= 0.14931.

The determination with a minus sign must be adopted for representing the combinatorial GF
when z → ξ− since otherwise one would get negative asymptotic estimates for the non-negative
coefficients. Alternatively, one may examine the way the three real branches along (0, ξ) match
with one another at 0 and at ξ−, then conclude accordingly.

Collecting partial results, we finally get by singularity analysis the estimate

Fn = β

2
√
πn3

ωn
(

1 + O(
1

n
)

)
, ω = 1

ξ

.= 8.22469

with the cubic algebraic number ξ and the sextic β as above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The example above illustrates several important points in the analysis of coeffi-
cients of algebraic functions when there are no simple explicit radical forms. First,
a given combinatorial problem determines a unique branch of an algebraic curve at
the origin. Next, the dominant singularity has to be identified by “connecting” the
combinatorial branch with the branches at every possible singularity of the curve. Fi-
nally, computations tend to take place over algebraic numbers and not simply rational
numbers.

So far, examples have illustrated the common situation where the function’s ex-
ponent at its dominant singularity is 1/2. Our last example shows a case where the
exponent assumes a different value, namely 1/4.

Example VII.20. Branches of supertrees. Consider the quartic equation

y4 − 2 y3 + (1 + 2 z) y2 − 2 yz + 4 z3 = 0

and let K be the branch analytic at 0 determined by the initial conditions:

K (z) = 2 z2 + 2 z3 + 8 z4 + 18 z5 ++64 z6 + 188 z7 + · · · .
The OGF K corresponds to bicoloured supertrees of Example VI.10, p. 412; a partial graph is
represented in Figure VII.19.

The discriminant is found to be

R = 16 z4
(

16 z2 + 4 z − 1
)
(−1 + 4 z)3 ,

with roots at 1/4 and (−1 ± √
5)/8. The dominant singularity of the branch of combinatorial

interest turns out to be at z = 1
4 where K (1/4) = 1/2. The translation z = 1/4+Z , y = 1/2+Y
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Figure VII.19. The real algebraic curve associated with the generating function of
supertrees of type K .

then transforms the basic equation into

4 Y 4 + 8 ZY 2 + 16 Z3 + 12 Z2 + Z = 0.

According to Newton’s polygon method, the main cancellation arises from 4Y 4 + Z = 0: this
corresponds to a segment of inverse slope 1/4 in the Newton diagram and accordingly to a cycle
formed with four conjugate branches, i.e., a fourth-root singularity. Thus, one has

K (z) ∼
z→ 1

4

1/2 − 1√
2

(
1

4
− z

)1/4
− 1√

2

(
1

4
− z

)3/4
+ · · · , [zn]K (z) ∼

n→∞
4n

8�( 3
4 )n

5/4
,

which is consistent with values found earlier (p. 412). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Computable coefficient asymptotics. The previous discussion contains the germ
of a complete algorithm for deriving an asymptotic expansion of coefficients of any
algebraic function. We sketch in Note VII.36 the main principles, while leaving some
of the details to the reader. Observe that the problem is a connection problem: the
“shapes” of the various sheets around each point (including the exceptional points) are
known, but it remains to connect them together and see which ones are encountered
first when starting with a given branch at the origin.
� VII.36. Algebraic Coefficient Asymptotics (ACA). Here is an outline of the algorithm.

Algorithm ACA:

Input: A polynomial P(z, y) with d = degy P(z, y); a series Y (z) such that P(z, Y ) = 0 and
assumed to be specified by sufficiently many initial terms so as to be distinguished from all
other branches.

Output: The asymptotic expansion of [zn]Y (z) whose existence is granted by Theorem VII.8.

The algorithm consists of three main steps: Preparation (I), Dominant singularities (II), and
Translation (III).

I. Preparation: Define the discriminant R(z) = R(P, P ′
y, y).
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(P1) Compute the exceptional set � = {z ∣∣ R(z) = 0} and the points of infinity �0 =
{z ∣∣ p0(z) = 0}, where p0(z) is the leading coefficient of P(z, y) considered as a
function of y.

(P2) Determine the Puiseux expansions of all the d branches at each of the points of
� ∪ {0} (by Newton diagrams and/or indeterminate coefficients). This includes the
expansion of analytic branches as well. Let {yα, j (z)}dj=1 be the collection of all
such expansions at some α ∈ � ∪ {0}.

(P3) Identify the branch at 0 that corresponds to Y (z).

II. Dominant singularities: (Controlled approximate matching of branches). Let�1, �2, . . .
be a partition of the elements of �∪ {0} sorted according to the increasing values of their mod-
ulus: it is assumed that the numbering is such that if α ∈ �i and β ∈ � j , then |α| < |β| is
equivalent to i < j . Geometrically, the elements of � have been grouped in concentric circles.
First, a preparation step is needed.

(D1) Determine a non-zero lower bound δ on the radius of convergence of any local
Puiseux expansion of any branch at any point of �. Such a bound can be con-
structed from the minimal distance between elements of � and from the degree d of
the equation.

The sets � j are to be examined in sequence until it is detected that one of them contains a sin-
gularity. At step j , let σ1, σ2, . . . , σs be an arbitrary listing of the elements of � j . The problem
is to determine whether any σk is a singularity and, in that event, to find the right branch to
which it is associated. This part of the algorithm proceeds by controlled numerical approxima-
tions of branches and constructive bounds on the minimum separation distance between distinct
branches.

(D2) For each candidate singularity σk , with k ≥ 2, set ζk = σk(1−δ/2). By assumption,
each ζk is in the domain of convergence of Y (z) and of any yσk , j .

(D3) Compute a non-zero lower bound ηk on the minimum distance between two roots of
P(ζk , y) = 0. This separation bound can be obtained from resultant computations.

(D4) Estimate Y (ζk) and each yσk , j (ζk) to an accuracy better than ηk/4. If two elements,
Y (z) and yσk , j (z) are (numerically) found to be at a distance less than ηk for z =
ζk , then they are matched: σk is a singularity and the corresponding yσk , j is the
corresponding singular element. Otherwise, σk is declared to be a regular point for
Y (z) and discarded as candidate singularity.

The main loop on j is repeated until a singularity has been detected, when j = j0, say. The
radius of convergence ρ is then equal to the common modulus of elements of � j0 ; the corre-
sponding singular elements are retained.

III. Coefficient expansion: Collect the singular elements at all the points σ determined to
be a dominant singularity at Phase II. Translate termwise using the singularity analysis rule,

(σ − z)p/κ 	→ σ p/κ−n �(−p/κ + n)

�(−p/κ)�(n + 1)
,

and reorganize into descending powers of n, if needed. �

This algorithm vindicates the following assertion (see also Chabaud’s thesis [110]).

Proposition VII.8 (Decidability of algebraic connections.). The dominant singular-
ities of a branch of an algebraic function can be determined in a finite number of
operations by the algorithm ACA of Note VII.36.

� VII.37. Eisenstein’s lemma. Let y(z) be an algebraic function with rational coefficients (for
instance a combinatorial generating function) satisfying 	(z, y(z)) = 0, where the coefficient
of the polynomial 	 are in C; then there exists a polynomial 
 with integer coefficients such
that 
(z, y(z)) = 0. (Hint [65]. Consider the case where the coefficients of 	 are Q–linear
combinations of 1 and an irrational α, and write 	(z, y) = 	1(z, y) + α	α(z, y), where
	1,	α ∈ Q[z, y]; extracting [zn]	(z, y(z)) would produce a Q–linear relation between 1
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and α, unless one of 	1,	α is trivial, which must then be the case.) Thus, one can get 
(z, y)
in Q[z, y], and by clearing denominators, in Z[z, y]. As a consequence, for algebraic y(z) with
rational coefficients, there exists an integer B such that for all n, one has Bn[zn]y(z) ∈ Z. Since
there are infinitely many primes, the functions ez , log(1+ z),

∑
zn/n2,

∑
zn/(n!)3, and so on,

are transcendental (i.e., not algebraic). �

� VII.38. Powers of binomial coefficients. Define Sr (z) := ∑
n≥0

(2n
n
)r

zn , with r ∈ Z>0. For
even r = 2ν the function S2ν(z) is transcendental (not algebraic) since its singular expansion
involves a logarithmic term. For odd r = 2ν + 1 and r ≥ 3, the function S2ν+1(z) is also
transcendental as a consequence of the arithmetic transcendence of the number π ; see [220].
These functions intervene in Pólya’s drunkard problem (p. 425). In contrast with the “hard”
theory of arithmetic transcendence, it is usually “easy” to establish transcendence of functions,
by exhibiting a local expansion that contradicts the Newton–Puiseux Theorem (p. 498). �

VII. 8. Combinatorial applications of algebraic functions

In this section, we introduce objects whose construction leads to algebraic func-
tions, in a way that extends the basic symbolic method. This includes: walks with
a finite number of allowed jumps (Subsection VII. 8.1) and planar maps (Subsec-
tion VII. 8.2). In such cases, bivariate functional equations reflect the combinatorial
decompositions of objects. The common form of these functional equations is

(84) 	(z, u, F(z, u), h1(z), . . . , hr (z)) = 0,

where 	 is a known polynomial and the unknown functions are F and h1, . . . , hr .
Specific methods are needed in order to attain solutions to such functional equations
that would seem at first glance to be grossly underdetermined. Walks and excursions
lead to a linear version of (84) that is treated by the so-called kernel method. Maps lead
to nonlinear versions that are solved by means of Tutte’s quadratic method. In both
cases, the strategy consists in binding z and u by forcing them to lie on an algebraic
curve (suitably chosen in order to eliminate the dependency on F(z, u)), and then
pulling out consequences of such a specialization. Asymptotic estimates can then be
developed from such algebraic solutions, thanks to the general methods expounded in
the previous section.

VII. 8.1. Walks and the kernel method. Start with a set � that is a finite sub-
set of Z and is called the set of jumps. A walk (relative to �) is a sequence w =
(w0, w1, . . . , wn) such that w0 = 0 and wi+1 − wi ∈ �, for all i , 0 ≤ i < n. A
non-negative walk (also known as a “meander”) satisfies wi ≥ 0 and an excursion is
a non-negative walk such that, additionally, wn = 0. A bridge is a walk such that
wn = 0. The quantity n is called the length of the walk or the excursion. For in-
stance, Dyck paths and Motzkin paths analysed in Section V. 4, p. 318, are excursions
that correspond to � = {−1,+1} and � = {−1, 0,+1}, respectively. (Walks and
excursions are also somewhat related to paths in graphs in the sense of Section V. 5,
p. 336.)

We let −c denote the smallest (negative) value of a jump, and d denote the largest
(positive) jump. A fundamental rôle is played in this discussion by the characteristic
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polynomial14 of the walk,

S(y) :=
∑
ω∈�

yω =
d∑

j=−c

S j y j ,

which is a Laurent polynomial; that is, it involves negative powers of the variable y. .

Walks. Observe first the rational character of the BGF of walks, with z marking
length and u marking final altitude:

(85) W (z, u) = 1

1 − zS(u)
.

Since walks may terminate at a negative altitude, this is a Laurent series in u.

Bridges. The GF of bridges is formally [u0]W (z, u), since bridges correspond to
walks that end at altitude 0. Thus one has

(86) B(z) = 1

2iπ

∫
γ

1

1 − zS(u)

du

u
,

upon integrating along a circle γ that separates the small and large branches, as dis-
cussed below. The integral can then be evaluated by residues: details are found in [27];
the net result is Equation (97), p. 511.

Excursions and meanders. We propose next to determine the number Fn of ex-
cursions of length n and type �, via the corresponding OGF

F(z) =
∞∑

n=0

Fnzn .

In fact, we shall determine the more general BGF

F(z, u) :=
∑
n,k

Fn,kuk zn,

where Fn,k is the number of non-negative walks (meanders) of length n and final
altitude k (i.e., the value of wn in the definition of a walk is constrained to equal k). In
particular, one has F(z) = F(z, 0).

The main result of this subsection can be stated informally as follows (see Propo-
sitions VII.9, p. 510 and VII.10, p. 513 for precise versions):

For each finite set � ∈ Z, the generating function of excursions is an alge-
braic function that is explicitly computable from �. The number of excur-
sions of length n satisfies asymptotically a universal law of the form

C Ann−3/2.

14If � is a set, then the coefficients of S lie in {0, 1}. The treatment presented here applies in all
generality to cases where the coefficients are arbitrary positive real numbers. This accounts for probabilistic
situations as well as multisets of jump values.
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There are many ways to view this result. The problem is usually treated within proba-
bility theory by means of Wiener–Hopf factorizations [515], and Lalley [396] offers an
insightful analytic treatment from this angle. On another level, Labelle and Yeh [392]
show that an unambiguous context-free specification of excursions can be systemat-
ically constructed, a fact that is sufficient to ensure the algebraicity of the GF F(z).
(Their approach is implicitly based on the construction of a pushdown automaton it-
self equivalent, by general principles, to a context-free grammar.) The Labelle–Yeh
construction reduces the problem to a large, but somewhat “blind”, combinatorial pre-
processing. Accordingly, for analysts, it has the disadvantage of not extracting a sim-
pler analytic (but non-combinatorial) structure inherent in the problem: the shape of
the end result can indeed be predicted by the Drmota–Lalley–Woods Theorem, but the
nature of the constants involved is not clearly accessible in this way.

The kernel method. The method described below is often known as the kernel
method. It takes some of its inspiration from exercises in the 1968 edition of Knuth’s
book [377] (Ex. 2.2.1.4 and 2.2.1.11), where a new approach was proposed to the
enumeration of Catalan and Schröder objects. The technique has since been extended
and systematized by several authors; see for instance [26, 27, 86, 202, 203] for relevant
combinatorial works. Our presentation below follows that of Lalley [396] and of
Banderier and Flajolet [27].

The polynomial fn(u) = [zn]F(z, u) is the generating function of non-negative
walks of length n, with u recording final altitude. A simple recurrence relates fn+1(u)
to fn(u), namely,

(87) fn+1(u) = S(u) · fn(u)− rn(u),

where rn(u) is a Laurent polynomial consisting of the sum of all the monomials of
S(u) fn(u) that involve negative powers15 of u:

(88) rn(u) :=
−1∑

j=−c

u j ([u j ] S(u) fn(u)) = {u<0}S(u) fn(u).

The idea behind the formula is to subtract the effect of those steps that would take the
walk below the horizontal axis. For instance, one has

S(u) = S−1

u
+ O(1), so that rn(u) = S−1

u
fn(0)

S(u) = S−2

u2
+ S−1

u
+ O(1), so that rn(u) =

(
S−2

u2
+ S−1

u

)
fn(0)+ S−2

u
f ′n(0).

(This technique is similar to that of “adding a slice”, p. 199.)
Generally, set

(89) λ j (u) := 1

j!
{u<0}u j S(u).

15The convenient notation {u<0} denotes the singular part of a Laurent expansion: {u<0} f (z) :=∑
j<0

(
[u j ] f (u)

)
· u j .
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Then, from (87) and (88) (multiply by zn+1 and sum), the generating function F(z, u)
satisfies the fundamental functional equation

(90) F(z, u) = 1 + zS(u)F(z, u)− z{u<0} (S(u)F(z, u)) .

Thus, one has, explicitly,

(91) F(z, u) = 1 + zS(u)F(z, u)− z
c−1∑
j=0

λ j (u)

[
∂ j

∂u j
F(z, u)

]
u=0

,

where the Laurent polynomials λ j (u) depend on S(u) in an effective way by (89).
The main equations (90) and (91) involve one unknown bivariate GF, F(z, u)

and c univariate GFs, the partial derivatives of F specialized at u = 0. It is true, but
not at all obvious, that the single functional equation (91) fully determines the c + 1
unknowns. The basic technique is known as “cancelling the kernel” and it relies on
strong analyticity properties; see the book by Fayolle et al. [203] for deep ramifica-
tions in the study of two-dimensional walks. The form of (91) to be employed for this
purpose starts by grouping on one side the terms involving F(z, u),

(92) F(z, u)(1 − zS(u)) = 1 − z
c−1∑
j=0

λ j (u)G j (z), G j (z) :=
[
∂ j

∂u j
F(z, u)

]
.

If the right-hand side sum was not present, then the solution would reduce to (85). In
the case at hand, from the combinatorial origin of the problem and implied bounds,
the quantity F(z, u) is bivariate analytic at (z, u) = (0, 0) (by elementary exponential
majorizations on the coefficients). The main principle of the kernel method consists
in coupling the values of z and u in such a way that 1 − zS(u) = 0, so that F(z, u)
disappears from the picture. A condition is that both z and u should remain small (so
that F remains analytic). Relations between the partial derivatives are then obtained
from such a specialization, (z, u) 	→ (z, u(z)), which happen to be just in the right
number.

Consequently, we consider the “kernel equation”,

(93) 1 − zS(u) = 0,

which is rewritten as
uc = z · (uc S(u)).

Under this form, it is clear that the kernel equation (93) defines c + d branches of an
algebraic function. A local analysis shows that, among these c+ d branches, there are
c branches that tend to 0 as z → 0, whereas the other d tend to infinity as z → 0. (The
idea is that, in the equation (93), either one of zu−c ≈ 1 or zud ≈ 1 predominates;
equivalently, a Newton polygon can be constructed.) Let u0(z), . . . , uc−1(z) be the
c branches that tend to 0, that we call “small” branches. In addition, we single out
u0(z), the “principal” solution, by the reality condition

u0(z) ∼ γ z1/c, γ := (Sc)
1/c ∈ R>0 (z → 0+).

By local uniformization (see (79), p. 497), the conjugate branches are given locally by

u�(z) = u0(e
2i�π z) (z → 0+).



“book” — 2008/10/3 — 16:05 — page 510 — #524

510 VII. APPLICATIONS OF SINGULARITY ANALYSIS

Coupling z and u by u = u�(z) produces interesting specializations of Equa-
tion (92). In that case, (z, u) is close to (0, 0) where F is bivariate analytic so that the
substitution is admissible. By substitution, we get

(94) 1 − z
c−1∑
j=0

λ j (u�(z))

[
∂ j

∂u j
F(z, u)

]
u=0

, � = 0 . . c − 1.

This is now a linear system of c equations in c unknowns (namely, the partial deriva-
tives) with algebraic coefficients that, in principle, determine F(z, 0).

A convenient approach to the solution of (94) is due to Mireille Bousquet-Mélou.
The argument goes as follows. The quantity

(95) M(u) := uc − zuc
c−1∑
j=0

λ j (u)
∂ j

∂u j
F(z, 0)

can be regarded as a polynomial in u. It is monic while it vanishes by construction at
the c small branches u0, . . . , uc−1. Consequently, one has the factorization,

(96) M(u) =
c−1∏
�=0

(u − u�(z)).

Now, the constant term of M(u) is otherwise known to equal −zS−c F(z, 0), by the
definition (95) of M(u) and by Equation (89) specialized to λ0(u). Thus, the compar-
ison of constant terms between (95) and (96) provides us with an explicit form of the
OGF of excursions:

F(z, 0) = (−1)c−1

S−cz

c−1∏
�=0

u�(z).

One can then finally return to the original functional equation and pull the BGF F(z, u).
In summary:

Proposition VII.9. Let � be a finite step of jumps and let S(u) be the characteristic
polynomial of �. Consider the c small branches of the “kernel” equation,

1 − zS(u) = 0,

denoted by u0(z), . . . , uc−1(z). The generating function of excursions is given by

F(z) = (−1)c−1

zS−c

c−1∏
�=0

u�(z), where S−c = [u−c]S(u)

is the multiplicity (or weight) of the smallest element −c ∈ �. More generally the
bivariate generating function of non-negative walks (meanders) with u marking final
altitude is bivariate algebraic and given by

F(z, u) = 1

uc − zuc S(u)

c−1∏
�=0

(u − u�(z)) .
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The OGF of bridges is expressible in terms of the small branches, by

(97) B(z) = z
c∑

j=1

u′
j (z)

u j (z)
= z

d

dz
log (u1(z) · · · uc(z)) .

(The proof of (97) is based on a residue evaluation of (86), p. 507.)

Example VII.21. Trees and Łukasiewicz codes. A particular class of walks is of special
interest; it corresponds to cases where c = 1; that is, the largest jump in the negative direction
has amplitude 1. Consequently, � + 1 = {0, s1, s2, . . . , sd }. In that situation, combinatorial
theory teaches us the existence of fundamental isomorphisms between walks defined by steps
� and trees whose degrees are constrained to lie in 1 + �. The correspondence is by way of
Łukasiewicz codes16, also known as ‘Polish” prefix codes introduced in Chapter I. From this
correspondence, we expect to find tree GFs in such cases.

With regard to generating functions, there now exists only one small branch, namely the
solution u0(z) to u0(z) = zφ(u0(z)) (where φ(u) = uS(u)) that is analytic at the origin. One
then has F(z) = F(z, 0) = 1

z u0(z), so that the walk GF is determined by

F(z, 0) = 1

z
u0(z), u0(z) = zφ(u0(z)), φ(u) := uS(u).

This form is consistent with what is already known regarding the enumeration of simple families
of trees. In addition, one finds

F(z, u) = 1 − u−1u0(z)

1 − zS(u)
= u − u0(z)

u − zφ(u)
.

Classical cases are rederived in this way:

— the Catalan walk (Dyck path), defined by � = {−1,+1} and φ(u) = 1 + u2, has

u0(z) =
1

2z

(
1 −

√
1 − 4z2

)
;

— the Motzkin walk, defined by � = {−1, 0,+1} and φ(u) = 1 + u + u2 has

u0(z) =
1

2z

(
1 − z −

√
1 − 2z − 3z2

)
;

— the modified Catalan walk, defined by � = {−1, 0, 0,+1} (with two steps of type 0)
and φ(u) = 1 + 2u + u2, has

u0(z) =
1

2z

(
1 − 2z −√

1 − 4z
)
;

— the d–ary tree walk (the excursions encode d–ary trees) defined by � = {−1, d−1},
has u0(z) that is defined implicitly by u0(z) = z(1 + u0(z)

d ).

The kernel method thus provides a new perspective for the enumeration of Dyck paths and
related objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

16Such a code (p. 74) is obtained by a preorder traversal of the tree, recording a jump of r − 1 when a
node of outdegree r is encountered. The sequence of jumps gives rise to an excursion followed by an extra
−1 jump.
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Example VII.22. Walks with amplitude at most 2. Take � = {−2,−1, 1, 2}, so that

S(u) = u−2 + u−1 + u + u2.

Then, u0(z), u1(z) are the two branches that vanish as z → 0 of the curve

y2 = z(1 + y + y3 + y4).

The linear system that determines F(z, 0) and F ′
u(z, 0) is⎧⎪⎪⎨⎪⎪⎩

1 −
(

z

u0(z)2
+ z

u0(z)

)
F(z, 0)− z

u0(z)
F ′

u(z, 0) = 0

1 −
(

z

u1(z)2
+ z

u1(z)

)
F(z, 0)− z

u1(z)
F ′

u(z, 0) = 0

(derivatives are taken with respect to the second argument) and one finds

F(z, 0) = −1

z
u0(z)u1(z), F ′

u(z, 0) = 1

z
(u0(z)+ u1(z)+ u0(z)u1(z)).

This gives the number of walks, through a combination of series expansions,

F(z) = 1 + 2z2 + 2z3 + 11z4 + 24z5 + 93z6 + 272z7 + 971z8 + 3194z9 + · · · .
A single algebraic equation for F(z) = F(z, 0) is then obtained by elimination (e.g., via
Gröbner bases) from the system:⎧⎨⎩

u2
0 − z(1 + u0 + u3

0 + u4
0) = 0

u2
1 − z(1 + u1 + u3

1 + u4
1) = 0

zF + u0u1 = 0

Elimination shows that F(z) is a root of the equation

z4 y4 − z2(1 + 2z)y3 + z(2 + 3z)y2 − (1 + 2z)y + 1 = 0.

For � = {−2,−1, 0, 1, 2}, we find similarly F(z) = − 1
z u0(z)u1(z), where u0, u1 are the

small branches of y2 = z(1 + y + y2 + y3 + y4); the expansion starts as

F(z) = 1 + z + 3z2 + 9z3 + 32z4 + 120z5 + 473z6 + 1925z7 + 8034z8 + · · · ,
(EIS A104184; see also [441]), and F(z) is a root of the equation

z4 y4 − z2(1 + z)y3 + z(2 + z)y2 − (1 + z)y + 1 = 0.

In such cases, the GFs are no longer of the simple tree type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Asymptotic analysis. The singularities of the branches involved in the statement
of Proposition VII.9 can be worked out in all generality [27, 396]. The roots of the
kernel equation (93) are singular at points z with value u satisfying the simultaneous
set of equations,

1 − zS(u) = 0, S′(u) = 0,

where the second equation corresponds to a place where the analytic implicit function
theorem “fails” to define u as an analytic function of z. The second equation always
has a positive root τ , corresponding to a positive value of z, which is ρ = 1/S(τ ). It
is then natural to suspect ρ to be radius of convergence of F(z) and the singularity to
be of the square-root type (Z1/2), this for reasons seen in the proof of Theorem VII.3
(the smooth implicit-function schema). These properties are shown in complete detail
in the articles [27, 395, 396], where it is also established that the GF of bridges is of
singular type Z−1/2, as in the case of Dyck bridges.
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Proposition VII.10. Define the structural constant τ by S′(τ ) = 0, τ > 0. Then
assuming aperiodicity, the number of bridges (Bn) and the number of excursions (Fn)
satisfy

Bn ∼ β0
S(τ )n√

2πn
, Fn ∼ ε0

S(τ )n

2
√
πn3

,

where

β0 = 1

τ

√
S(τ )

S′′(τ )
, ε0 = (−1)c−1

S−c

√
2S(τ )3

S′′(τ )

c−1∏
j=1

u j

(
1

S(τ )

)
.

There, the u j represent the small branches and u0 is the —principal” branch that is
finite and real positive as z → 0.

Proposition VII.10 expresses a universal law of type n−3/2 for excursions and
n−1/2 for bridges, a fact otherwise at least partly accessible to classical probability
theory (e.g., via a local limit theorem for bridges and via Brownian motion for ex-
cursions). Basic parameters of walks, excursions, bridges, and meanders can then be
analysed in a uniform fashion [27].

VII. 8.2. Maps and the quadratic method. A (planar) map is a connected pla-
nar graph together with an embedding into the plane. In all generality, loops and
multiple edges are allowed. A planar map therefore separates the plane into regions
called faces. The maps considered here are in addition rooted, meaning that a face, an
incident edge, and an incident vertex are distinguished. In this section, only rooted
maps are considered. (Nothing is lost regarding asymptotic properties of random
structures when a rooting is imposed. The reason is that a map has, with probabil-
ity exponentially close to 1, a trivial automorphism group; consequently, almost all
maps of m edges can be rooted in 2m ways—by choosing an edge, and an orienta-
tion of this edge—and there is an almost uniform 2m-to-1 correspondence between
unrooted maps and rooted ones.) When representing rooted maps, we shall agree to
draw the root edge with an arrow pointing away from the root node, and to take the
root face as that face lying to the left of the directed edge (represented in grey below):

.

Tutte launched in the 1960s a large census of planar maps, with the intention of
attacking the four-colour problem by enumerative techniques17; see [96, 579, 580,

17The four-colour theorem to the effect that every planar graph can be coloured using only four colours
was eventually proved by Appel and Haken in 1976, using structural graph theory methods supplemented
by extensive computer search.
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581, 582]. There is in fact a very large collection of maps defined by various degree
or connectivity constraints. In this chapter, we shall limit ourselves to conveying a
flavour of this vast theory, with the goal of showing how algebraic functions arise.
The presentation takes its inspiration from the book of Goulden and Jackson [303,
Sec. 2.9]

The quadratic method. Let M be the class of all maps where size is taken to be
the number of edges. Let M(z, u) be the BGF of maps with u marking the number
of edges on the outside face. The basic surgery performed on maps distinguishes two
cases based upon the nature of the root edge. A rooted map will be declared to be
isthmic if the root edge r of map μ is an “isthmus”; that is, an edge whose deletion
would disconnect the graph. Clearly, one has

(98) M = o +M(i) +M(n),

where M(i) (resp. M(n)) represent the class of isthmic (resp. non-isthmic) maps and
‘o’ is the graph consisting of a single vertex and no edge. There are accordingly two
ways to build maps from smaller ones by adding a new edge.

(i) The class of all isthmic maps is constructed by taking two arbitrary maps and
joining them together by a new root edge, as shown below:

.

The effect is to increase the number of edges by 1 (the new root edge) and have the
root face degree become 2 (the two sides of the new root edge) plus the sum of the
root face degrees of the component maps. The construction is clearly revertible. In
other words, the BGF of M(i) is

(99) M (i)(z, u) = zu2 M(z, u)2.

(i i) The class of non-isthmic maps is obtained by taking an already existing map
and adding an edge that preserves its root node and “cuts across” its root face in some
unambiguous fashion (so that the construction should be revertible). This operation
will therefore result in a new map with an essentially smaller root-face degree. For
instance, there are five ways to cut across a root face of degree 4; namely,
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.

This corresponds to the linear transformation

u4 	→ zu5 + zu4 + zu3 + zu2 + zu1.
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In general the effect on a map with root face of degree k is described by the trans-
formation uk 	→ zu(1 − uk+1)/(1 − u); equivalently, each monomial g(u) = uk is
transformed into zu(g(1)−ug(u))/(1−u). Thus, the OGF of M(n) involves a discrete
difference operator:

(100) M (n)(z, u) = zu
M(z, 1)− uM(z, u)

1 − u
.

Collecting the contributions from (99) and (100) in (98) then yields the basic
functional equation,

(101) M(z, u) = 1 + u2zM(z, u)2 + uz
M(z, 1)− uM(z, u)

1 − u
.

The functional equation (101) binds two unknown functions, M(z, u) and M(z, 1).
Similar to the case of walks, it would seem to be underdetermined. Now, a method
due to Tutte and known as the quadratic method provides solutions. Following Tutte
and the account in [303, p. 138], we consider momentarily the more general equation

(102) (g1 F(z, u)+ g2)
2 = g3,

where g j = G j (z, u, h(z)) and the G j are explicit functions—here the unknown
functions are F(z, u) and h(z) (cf M(z, u) and M(z, 1) in (101)). Bind u and z in
such a way that the left side of (102) vanishes; that is, substitute u = u(z) (a yet
unknown function) so that g1 F + g2 = 0. Since the left-hand side of (102) now has a
double root in u, so must the right-hand side, which implies

(103) g3 = 0,
∂g3

∂u

∣∣∣∣
u=u(z)

= 0.

The original equation has become a system of two equations in two unknowns that de-
termines implicitly h(z) and u(z). From this system, elimination provides individual
equations for u(z) and for h(z). (If needed, F(z, u) can then be recovered by solv-
ing a quadratic equation.) It will be recognized that, if the quantities g1, g2, g3 are
polynomials, then the process invariably yields solutions that are algebraic functions.

We now carry out this programme in the case of maps and Equation (101). First,
isolate M(z, u) by completing the square, giving

(104)

(
M(z, u)− 1

2

1 − u + u2z

u2z(1 − u)

)2

= Q(z, u)+ M(z, 1)

u(1 − u)
,

where

Q(z, u) = z2u4 − 2zu2(u − 1)(2u − 1)+ (1 − u2)

4u4z2(1 − u)2
.

Next, the condition expressing the existence of a double root is

Q(z, u)+ 1

u(1 − u)
M(z, 1) = 0, Q′

u(z, u)+ 2u − 1

u2(1 − u)2
M(z, 1) = 0.
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It is now easy to eliminate M(z, 1), since the dependency in M is linear, and a straight-
forward calculation shows that u = u(z) should satisfy(

u2z + (u − 1)
) (

u2z + (u − 1)(2u − 3)
)
= 0.

The first parameterization would lead to M(z, 1) = 1/z which is not acceptable. Thus,
u(z) is to be taken as the root of the second factor, with M(z, 1) being defined para-
metrically by

(105) z = (1 − u)(2u − 3)

u2
, M(z, 1) = −u

3u − 4

(2u − 3)2
.

Asymptotic analysis. In principle, the problem of enumerating maps is solved
by (105), albeit in a parameterized form. We can then eliminate u (for instance, by
resultants) and get an explicit equation for M ≡ M(z, 1):

27z2 M2 − 18zM + M + 16z − 1 = 0.

This quadratic equation is explicitly solvable

M(z, 1) = − 1

54 z2

(
1 − 18z − (1 − 12z)3/2

)
,

and its singular type is Z3/2 (with Z = (1 − 12z)). Summarizing, we obtain one of
the very first results in the enumerative theory of maps.

Proposition VII.11. The OGF of maps admits the explicit form

(106) M(z) ≡ M(z, 1) = − 1

54 z2

(
1 − 18z − (1 − 12z)3/2

)
.

The number of maps with n edges, Mn = [zn]M(z, 1), satisfies

(107) Mn = 2
(2n)!3n

n!(n + 2)!
∼ 2√

πn5
12n .

The sequence of coefficients is EIS A000168:

(108) M(z, 1) = 1+2z+9z2+54z3+378z4+2916z5+24057z6+208494z7+· · · .
We refer to [303, Sec. 2.9] for detailed calculations (that are nowadays routinely per-
formed with the assistance of a computer algebra system). Currently, there exist many
applications of the quadratic method to maps satisfying all sorts of combinatorial
constraints, in particular multiconnectivity; see [533] for a panorama. Interestingly
enough, the singular exponent of maps is universally 3/2, a fact further reflected by
the n−5/2 factor in the asymptotic form of coefficients. Accordingly, randomness
properties of maps are appreciably different from what is observed in trees and many
commonly encountered context-free objects (e.g., irreducible ones).
� VII.39. Lagrangean parametrization of general maps. The change of parameter u = 1−1/w
reduces (105) to the “Lagrangean form”,

(109) z = w

1 − 3w
, M(z, 1) = 1 − 4w

(1 − 3w)2
,

to which the Lagrange Inversion Theorem can be applied, giving back (107). �
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Figure VII.20. The “kitten”: a random irreducible triangulation with a quadrangu-
lar outer face built out of 69 vertices and 200 edges. Left: a projection of a three-
dimensional view (imagine the map drawn on a surface in R3). Right: a straight-line
orthogonal rendering based on Fusy’s algorithm [274].

� VII.40. Distances in maps. Chassaing and Schaeffer [113] have shown that the distance
between two random vertices of a random planar map with n faces scales as n1/4, when n → ∞.
Le Gall [404] has proved that a rescaled planar triangulation converges to a random “continuum
planar map” that has a spherical topology. See Figure VII.20 for some aspects of a random map.
(Physicists study similar random planar structures under the name of 2-dimensional quantum
gravity; see also Note VI.22, p. 414, for related material.) �

� VII.41. Matrix integrals and maps. Consider an N × N Hermitian matrix H , such that

-(Hi, j ) = -(H j,i ) = xi, j and .(Hi, j ) = −.(H j,i ) = yi, j ,

and define the Gaussian measure of parameter λ on the set of Hermitian matrices as (Tr is the
matrix trace):

dμN (H ; λ) :=
(

2π

λ

)−N 2/2
e−λTr(H2)/2

N∏
i=1

dxi,i
∏
i< j

dxi, j dyi, j .

Let M(t, v) be the multivariate generating function of rooted planar maps, where t marks the
number of edges, v represents the vector of indeterminates (v1, v2, . . .), and v j marks the num-
ber of vertices of degree j . One has

M(t, v) = t
d

dt

⎡⎣ lim
N→∞

1

N 2
log

∫
exp

⎛⎝N
∞∑

m=1

vm
Hm

m

⎞⎠ dμN (H ; N/t)

⎤⎦ .

(For this rich theory largely originating with Bessis, Brézin, Itzykson, Parisi and Zuber [60, 94],
see Zvonkin’s gentle introduction [630], Bouttier’s thesis [88], as well as [89] and references
therein.) �

� VII.42. The number of planar graphs. The asymptotic number of labelled planar graphs
with n vertices was determined by Giménez and Noy [290] to be of the form

Gn ∼ g · γ nn−7/2n!, g
.= 0.4970 04399, γ

.= 27.22687 77685 .

This spectacular result, which settled a long standing open question, is obtained by a suc-
cession of combinatorial and analytic steps based on: (i) the enumeration of 3–connected
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maps (these are the same as graphs, due to unique embeddability), which can be performed
by the quadratic method; (i i) the enumeration of 2–connected graphs by Bender, Gao, and
Wormald [41]; (i i i) the integro-differential relations that relate the GFs of 2–connected and
1–connected graphs. The authors of [290] also show that a random planar graph is connected
with probability asymptotic to e−ν .= 0.96325 and the mean number of connected components
is asymptotic to 1 + ν

.= 1.03743. See also the rich survey [291] for much more. �

VII. 9. Ordinary differential equations and systems

In Part A of this book relative to Symbolic Methods, we have encountered differ-
ential relations attached to several combinatorial constructions.

— Pointing: the operation of pointing a specific atom in an object of a combi-
natorial class C produces a pointed class D = �C. If the generating function
of C is C(z) (an OGF in the unlabelled case, an EGF in the labelled case),
then one has

(110) D = �C �⇒ D(z) = z
d

dz
C(z).

See Subsections I. 6.2 (p. 86) and II. 6.1 (p. 136).
— Order constraints: in Subsection II. 6.3 (p. 139), we have defined the boxed

product A = (B� � C) to be the modified labelled product comprised of
pairs of elements such that the smallest label is constrained to lie in the B
component. The translation over OGFs is

(111) A = (B� � C) �⇒ A(z) =
∫ z

0
(∂t B(t)) · C(t) dt.

Thus pointing and order constraints systematically lead to integro-differential relation,
which can be transformed into ordinary differential equations (ODEs) and systems.
Another rich source of differential equations in combinatorics is provided by the holo-
nomic framework (Appendix B.4: Holonomic functions, p. 748). We summarize be-
low some of the major methods that can be used to analyse the corresponding GFs.
On the side of differential equations, our analytic arguments largely follow the ac-
cessible introductions found in the books by Henrici [329] and Wasow [602]. Linear
ODEs are examined in Subsection VII. 9.1, some simple nonlinear ODEs in Subsec-
tion VII. 9.2. The main applications discussed here are relative to trees associated to
ordered structures—quadtrees and increasing trees principally.

VII. 9.1. Singularity analysis of linear differential equations. Linear differ-
ential equations with analytic coefficients have solutions that, near a reasonably well-
behaved singularity ζ , are of the form

Z θ (log Z)k H(Z), Z := z − ζ,

with θ ∈ C an algebraic number, k ∈ Z≥0, and H a locally analytic function. The
coefficients of such equations are composed of elements that are asymptotically of the
form

nβ(log n)k, β = −θ − 1,

in accordance with the general correspondence provided by singularity analysis. For
instance, a naturally occurring combinatorial structure, the quadtree, gives rise to a
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number sequence that, surprisingly, turns out to be asymptotically proportional to
n(

√
17−3)/2.

Regular singularities. Our starting point is a linear ordinary differential equa-
tion (linear ODE), which we take to be of the form

(112) c0(z)∂
r Y (z)+ c1(z)∂

r−1Y (z)+ · · · + cr Y (z) = 0, ∂ ≡ d

dz
.

The integer r is the order. We assume the existence of a simply connected domain �
in which the coefficients c j ≡ c j (z) are analytic. At a point z0 where c0(z0)  = 0, a
classical existence theorem (Note VII.43 and [602, p. 3]) guarantees that, in a neigh-
bourhood of z0, there exist r linearly independent analytic solutions of (112). Thus,
singularities can only occur at points ζ that are roots of the leading coefficient c0(z).
� VII.43. Analytic solutions. Consider the ODE (112) near z0 = 0 and assume c0(0)  = 0.
Then, a formal solution Y (z) can be determined, given any set of initial conditions Y ( j)(0) =
w j , by the method of indeterminate coefficients. The coefficients can be constructed recurrently,
and simple bounds show that they are of at most exponential growth. �

To proceed, we rewrite Equation (112) as

(113) ∂r Y (z)+ d1(z)∂
r−1Y (z)+ · · · + dr (z)Y (z) = 0,

where d j = c j/c0. Under our assumptions, the functions d j (z) are now meromorphic
in �. Given a meromorphic function f (z), we define ωζ ( f ) to be the order of the pole
of f at ζ , and ωζ ( f ) = 0 means that f (z) is analytic at ζ .

Definition VII.7. The differential equations (112) and (113) are said to have a singu-
larity at ζ if at least one of the ωζ (d j ) is positive. The point ζ is said to be a regular
singularity18 if

ωζ (d1) ≤ 1, ωζ (d2) ≤ 2, . . . , ωζ (dr ) ≤ r,

an irregular singularity otherwise.

For instance, the second-order ODE

(114) Y ′′ + z−1 sin(z)Y ′ − z−2 cos(z)Y = 0,

has a regular singular point at z = 0, since the orders are 0, 2, respectively. It is a
notable fact that, even though we do not know how to solve explicitly the equation in
terms of the usual special functions of analysis, the asymptotic form of its solutions
can be precisely determined.

Let ζ be a regular singular point, and say we attempt to solve (112) by trying a
solution of the form Z θ + · · · , where Z := z − ζ . For instance, proceeding somewhat
optimistically with (114) at ζ = 0, we may expect the left-hand side of the equation
to be of the form[

θ(θ − 1)zθ−2 + · · ·
]
+

[
θ zθ−1 + · · ·

]
−

[
zθ−2 + · · ·

]
= 0.

In order to obtain cancellation to main asymptotic order (zθ−2), we must then assume
that the coefficient of zθ−2 vanishes; then, θ solves an algebraic equation of degree 2,
namely, θ(θ − 1)− 1 = 0, which suggests the possibility of two solutions of the form

18For “irregular” singularities, see Section VIII. 7, p. 581.
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zθ near 0, with θ = (1 ± √
5)/2. This informal discussion motivates the following

definition.

Definition VII.8. Given an equation of the form (113) and a regular singular point ζ ,
the indicial polynomial I (θ) at ζ is defined to be

I (θ) = θr + δ1θ
r−1 + · · · + δr , θ� := θ(θ − 1) · · · (θ − �+ 1),

where δ j := limz→ζ (z − ζ ) j d j (z). The indicial equation (at ζ ) is the algebraic equa-
tion I (θ) = 0.

If we let L denote the differential operator corresponding to the left-hand side
of (113), we have formally, at a regular singular point,

L
[
Z θ

] = I (θ)Z θ−r + O
(

Z θ−r−1
)
, Z = (z − ζ ),

which justifies the rôle of the indicial polynomial. (The process used to determine
the solutions by restricting attention to dominant asymptotic terms is analogous to
the Newton polygon construction for algebraic equations.) An important structure
theorem describes the possible types of solutions of a meromorphic ODE at a regular
singularity.

Theorem VII.9 (Regular singularities of ODEs). Consider a meromorphic differen-
tial equation (113) and a regular singular point ζ . Assume that the indicial equation
at ζ , I (θ) = 0, is such that no two roots differ by an integer (in particular, all roots
are distinct). Then, in a slit neighbourhood of ζ , there exists a linear basis of all the
solutions that is comprised of functions of the form

(115) (z − ζ )θ j H j (z − ζ ),

where θ1, . . . , θr are the roots of the indicial polynomial and each Hj is analytic at 0.
In the case of roots differing by an integer (or multiple roots), the solutions (115) may
include additional logarithmic terms involving non-negative powers of log(z − ζ ).

A description of the logarithmic cases is best based on a matrix treatment of
the first-order linear system that is equivalent to the ODE [329, 602]. Note VII.44
describes the main lines of a proof of Theorem VII.9; Note VII.45 discusses the rep-
resentative case of Euler systems, which is explicitly solvable.
� VII.44. Singular solutions. In the first case of Theorem VII.9 (no two roots differing by an
integer), it suffices to work out the modified differential equation satisfied by Z−θ j Y (z) and
verify that one of its solutions is analytic at ζ : the coefficients of H j satisfy a recurrence, as in
the non-singular case, from which their growth is verified to be at most exponential. �

� VII.45. Euler equations and systems. An equation of the form,

∂r Y + e1 Z−1∂r−1Y + · · · + er Z−r Y = 0, e j ∈ C, Z := (z − ζ ),

is known as an Euler equation. In the case where all roots of the indicial equation are simple,
a basis of solutions is exactly of the form Zθ j . When θ is a root of multiplicity m, the set of
solutions includes Zθ (log Z)p , for p = 0, . . . ,m − 1. (Euler equations appear for instance
in the median-of-three quicksort algorithm [378, 538]. See [117] for several applications to
random tree models and the analysis of algorithms.) Euler systems are first-order systems of
the form

d

dz
Y(z) = A

z − ζ
Y(z),



“book” — 2008/10/3 — 16:05 — page 521 — #535

VII. 9. ORDINARY DIFFERENTIAL EQUATIONS AND SYSTEMS 521

where A ∈ Cr×r is a scalar matrix and Y = (Y1, . . . , Yr )
T is a vector of functions. A formal

solution is provided by

(z − ζ )A = exp (A log(z − ζ )) ,

which indicates that the Jordan block decomposition of A plays a rôle in the occurrence of
logarithmic factors of solutions. �

Theorem VII.10 (Coefficient asymptotics for meromorphic ODEs). Let f (z) be ana-
lytic at 0 and satisfy a linear differential equation

dr

dzr
f (z)+ c1(z)

dr−1

dzr−1
f (z)+ · · · + cr (z) f (z) = 0,

where the coefficients c j (z) are analytic in |z| < ρ1, except for possibly a pole at
some ζ satisfying |ζ | < ρ1, ζ  = 0. Assume that ζ is a regular singular point and no
two roots of the indicial equation at ζ differ by an integer. Then, there exist scalar
constants λ1, . . . , λr ∈ C such that for any ρ0 with |ζ | < ρ0 < ρ1, one has

(116) [zn] f (z) =
r∑

j=1

λ j� j (n)+ O
(
ρ−n

0

)
,

where the � j (n) are of the asymptotic form

(117) � j (n) ∼ n−θ j−1

�(−θ j )
ζ−n

[
1 +

∞∑
k=1

si, j

ni

]
,

and the θ j are the roots of the indicial equation at ζ .

Proof. The coefficients λ j relate the particular solution f (z) to the basis of solu-
tions (115). The rest, by singularity analysis, is nothing but a direct transcription to
coefficients of the solutions provided by the structure theorem, Theorem VII.9, with
� j (n) = [zn](z − ζ )θ j H j (z − ζ ). �

Taking into account multiple roots (as in Note VII.45) and roots differing by an
integer, we see that solutions to meromorphic linear ODEs, in the regular case at least,
are only composed of linear combinations of asymptotic elements of the form19

(118) ζ−nnβ(log n)�,

where ζ is determined as root of a (possibly transcendental) equation, c0(ζ ) = 0, the
number β is an algebraic quantity (over the field of constants δ j ) determined by the
polynomial equation I (−β − 1) = 0, and � is an integer.

The coefficients λ j serve to “connect” the particular function of interest, f (z) to
the local basis of singular solutions (115). Their determination thus represents a con-
nection problem (see pp. 470 and 505 for the easier algebraic case). However, contrary
to what happens for algebraic equations, the determination of the λ j can only be ap-
proached in all generality by numerical methods [252]. (Even when the coefficients
d j (z) ∈ Q(z) are rational fractions, no effective procedure is available to decide, from

19The forms (118) are appreciably more general than the corresponding ones arising in algebraic
coefficient asymptotics (Theorem VII.8, p. 501), in which no logarithmic term can be present and the
exponents are constrained to be rational numbers only.
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an f (z) ∈ Q[[z]] determined by initial conditions at 0, which of the connection coef-
ficients λ j may vanish.) In many combinatorial applications the calculations can be
carried out explicitly, in which case the forms (118) serve as a beacon of what to ex-
pect asymptotically. (Once existence of such forms is granted, e.g., by Theorems VII.9
and VII.10, it is often possible to identify coefficients and/or exponents in asymptotic
expansions directly.) Similar considerations apply to functions defined by systems of
linear differential equations (Note VII.48 below).
� VII.46. Multiple singularities. In the case of several singularities ζ1, . . . , ζs , a sum of s
terms, each of the form (117) with ζ → ζi , expresses [zn] f (z). [The structure theorem applies
at each ζi and singularity analysis is known to adapt to multiple singularities; cf Section VI. 5,
p. 398.] �

� VII.47. A relaxation. In Theorem VII.10, one may allow the equation to have a singularity
of any kind at 0. [Only properties of the basis of solutions near ζ are used.] �

� VII.48. Equivalence between equations and systems. A (first-order) linear differential system
is by definition

d

dz
Y (z) = A(z)Y (z),

where Y = (Y1, . . . , Ym)
T is an m-dimensional column vector and A is an m × m coefficient

matrix. A differential equation of order m can always be reduced to a system of dimension m,
and conversely. Only rational operations and derivatives are involved in each of the conver-
sions: technically, coefficient manipulations take place in a differential field K that contains
coefficients of recurrences and systems. (For instance, the set of rational functions C(z) and the
set of meromorphic functions in an open set � are differential fields.)

The proofs are simple extensions of the case m = 2. Starting from the equation y′′ +by′ +
cy = 0, one sets Y1 = y, Y2 = y′ to get the system

{∂Y1 = Y2, ∂Y2 = −cY1 − bY2}.
Conversely, given the system

{∂Y1 = a11Y1 + a12Y2, ∂Y2 = a21Y1 + a22Y2},
let E = VS[Y1, Y2] be the vector space over K spanned by Y1, Y2, which is of dimension ≤ 2.
Differentiation of the relation ∂Y1 = a11Y1 + a12Y2 shows that ∂2Y1 can be expressed as
combination of Y1, Y2,

∂2Y1 = a′11Y1 + a′12Y2 + a11(a11Y1 + a12Y2)+ a12(a21Y1 + a22Y2),

hence ∂2Y1 lies in E . Thus, the system {Y1, ∂Y1, ∂Y 2
1 } is bound, which corresponds to a differ-

ential equation of order 2 being satisfied by Y1. (In the case where the coefficient matrix A has
a simple pole at ζ , singularities of solutions can be studied by matrix methods akin to those of
Note VII.45.) �

Combinatorial applications. The quadtree is a structure, discovered by Finkel
and Bentley [212], that can be superimposed on any sequence of points in Euclidean
space Rd . In computer science, it forms the basis of several algorithms for maintaining
and searching dynamically varying geometric objects [532], and it constitutes a natu-
ral extension of binary search trees. Quadtrees are associated to differential equations,
whose order equals the dimension of the underlying space. Some of their major char-
acteristics can be determined via singularity analysis of these equations [233, 242].

Example VII.23. The plain quadtree. Start from the unit square Q = [0, 1]2 and let p =
(P1, . . . , Pn) be a sequence of n points drawn uniformly and independently from Q, with Pj =
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P

SW
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SE

N E

N W N E SW SE

P

Figure VII.21. The quadtree splitting process (left, center); a hierarchical partition
associated to n = 50 random points (right).

(x j , y j ). A quaternary tree, called the quadtree and noted QT(p), is built recursively from p as
follows:

— if p is the empty sequence (n = 0), then QT(p) = ∅ is the empty tree;
— otherwise, let pN W , pN E , pSW , pSE be the four subsequences of points of p that lie,

respectively, North-West, North-East, South-West, South-East of P1. For instance
pSW is pSW = (

Pj1 , Pj2 , . . . , Pjk
)
, where 1 < j1 < j2, · · · < jk ≤ n, and the

Pj� = (x j� , y j� ) are those of the points that satisfy the predicate x j� < x1 and
y j� < y1. Then QT(p) is

QT(p) = 〈P1;QT(pN W ),QT(pN E ),QT(pSW ),QT(pSE )〉.

In other words, the sequence of points induces a hierarchical partition of the space QT; see
Figure VII.21. (For simplicity, the tree is only defined here for points having different x and
y coordinates, an event that has probability 1.)

Quadtrees are used for searching in two related ways: (i) given a point P0 = (x0, y0),
exact search aims at determining whether P0 occurs in p; (i i) given a coordinate x0 ∈ [0, 1], a
partial-match query asks for the set of points P = (x, y) occurring in p such that x = x0 (irre-
spective of the values of y). Both types are accommodated by the quadtree structure: an exact
search corresponds to descending in the tree, following a branch guided by the coordinates of
the point P0 that is sought; partial match is implemented by recursive descents into two subtrees
(either the pair N W, SW or N E, SE) based on the way x0 compares with the x coordinate of
the root point.

In an ideal world (for computers), trees are perfectly balanced, in which case the search
costs satisfy the approximate recurrences,

(119) fn = 1 + fn/4, gn = 1 + 2gn/4,

for exact search and partial match, respectively. The solutions of these recurrences are ≈ log4 n
and ≈ √

n, respectively. To what extent do randomly grown quadtrees differ from the per-
fect shape, and what is the growth of the cost functions on average? The answer lies in the
singularities of certain linear differential equations.
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Exact search. Our purpose is to set up recurrences20 in the spirit of Subsection VI. 10.3,
p. 427. We need the probability πn,k that a quadtree of size n gives rise to a N W root-subtree
of size k and claim that

(120) πn,k = 1

n
(Hn −Hk) , Hn = 1 + 1

2
+ · · · + 1

n
.

Indeed, the probability that � elements are West of the root and k are North-West is

(121) �n,�,k =
(

n − 1

k, �− k, n − 1 − �

)∫ 1

0

∫ 1

0
(xy)k(x(1 − y))�−k(1 − x)n−1−�dx dy.

(The double integral is the probability that the first k elements fall N W , the next �− k fall SW ,
the rest fall either N E or SE ; the integrand corresponds to a conditioning upon the coordinates
(x, y) of the root; the multinomial coefficient takes into account the possible shufflings.) The
Eulerian Beta integral (p. 747) simplifies the integrals to �n,�,k = 1/(n(� + 1)), from which
the claimed (120) follows by summation over �.

Given (120), the recurrence

(122) Pn = n + 4
n−1∑
k=0

πn,k Pk , P0 = 0,

with πn,k as in (120), determines the sequence of expected value of path length. This recurrence
translates into the integral equation,

(123) P(z) = z

(1 − z)2
+ 4

∫ z

0

dt

t (1 − t)

∫ t

0
P(u)

du

1 − u)
,

itself equivalent to the linear differential equation of order 2:

z(1 − z)4 P ′′(z)+ (1 − 2z)(1 − z)3 P ′(z)− 4(1 − z)2 P(z) = 1 + 3z.

The homogeneous equation has a regular singularity at z = 1. In such a simple case, it is not
difficult to guess the “right” solution, which can then be verified by substitution:

P(z) = 1

3

1 + 2z

(1 − z)2
log

1

1 − z
+ 1

6

4z + z2

(1 − z)2
, Pn =

(
n + 1

3

)
Hn −n + 1

6n
.

The ratio Pn/n represents the mean level of a random node in a randomly grown quadtree, a
quantity which is thus log n + O(1). Accordingly, quadtrees are on average fairly balanced, the
expected level being within a factor log 4

.= 1.38 of the corresponding quantity in a perfect tree.

Partial match. The analysis of partial match reveals a curious consequence of the imbal-
ance of quadtrees, where the order of growth differs from that which the perfect tree model (119)
predicts. The recurrence satisfied by the expected cost of a partial match query is determined
by methods similar to path length [233]. One finds, by a computation similar to (121),

(124) Qn = 1 + 4

n(n + 1)

n−1∑
k=0

(n − k)Qk , Q0 = 0,

corresponding, for the GF Q(z) = ∑
Qnzn , to the inhomogeneous differential equation,

L[Q(z)] = 2/(1 − z), where the differential operator L is

(125) L[ f ] = z(1 − z)2∂2 f + 2(1 − z)2∂ f − 4 f.

20It is also possible, although less convenient, to develop equations starting from basic principles of
the symbolic method.
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A particular solution of the inhomogeneous equation is −1/(1 − z), so that y(z) := Q(z) +
1/(1 − z) satisfies the homogeneous equation L[y] = 0.

The differential equation L[y] = 0 is singular at z = 0, 1,+∞ and it has a regular sin-
gularity at z = 1. Since one has yn = O(n), by the origin of the problem, the singularity
at z = 1 is the one that matters. The indicial polynomial can be computed from its definition
or, equivalently, by simply substituting y = (z − 1)θ in the definition of L and discarding lower
order terms. One finds, with Z = z − 1:

L[Zθ ] = θ(θ − 1)Zθ − 4Zθ + O
(

Zθ−1
)
.

The roots of the indicial equations are then

θ1 = 1

2

(
1 −

√
17

)
, θ2 = 1

2

(
1 +

√
17

)
.

Theorem VII.9 guarantees that y(z) admits, near z = 1 a representation of the form

(126) y(z) = λ1(1 − z)θ1 H1(z − 1)+ (1 − z)θ2 H2(z − 1),

with H1, H2 analytic at 0.
In order to complete the analysis, we still have to verify that the coefficient λ1, which

multiplies the singular element that dominates as z → 1 is non-zero. Indeed, if we had λ1 = 0,
then, one would have y(z) → 0 as z → 1, which contradicts the fact that yn ≥ 1. In other
words, here: the connection problem is solved by means of bounds that are available from the
combinatorial origin of the problem. Singularity analysis then yields the asymptotic form of
yn , hence of Qn . Summarizing , we have:

Proposition VII.12. Path length in a randomly grown quadtree of size n is on average n log n+
O(n). The expected cost of a partial match query satisfies, for some positive κ:

(127) Qn ∼ κ · nα−1, α =
√

17 − 1

2
.= 1.56155.

The analysis extends to quadtrees of higher dimensions [233]. In general dimension d ,
path length is on average 2

d n log n + O(n). The cost of a partial match query is of the order of

nβ , where β is an algebraic number of degree d . The cost of a random (fully specified) search
admits a limit Gaussian distribution, as we prove in Example IX.29, p. 687. . . . . . . . . . . . . . . �

� VII.49. Quadtrees and hypergeometric functions. For the plain quadtree (d = 2), the change
of variables y = (1 − z)−θ η(z) reduces the differential equation L[y] = 0 to hypergeometric
form. The constant κ in (127) is then found to satisfy

κ = 1

2

�(2α)

�(α)3
, α =

√
17 − 1

2
.

Hypergeometric solutions (Note B.15, p. 751) are available for d ≥ 2; see [116, 233, 242]. �

� VII.50. Closed meanders. A closed meander of size n is a topological configuration de-
scribing the way a circuit can cross a river 2n times. The sequence starts as 1, 1, 2, 8, 42, 262
(EIS A005315). For instance, here is a meander of size 5:

1 2 3 4 5 6 7 8
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There are good reasons to believe that the number Mn of meanders satisfies

Mn ∼ C Ann−β, with β = 29 +√
145

12
,

based on analogies with well-established models of statistical physics [163]. �

VII. 9.2. Nonlinear differential equations. Solutions to nonlinear equations do
not necessarily have singularities that arise from the equation itself (as in the linear
case). Even the simplest nonlinear equation,

Y ′(z) = Y (z)2, Y (0) = a,

has a solution Y (z) = 1/(a − z) whose singularity depends on the initial condition
and is not visible on the equation itself. The problem of determining the location of
singularities is non-obvious in the case of a nonlinear ODE. Furthermore, the problem
of determining the nature of singularities for nonlinear equations defies classification
in general (Note VII.51). In this section, we thus limit ourselves to examining a few
examples where enough structure is present in the combinatorics, so that fairly explicit
solutions are available, which are then amenable to singularity analysis.
� VII.51. A universal differential equation. Following ideas of Rubel [521, 522], Duffin [178]
proved the following: The differential equation

(D) 2y′′′′y′2 − 5y′′′y′′y′ + 3y′3 = 0

is universal in the sense that any continuous function ϕ(x) on R can be approximated with
arbitrary accuracy by a solution of the equation. Thus, real solutions of nonlinear differential
equations cannot be “classified” in general. [Proof: (i) construct a third-order differential equa-
tion (E) satisfied by the class of functions ga,b,c(x) = a cos4(bx + c) for −π/2 ≤ bx + c ≤
π/2; (i i) verify that any function G(x) that is a juxtaposition of g functions over disjoint inter-
vals and is smooth enough satisfies (E); (i i i) prove that such a G(x) can be taken so that

∫
G

approximates a continuous ϕ(x) to any predetermined accuracy, and determine (D).] �

Example VII.24. Varieties of increasing trees. Consider a labelled class defined by either of

(128) Y = Z� � SEQ�(Y), Y = Z� � SET�(Y),
where a set of integers � ⊆ Z≥0 has been fixed. This defines trees that are either plane (SEQ)
or non-plane (SET) and increasing, in the sense that labels go in increasing order along any
branch stemming from the root. Such trees have been encountered in Subsection II. 6.3 (p. 139)
in relation to alternating permutations, general permutations, and regressive mappings.

Enumeration of trees. By the symbolic translation of the boxed product, the EGF of Y
satisfies a nonlinear differential equation

(129) Y (z) =
∫ z

0
φ(Y (w)) dw,

where the structure function φ is

φ(y) =
∑
ω∈�

yω (case SEQ), φ(y) =
∑
ω∈�

yω

ω!
(case SET).

The integral equation (129) is our starting point; in order to unify both cases, we set φω :=
[yω]φ(y). The discussion below is excerpted from the paper of Bergeron, Flajolet, and Salvy [49].

First note that (129) is equivalent to the nonlinear differential equation

(130) Y ′(z) = φ(Y (z)), Y (0) = 0,
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Differential eq. EGF ρ sing. type coefficient

A : Y ′ = (1 + Y )2
z

1 − z
1 Z−1 Yn = n!

B : Y ′ = 1 + Y 2 tan z π
2 Z−1 Y2n+1

(2n + 1)!
6 (

2

π
)2n+1

C: Y ′ = eY log[(1 − z)−1] 1 log Z Yn = (n − 1)!

D : Y ′ = 1

1 − Y
1 −√

1 − 2z 1
2 Z1/2 Yn = (2n − 3)!!

Figure VII.22. Some classical varieties of increasing trees: (A) plane binary; (B)
strict plane binary; (C) increasing Cayley; (D) increasing plane.

which implies that Y ′/φ(Y ) = 1 and, upon integrating back,

(131)
∫ Y (z)

0

dη

φ(η)
= z, i.e., K (Y (z)) = z, K (y) :=

∫ y

0

dη

φ(η)
.

Thus, the EGF Y (z) is the compositional inverse of the integral of the multiplicative inverse of
the structure function. We can visualize this chain of transformation as follows:

(132) Y = Inv ◦
∫

◦ 1

( · ) ◦ φ.

In simpler situations, the integration defining K (y) in (131) can be carried out explicitly,
so that explicit expressions may become available for Y (z). Figure VII.22 displays data relative
to four such classes, the first three of which were already encountered in Chapter II. In each
case, there is listed: the differential equation (from which the definition of the trees and the form
of φ are apparent), the dominant positive singularity, the singularity type, and the corresponding
form of coefficients. The general analytic expressions of (131) contain much more: they allow
for a general discussion of singularity types and permit us to analyse asymptotically classes that
do not admit of an explicit GF.

Assume for simplicity φ to be an aperiodic entire function (possibly a polynomial). Let
ρ be the radius of convergence of Y (z), which is a singular point (by Pringsheim’s Theorem).
Consider the limiting value Y (ρ). One cannot have Y (ρ) < ∞ since then K (z) being analytic
at Y (ρ) would be analytically invertible (by the Implicit Function Theorem). Thus, one must
have Y (ρ) = +∞ and, since Y and K are inverses of each other, we get K (+∞) = ρ. The
radius of convergence of Y (z) is accordingly

(133) ρ =
∫ ∞

0

dη

φ(η)
.

The singularity type of Y (z) is then systematically determined by the rules (132). For a general
polynomial of degree d ≥ 2, we have (ignoring coefficients)

K (+∞)− K (y) ≈
∫ ∞

y

dη

ηd
≈ y−d+1, Y (z) ≈ Z−1/(d−1), with Z := (ρ − z).

This back-of-the-envelope calculation shows that

(134) for φ a polynomial of degree d : Yn ∼ Cn!n f , with f = 2−d
1−d .

In the same vein, the logarithmic singularity of the EGF of increasing Cayley trees (Case C
of Figure VII.22) appears as eventually reflecting the inverse of the exponential singularity of
φ(y) = ey . Such a singularity type must then be systematically present when considering
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increasing non-plane trees (increasing Cayley trees) with a finite collection of node degrees
excluded—in other words, whenever the SET constructor is used in (128) and � is a cofinite
set. This observation “explains” and extends an analysis of [437].

Additive parameters. Consider next an additive parameter of trees21 defined by a recur-
rence,

(135) s(τ ) = t|τ | +
∑
υ∝τ

s(υ),

where (tn) is a numeric sequence of “tolls” with t0 = 0, and the summation υ ∝ τ is carried
out over all root subtrees υ of τ . Introduce the two functions (of cumulated values)

S(z) =
∑
τ∈Y

s(τ )
z|τ |
|τ |! , T (z) =

∑
n≥0

tnYn
zn

n!
,

so that the ratio [zn ]S(z)
[zn ]Y (z) equals the mean value of parameter s taken over all increasing trees of

size n. By simple algebra similar to Lemma VII.1 (p. 457), it is found that the GF S(z) is

(136) S(z) = Y ′(z)
∫ z

0

T ′(w)
Y ′(w) dw.

The relation (128) defines an integral transform T 	→ S, which can be viewed as a singularity
transformer. Thanks to the methods of Subsection VI. 10.3, p. 427, its systematic study can be
done, once the singularity type of Y (z) is known.

The discussion of path length (tn = n corresponding to T (z) = zY ′(z)) is conducted
in the present perspective as follows. For polynomial varieties of increasing trees, we have
Y (z) ≈ Z−δ with δ = 1/(d − 1), so that

T ≈ Y ′ ≈ Z−δ−1, T ′ ≈ Z−δ−2,
T ′
Y ′ ≈ Z−1,

∫
T ′
Y ′ ≈

∫
1

Z
≈ log Z .

Thus, the relation between Y and S is of the simplified form S ≈ Y ′ log Z . Singularity analysis,
then implies that average path length is of order n log n. Working out the constants involved
gives the following proposition.

Proposition VII.13. Let Y be an increasing variety of trees defined by a function φ that is an
aperiodic polynomial of degree d ≥ 2 and let δ = 1/(d − 1). The number of trees of size n
satisfies

Yn ∼ n!

�(δ)

(
δ

ρφd

)δ
ρ−nn−1+δ, ρ :=

∫ ∞

0

dη

φ(η)
, φd = [yd ]φ(y).

The expected value of path length on a tree of Yn is (δ + 1)n log n + O(n).

For naturally occurring models like those of Figure VII.22 and more, many parameters
of increasing tree varieties can be analysed in a synthetic way (e.g., the degree profile, the
level profile [49]). What stands out is the type of conceptual reasoning afforded by singularity
analysis, which provides a direct path to the right order of magnitude of both combinatorial
counts and basic parameters of structures. After this, it is only a matter of doing the bookkeeping
and getting the constants right! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

21Such parameters have been investigated in Subsection VI. 10.3 (p. 427): the binary search tree
recurrence there corresponds exacty to the case φ(w) = (1 + w)2 here.
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Example VII.25. Pólya urn processes. An interesting example of the joint use of nonlinear
ODEs and singularity analysis is provided by urn processes of probability theory. There, an urn
may contain balls of different colours. A fixed set of replacement rules is given (one for each
colour). At any discrete instant, a ball is chosen uniformly at random, its colour is inspected,
and the corresponding replacement rule is applied. The problem is to determine the evolution
of the urn at a large instant n. (The book by Johnson and Kotz [357] can serve as an elementary
introduction to the field; Janson otherwise develops a comprehensive probabilistic approach
in [349, 351].) In the case of two colours and urns called balanced, it is shown in [130, 225]
that the generating function of urn histories is determined by a nonlinear first-order autonomous
system, from which many characteristics of the urn can be effectively analysed.

In accordance with the informal description above, an urn model with two colours is de-
termined by a 2 × 2 matrix with integer entries:

(137) M =
(

α β

γ δ

)
, α, δ ∈ Z, β, γ ∈ Z≥0.

At any instant, if a ball of the first colour is drawn, then it is placed back into the urn together
with α balls of the first colour and β balls of the second colour; similarly, when a ball of the
second colour is drawn, with γ balls of the first colour and δ balls of the second colour. Negative
diagonal entries mean that balls are taken out of the urn (rather than added to it). We restrict
attention to balanced urns, which are such that there exists σ , called the balance:

(138) σ = α + β = γ + δ.

Given an urn initialized with a0 balls of the first colour and b0 balls of the second colour, what
is sought is the multivariate generating function H(x, y, z) (of exponential type), such that
n![zn xa yb]H(x, y, z) is the number of possible evolutions of the urn leading at time n to an
urn with colour composition (a, b). For σ ≥ 1, the total number of evolutions is clearly

(a0 + b0)(a0 + b0 + σ) · · · (a0 + b0 + (n − 1)σ ), so that H(1, 1, z) = 1

(1 − σ z)a0+b0
.

We have the following proposition.

Proposition VII.14. The exponential MGF of a balanced urn with matrix (137), balance σ ,
and initial composition (a0, b0) satisfies for |x0|, |y0| ≤ 1, x0 y0  = 0, and |z| < 1/σ

H(x0, y0, z) = X (z | x0, y0)
a0 Y (z | x0, y0)

b0 ,

where X (t) ≡ X (t |x0, y0) and Y (t) ≡ Y (t |x0, y0) are the solutions of the associated differ-
ential system:

(139) # :

⎧⎪⎨⎪⎩
d

dt
X (t) = X (t)α+1Y (t)β

d

dt
Y (t) = X (t)γ Y (t)δ+1

, X (0) = x0, Y (0) = y0.

Proof. The proof is an interesting illustration of the modelling of combinatorial structures by
differential operators (Note I.63, p. 88). As a starting point, we observe that the obvious rule
∂x [xn] = nxn−1 of calculus can be interpreted as

∂x [xx · · · x] = ( xx · · · x)+ (x x · · · )+ · · · + (xx · · · x),
meaning: “pick up in all possible ways a single occurrence of the formal variable and delete it”.
Similarly, x∂x means: “pick up an occurrence without deleting it (this is the pointing operation
of Subsection I. 6.2, p. 86).
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Guided by this principle, we associate to an urn the linear partial differential operator

(140) D := xα+1 yβ∂x + xγ yδ+1∂y .

If m = xa yb represents an urn with composition (a, b), then it is easily verified that D[m]
generates all the possible evolutions of the urn in one step; similarly Dn[m] is the generat-
ing polynomial of the urn’s composition after n steps. This gives us a symbolic form of the
exponential MGF H as

(141) H(x, y, z) =
∑
n≥0

Dn[xa0 yb0 ]
zn

n!
= ezD[xa0 yb0 ].

Now comes the crucial (and easy) observation that for a solution X (t),Y (t) of the associ-
ated differential system (139), one has:

∂t (XaY b) = a Xa−1 X ′Y b + bXaY b−1Y ′ (by usual differentiation rules)
= a Xa+αY b+β + bXa+γ Y b+δ (by system #)

= D

[
xa yb

]
x→X
y→Y

(by definition of D).

Induction then provides

(142) ∂n
t (X

aY b) = Dn
[
xa yb

]
x→X
y→Y

.

In other words: the evolution of the urn is mimicked by the effect of standard differentiation
applied to solutions of the associated system.

We can now conclude. We have formally, from (141) and the correspondence Dn ↔ ∂n
t ,

H(X (t),Y (t), z) =
∑
n≥0

∂n
t [X (t)a0 Y (y)b0 ]

zn

n!
= X (t + z)a0 Y (t + z)b0

(the last form plainly expresses Taylor’s formula). Setting t = 0 yields the statement. �
As a simple illustration, the Ehrenfest urn (Notes II.11, p. 118 and V.25, p. 336) whose

matrix is
(−1 1
1 −1

)
, with balance σ = 0, only requires solving the associated system

X ′(t) = Y (t), Y ′(t) = X (t), X (0) = x0, Y ′(0) = y0,

which provides the explicit form

H(x, y, z) = (x cosh z + y sinh z)a0(x sinh z + y cosh z)b0 .

We only discuss one more example, which is typical of the algebraic solution methods and
the corresponding singularity analysis. Consider the urn with matrix

(−1 2
2 −1

)
, which describes

the parity of levels in binary increasing trees [130]. Say we start the urn with one ball of the
first colour and seek the probability that, at time n, all balls are of the second colour. We thus
need [zn]H(0, 1, z). The associated system is

X ′ = Y 2, Y ′ = X2, X (0) = 0, Y (0) = 1.

The system can be solved by a sequence of manipulations (this is general [225]): starting with

X ′′ = 2Y Y ′ = 2
√

X ′X2, implying X ′′√X ′ = 2X ′X2,

we can integrate the last form, so that

X ′ = (X3 + 1)2/3, i.e.,
∫ X

0

dζ

(1 + ζ 3)2/3
= t,
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meaning that X (t) is implicitly determined as the inverse of the integral of an algebraic function.
In this case, it could be verified that the function X (t) is an elliptic function (see [225, 471] for
other elliptic models), but its dominant singularity can be directly determined by the methods
of Example VII.24. The function X (t) is found to become infinite at

ρ :=
∫ ∞

0

dζ

(1 + ζ 3)2/3
= 1

2π
√

3
�

(
1

3

)3
,

by an argument similar to (133), p. 527. A local analysis of the integral combined with inversion
then reveals that X (t) has a simple pole at ρ. In addition, we have elementarily X (ωt) =
ωX (t) for ω3 = 1, which entails the existence of three conjugate singularities at ρ, ρe2iπ/3,
and ρe−2iπ/3. With the initial conditions (a0, b0) = (1, 0), the probability that all balls be
of the second colour at time n is then non-zero only if n ≡ 1 (mod 3) and it is found to be
exponentially small: for some computable c > 0, there holds

[zn]X (z) ∼ cρ−n, n ≡ 1 (mod 3).

In [225, 229] it is shown that one can develop along these lines a complete treatment of
2 × 2 balanced urns and fully characterize the limit distributions involved. . . . . . . . . . . . . . . . �
� VII.52. Diagrams and combinatorial modelling via differential operators. Define the linear
differential operator

D := x∂2
x .

Its meaning, when applied to a monomial xn , is to pick up two occurrences of x , replace them
by unity, and then create a new occurrence of x (this is analogous to a one-colour urn model). It
can thus be represented by a “gate” with two “inputs” and one “output”. The effect of applying
Dn to xn+1 is then to build all the binary trees, whose external nodes are the occurrences of
the original x-variables and whose internal nodes (the gates) are characterized by their order of
arrival. Indeed, each particular expansion results in a binary decreasing tree (node labels are
decreasing from the root; such a tree is clearly isomorphic to an increasing binary tree) with
distinguished external nodes as in the following example relative to n = 4,

x5 x1 x3 x2 x4

1 2

3

4
(In this particular expansion, the first
application of D is to the first (x1) and
third (x3) occurrence of x in xxxxx ,
corresponding to the first gate (la-
belled 1), and it creates one new occur-
rence of x (the output link of gate 1).
The second application is to x2, x4
(gate 2). The third application is to x5
and to the x produced by gate 1; and so
on.)

Consequently:

Dn
[
xn+1

]
= n!(n + 1)!x, equivalently,

1

n!
Dn

[
xn+1

(n + 1)!

]
= 1.

Thus, one obtains the EGF of decreasing trees, i.e., permutations, via the coefficient of x in

ezD [
ex ] = 1 + x

1

1 − z
+ x2

2!

1

(1 − z)2
+ · · · .

Other operators that may be considered include

D = x + ∂, x∂, x2 + ∂2, x∂3, x∂2 + x∂, . . . .

It is fascinating to try and model as many classical combinatorial structures as possible in this
way, via differential operators and systems of gates. (This exercise was suggested by works
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of Błasiak, Horzela, Penson, Duchamp, and Solomon [73, 74], themselves motivated by the
“boson normal ordering problem” of quantum physics.) �

To conclude this section, it is of interest to compare the properties of increasing
trees (Example VII.24) and of simple varieties of trees (Subsection VII. 3.2, p. 455).
The conclusion is that simple trees are of the “square-root” type, in the sense that the
typical depth of a node and the expected height are of order

√
n. By contrast, increas-

ing trees, which are strongly bound by an order constraint, have logarithmic depth and
height [157, 158, 160]—they belong to a “logarithmic” type. From a singular per-
spective, simple trees are associated to the universal Z1/2 law, while increasing trees
exhibit a divergence behaviour (Z−1/(d−1) in the polynomial case). Tolls then affect
singularities of GFs in rather different ways: through a factor Z−1/2 for simple trees,
through a factor log Z in the case of increasing trees. Such abstract observations are
typical of the spirit of analytic combinatorics.

A spectacular result in the general area of random discrete structures and nonlin-
ear differential equations is the discovery by Baik, Deift, and Johansson (Note VIII.46,
p. 598) of the law governing the longest increasing subsequence in a random permuta-
tion. There, the solutions of the nonlinear Painlevé equation u′′(x) = 2u(x)3 + xu(x)
play a central rôle.

VII. 10. Singularity analysis and probability distributions

Singularity analysis can often be used to extract information about the probabil-
ity distribution of a combinatorial parameter. In the central sections of Chapter IX
(pp. 650–666), we shall develop perturbation methods grafted on singularity analysis,
which are applicable given a bivariate generating function F(z, u), provided it can be
continued when u lies in a complex neighbourhood of 1. However, such conditions
are not always satisfied. First, it may be the case that F(z, u) is defined for no other
value than z = 0 (it diverges), as soon as u > 1. Second, it may be the case that
a parameter is accessible via a collection of univariate GFs rather than a BGF (see
typically our discussion of extremal parameters in Section III. 8, p. 214). We briefly
indicate in this section ways to deal with such situations.

VII. 10.1. Moment pumping. Our reader should have no difficulty in recogniz-
ing as familiar at least the first two steps of the following procedure, nicknamed “mo-
ment pumping” in [249], which serve to extract moments from bivariate generating
functions.

Procedure: Moment Pumping
Input: A bivariate generating function F(z, u) determined by a functional equation.
Output: The limit law corresponding to the array of coefficients [znuk ]F(z, u); that is, the
asymptotic probability distribution of a parameter χ on a class Fn .

Step 1. Elucidate the singular structure of F(z, 1) corresponding to the counting prob-
lem [zn]F(z, 1). (Tools of Chapters IV–VII are well-suited for this task, the functional equation
satisfied by F(z, 1) being usually simpler than that of F(z, u).)

Step 2. Work out the singular structure (main terms) of each of the partial derivatives

μr (z) := ∂r

∂ur F(z, u)

∣∣∣∣
u=1
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for r = 1, 2, . . ., and use meromorphic methods or singularity analysis to conclude as to
[zn]μr (z). If, as it is most often the case, the combinatorial parameter marked by u is of
polynomial growth in the size n, then the radius of convergence of each μr is a priori the same
as that of F(z, 1). Furthermore, in many cases, the singular structure of the μr (z) is of the same
broad type as that of μ0(z) ≡ F(z, 1).

Step 3. From the moments, as given by Step 2, attempt to reconstruct the limit distribution
using the Moment Convergence Theorem (Theorem C.2, p. 778).

In order for the procedure to succeed22, we typically need the standard deviation of χ
to be of the same order as the mean, which necessitates that the distribution is spread in
the sense of Chapter III, p. 161. (Otherwise, there are larger and larger cancellations
in moments of the centred and scaled variant of χ , so that the analysis requires an
unbounded number of terms in the singular expansions of the GFs μr (z); see also
Pittel’s study [484] for an insightful discussion of related problems.)

Example VII.26. The area under Dyck excursions. We now examine the coefficients in the
BGF, which is a solution of the functional equation

(143) F(z, q) = 1

1 − zF(qz, q)
, i.e., F(z, q) = 1 + zF(z, q)F(qz, q).

It is such that [znqk ]F(z, q) represents the number of Dyck excursions of length 2n and area k−
n (p. 330). Thus we are aiming at characterizing the distribution of area in Dyck paths. We set

μr (z) := ∂r
q F(z, q)

∣∣∣
q=1

, which is, up to normalization, the GF of the r th factorial moments.

Clearly, μ0 satisfies the relation μ0 = 1 + zμ2
0, and μ0 = 1

2z

(
1 −√

1 − 4z
)
, as anticipated.

Application of the moment pumping procedure leads to a collection of equations,

μ1 = 2zμ0μ1 + z2μ0μ
′
0

μ2 = 2zμ0μ2 + 2zμ2
1 + 2z2μ1μ

′
0 + 2z2μ0μ

′
1 + z3μ0μ

′′
0,

and so on. Precisely, the shape of the equation giving μr , for r ≥ 1, is

(144) μr = z
r∑

j=0

(
r

j

)
μr− j

j∑
k=0

(
j

k

)
zk∂k

z μ j−k ,

as results, upon setting q = 1, from Leibniz’s product rule and a computation of the derivatives

∂
j

q F(qz, q). In particular, each μr can be expressed from the previous μ and their derivatives,
since the equation relative to μr is of the linear form μr = 2zμ0μr + · · · , so that μr (z) is a
rational form in z and δ := √

1 − 4z. An examination of the initial values of the μ then suggests
that, in terms of dominant singular asymptotics, as z → 1

4 , there holds

(145) μr (z) = Kr

(1 − 4z)(3r−1)/2
+ O

(
(1 − 4z)−(3r−2)/2

)
, r ≥ 1,

a property that is readily verified by induction. (In such situations, the closure of functions of
singularity analysis class under differentiation, p. 419, proves handy.) In particular, by singu-
larity analysis, the mean and standard deviation of χ on Fn are each of order n3/2.

Now, equipped with (145), we can trace back the main singular contributions in (144),
noting that the “weight”, as measured by the exponent of (1 − 4z)−1, of the term in (144)

22The important Gaussian case, which is mostly excluded by moment pumping, tends to yield agree-
ably to the perturbation methods of Chapter IX, so that the univariate methods discussed here and those of
Chapter IX are indeed complementary.
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corresponding to generic indices j, k is (3r − k − 2)/2. Then, by identifying the corresponding
coefficients, we come up with the recurrence valid for r ≥ 2

(146) %r = 1

4

r−1∑
j=1

(
r

j

)
%r− j% j +

r(3r − 1)

4
%r−1

(the linear term arises from j = r, k = 1) and from (145) and (146), the shape of factorial
moments, hence that of the usual power moments, results by plain singularity analysis:

(147) En
(
χr ) ∼ Mr n3r/2, Mr :=

√
π%r

�((3r − 1)/2)
.

It can then be verified [568] that the moment Mr uniquely characterize a probability distribution
(Appendix C.5: Convergence in law, p. 776).

Proposition VII.15. The distribution of area χ in Dyck excursions, scaled by n−3/2, con-
verges to a limit, known as the Airy23 distribution of the area type, which is determined by its
moments Mr , as specified by (146) and (147). In other terms, there exists a distribution function
H(x) supported by R>0 such that limn→∞ Pn(χ < xn3/2) = H(x).

Due to the exact correspondence between Dyck excursions and trees, the same limit dis-
tribution occurs for path length in general Catalan trees. Proposition VII.15 is originally due to
Louchard [415, 416], who developed connections with Brownian motion—the limit distribution
is indeed up to normalization that of Brownian excursion area. (The approach presented here
also has the merit of providing finite n corrections.) Our moment pumping approach largely
follows the lines of Takács’ treatment [568]. The recurrence relation (144) can furthermore be
solved by generating functions, to the effect that the %r entertain intimate relations with the
Airy function: for surveys, see [244, 352]. Curiously, the Wright constants arising in the enu-
meration of labelled graphs of fixed excess (the Pk(1) of p. 134) appear to be closely related to
the moments Mr : this fact can be explained combinatorially by means of breadth-first search of
graphs, as noted by Spencer [548]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VII.53. Path length in simple varieties of trees. Under the usual conditions on φ, the limit
distribution is an Airy distribution of the area type, as shown by Takács [566]. �

� VII.54. A parking problem II. This continues Example II.19, p. 146. Consider m cars and
condition by the fact that everybody eventually finds a parking space and the last space remains
empty. Define total displacement as the sum of the distances (over all cars) between the initially
intended parking location and the first available space. The analysis reduces to the difference-
differential equation [249, 380], which generalizes (65), p. 146,

∂

∂z
F(z, q) = F(z, q) · F(z, q)− q F(qz, q)

1 − q
.

Moment pumping is applicable [249]: the limit distribution is once more an Airy (of area type).
This problem arises in the analysis of the linear probing hashing algorithm [380, §6.4] and is of
relevance as a discrete version of important coalescence models. It is also shown in [249] based
on [285] that the number of inversions in a Cayley tree is asymptotically Airy. �

23 The Airy function Ai(z) is of hypergeometric type and is closely related to Bessel functions of
order ±1/3. It is defined as the solution of y′′ − zy = 0 satisfying Ai(0) = 3−2/3/�(2/3) and Ai′(0) =
−3−1/3/�(1/3); see [3, 604] for basic properties. The %r intervene in the expansion of log Ai(z) at
infinity [244, 352]. After Louchard and Takács, the distribution function H(x) can be expressed in terms of
confluent hypergeometric functions and zeros of the Airy function.
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� VII.55. The Wiener index and other functionals of trees. The Wiener index, a structural index
of interest to chemists, is defined as the sum of the distances between all pairs of nodes in a tree.
For simple families, as shown by Janson [348], it admits a limit distribution. (Similar properties
hold for many additive functionals of combinatorial tree families [210]. As regards moment
pumping, the methods are also related to those of Subsection VI. 10.3, p. 427, dedicated to tree
recurrences.) �

� VII.56. Difference equations, polyominoes, and limit laws. Many of the q–difference equa-
tions that are defined by a polynomial relation between F(z, q), F(qz, q), . . . (and even sys-
tems) may be analysed, as shown by Richard [509, 510]. This covers several models of polyomi-
noes, including the staircase, the horizontally-vertically convex, and the column convex ones.
Area (for fixed perimeter) is asymptotically Airy distributed. It is from these and similar results,
supplemented by extensive computations based on transfer-matrix methods, that Guttmann and
the Melbourne school have been led to conjecturing that the limit area of self-avoiding polygons
(closed walks) in the plane is Airy (see our comments on p. 365). �

� VII.57. Path length in increasing trees. For binary increasing trees, the analysis of path
length reduces to that of the functional equation,

F(z, q) = 1 +
∫ z

0
F(qt, q)2 dt.

There exists a limit law, as first shown by Hennequin [328] using moment pumping, with al-
ternative approaches due to Régnier [505] and Rösler [517]. This law is important in computer
science, since it describes the number of comparisons used by the Quicksort algorithm and in-
volved in the construction of a binary search tree. The mean is 2n log n + O(n), the variance
is ∼ (7 − 4ζ(2))n2, and the moment of order r of the limit law is a polynomial form in zeta
values ζ(2), . . . , ζ(r). See [209] for recent news and references. �

VII. 10.2. Families of generating functions. There is no logical obstacle to ap-
plying singularity analysis to a whole family of functions. In a way, this is similar to
what was done in Chapter V when analysing longest runs in words (p. 308) and the
height of general Catalan trees (p. 326), in the simpler case of meromorphic coeffi-
cient asymptotics. One then needs to develop suitable singular expansions together
with companion error terms, a task that may be technically demanding when GFs are
given by nonlinear functional relations or recurrences. We illustrate below the situa-
tion by an aperçu of the analysis of height in simple varieties of trees.

Example VII.27. Height in simple varieties of trees. The recurrence

(148) y0(z) = 0, yh+1(z) = 1 + zyh(z)
2

is such that yh(z) is the OGF of binary trees of height less than h, with size measured by the
number of binary nodes (Example III.28, p. 216). Each yh(z) is a polynomial, with deg(yh) =
2h−1 − 1. Some technical difficulties are to be expected since the yh have no singularity at a
finite distance, whereas their formal limit y(z) is the OGF of Catalan number,

y(z) = 1

2z

(
1 −√

1 − 4z
)
,

which has a square-root singularity at z = 1/4. As a matter of fact, the sequence wh = zyh
satisfies the recurrence wh+1 = z + w2

h , which was made famous by Mandelbrot’s studies and
gives rise to amazing graphics [473]; see Figure VII.23 for a poor man’s version.

When |z| ≤ r < 1/4, simple majorant series considerations show that the convergence
yh(z) → y(z) is uniformly geometric. When z ≥ s > 1/4, it can be checked that the yh(z)
grow doubly exponentially. What happens in-between, in a �–domain, needs to be quantified.
We do so following Flajolet, Gao, Odlyzko, and Richmond [230, 246].
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The grey level relative to a point z =
x+iy in the diagram indicates the num-
ber of iterations necessary for the GFs
yh(z) either to diverge to infinity (the
outer, darker region) or to the finite limit
y(z) (the inner region, corresponding to
the Mandelbrot set, with the darker area
around 0 corresponding to faster con-
vergence). The cardioid-shaped region
defined by |1 − ε(z)| ≤ 1 is a guaran-
teed region of convergence, beyond the
circle |z| = 1/4. The determination of
height reduces to finding what goes on
near the cusp z = 1/4 of the cardioid.

Figure VII.23. The GFs of binary trees of bounded height: speed of convergence.

Starting from the basic recurrence (148), we have

y − yh+1 = z(y2 − y2
h) = z(y − yh)(2y − (y − yh)),

which rewrites as

(149) eh+1 = (2zy)eh(1 − eh), where eh(z) =
1

2zy(z)
y(z)− yh(z)

is proportional to the OGF of trees having height at least h. (The function x 	→ λx(1 − x),
which is at the basis of the recurrence (149), is also known as the logistic map; its iterates, for
real parameter values λ, give rise to a rich diversity of patterns.)

First, let us examine what happens right at the singularity 1/4 and consider eh ≡ eh(
1
4 ).

The induced recurrence is

(150) eh+1 = eh(1 − eh), with e0 = 1
2 ,

whose solution decreases monotonically to 0 (argument: otherwise, there would need to be a
fixed point in (0, 1)). This form resembles the familiar recurrence associated with the solution
by iteration of a fixed-point equation � = f (�), but here it corresponds to an “indifferent”
fixed-point, f ′(�) = 1, which precludes the usual geometric convergence. A classical trick of
iteration theory, found in de Bruijn’s book [143, §8.4], neatly solves the problem. Consider
instead the quantities fh := 1/eh , which satisfy the induced recurrence

(151) fh+1 = fh

1 − f −1
h

≡ fh + 1 + 1

fh
+ 1

f 2
h

· · · , with f0 = 2.

This suggests that fh ∼ h. Indeed, by a terminating form of (151),

(152) fh+1 = fh +1+ 1

fh
+ f −2

h

1 − f −1
h

, i.e., fh+1 = h +2+
h∑

j=0

f −1
j +

h∑
j=0

f −2
j

1 − f −1
j

,

one can derive properties of the sequence ( fh) by “bootstrapping”: the fact that fh > h implies
that the first sum in (152) is O(log h), while the second one is O(1); then, another round serves
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to refine the estimates, so that, for some C :

fh = h + log h + C + O

(
log h

h

)
,

and the behaviour of eh = 1/ fh is now well quantified.
The analysis for z  = 1/4 proceeds along similar lines. We set ε ≡ ε(z) := √

1 − 4z and
again abbreviate eh(z) as eh . Upon considering

fh = eh

(1 − ε)h

and taking inverses, we obtain

(153) fh+1 = fh + (1 − ε)h + fhe2
h

1 − eh
.

Proceeding as before leads to the general approximation

(154) eh(z) ∼
ε(z)(1 − ε(z))h

1 − (1 − ε(z))h
, ε(z) := √

1 − 4z,

proved to be valid for any fixed z ∈ (0, 1/4), as h → ∞. This approximation is compatible
both with eh(1/4) ∼ 1/h (derived earlier) and with the geometric convergence of yh(z) to y(z)
valid for 0 < z < 1/4. With some additional work, it can be proved that (154) remains valid as
z → 1

4 in a �–domain and as h → ∞; see Figure VII.23. Obtaining the detailed conditions
on (z, h), together with a uniform error term for (154), is the crux of the analysis in [247].

From this point on, we content ourselves with brief indications on subsequent develop-
ments. Given (154), one deduces24 that the GF of cumulated height satisfies

H(z) := 2y(z)
∑
h≥0

eh(z) ∼ 4
∑
h≥1

ε(1 − ε)h

1 − (1 − ε)h
= 4 log

1

ε
+ O(1),

as z → 1
4 . Thus, by singularity analysis, one has

H(z) ∼ 2 log
1

1 − 4z
−→ [zn]H(z) ∼ 2 · 4n/n,

which gives the expected height [zn]H(z)/[zn]y(z) of a binary tree of size n as ∼ 2
√
πn.

Moments of higher order can be similarly analysed.
It is of interest to note that the GFs that surface explicitly in the analysis of height in

general Catalan trees (eventually due to the continued fraction structure and the implied linear
recurrences) appear here as analytic approximations in suitable regions of the complex plane.
A precise form of the approximation (154) can also be subjected to singularity analysis, to the
effect that the same Theta law expresses in the asymptotic limit the distribution of height in
binary trees. Finally, the technique can be extended to all simple varieties of trees satisfying the
smooth inverse-function schema (Theorem VII.2, p. 453). In summary, we have the following
proposition [230, 246].

Proposition VII.16. Let Y be a simple variety of trees satisfying the conditions of Theo-
rem VII.2, with φ the basic tree constructor and τ the root of the characteristic equation
φ(τ)− τφ(τ) = 0. Let χ denote tree height. Then the rth moment of height satisfies

EYn [χr ] ∼ r(r − 1)�(r/2)ζ(r)ξr nr/2, ξ := 2φ′(τ )2
φ(τ)φ′′(τ ) .

24In order to obtain the logarithmic approximation of H(z), one can for instance appeal to Mellin
transform techniques in a way parallel to the analysis of general Catalan trees (p. 326): set 1 − ε(z) = e−t .
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The normalized height χ/
√
ξn converges to a Theta law, both in distribution and in the sense

of a local limit law.

(The Theta distribution is defined in (67), p. 328; Chapter IX develops the notions of con-
vergence in law and of local limits much further.) In particular the expected height in general
Catalan trees [145], binary trees, unary–binary trees, pruned t–ary trees, and Cayley trees [507],
is found to be, respectively, asymptotic to

√
πn, 2

√
πn,

√
3πn,

√
2π t/(t − 1),

√
2πn,

and a pleasant universality phenomenon manifests itself in the height of simple trees.
A somewhat related analysis of a polynomial iteration in the vicinity of a singularity yields

the asymptotic number of balanced trees (Note IV.49, p. 283). . . . . . . . . . . . . . . . . . . . . . . . . . . �

VII. 11. Perspective

The theorems in this chapter demonstrate the central rôle of the singularity ana-
lysis theory developed in Chapter VI, this in a way that parallels what Chapter V did
for Chapter IV with meromorphic function analysis. Exploiting properties of complex
functions to develop coefficient asymptotics for abstract schemas helps us solve whole
collections of combinatorial constructions at once.

Within the context of analytic combinatorics, the results in this chapter have broad
reach, and bring us closer to our ideal of a theory covering full analysis of combi-
natorial objects of any “reasonable” description. Analytic side conditions defining
schemas often play a significant rôle. Adding in this chapter the mathematical support
for handling set constructions (with the exp–log schema) and context-free construc-
tions (with coefficient asymptotics of algebraic functions) to the support developed
in Chapter V to handle the sequence construction (with the supercritical sequence
schema) and regular constructions (with coefficient asymptotics of rational functions)
gives us general methods encompassing a broad swathe of combinatorial analysis,
with a great many applications (Figure VII.24).

Together, the methods covered in Chapter V, this chapter, and, next, Chapter VIII
(relative to the saddle-point method) apply to virtually all of the generating functions
derived in Part A of this book by means of the symbolic techniques defined there.
The SEQ construction and regular specifications lead to poles; the SET construction
leads to algebraic singularities (in the case of logarithmic generators discussed here) or
to essential singularities (in most of the remaining cases discussed in Chapter VIII);
recursive (context-free) constructions lead to square-root singularities. The surpris-
ing end result is that the asymptotic counting sequences from all of these generating
functions have one of just a few functional forms. This universality means that com-
parisons of methods, finding optimal values of parameters, and many other outgrowths
of analysis can be very effective in practical situations. Indeed, because of the nature
of the asymptotic forms, the results are often extremely accurate, as we have seen
repeatedly in this book.

The general theory of coefficient asymptotics based on singularities has many ap-
plications outside of analytic combinatorics (see the notes below). The broad reach of
the theory provides strong indications that universal laws hold for many combinatorial
constructions and schemas yet to be discovered.
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Combinatorial Type coeff. asymptotics (subexp. term)

Rooted maps n−5/2 §VII. 8.2

Unrooted trees n−5/2 §VII. 5

Rooted trees n−3/2 §VII. 3, §VII. 4

Excursions n−3/2 §VII. 8.1

Bridges n−1/2 §VII. 8.1

Mappings n−1/2 §VII. 3.3

Exp-log sets nκ−1 §VII. 2

Increasing d–ary trees n−(d−2)/(d−1) §VII. 9.2

Analytic form singularity type coeff. asymptotics

Positive irred. (polynomial syst.) Z1/2 ζ−nn−3/2 §VII. 6

General algebraic Z p/q ζ−nn−p/q−1 §VII. 7

Regular singularity (ODE) Zθ (log Z)� ζ−nn−θ−1(log n)� §VII. 9.1

Figure VII.24. A collection of universality laws summarized by the subexponential
factors involved in the asymptotics of counting sequences (top). A summary of the
main singularity types and asymptotic coefficient forms of this chapter (bottom).

Bibliographic notes. The exp–log schema, like its companion, the supercritical-sequence
schema, illustrates the level of generality that can be attained by singularity analysis techniques.
Refinements of the results we have given can be found in the book by Arratia, Barbour, and
Tavaré [20], which develops a stochastic process approach to these questions; see also [19] by
the same authors for an accessible introduction.

The rest of the chapter deals in an essential manner with recursively defined structures. As
noted repeatedly in the course of this chapter, recursion is conducive to square-root singularity
and universal behaviours of the form n−3/2. Simple varieties of trees have been introduced
in an important paper of Meir and Moon [435], that bases itself on methods developed earlier
by Pólya [488, 491] and Otter [466]. One of the merits of [435] is to demonstrate that a high
level of generality is attainable when discussing properties of trees. A similar treatment can be
inflicted more generally to recursively defined structures when their generating functions satisfy
an implicit equation. In this way, non-plane unlabelled trees are shown to exhibit properties
very similar to their plane counterparts. It is of interest to note that some of the enumerative
questions in this area had been initially motivated by problems of theoretical chemistry: see the
colourful account of Cayley and Sylvester’s works in [67], the reference books by Harary and
Palmer [319] and Finch [211], as well as Pólya’s original studies [488, 491].

Algebraic functions are the modern counterpart of the study of curves by classical Greek
mathematicians. They are either approached by algebraic methods (this is the core of algebraic
geometry) or by transcendental methods. For our purposes, however, only rudiments of the
theory of curves are needed. For this, there exist several excellent introductory books, of which
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we recommend the ones by Abhyankar [2], Fulton [273], and Kirwan [365]. On the algebraic
side, we have aimed at providing an introduction to algebraic functions that requires minimal
apparatus. At the same time the emphasis has been put somewhat on algorithmic aspects, since
most algebraic models are nowadays likely to be treated with the help of computer algebra.
As regards symbolic computational aspects, we recommend the treatise by von zur Gathen and
Gerhard [599] for background, while polynomial systems are excellently reviewed in the book
by Cox, Little, and O’Shea [135].

In the combinatorial domain, algebraic functions have been used early: in Euler and Seg-
ner’s enumeration of triangulations (1753) as well as in Schröder’s famous “Vier combina-
torische Probleme” described by Stanley in [554, p. 177]. A major advance was the realization
by Chomsky and Schützenberger that algebraic functions are the “exact” counterpart of context-
free grammars and languages (see their historic paper [119]). A masterful summary of the early
theory appears in the proceedings edited by Berstel [54] while a modern and precise presenta-
tion forms the subject of Chapter 6 of Stanley’s book [554]. On the analytic asymptotic side,
many researchers have long been aware of the power of Puiseux expansions in conjunction with
some version of singularity analysis (often in the form of the Darboux–Pólya method: see [491]
based on Pólya’s classic paper [488] of 1937). However, there appeared to be difficulties in cop-
ing with the fully general problem of algebraic coefficient asymptotics [102, 440]. We believe
that Section VII. 7 sketches the first complete theory (though most ingredients are of folklore
knowledge). In the case of positive systems, the “Drmota–Lalley–Woods” theorem is the key to
most problems encountered in practice—its importance should be clear from the developments
of Section VII. 6.

The applicability of algebraic function theory to context-free languages has been known
for some time (e.g., [220]). Our presentation of one-dimensional walks of a general type follows
articles by Lalley [396] and Banderier and Flajolet [27], which can be regarded as the analytic
pendant of algebraic studies by Gessel [286, 287]. The kernel method has its origins in prob-
lems of queueing theory and random walks [202, 203] and is further explored in an article by
Bousquet-Mélou and Petkovšek [86]. The algebraic treatment of random maps by the quadratic
method is due to brilliant studies of Tutte in the 1960s: see for instance his census [579] and
the account in the book by Jackson and Goulden [303]. A combinatorial–analytic treatment of
multiconnectivity issues is given in [28], where the possibility of treating in a unified manner
about a dozen families of maps appears clearly.

Regarding differential equations, an early (and at the time surprising) occurrence in an
asymptotic expansion of terms of the form nα , with α an algebraic number, is found in the
study [252], dedicated to multidimensional search trees. The asymptotic analysis of coeffi-
cients of solutions to linear differential equations can also, in principle, be approached from the
recurrences that these coefficients satisfy. Wimp and Zeilberger [611] propose an interesting
approach based on results by George Birkhoff and his school (e.g., [70]), which are relative to
difference equations in the complex plane. There are, however, some doubts among special-
ists regarding the completeness of Birkhoff’s programme (see our discussion in Section VIII. 7,
p. 581). By contrast, the (easier) singularity theory of linear ODEs is well established, and, as
we showed in this chapter, it is possible—in the regular singular case at least—to base a sound
method for asymptotic coefficient extraction on it.
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Saddle-point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascent to the ridge.

[· · · ] The integral will then be concentrated in a small interval.

— DANIEL GREENE AND DONALD KNUTH [310, sec. 4.3.3]

VIII. 1. Landscapes of analytic functions and saddle-points 543
VIII. 2. Saddle-point bounds 546
VIII. 3. Overview of the saddle-point method 551
VIII. 4. Three combinatorial examples 558
VIII. 5. Admissibility 564
VIII. 6. Integer partitions 574
VIII. 7. Saddle-points and linear differential equations. 581
VIII. 8. Large powers 585
VIII. 9. Saddle-points and probability distributions 594
VIII. 10. Multiple saddle-points 600
VIII. 11. Perspective 606

A saddle-point of a surface is a point reminiscent of the inner part of a saddle or of a
geographical pass between two mountains. If the surface represents the modulus of an
analytic function, saddle-points are simply determined as the zeros of the derivative
of the function.

In order to estimate complex integrals of an analytic function, it is often a good
strategy to adopt as contour of integration a curve that “crosses” one or several of
the saddle-points of the integrand. When applied to integrals depending on a large
parameter, this strategy provides in many cases accurate asymptotic information. In
this book, we are primarily concerned with Cauchy integrals expressing coefficients of
large index of generating functions. The implementation of the method is then fairly
simple, since integration can be performed along a circle centred at the origin.

Precisely, the principle of the saddle-point method for the estimation of contour
integrals is to choose a path crossing a saddle-point, then estimate the integrand lo-
cally near this saddle-point (where the modulus of the integrand achieves its maximum
on the contour), and deduce, by local approximations and termwise integration, an
asymptotic expansion of the integral itself. Some sort of “localization” or “concentra-
tion” property is required to ensure that the contribution near the saddle-point captures
the essential part of the integral. A simplified form of the method provides what are
known as saddle-point bounds—these useful and technically simple upper bounds are
obtained by applying trivial bounds to an integral relative to a saddle-point path. In

541
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many cases, the saddle-point method can furthermore provide complete asymptotic
expansions.

In the context of analytic combinatorics, the method is applicable to Cauchy co-
efficient integrals, in the case of rapidly varying functions: typical instances are entire
functions as well as functions with singularities at a finite distance that exhibit some
form of exponential growth. Saddle-point analysis then complements singularity ana-
lysis whose scope is essentially the category of functions having only moderate (i.e.,
polynomial) growth at their singularities. The saddle-point method is also a method
of choice for the analysis of coefficients of large powers of some fixed function and,
in this context, it paves the way to the study of multivariate asymptotics and limiting
Gaussian distributions developed in the next chapter.

Applications are given here to Stirling’s formula, as well as the asymptotics of the
central binomial coefficients, the involution numbers and the Bell numbers associated
to set partitions. The asymptotic enumeration of integer partitions is one of the jewels
of classical analysis and we provide an introduction to this rich topic where saddle-
points lead to effective estimates of an amazingly good quality. Other combinatorial
applications include balls-in-bins models and capacity, the number of increasing sub-
sequences in permutations, and blocks in set partitions. The counting of acyclic graphs
(equivalently forests of unrooted trees), finally takes us beyond the basic paradigm of
simple saddle-points by making use of multiple saddle-points, also known as “monkey
saddles”.

Plan of this chapter. First, we examine the surface determined by the modulus
of an analytic function and give, in Section VIII. 1, a classification of points into three
kinds: ordinary points, zeros, and saddle-points. Next we develop general purpose
saddle-point bounds in Section VIII. 2, which also serves to discuss the properties
of saddle-point crossing paths. The saddle-point method per se is presented in Sec-
tion VIII. 3, both in its most general form and in the way it specializes to Cauchy
coefficient integrals. Section VIII. 4 then discusses three examples, involutions, set
partitions, and fragmented permutations, which help us get further familiarized with
the method. We next jump to a new level of generality and introduce in Section VIII. 5
the abstract concept of admissibility—this approach has the merit of providing easily
testable conditions, while opening the possibility of determining broad classes of func-
tions to which the saddle-point method is applicable. In particular, many combinato-
rial types whose leading construction is a SET operation are seen to be “automatically”
amenable to saddle-point analysis. The case of integer partitions, which is technically
more advanced, is treated in a separate section, Section VIII. 6. The saddle-method
is also instrumental in analysing coefficients of many generating functions implicitly
defined by differential equations, including holonomic functions: see Section VIII. 7.
Next, the framework of “large powers”, developed in Section VIII. 8 constitutes a
combinatorial counterpart of the central limit theorem of probability theory, and as
such it provides a bridge to the study of limit distributions to be treated systematically
in Chapter IX. Other applications to discrete probability distributions are examined
in Section VIII. 9. Finally, Section VIII. 10 serves as a brief introduction to the rich
subject of multiple saddle-points and coalescence.
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VIII. 1. Landscapes of analytic functions and saddle-points

This section introduces a well-known classification of points on the surface rep-
resenting the modulus of an analytic function. In particular, as we are going to see,
saddle-points, which are determined by roots of the function’s derivative, are associ-
ated with a simple geometric property that gives them their name.

Consider any function f (z) analytic for z ∈ �, where � is some domain of C. Its
modulus | f (x + iy)| can be regarded as a function of the two real quantities, x = -(z)
and y = .(z). As such, it can be represented as a surface in three-dimensional space.
This surface is smooth (analytic functions are infinitely differentiable), but far from
being arbitrary.

Let z0 be an interior point of �. The local shape of the surface | f (z)| for z near z0
depends on which of the initial elements in the sequence f (z0), f ′(z0), f ′′(z0), . . .,
vanish. As we are going to see, its points can be of only one of three types: ordinary
points (the generic case), zeros, and saddle-points; see Figure VIII.1. The classifi-
cation of points is conveniently obtained by considering polar coordinates, writing
z = z0 + reiθ , with r small.

An ordinary point is such that f (z0)  = 0, f ′(z0)  = 0. This is the generic situation
as analytic functions have only isolated zeros. In that case, one has, for small r > 0,

(1) | f (z)| =
∣∣∣ f (z0)+ reiθ f ′(z0)+ O(r2)

∣∣∣ = | f (z0)|
∣∣∣1 + λrei(θ+φ) + O(r2)

∣∣∣ ,
where we have set f ′(z0)/ f (z0) = λeiφ , with λ > 0. The modulus then satisfies

| f (z)| = | f (z0)|
(

1 + λr cos(θ + φ)+ O(r2)
)
.

Thus, for r kept small enough and fixed, as θ varies, | f (z)| is maximum when θ =
−φ (where it is ∼ | f (z0)|(1 + λr)), and minimum when θ = −φ + π (where it is
∼ | f (z0)(1 − λr)). When θ = −φ ± π

2 , one has | f (z)| = | f (z0)| + o(r), which
means that | f (z)| is essentially constant. This is easily interpreted: the line θ ≡ −φ
(mod π) is (locally) a steepest descent line; the perpendicular line θ ≡ −φ + π

2
(mod π) is locally a level line. In particular, near an ordinary point, the surface | f (z)|
has neither a minimum nor a maximum. In figurative terms, this is like standing on
the flank of a mountain.

A zero is by definition a point such that f (z0) = 0. In this case, the function
| f (z)| attains its minimum value 0 at z0. Locally, to first order, one has | f (z)| ∼
| f ′(z0)|r for a simple zero and | f (z)| = O(rm) or a zero of order m. A zero is thus
like a sink or the bottom of a lake, save that, in the landscape of an analytic function,
all lakes are at sea level.

A saddle-point is a point such that f (z0)  = 0, f ′(z0) = 0; it thus corresponds
to a zero of the derivative, when the function itself does not vanish. It is said to be
a simple saddle-point if furthermore f ′′(z0)  = 0. In that case, a calculation similar
to (1),
(2)

| f (z)| =
∣∣∣∣ f (z0)+ 1

2
r2e2iθ f ′′(z0)+ O(r3)

∣∣∣∣ = | f (z0)|
∣∣∣1 + λr2ei(2θ+φ) + O(r3)

∣∣∣ ,



“book” — 2008/10/3 — 16:05 — page 544 — #558

544 VIII. SADDLE-POINT ASYMPTOTICS

Ordinary point Zero Saddle-point
f (z0)  = 0, f ′(z0)  = 0 f (z0) = 0 f (z0)  = 0, f ′(z0) = 0

f ′′(z0)  = 0
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Figure VIII.1. The different types of points on a surface | f (z)|: an ordinary point,
a zero, a simple saddle-point. Top: a diagram showing the local structure of level
curves (in solid lines), steepest descent lines (dashed with arrows pointing towards the
direction of increase) and regions (hashed) where the surface lies below the reference
value | f (z0)|. Bottom: the function f (z) = cosh z and the local shape of | f (z)| near
an ordinary point (iπ/4), a zero (iπ/2), and a saddle-point (0), with level lines shown
on the surfaces.

where we have set 1
2 f ′′(z0)/ f (z0) = λeiφ , shows that the modulus satisfies

| f (z)| = | f (z0)|
(

1 + λr2 cos(2θ + φ)+ O(r3)
)
.

Thus, starting at the direction θ = −φ/2 and turning around z0, the following se-
quence of events regarding the modulus | f (z)| = | f (reiθ )| is observed: it is maximal
(θ = −φ/2), stationary (θ = −φ/2 + π/4), minimal (θ = −φ/2 + π/2), stationary,
(θ = −φ/2 + 3π/4), maximal again (θ = −φ/2 + π ), and so on. The pattern, sym-
bolically “+ = − =”, repeats itself twice. This is superficially similar to an ordinary
point, save for the important fact that changes are observed at twice the angular speed.
Accordingly, the shape of the surface looks quite different; it is like the central part of
a saddle. Two level curves cross at a right angle: one steepest descent line (away from
the saddle-point) is perpendicular to another steepest descent line (towards the saddle-
point). In a mountain landscape, this is thus much like a pass between two mountains.
The two regions on each side corresponding to points with an altitude below a simple
saddle-point are often referred to as “valleys”.
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0.0

x

−1.0

−0.5

0.0

y

0.5

−1.0 −0.5−1.5

1.0

Figure VIII.2. The “tripod”: two views of |1+ z+ z2 + z3| as function of x = -(z),
y = .(z): (left) the modulus as a surface in R3; (right) the projection of level lines
on the z-plane.

Generally, a multiple saddle-point has multiplicity p if f (z0)  = 0 and all deriva-
tives f ′(z0), . . . , f (p)(z0) are equal to zero while f (p+1)(z0)  = 0. In that case, the
basic pattern “+ = − =” repeats itself p + 1 times. For instance, from a double
saddle-point (p = 2), three roads go down to three different valleys separated by
the flanks of three mountains. A double saddle-point is also called a “monkey sad-
dle” since it can be visualized as a saddle having places for the legs and the tail: see
Figure VIII.12 (p. 602) and Figure VIII.14 (p. 605).

Theorem VIII.1 (Classification of points on modulus surfaces). A surface | f (z)| at-
tached to the modulus of a function analytic over an open set � has points of only
three possible types: (i) ordinary points, (i i) zeros, (i i i) saddle-points. Under pro-
jection on the complex plane, a simple saddle-point is locally the common apex of two
curvilinear sectors with angle π/2, referred to as “valleys”, where the modulus of the
function is smaller than at the saddle-point.

As a consequence, the surface defined by the modulus of an analytic function has
no maximum: this property is known as the Maximum Modulus Principle. It has no
minimum either, apart from zeros. It is therefore a peakless landscape, in de Bruijn’s
words [143]. Accordingly, for a meromorphic function, peaks are at ∞ and minima
are at 0, the other points being either ordinary points or isolated saddle-points.

Example VIII.1. The tripod: a cubic polynomial. An idea of the typical shape of the surface
representing the modulus of an analytic function can be obtained by examining Figure VIII.2
relative to the third degree polynomial f (z) = 1+ z + z2 + z3. Since f (z) = (1− z4)/(1− z),
the zeros are at

−1, i, −i.

There are saddle-points at the zeros of the derivative f ′(z) = 1+ 2z + 3z2, that is, at the points
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ζ := −1

3
+ i

3

√
2, ζ ′ := −1

3
− i

3

√
2.

The diagram below summarizes the position of these “interesting” points:

(3) −1 (zero)

i (zero)

−i (zero)

ζ ′ ζ ′ = − 1
3 − i

3

√
2 (saddle-point)

ζ = − 1
3 + i

3

√
2 (saddle-point)ζ

(0)

The three zeros are especially noticeable on Figure VIII.2 (left), where they appear at the end
of the three “legs”. The two saddle-points are visible on Figure VIII.2 (right) as intersection
points of level curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VIII.1. The Fundamental Theorem of Algebra. This theorem asserts that a non-constant
polynomial has at least one root, hence n roots if its degree is n (Note IV.38, p. 270). Let
P(z) = 1 + a1z + · · · anzn be a polynomial of degree n. Consider f (z) = 1/P(z). By basic
analysis, one can take R sufficiently large, so that on |z| = R, one has | f (z)| < 1

2 . Assume
a contrario that P(z) has no zero. Then, f (z) which is analytic in |z| ≤ R should attain its
maximum at an interior point (since f (0) = 1), so that a contradiction has been reached. �

� VIII.2. Saddle-points of polynomials and the convex hull of zeros. Let P be a polynomial
and H the convex hull of its zeros. Then any root of P ′(z) lies in H. (Proof: assume distinct
zeros and consider

φ(z) := P ′(z)
P(z)

=
∑

α : P(α)=0

1

z − α
.

If z lies outside H, then z “sees” all zeros α in a half-plane, this by elementary geometry.
By projection on the normal to the half-plane boundary, it is found that, for some θ , one has
-(eiθφ(z)) < 0, so that P ′(z)  = 0.) �

VIII. 2. Saddle-point bounds

Saddle-point analysis is a general method suited to the estimation of integrals of
analytic functions F(z),

(4) I =
∫ B

A
F(z) dz,

where F(z) ≡ Fn(z) involves some large parameter n. The method is instrumental
when the integrand F is subject to rather violent variations, typically when there oc-
curs in it some exponential or some fixed function raised to a large power n → +∞.
In this section, we discuss some of the global properties of saddle-point contours,
then particularize the discussion to Cauchy coefficient integrals. General saddle-point
bounds, which are easy to derive, result from simple geometric considerations (a pre-
liminary discussion appears in Chapter IV, p. 246.).
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Starting from the general form (4), we let C be a contour joining A and B and
taken in a domain of the complex plane where F(z) is analytic. By standard inequali-
ties, we have

(5) |I | ≤ ||C|| · sup
z∈C

|F(z)|,

with ||C|| representing the length of C. This is the common trivial bound from integra-
tion theory applied to a fixed contour C.

For an analytic integrand F with A and B inside the domain of analyticity, there
is an infinite class P of acceptable paths to choose from, all in the analyticity domain
of F . Thus, by optimizing the bound (5), we may write

(6) |I | ≤ inf
C∈P

[
||C|| · sup

z∈C
|F(z)|

]
,

where the infimum is taken over all paths C ∈ P. Broadly speaking, a bound of this
type is called a saddle-point bound1.

The length factor ||C|| usually turns out to be unimportant for asymptotic bounding
purposes—this is, for instance, the case when paths remain in finite regions of the
complex plane. If there happens to be a path C from A to B such that no point is
at an altitude higher than sup(|F(A)|, |F(B)|), then a simple bound results, namely,
|I | ≤ ||C|| ·sup(|F(A)|, |F(B)|): this is in a sense the uninteresting case. The common
situation, typical of Cauchy coefficient integrals of combinatorics, is that paths have to
go at some higher altitude than the end points. A path C that traverses a saddle-point
by connecting two points at a lower altitude on the surface |F(z)| and by following
two steepest descent lines across the saddle-point is clearly a local minimum for the
path functional

	(C) = sup
z∈C

|F(z)|,

as neighbouring paths must possess a higher maximum. Such a path is called a saddle-
point path or steepest descent path. Then, the search for a path minimizing

inf
C

[
sup
z∈C

|F(z)|
]

(a simplification of (6) to its essential feature) naturally suggests considering saddle-
points and saddle-point paths. This leads to the variant of (6),

(7) |I | ≤ ||C0|| · sup
z∈C0

|F(z)|, C0 minimizes sup
z∈C

|F(z)|,

also referred to as a saddle-point bound.
We can summarize this stage of the discussion by a simple generic statement.

Theorem VIII.2 (General saddle-point bounds). Let F(z) be a function analytic in
a domain �. Consider the class of integral

∫
γ

F(z) dz where the contour γ connects

1Notice additionally that the optimization problem need not be solved exactly, as any approximate
solution to (6) still furnishes a valid upper bound because of the universal character of the trivial bound (5).
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two points A, B and is constrained to a class P of allowable paths in � (e.g., those
that encircle 0). Then one has the saddle-point bound2:

(8)

∣∣∣∣∫
γ

F(z) dz

∣∣∣∣ ≤ ||C0|| · sup
z∈C0

|F(z)|,
where C0 is any path that minimizes sup

z∈C
|F(z)|.

If A and B lie in opposite valleys of a saddle-point z0, then the minimization problem
is solved by saddle-point paths C0 made of arcs connecting A to B through z0. In that
case, one has ∣∣∣∣∫ B

A
F(z) dz

∣∣∣∣ ≤ ||C0|| · |F(z0)| , F ′(z0) = 0.

Borrowing a metaphor of de Bruijn [143], the situation may be described as fol-
lows. Estimating a path integral is like estimating the difference of altitude between
two villages in a mountain range. If the two villages are in different valleys, the best
strategy (this is what road networks often do) consists in following paths that cross
boundaries between valleys at passes, i.e., through saddle-points.

The statement of Theorem VIII.2 does no fix all details of the contour, when
there are several saddle-points “separating” A and B—the problem is like finding the
most economical route across a whole mountain range. But at least it suggests the
construction of a composite contour made of connected arcs crossing saddle-points
from valley to valley. Furthermore, in cases of combinatorial interest, some strong
positivity is present and the selection of the suitable saddle-point contour is normally
greatly simplified, as we explain next.

� VIII.3. An integral of powers. Consider the polynomial P(z) = 1 + z + z2 + z3 of Exam-
ple VIII.1. Define the line integral

In =
∫ +i

−1
P(z)n dz.

On the segment connecting the end points, the maximum of |P(z)| is 0.63831, giving the weak
trivial bound In = O(0.63831n). In contrast, there is a saddle-point at ζ = − 1

3 + i
3

√
2 where

|P(ζ )| = 1
3 , resulting in the bound

|In | ≤ λ

(
1

3

)n
, λ := |ζ + 1| + |i − ζ | .= 1.44141,

as follows from adopting a contour made of two segments connecting −1 to i through ζ . Discuss

further the bounds on
∫ α′
α , when (α, α′) ranges over all pairs of roots of P . �

Saddle-point bounds for Cauchy coefficient integrals. Saddle-point bounds can
be applied to Cauchy coefficient integrals,

(9) gn ≡ [zn]G(z) = 1

2iπ

∮
G(z)

dz

zn+1
,

2The form given by (8) is in principle weaker than the form (6), since it does not take into account the
length of the contour itself, but the difference is immaterial in all our asymptotic problems.
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for which we can avail ourselves of the previous discussion, with F(z) = G(z)z−n−1.
In (9) the symbol

∮
indicates that the allowable paths are constrained to encircle

the origin (the domain of definition of the integrand is a subset of C \ {0}; the points
A, B can then be seen as coinciding and taken somewhere along the negative real line;
equivalently, one may take A = −aeiε and B = −ae−iε , for a > 0 and ε → 0).

In the particular case where G(z) is a function with non-negative coefficients, a
simple condition guarantees the existence of a saddle-point on the positive real axis.
Indeed, assume that G(z), which has radius of convergence R with 0 < R ≤ +∞,
satisfies G(z) → +∞ as z → R− along the real axis and G(z) not a polynomial. Then
the integrand F(z) = G(z)z−n−1 satisfies F(0+) = F(R−) = +∞. This means that
there exists at least one local minimum of F over (0, R), hence, at least one value
ζ ∈ (0, R) where the derivative F ′ vanishes. (Actually, there can be only one such
point; see Note VIII.4, p. 550.) Since ζ corresponds to a local minimum of F , we have
additionally F ′′(ζ ) > 0, so that the saddle-point is crossed transversally by a circle
of radius ζ . Thus, the saddle-point bound, specialized to circles centred at the origin,
yields the following corollary.

Corollary VIII.1 (Saddle-point bounds for generating functions). Let G(z), not a
polynomial, be analytic at 0 with non-negative coefficients and radius of convergence
R ≤ +∞. Assume that G(R−) = +∞. Then one has

(10) [zn]G(z) ≤ G(ζ )

ζ n
, with ζ ∈ (0, R) the unique root of ζ

G ′(ζ )
G(ζ )

= n + 1.

Proof. The saddle-point is the point where the derivative of the integrand is 0. There-
fore, we consider (G(z)z−n−1)′ = 0, or G ′(z)z−n−1 − (n + 1)G(z)z−n−2 = 0, or

z
G ′(z)
G(z)

= n + 1.

We refer to this as the saddle-point equation and use ζ to denote its positive root. The
perimeter of the circle is 2πζ , so that the inequality [zn]G(z) ≤ G(ζ )/ζ n follows. �

Corollary VIII.1 is equivalent to Proposition IV.1, p. 246, on which it sheds a new
light, while paving the way to the full saddle-point method to be developed in the next
section.

We examine below two particular cases related to the central binomial and the
inverse factorial. The corresponding landscapes of Figure VIII.3, which bear a sur-
prising resemblance to one another, are, by the previous discussion, instances of a
general pattern for functions with non-negative coefficients. It is seen on these two
examples that the saddle-point bounds already catch the proper exponential growths,
being off only by a factor of O(n−1/2).

Example VIII.2. Saddle-point bounds for central binomials and inverse factorials. Consider
the two contour integrals around the origin

(11) Jn = 1

2iπ

∮
(1 + z)2n dz

zn+1
, Kn = 1

2iπ

∮
ez dz

zn+1
,

whose values are otherwise known, by virtue of Cauchy’s coefficient formula, to be Jn = (2n
n
)

and Kn = 1/n!. In that case, one can think of the end points A and B as coinciding and taken
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Figure VIII.3. The modulus of the integrands of Jn (central binomials) and Kn (in-
verse factorials) for n = 5 and the corresponding saddle-point contours.

somewhat arbitrarily on the negative real axis, while the contour has to encircle the origin once
and counter-clockwise.

The saddle-point equations are, respectively,

2n

1 + z
− n + 1

z
= 0, 1 − n + 1

z
= 0,

the corresponding saddle-points being ζ = n + 1

n − 1
and ζ ′ = n + 1. This provides the upper

bounds

(12) Jn =
(

2n

n

)
≤

(
4n2

n2 − 1

)n

≤ 16

9
4n, Kn = 1

n!
≤ en+1

(n + 1)n
,

which are valid for all values n ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VIII.4. Upward convexity of G(x)x−n. For G(z) having non-negative coefficients at the
origin, the quantity G(x)x−n is upward convex for x > 0, so that the saddle-point equation for
ζ can have at most one root. Indeed, the second derivative

(13)
d2

dx2

G(x)

xn = x2G′′(x)− 2nxG′(x)+ n(n + 1)G(x)

xn+2
,

is positive for x > 0 since its numerator,∑
k≥0

(n + 1 − k)(n − k)gk xk , gk := [zk ]G(z),

has only non-negative coefficients. (See Note IV.46, p. 280, for an alternative derivation.) �

� VIII.5. A minor optimization. The bounds of Equation (6), p. 547, which take the length of
the contour into account, lead to estimates that closely resemble (10). Indeed, we have

[zn]G(z) ≤ G (̂ζ )

ζ̂ n
, ζ̂ root of z

G′(z)
G(z)

= n,
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when optimization is carried out over circles centred at the origin. �

VIII. 3. Overview of the saddle-point method

Given a complex integral with a contour traversing a single saddle-point, the
saddle-point corresponds locally to a maximum of the integrand along the path. It
is then natural to expect that a small neighbourhood of the saddle-point may provide
the dominant contribution to the integral. The saddle-point method is applicable pre-
cisely when this is the case and when this dominant contribution can be estimated by
means of local expansions. The method then constitutes the complex analytic coun-
terpart of the method of Laplace (Appendix B.6: Laplace’s method, p. 755) for the
evaluation of real integrals depending on a large parameter, and we can regard it as
being

Saddle-point method = Choice of contour + Laplace’s method.

Similar to its real-variable counterpart, the saddle-point method is a general strategy
rather than a completely deterministic algorithm, since many choices are left open in
the implementation of the method concerning details of the contour and choices of its
splitting into pieces.

To proceed, it is convenient to set F(z) = e f (z) and consider

(14) I =
∫ B

A
e f (z) dz,

where f (z) ≡ fn(z), as F(z) ≡ Fn(z) in the previous section, involves some large
parameter n. Following possibly some preparation based on Cauchy’s theorem, we
may assume that the contour C connects two end points A and B lying in opposite
valleys of the saddle-point ζ . The saddle-point equation is F ′(ζ ) = 0, or equivalently
since F = e f :

f ′(ζ ) = 0.

The saddle-point method, of which a summary is given in Figure VIII.4, is based
on a fundamental splitting of the integration contour. We decompose C = C(0) ∪ C(1),
where C(0) called the “central part” contains ζ (or passes very near to it) and C(1)
is formed of the two remaining “tails”. This splitting has to be determined in each
case in accordance with the growth of the integrand. The basic principle rests on two
major conditions: the contributions of the two tails should be asymptotically negligible
(condition SP1); in the central region, the quantity f (z) in the integrand should be
asymptotically well approximated by a quadratic function (condition SP2). Under
these conditions, the integral is asymptotically equivalent to an incomplete Gaussian
integral. It then suffices to verify—this is condition SP3, usually a minor a posteriori
technical verification—that tails can be completed back, introducing only negligible
error terms. By this sequence of steps, the original integral is asymptotically reduced
to a complete Gaussian integral, which evaluates in closed form.

Specifically, the three steps of the saddle-point method involve checking condi-
tions expressed by Equations (15), (16), and (18) below.
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Goal: Estimate
∫ B

A
F(z) dz, setting F = e f ; here, F ≡ Fn and f ≡ fn depend on a large

parameter n.
— The end points A, B are assumed to lie in opposite valleys of the saddle-point.
— A contour C through (or near) a simple saddle-point ζ , so that f ′(ζ ) = 0, has been chosen.
— The contour is split as C = C(0) ∪ C(1).
The following conditions are to be verified.

SP1: Tails pruning. On the contour C(1), the tails integral
∫
C(1) is negligible:∫

C(1)
F(z) dz = o

(∫
C

F(z) dz

)
.

SP2: Central approximation. Along C(0), a quadratic expansion,

f (z) = f (ζ )+ 1

2
f ′′(ζ )(z − ζ )2 + O(ηn),

is valid, with ηn → 0 as n → ∞, uniformly with respect to z ∈ C(0).
SP3: Tails completion. The incomplete Gaussian integral resulting from SP2, taken over the
central range, is asymptotically equivalent to a complete Gaussian integral (with f ′′(ζ ) =
eiφ | f ′′(ζ )| and ε = ±1 depending on orientation):∫

C(0)
e

1
2 f ′′(ζ )(z−ζ )2 dz ∼ εie−iφ/2

∫ ∞

−∞
e−| f ′′(ζ )|x2/2 dx ≡ εie−iφ/2

√
2π

| f ′′(ζ )| .

Result: Assuming SP1, SP2, and SP3, one has, with ε = ±1 and arg( f ′′(ζ )) = φ:

1

2iπ

∫ B

A
e f (z) dz ∼ εe−iφ/2 e f (ζ )√

2π | f ′′(ζ )| = ± e f (ζ )√
2π f ′′(ζ )

.

Figure VIII.4. A summary of the basic saddle-point method.

SP1: Tails pruning. On the contour C(1), the tail integral
∫
C(1) is negligible:

(15)
∫
C(1)

F(z) dz = o

(∫
C

F(z) dz

)
.

This condition is usually established by proving that F(z) remains small enough (e.g.,
exponentially small in the scale of the problem) away from ζ , for z ∈ C(1).

SP2: Central approximation. Along C(0), a quadratic expansion,

(16) f (z) = f (ζ )+ 1

2
f ′′(ζ )(z − ζ )2 + O(ηn),

is valid, with ηn → 0 as n → ∞, uniformly for z ∈ C(0). This guarantees that
∫

e f is
well-approximated by an incomplete Gaussian integral:

(17)
∫
C(0)

e f (z) dz ∼ e f (ζ )
∫
C(0)

e
1
2 f ′′(ζ )(z−ζ )2 dz.
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SP3: Tails completion. The tails can be completed back, at the expense of asymp-
totically negligible terms, meaning that the incomplete Gaussian integral is asymptot-
ically equivalent to a complete one (itself given by (12), p. 744),

(18)
∫
C(0)

e
1
2 f ′′(ζ )(z−ζ )2 dz ∼ εie−iφ/2

∫ ∞

−∞
e−| f ′′(ζ )|x2/2 dx ≡ εie−iφ/2

√
2π

| f ′′(ζ )| .

where ε = ±1 is determined by the orientation of the original contour C, and f ′′(ζ ) =
eiφ | f ′′(ζ )|. This last step deserves a word of explanation. Along a steepest descent
curve across ζ , the quantity f ′′(ζ )(z − ζ )2 is real and negative, as we saw when dis-
cussing saddle-point landscapes (p. 543). Indeed, with f ′′(ζ ) = eiφ | f ′′(ζ )|, one has
arg(z−ζ ) ≡ −φ/2+ π

2 (mod π). Thus, the change of variables x = ±i(z−ζ )e−iφ/2

reduces the left side of (18) to an integral taken along (or close to) the real line3. The
condition (18) then demands that this integral can be completed to a complete Gauss-
ian integral, which itself evaluates in closed form.

If these conditions are granted, one has the chain∫
C

e f dz ∼
∫

C(0)
e f dz ∼ e f (ζ )

∫
C(0)

e
1
2 f ′′(ζ )(z−ζ )2 dz ∼ ±ie−iφ/2e f (ζ )

√
2π

| f ′′(ζ )| ,

by virtue of Equations (15), (17), (18). In summary:

Theorem VIII.3 (Saddle-point Algorithm). Consider an integral
∫ B

A F(z) dz, where
the integrand F = e f is an analytic function depending on a large parameter and
A, B lie in opposite valleys across a saddle-point ζ , which is a root of the saddle-
point equation

f ′(ζ ) = 0

(or, equivalently, F ′(ζ ) = 0). Assume that the contour C connecting A to B can be
split into C = C(0) ∪ C(1) in such a way that the following conditions are satisfied:

(i) tails are negligible, in the sense of Equation (15) of SP1,
(i i) a central approximation hold, in the sense of Equation (16) of SP2,
(i i i) tails can be completed back, in the sense of Equation (18) of SP3.

Then one has, with ε = ±1 reflecting orientation and φ = arg( f ′′(ζ )):

(19)
1

2iπ

∫ B

A
e f (z) dz ∼ εe−iφ/2 e f (ζ )√

2π | f ′′(ζ )| = ± e f (ζ )√
2π f ′′(ζ )

.

It can be verified at once that a blind application of the formula to the two integrals
of Example VIII.2 produces the expected asymptotic estimates

(20) Jn ≡
(

2n

n

)
∼ 4n

√
πn

and Kn ≡ 1

n!
∼ 1

nne−n
√

2πn
.

The complete justification in the case of Kn is given in Example VIII.3 below. The
case of Jn is covered by the general theory of “large powers” of Section VIII. 8, p. 585.

3The sign in (18) is naturally well-defined, once the data A, B, and f are fixed: one possibility is to
adopt the determination of φ/2 (mod π) such that A and B are sent close to the negative and the positive
real axis, respectively, after the final change of variables x = i(z − ζ )e−iφ/2.
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In order for the saddle-point method to work, conflicting requirements regard-
ing the dimensioning of C(0) and C(1) must be satisfied. The tails pruning and tails
completion conditions, SP1 and SP3, force C(0) to be chosen large enough, so as to
capture the main contribution to the integral; the central approximation condition SP2
requires C(0) to be small enough, to the effect that f (z) can be suitably reduced to its
quadratic expansion. Usually, one has to take ||C(0)||/||C|| → 0, and the following ob-
servation may help make the right choices. The error in the two-term expansion being
likely given by the next term, which involves a third derivative, it is a good guess to
dimension C(0) to be of length δ ≡ δ(n) chosen in such a way that

(21) f ′′(ζ )δ2 → ∞, f ′′′(ζ )δ3 → 0,

so that both tail and central approximation conditions can be satisfied. We call this
choice the saddle-point dimensioning heuristic.

On another register, it often proves convenient to adopt integration paths that
come close enough to the saddle-point but need not pass exactly through it. In the same
vein, a steepest descent curve may be followed only approximately. Such choices
will still lead to valid conclusions, as long as the conditions of Theorem VIII.3 are
verified. (Note carefully that these conditions neither impose that the contour should
pass strictly through the saddle-point, nor that a steepest descent curve should be
exactly followed.)

Saddle-point method for Cauchy coefficient integrals. For the purposes of an-
alytic combinatorics, the general saddle-point method specializes. We are given a
generating function G(z), assumed to be analytic at the origin and with non-negative
coefficients, and seek an asymptotic form of the coefficients, given in integral form by

[zn]G(z) = 1

2iπ

∫
C

G(z)
dz

zn+1
.

There, C encircles the origin, lies within the domain where G is analytic, and is posi-
tively oriented. This is a particular case of the general integral (14) considered earlier,
with the integrand being F(z) = G(z)/zn+1.

The geometry of the problem is now simple, and, for reasons seen in the previous
section, it suffices to consider as integration contour a circle centred at the origin and
passing through (or very near) a saddle-point present on the positive real line. It is
then natural to make use of polar coordinates and set

z = reiθ ,

where the radius r of the circle will be chosen equal to (or close to) the positive saddle-
point value. We thus need to estimate

(22) [zn]G(z) = 1

2iπ

∮
G(z)

dz

zn+1
= r−n

2π

∫ +π

−π
G(reiθ )e−niθ dθ.

Under the circumstances, the basic split of the contour C = C(0) ∪ C(1) involves a
central part C(0), which is an arc of the circle of radius r determined by |θ | ≤ θ0 for
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some suitably chosen θ0. On C(0), a quadratic approximation should hold, according
to SP2 [central approximation]. Set

(23) f (z) := log G(z)− n log z.

A natural possibility is to adopt for r the value that cancels f ′(r),

(24) r
G ′(r)
G(r)

= n,

which is a version of the saddle-point equation4 relative to polar coordinates. This
grants us locally, a quadratic approximation without linear terms, with β(r) a com-
putable quantity (in terms of f (r), f ′(r), f ′′(r)), we have

(25) f (reiθ )− f (r) = −1

2
β(r)θ2 + o(θ3),

which is valid at least for fixed r (i.e., for fixed n), as θ → 0
The cutoff angle θ0 is to be chosen as a function of n (or, equivalently, r ) in accor-

dance with the saddle-point heuristic (21). It then suffices to carry out a verification of
the validity of the three conditions of the saddle-point method, SP1, SP2 (for which a
suitably uniform version of (25) needs to be developed), and SP3 of Theorem VIII.3,
p. 553, adjusted to take into account polar coordinate notations.

The example below details the main steps of the saddle-point analysis of the gen-
erating function of inverse factorials, based on the foregoing principles.

Example VIII.3. Saddle-point analysis of the exponential and the inverse factorial I. The goal
is to estimate 1

n! = [zn]ez , the starting point being

Kn = 1

2iπ

∫
|z|=r

ez dz

zn+1
,

where integration will be performed along a circle centred at the origin. The landscape of the
modulus of the integrand has been already displayed in Figure VIII.3, p. 550—there is a saddle-
point of G(z)z−n−1 at ζ = n + 1 with an axis perpendicular to the real line. We thus expect an
asymptotic estimate to derive from adopting a circle passing through the saddle-point, or about.

We switch to polar coordinates, fix the choice of the radius r = n in accordance with (24),
and set z = neiθ . The original integral becomes, in polar coordinates,

(26) Kn = en

nn · 1

2π

∫ +π

−π
en

(
eiθ−1−iθ

)
dθ,

where, for readability, we have taken out the factor G(r)/rn ≡ en/nn . Set h(θ) = eiθ −1− iθ .
The function |eh(θ)| = ecos θ−1 is unimodal with its peak at θ = 0 and the same property
holds for |enh(θ)|, representing the modulus of the integrand in (26), which gets more and more
strongly peaked at θ = 0, as n → +∞; see Figure VIII.5.

4Equation (24) is almost the same as ζG′(ζ )/G(ζ ) = n + 1 of (10), which defines the saddle-point in
z-coordinates. The (minor) difference is accounted for by the fact that saddle-points are sensitive to changes
of variables in integrals. In practice, it proves workable to integrate along a circle of radius either r or ζ , or
even a suitably close approximation of r, ζ , the choice being often suggested by computational convenience.
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Figure VIII.5. Plots of |ezz−n−1| for n = 3 and n = 30 (scaled according to the
value of the saddle-point) illustrate the essential concentration condition as higher
values of n produce steeper saddle-point paths.

In agreement with the saddle-point strategy, the estimation of Kn proceeds by isolating a
small portion of the contour, corresponding to z near the real axis. We thus introduce

K (0)
n =

∫ +θ0

−θ0

enh(θ) dθ, K (1)
n =

∫ 2π−θ0

θ0

enh(θ) dθ,

and choose θ0 in accordance with the general heuristic of (21), which corresponds to the two
conditions: nθ2

0 → ∞ (informally: θ0 < n−1/2) and nθ3
0 → 0, (informally: θ0 > n−1/3).

One way of realizing the compromise is to adopt θ0 = na , where a is any number between
−1/2 and −1/3. To be specific, we fix a = −2/5, so

(27) θ0 ≡ θ0(n) = n−2/5.

In particular, the angle of the central region tends to zero.

(i) Tails pruning. For z = neiθ one has
∣∣ez

∣∣ = en cos θ , and, by unimodality properties of

the cosine, the tail integral K (1) satisfies

(28)
∣∣∣K (1)

n

∣∣∣ = O
(

e−n(cos θ0−1)
)
= O

(
exp

(
−Cn1/5

))
,

for some C > 0. The tail integral is thus is exponentially small.

(i i) Central approximation. Near θ = 0, one has h(θ) ≡ eiθ − 1 − iθ = − 1
2 θ

2 + O(θ3),
so that, for |θ | ≤ θ0,

enh(θ) = e−nθ2/2+O(nθ3) = e−nθ2/2
(

1 + O(nθ3
0 )

)
.

Since θ0 = n−2/5, we have

(29) K (0)
n =

∫ +n−2/5

−n−2/5
e−nθ2/2 dθ

(
1 + O(n−1/5)

)
,

which, by the change of variables t = θ
√

n, becomes

(30) K (0)
n = 1√

n

∫ +n1/10

−n1/10
e−t2/2 dt

(
1 + O(n−1/5)

)
.

The central integral is thus asymptotic to an incomplete Gaussian integral.
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(i i i) Tails completion. Given (30), the task is now easy. We have, elementarily, for c > 0,

(31)
∫ +∞

c
e−t2/2 dt = O

(
e−c2/2

)
,

which expresses the exponential smallness of Gaussian tails. As a consequence,

(32) K (0)
n ∼ 1√

n

∫ +∞

−∞
e−t2/2 dt ≡

√
2π

n
.

Assembling (28) and (32), we obtain

K (0)
n + K (1)

n ∼
√

2π

n
, i.e., Kn = 1

2π

en

nn

(
K (0)

n + K (1)
n

)
∼ en

nn
√

2πn
.

The proof also provides a relative error term of O(n−1/5). Stirling’s formula is thus seen to be
(inter alia!) a consequence of the saddle-point method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Complete asymptotic expansions. Just like Laplace’s method, the saddle-point
method can often be made to provide complete asymptotic expansions. The idea is
still to localize the main contribution in the central region, but now take into account
corrections terms to the quadratic approximation. As an illustration of these general
principles, we make explicit here the calculations relative to the inverse factorial.

Example VIII.4. Saddle-point analysis of the exponential and the inverse factorial II. For a
complete expansion of [zn]ez , we only need to revisit the estimation of K (0) in the previous
example, since K (1) is exponentially small anyhow. One first rewrites

K (0)
n =

∫ θ0

−θ0

e−nθ2/2en(cos θ−1+ 1
2 θ

2) dθ

= 1√
n

∫ θ0
√

n

−θ0
√

n
e−w2/2enξ(w/

√
n) dw, ξ(θ) := cos θ − 1 + 1

2
θ2.

The calculation proceeds exactly in the same way as for the Laplace method (Appendix B.6:
Laplace’s method, p. 755). It suffices to expand h(θ) to any fixed order, which is legitimate in
the central region. In this way, a representation of the form,

K (0)
n = 1√

n

∫ θ0
√

n

−θ0
√

n
e−w2/2

⎛⎝1 +
M−1∑
k=1

Ek(w)

nk/2
+ O

(
1 + w3M

nM/2

)⎞⎠ dw,

is obtained, where the Ek(w) are computable polynomials of degree 3k. Distributing the inte-
gral operator over terms in the asymptotic expansion and completing the tails yields an expan-
sion of the form

K (0)
n ∼ 1√

n

⎛⎝M−1∑
k=0

dk

nk/2
+ O(n−M/2)

⎞⎠ ,

where d0 =
√

2π and dk := ∫+∞
−∞ e−w2/2 Ek(w) dw. All odd terms disappear by parity. The

net result is then the following.

Proposition VIII.1 (Stirling’s formula). The factorial numbers satisfy

1

n!
∼ enn−n

√
2πn

(
1 − 1

12n
+ 1

288 n2
+ 139

51840 n3
− 571

2488320 n4
+ · · ·

)
.
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Notice the amazing similarity with the form obtained directly for n! in Appendix B.6:
Laplace’s method, p. 755. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VIII.6. A factorial surprise. Why is it that the expansion of n! and 1/n! involve the same set
of coefficients, up to sign? �

VIII. 4. Three combinatorial examples

The saddle-point method permits us to solve a number of asymptotic problems
coming from analytic combinatorics. In this section, we illustrate its use by treating
in some detail three combinatorial examples5:

Involutions (I), Set partitions (S), Fragmented permutations (F).
These are all labelled structures introduced in Chapter II. Their specifications and
EGFs are

(33)

⎧⎪⎨⎪⎩
Involutions : I = SET(SET1,2(Z)) �⇒ I (z) = ez+z2/2

Set Partition : S = SET(SET≥1(Z)) �⇒ S(z) = eez−1

Fragmented perms : F = SET(SEQ≥1(Z)) �⇒ F(z) = ez/(1−z).

The first two are entire functions (i.e., they only have a singularity at ∞), while the
last one has a singularity at z = 1. Each of these functions exhibits a fairly vio-
lent growth—of an exponential type—near its positive singularity, at either a finite or
infinite distance. As the reader will have noticed, all three combinatorial types are
structurally characterized by a set construction applied to some simpler structure.

Each example is treated, starting from the easier saddle-point bounds and pro-
ceeding with the saddle-point method. The example of involutions deals with a prob-
lem that is only a little more complicated than inverse factorials. The case of set
partitions (Bell numbers) illustrates the need in general of a good asymptotic tech-
nology for implicitly defined saddle-points. Finally, fragmented permutations, with
their singularity at a finite distance, pave the way for the (harder) analysis of integer
partitions in Section VIII. 6. We recapitulate the main features of the saddle-point
analyses of these three structures, together with the case of inverse factorials (urns),
in Figure VIII.6.

Example VIII.5. Involutions. An involution is a permutation τ such that τ2 is the identity

permutation (p. 122). The corresponding EGF is I (z) = ez+z2/2. We have in the notation
of (23)

f (z) = z + z2

2
− n log z,

and the saddle-point equation in polar coordinates is

r(1 + r) = n, implying r = −1

2
+ 1

2

√
4n + 1 ∼ √

n − 1

2
+ 1

8
√

n
+ O(n−3/2).

5The purpose of these examples is to become further familiarized with the practice of the saddle-point
method in analytic combinatorics. The impatient reader can jump directly to the next section, where she
will find a general theory that covers these and many more cases.



“book” — 2008/10/3 — 16:05 — page 559 — #573

VIII. 4. THREE COMBINATORIAL EXAMPLES 559

Class EGF radius (r) angle (θ0) coeff [zn] in EGF
urns

SET(Z) ez n n−2/5 ∼ enn−n
√

2πn
(Ex. VIII.3, p. 555)

involutions

SET(CYC1,2(Z)) ez+z2/2 ∼ √
n − 1

2 n−2/5 ∼ en/2−1/4n−n/2

2
√
πn

e
√

n

(Ex. VIII.5, p. 558)

set partitions

SET(SET≥1(Z)) eez−1 ∼ log n − log log n e−2r/5/r ∼ eer−1

rn
√

2πr(r + 1)er

(Ex. VIII.6, p. 560)

fragmented perms

SET(SEQ≥1(Z)) ez/(1−z) ∼ 1 − 1√
n

n−7/10 ∼ e−1/2+2
√

n

2
√
πn3/4

(Ex. VIII.7, p. 562)

Figure VIII.6. A summary of some major saddle-point analyses in combinatorics.

The use of the saddle-point bound then gives mechanically

(34)
In

n!
≤ e−1/4 en/2+√

n

nn/2
(1 + o(1)), In ≤ e−1/4

√
2πne−n/2+√

nnn/2(1 + o(1)).

(Notice that if we use instead the approximate saddle-point value,
√

n, we only lose a factor
e−1/4 .= 0.77880.)

The cutoff point between the central and non-central regions is determined, in agree-
ment with (21), by the fact that the length δ of the contour (in z coordinates) should satisfy
f ′′(r)δ2 → ∞ and f ′′′(r)δ3 → 0. In terms of angles, this means that we should choose a
cutoff angle θ0 that satisfies

r2 f ′′(r)θ2
0 → ∞, r3 f ′′′(r)θ3

0 → 0.

Here, we have f ′′(r) = O(1) and f ′′′(r) = O(n−1/2). Thus, θ0 must be of an order some-
where in between n−1/2 and n−1/3, and we fix

θ0 = n−2/5.

(i) Tails pruning. First, some general considerations are to be made, regarding the be-
haviour of |I (z)| along large circles, z = reiθ . One has

log |I (reiθ )| = r cos θ + r2

2
cos 2θ.

As a function of θ , this function decreases on (0, π2 ), since it is the sum of two decreasing

functions. Thus, |I (z)| attains its maximum (er+r2/2) at r and its minimum (e−r2/2) at z = ri .
In the left half-plane, first for θ ∈ ( π2 ,

3π
4 ), the modulus |I (z)| is at most er since cos 2θ < 0.

Finally, for θ ∈ ( 3π
4 , π) smallness is granted by the fact that cos θ < −1/

√
2 resulting in the

bound |I (z)| ≤ er2/2−r/
√

2. The same argument applies to the lower half plane .(z) < 0.
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As a consequence of these bounds, I (z)/I (
√

n) is strongly peaked at z = r ; in particular, it is
exponentially small away from the positive real axis, in the sense that

(35)
I (reiθ )

I (r)
= O

(
I (reiθ0)

I (r)

)
= O

(
exp(−nα)

)
, θ  ∈ [−θ0, θ0],

for some α > 0.

(i i) Central approximation. We then proceed and consider the central integral

J (0)n = e f (r)

2π

∫ +θ0

−θ0

exp
(

f (reiθ )− f (r)
)

dθ.

What is required is a Taylor expansion with remainder near the point r ∼ √
n. In the central

region, the relations f ′(r) = 0 f ′′(r) = 2 + O(1/n), and f ′′′(z) = O(n−1/2) yield

f (reiθ )− f (r) = r2

2
f ′′(r)(eiθ − 1)2 + O

(
n−1/2r3θ3

0

)
= −r2θ2 + O(n−1/5).

This is enough to guarantee that

(36) J (0)n = e f (r)

2π

∫ +θ0

−θ0

e−r2θ2
dθ

(
1 + O(n−1/5)

)
.

(i i i) Tails completion. Since r ∼ √
n and θ0 = n−2/5, we have

(37)
∫ +θ0

−θ0

e−r2θ2
dθ = 1

r

∫ +θ0r

−θ0r
e−t2

dt = 1

r

(∫ +∞

−∞
e−t2

dt + O
(

e−n1/5
))

.

Finally, Equations (35), (36), and (37) give:

Proposition VIII.2. The number In of involutions satisfies

(38)
In

n!
= e−1/4

2
√
πn

n−n/2en/2+√
n
(

1 + O

(
1

n1/5

))
.

Comparing the saddle-point bound (34) to the true asymptotic form (38), we see that the
former is only off by a factor of O(n1/2). Here is a table further comparing the asymptotic
estimate I �n provided by the right side of (38) to the exact value of In :

n 10 100 1000

In 9496 2.40533 · 1082 2.14392 · 101296

I �n 8839 2.34149 · 1082 2.12473 · 101296.

The relative error is empirically close to 0.3/
√

n, a fact that could be proved by developing a
complete asymptotic expansion along the lines expounded in the previous section, p. 557.

The estimate (38) of In is given by Knuth in [378]: his derivation is carried out by means
of the Laplace method applied to the explicit binomial sum that expresses In . Our complex
analytic derivation follows Moser and Wyman’s in [448]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VIII.6. Set partitions and Bell numbers. The number of partitions of a set of n
elements defines the Bell number Sn (p. 109) and one has

Sn = n!e−1[zn]G(z) where G(z) = eez
.

The saddle-point equation relative to G(z)z−n−1 (in z-coordinates) is

ζeζ = n + 1.
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This famous equation admits an asymptotic solution obtained by iteration (or “bootstrapping”):
it suffices to write ζ = log(n+1)− log ζ , and iterate (say, starting from ζ = 1), which provides
the solution,

(39) ζ ≡ ζ(n) = log n − log log n + log log n

log n
+ O

(
log2 log n

log2 n

)
(see [143, p. 26] for a detailed discussion). The corresponding saddle-point bound reads

Sn ≤ n!
eeζ−1

ζ n .

The approximate solution ζ̂ = log n yields in particular the simplified upper bound

Sn ≤ n!
en−1

(log n)n
.

which is enough to check that there are much fewer set partitions than permutations, the ratio
being bounded from above by a quantity e−n log log n+O(n).

In order to implement the saddle-point strategy, integration will be carried out over a circle
of radius r ≡ ζ . We then set

f (z) = log

(
G(z)

zn+1

)
= ez − (n + 1) log z,

and proceed to estimate the integral,

Jn = 1

2iπ

∫
C

G(z)
dz

zn+1
,

along the circle C of radius r . The usual saddle-point heuristic suggests that the range of the
saddle-point is determined by a quantity θ0 ≡ θ0(n) such that the quadratic terms in the ex-
pansion of f at r tend to infinity, while the cubic terms tend to zero. In order to carry out the
calculations, it is convenient to express all quantities in terms of r alone, which is possible since
n can be disposed of by means of the relation n + 1 = rer . We find:

f ′′(r) = er (1 + r−1), f ′′′(r) = er (1 − 2r2).

Thus, θ0 should be chosen such that r2er θ2
0 → ∞, r3er θ3

0 → 0, and the choice rθ0 = e−2r/5

is suitable.

(i) Tails pruning. First, observe that the function G(z) is strongly concentrated near the
real axis since, with z = reiθ , there holds

(40)
∣∣ez∣∣ = er cos θ ,

∣∣∣eez
∣∣∣ ≤ eer cos θ

.

In particular G(reiθ ) is exponentially smaller than G(r) for any fixed θ  = 0, when r gets large.

(i i) Central approximation. One then considers the central contribution,

J (0)n := 1

2iπ

∫
C(0)

G(z)
dz

zn+1
,

where C(0) is the part of the circle z = reiθ such that |θ | ≤ θ0 ≡ e−2r/5r−1. Since on C(0),
the third derivative is uniformly O(er ), one has there

f (reiθ ) = f (r)− 1

2
r2θ2 f ′′(r)+ O(r3θ3er ).

This approximation can then be transported into the integral J (0)n .
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(i i i) Tails completion. Tails can be completed in the usual way. The net effect is the
estimate

[zn]G(z) = e f (r)√
2π f ′′(r)

(
1 + O

(
r3θ3er

))
,

which, upon making the error term explicit rephrases, as follows.

Proposition VIII.3. The number Sn of set partitions of size n satisfies

(41) Sn = n!
eer−1

rn
√

2πr(r + 1)er

(
1 + O(e−r/5)

)
,

where r is defined implicitly by rer = n + 1, so that r = log n − log log n + o(1).

Here is a numerical table of the exact values Sn compared to the main term S�n of the
approximation (41):

n 10 100 1000

Sn 115975 4.75853 · 10115 2.98990 · 101927

S�n 114204 4.75537 · 10115 2.99012 · 101927

The error is about 1.5% for n = 10, less than 10−3 and 10−4 for n = 100 and n = 1000.
The asymptotic form in terms of r itself is the proper one as no back substitution of an

asymptotic expansion of r (in terms of n and log n) can provide an asymptotic expansion for Sn
solely in terms of n. Regarding explicit representations in terms of n, it is only log Sn that can
be expanded as

1

n
log Sn = log n − log log n − 1 + log log n

log n
+ 1

log n
+ O

((
log log n

log n

)2
)
.

(Saddle-point estimates of coefficient integrals often involve such implicitly defined quantities.)
This example probably constitutes the most famous application of saddle-point techniques

to combinatorial enumeration. The first correct treatment by means of the saddle-point method
is due to Moser and Wyman [447]. It is used for instance by de Bruijn in [143, pp. 104–108] as
a lead example of the method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example VIII.7. Fragmented permutations. These correspond to F(z) = exp(z/(1 − z)).
The example now illustrates the case of a singularity at a finite distance. We set as usual

f (z) = z

1 − z
− (n + 1) log z,

and start with saddle-point bounds. The saddle-point equation is

(42)
ζ

(1 − ζ )2
= n + 1,

so that ζ comes close to the singularity at 1 as n gets large:

ζ = 2n + 3 −√
4n + 5

2n + 2
= 1 − 1√

n
+ 1

2n
+ O(n−3/2).

Here, the approximation ζ̂ (n) = 1 − 1/
√

n, leads to

(43) [zn]F(z) ≤ e−1/2e2
√

n(1 + o(1)).

The saddle-point method is then applied with integration along a circle of radius r ≡ ζ .
The saddle-point heuristic suggests to restrict the integral to a small sector of angle 2θ0, and,
since f ′′(r) = O(n3/2) while f ′′′(r) = O(n2), this means taking θ0 such that n3/4θ0 → ∞
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and n2/3θ0 → 0. For instance, the choice θ0 = n−7/10 is suitable. Concentration is easily
verified: we have ∣∣∣e1/(1−z)

∣∣∣
z=reiθ

= e · exp

(
1 − r cos θ

1 − 2r cos θ + r2

)
,

which is a unimodal function of θ for θ ∈ (−π, π). (The maximum of this function of θ is of
order exp((1 − r)−1) and is attained at θ = 0; the minimum is O(1), attained at θ = π .) In
particular, along the non-central part |θ | ≥ θ0 of the saddle-point circle, one has

(44)
∣∣∣e1/(1−z)

∣∣∣
z=reiθ

= O(exp
(√

n − n1/10
)
,

so that tails are exponentially small. Local expansions then enable us to justify the use of the
general saddle-point formula in this case. The net result is the following.

Proposition VIII.4. The number of fragmented permutations, Fn = n![zn]F(z), satisfies

(45)
Fn

n!
∼ e−1/2e2

√
n

2
√
πn3/4

.

Quite characteristically, the corresponding saddle-point bound (43) turns out to be off the
asymptotic estimate (45) only by a factor of order n3/4. The relative error of the approxima-
tion (45) is about 4%, 1%, 0.3% for n = 10, 100, 1000, respectively.

The expansion above has been extended by E. Maitland Wright [618, 619] to several
classes of functions with a singularity whose type is an exponential of a function of the form
(1 − z)−ρ ; see Note VIII.7. (For the case of (45), Wright [618] refers to an earlier article of
Perron published in 1914.) His interest was due, at least partly, to applications to generalized
partition asymptotics, of which the basic cases are discussed in Section VIII. 6, p. 574. . . . . �

� VIII.7. Wright’s expansions. Consider the function

F(z) = (1 − z)−β exp

(
A

(1 − z)ρ

)
, A > 0, ρ > 0.

Then, a saddle-point analysis yields, when ρ < 1:

[zn]F(z) ∼ Nβ−1−ρ/2 exp
(

A(ρ + 1)Nρ
)

√
2π Aρ(ρ + 1)

, N :=
(

n

Aρ

) 1
ρ+1

.

(The case ρ ≥ 1 involves more terms of the asymptotic expansion of the saddle-point.) The
method generalizes to analytic and logarithmic multipliers, as well as to a sum of terms of the
form A(1 − z)−ρ inside the exponential. See [618, 619] for details. �

� VIII.8. Some oscillating coefficients. Define the function

s(z) = sin

(
z

1 − z

)
.

The coefficients sn = [zn]s(z) are seen to change sign at n = 6, 21, 46, 81, 125, 180, . . . . Do
signs change infinitely many times? (Hint: Yes. there are two complex conjugate saddle-points
and the associated asymptotic forms combine a growth of the type naeb

√
n with an oscillating

factor similar to sin
√

n.) The sum

Un =
n∑

k=0

(
n

k

)
(−1)k

k!

exhibits similar fluctuations. �
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VIII. 5. Admissibility

The saddle-point method is a versatile approach to the analysis of coefficients
of fast-growing generating functions, but one which is often cumbersome to apply
step-by-step. Fortunately, it proves possible to encapsulate the conditions repeatedly
encountered in our previous examples into a general framework. This leads to the
notion of an admissible function presented in Subsection VIII. 5.1. By design, saddle-
point analysis applies to such functions and asymptotic forms for their coefficients
can be systematically determined: this follows an approach initiated by Hayman in
1956. A great merit of abstraction in this context is that admissible functions satisfy
useful closure properties, so that an infinite class of admissible functions of relevance
to combinatorial applications can be determined—we develop this theme in Subsec-
tion VIII. 5.2, relative to enumeration. Finally, Subsection VIII. 5.3 presents an ap-
proach to the probabilistic problem known as depoissonization, which is much akin to
admissibility.

VIII. 5.1. Admissibility theory. The notion of admissibility is in essence an ax-
iomatization of the conditions underlying Theorem VIII.3 particularized to the case
of Cauchy coefficient integrals. In this section, we base our discussion on H–admis-
sibility, the prefix H being a token of Hayman’s original contribution [325]. A crisp
account of the theory is given in Section II.7 of Wong’s book [614] and in Odlyzko’s
authoritative survey [461, Sec. 12].

We consider here a function G(z) that is analytic at the origin and whose coeffi-
cients [zn]G(z) are to be estimated by

gn ≡ [zn]G(z) = 1

2iπ

∫
C

G(z)
dz

zn+1
.

The switch to polar coordinates is natural, so that the expansion of G(reiθ ) for small θ
plays a central rôle: with r a positive real number lying within the disc of analyticity
of G(z), the fundamental expansion is

(46) log G(reiθ ) = log G(r)+
∞∑
ν=1

αν(r)
(iθ)ν

ν!
.

Not surprisingly, the most important quantities are the first two terms, and once G(z)
has been put into exponential form, G(z) = eh(z), a simple computation yields

(47)

{
a(r) := α1(r) = rh′(r)
b(r) := α2(r) = r2h′′(r)+ rh′(r), with h(z) := log G(z).

In terms of G, itself, one thus has

(48) a(r) = r
G ′(r)
G(r)

, b(r) = r
G ′(r)
G(r)

+ r2 G ′′(r)
G(r)

− r2
(

G ′(r)
G(r)

)2

.

Whenever G(z) has non-negative Taylor coefficients at the origin, b(r) is positive for
r > 0 and a(r) increases as r → ρ, with ρ the radius of convergence of G. (This
follows from the argument developed in Note VIII.4, p. 550.)
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Definition VIII.1 (Hayman–admissibility). Let G(z) have radius of convergence ρ
with 0 < ρ ≤ +∞ and be always positive on some subinterval (R0, ρ) of (0, ρ). The
function G(z) is said to be H–admissible (Hayman admissible) if, with a(r) and b(r)
as defined in (47), it satisfies the following three conditions:

H1. [Capture condition] lim
r→ρ

a(r) = +∞ and lim
r→ρ

b(r) = +∞.

H2. [Locality condition] For some function θ0(r) defined over (R0, ρ) and sat-
isfying 0 < θ0 < π , one has

G(reiθ ) ∼ G(r)eiθa(r)−θ2b(r)/2 as r → ρ,

uniformly in |θ | ≤ θ0(r).
H3. [Decay condition] Uniformly in θ0(r) ≤ |θ | < π

G(reiθ ) = o

(
G(r)√

b(r)

)
.

Note that the conditions in the definition are intrinsic to the function: they only
make reference to the function’s values along circles, no parameter n being involved
yet. It can be easily verified, from the previous examples, that the functions ez , eez−1,
and ez+z2/2 are admissible with ρ = +∞, and that the function ez/(1−z) is admissible
with ρ = 1 (refer in each case to the discussion of the behaviour of the modulus of
G(reiθ ), as θ varies). By contrast, functions such as ez2

and ez2+ez are not admissible
since they attain values that are too large when arg(z) is near π .

Coefficients of H–admissible functions can be systematically analysed to first
asymptotic order, as expressed by the following theorem:

Theorem VIII.4 (Coefficients of admissible functions). Let G(z) be an H–admissible
function and ζ ≡ ζ(n) be the unique solution in the interval (R0, ρ) of the equation

(49) ζ
G ′(ζ )
G(ζ )

= n.

The Taylor coefficients of G(z) satisfy, as n → ∞:

(50) gn ≡ [zn]G(z) ∼ G(ζ )

ζ n
√

2πb(ζ )
, b(z) := z2 d2

dz2
log G(z)+ z

d

dz
log G(z).

Proof. The proof simply amounts to transcribing the definition of admissibility into
the conditions of Theorem VIII.3. Integration is carried out over a circle centred at the
origin, of some radius r to be specified shortly. Under the change of variable z = reiθ ,
the Cauchy coefficient formula becomes

(51) gn ≡ [zn]G(z) = r−n

2π

∫ +π

−π
G(reiθ )e−niθ dθ.

In order to obtain a quadratic approximation without a linear term, one chooses
the radius of the circle as the positive solution ζ of the equation a(ζ ) = n, that is, a
solution of Equation (49). (Thus ζ is a saddle-point of G(z)z−n .) By the capture con-
dition H1, we have ζ → ρ− as n → +∞. Following the general saddle-point strategy,
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we decompose the integration domain and set, with θ0 as specified in conditions H2
and H3:

J (0) =
∫ +θ0

−θ0

G(ζeiθ )e−niθ dθ, J (1) =
∫ 2π−θ0

θ0

G(ζeiθ )e−niθ dθ.

(i) Tails pruning. By the decay condition H3, we have a trivial bound, which
suffices for our purposes:

(52) J (1) = o

(
G(ζ )√

b(ζ )

)
.

(i i) Central approximation. The uniformity of the locality condition H2 implies

(53) J (0) ∼ G(ζ )
∫ +θ0

−θ0

e−θ
2b(ζ )/2 dθ.

(i i i) Tails completion. A combination of the locality condition H2 and the decay
condition H3 instantiated at θ = θ0, shows that b(ζ )θ2 → +∞ as n → +∞. There
results that tails can be completed back, and

(54)
∫ +θ0

−θ0

e−b(r)θ2/2 dθ ∼ 1√
b(r)

∫ +θ0/
√

b(ζ )

−θ0/
√

b(ζ )
e−t2/2 dt ∼ 1√

b(r)

∫ +∞

−∞
e−t2/2 dt.

From (52), (53), and (54) (or equivalently via an application of Theorem VIII.3),
the conclusion of the theorem follows. �

The usual comments regarding the choice of the function θ0(r) apply. Consider-
ing the expansion (46), we must have α2(r)θ2

0 → ∞ and α3(r)θ3
0 → 0. Thus, in order

to succeed, the method necessitates a priori α3(r)2/α2(r)3 → 0. Then, θ0 should be
taken according to the saddle-point dimensioning heuristic, which can be figuratively
summarized as6

(55)
1

α2(r)1/2
> θ0 > 1

α3(r)1/3
,

a possible choice being the geometric mean of the two bounds θ0 = α
−1/4
2 α

−1/6
3 .

The original proof by Hayman [325] contains in addition a general result that
describes the shape of the individual terms gnrn in the Taylor expansion of G(r) as r
gets closer to its limit value ρ: these appear to exhibit a bell-shaped profile. Precisely,
for G with non-negative coefficients, define a family of discrete random variables X (r)
indexed by r ∈ (0, R) as follows:

P(X (r) = n) = gnrn

G(r)
.

The model in which a random F structure with GF G(z) is drawn with its size being
the random value X (r) is known as a Boltzmann model. Then:

6We occasionally write A > B, equivalently, B < A, if A = o(B).
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Figure VIII.7. The families of Boltzmann distributions associated with involutions,

G(z) = ez+z2/2 with r = 4 . . 8, and set partitions, G(z) = eez−1 with r = 2 . . 3,
obey an approximate Gaussian profile.

Proposition VIII.5. The Boltzmann probabilities associated to an admissible function
G(z) satisfy, as r → ρ−, a “local” Gaussian estimate; namely,

(56)
gnrn

G(r)
= 1√

2πb(r)

[
exp

(
− (a(r)− n)2

2b(r)

)
+ εn

]
,

where the error term satisfies εn = o(1) as r → ρ uniformly with respect to integers
n; that is, limr→ρ supn |εn| = 0.

The proof is entirely similar to that of Theorem VIII.4; see Note VIII.9 and Fig-
ure VIII.7 for a suggestive illustration.

� VIII.9. Admissibility and Boltzmann models. The Boltzmann distribution is accessible from

gnrn = 1

2π

∫ 2π−θ0

−θ0

G(reiθ )e−inθ dθ.

The estimation of this integral is once more based on a fundamental split

gnrn = J (0) + J (1) where J (0) = 1

2π

∫ +θ0

−θ0

, J (1) = 1

2π

∫ 2π−θ0

+θ0

,

and θ0 = θ0(n) is as specified by the admissibility definition. Only the central approximation
and tails completion deserves adjustments. The “locality” condition H2 gives uniformly in n,

(57)

J (0) = G(r)

2π

∫ +θ0

−θ0

ei(a(r)−n)θ− 1
2 b(r)θ2

(1 + o(1)) dθ

= G(r)

2π

[∫ +θ0

−θ0

ei(a(r)−n)θ− 1
2 b(r)θ2

dθ + o

(∫ +∞

−∞
e−

1
2 b(r)θ2

)
dθ

]
.

and setting (a(r)− n)(2/b(r))1/2 = c, we obtain

(58) J (0) = G(r)

π
√

2b(r)

[∫ +θ0
√

b(r)/2

−θ0
√

b(r)/2
e−t2+ict dt + o(1)

]
.
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The integral in (58) can then be routinely extended to a complete Gaussian integral, introducing
only o(1) error terms,

(59) J (0) = G(r)

π
√

2b(r)

[∫ +∞

−∞
e−t2+ict dt + o(1)

]
.

Finally, the Gaussian integral evaluates to
√
πe−c2/4, as is seen by completing the square and

shifting vertically the integration line. �

� VIII.10. Hayman’s original. The condition H1 of Theorem VIII.4 can be replaced by

H′
1. [Capture condition] lim

r→ρ
b(r) = +∞.

That is, a(r) → +∞ is a consequence of H′
1, H2, and H3. (See [325, §5].) �

� VIII.11. Non-admissible functions. Singularity analysis and H–admissibility conditions are
in a sense complementary. Indeed, the function G(z) = (1 − z)−1 fails to be be admissible

as the asymptotic form that Theorem VIII.4 would imply is the erroneous [zn]
1

1 − z
!!∼ e√

2π
,

corresponding to a saddle-point near 1−n−1. The explanation of the discrepancy is as follows:
Expansion (46) has αν(r) of the order of (1− r)−ν , so that the locality condition and the decay
condition cannot be simultaneously satisfied.

Singularity analysis salvages the situation by using a larger contour and by normalizing to
a global Hankel Gamma integral instead of a more “local” Gaussian integral. This is also in
accordance with the fact that the saddle-point formula gives, in the case of [zn](1 − z)−1, an
estimate, which is within a constant factor of the true value 1. (More generally, functions of the
form (1 − z)−β are typical instances with too slow a growth to be admissible.) �

Closure properties. An important aspect of Hayman’s work is that it leads to
general theorems, which guarantee that large classes of functions are admissible.

Theorem VIII.5 (Closure of H–admissible functions). Let G(z) and H(z) be admis-
sible functions and let P(z) be a polynomial with real coefficients. Then:

(i) The product G(z)H(z) and the exponential eG(z) are admissible functions.
(i i) The sum G(z) + P(z) is admissible. If the leading coefficient of P(z) is

positive then G(z)P(z) and P(G(z)) are admissible.
(i i i) If the Taylor coefficients of eP(z) are eventually positive, then eP(z) is admis-

sible.

Proof. (Sketch) The easy proofs essentially reduce to making an inspired guess for
the choice of the θ0 function, which may be guided by Equation (55) in the usual
way, and then routinely checking the conditions of the admissibility definition. For
instance, in the case of the exponential, K (z) = eG(z), the conditions H1,H2,H3 of
Definition VIII.1 are satisfied if one takes θ0(r) = (G(r))−2/5. We refer to Hayman’s
original paper [325] for details. �

Exponentials of polynomials. The closure theorem also implies as a very special
case that any GF of the form eP(z) with P(z) a polynomial with positive coefficients
can be subjected to saddle-point analysis, a fact first noted by Moser and Wyman [449,
450].

Corollary VIII.2 (Exponentials of polynomials). Let P(z) = ∑m
j=1 a j z j have non-

negative coefficients and be aperiodic in the sense that gcd{ j | a j  = 0} = 1. Let
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f (z) = eP(z). Then, one has

fn ≡ [zn] f (z) ∼ 1√
2πλ

eP(r)

rn
, where λ =

(
r

d

dr

)2

P(r),

and r is a function of n given implicitly by r d
dr P(r) = n.

The computations are in this case purely mechanical, since they only involve the
asymptotic expansion (with respect to n) of an algebraic equation.

Granted the basic admissibility theorem and closures properties, many functions
are immediately seen to be admissible, including

ez, eez−1, ez+z2/2,

which have previously served as lead examples for illustrating the saddle-point method.
Corollary VIII.2 also covers involutions, permutations of a fixed order in the symmet-
ric group, permutations with cycles of bounded length, as well as set partitions with
bounded block sizes: see Note VIII.12 below. More generally, Corollary VIII.2 ap-
plies to any labelled set construction, F = SET(G), when the sizes of G–components
are restricted to a finite set, in which case one has

F [m] = SET
(
∪r

j=1G j

)
, �⇒ F [m](z) = exp

⎛⎝ m∑
j=1

G j
z j

j!

⎞⎠ .

This covers all sorts of graphs (plain or functional) whose connected components are
of bounded size.
� VIII.12. Applications of “exponentials of polynomials”. Corollary VIII.2 applies to the
following combinatorial situations:

Permutations of order p (σ p = 1) f (z) = exp
(∑

j | p
z j

j

)
Permutations with longest cycle ≤ p f (z) = exp

(∑p
j=1

z j

j

)
Partitions of sets with largest block ≤ p f (z) = exp

(∑p
j=1

z j

j!

)
.

For instance, the number of solutions of σ p = 1 in the symmetric group is asymptotic to(n

e

)n(1−1/p)
p−1/2 exp(n1/p),

for any fixed prime p ≥ 3 (Moser and Wyman [449, 450]). �

Complete asymptotic expansions. Harris and Schoenfeld have introduced in [323]
a technical condition of admissibility that is stronger than Hayman admissibility and
is called H S–admissibility. Under such H S–admissibility, a complete asymptotic ex-
pansion can be obtained. We omit the definition here due to its technical character but
refer instead to the original paper [323] and to Odlyzko’s survey [461]. Odlyzko and
Richmond [462] later showed that, if g(z) is H–admissible, then f (z) = eg(z) is H S–
admissible. Thus, taking H–admissibility to mean at least exponential growth, full
asymptotic expansions are to be systematically expected at double exponential growth
and beyond. The principles of developing full asymptotic expansions are essentially
the same as the ones explained on p. 557—only the discussion of the asymptotic scales
involved becomes a bit intricate, at this level of generality.
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VIII. 5.2. Higher-level structures and admissibility. The concept of admissi-
bility and its surrounding properties (Theorems VIII.4 and VIII.5, Corollary VIII.2)
afford a neat discussion of which combinatorial classes should lead to counting se-
quences that are amenable to the saddle-point method. For simplicity, we restrict
ourselves here to the labelled universe.

Start from the first-level structures, namely

SEQ(Z), CYC(Z), SET(Z),
corresponding, respectively, to permutations, circular graphs, and urns, with EGFs

1

1 − z
, log

1

1 − z
, ez .

The first two are of singularity analysis class; the last is, as we saw, within the reach
of the saddle-point method and is H–admissible.

Next consider second-level structures defined by arbitrary composition of two
constructions taken among SEQ,CYC, SET; see Subsection II. 4.2, p. 124 for a pre-
liminary discussion (In the case of the internal construction, it is understood that, for
definiteness, the number of components is constrained to be ≥ 1.) There are three
structures whose external construction is of the sequence type, namely,

SEQ ◦ SEQ, SEQ ◦ CYC, SEQ ◦ SET,

corresponding, respectively, to labelled compositions, alignments, and surjections. All
three have a dominant singularity that is a pole; hence they are amenable to meromor-
phic coefficient asymptotics (Chapters IV and V), or, with weaker remainder esti-
mates, to singularity analysis (Chapters VI and VII).

Similarly there are three structures whose external construction is of the cycle
type, namely,

CYC ◦ SEQ, CYC ◦ CYC, CYC ◦ SET,

corresponding to cyclic versions of the previous ones. In that case, the EGFs have
a logarithmic singularity; hence they are amenable to singularity analysis, or, after
differentiation, to meromorphic coefficient asymptotics again.

The case of an external set construction is of interest. It gives rise to

SET ◦ SEQ, SET ◦ CYC, SET ◦ SET,

corresponding, respectively, to fragmented permutations, the class of all permutations,
and set partitions. The composition SET ◦ CYC appears to be special, because of the
general isomorphism, valid for any class C,

SET(CYC(C)) ∼= SEQ(C),
corresponding to the unicity of the decomposition of a permutation of C–objects into
cycles. Accordingly, for generating functions, an exponential singularity “simplifies”,
when combined with a logarithmic singularity, giving rise to an algebraic (here polar)
singularity. The remaining two cases, namely, fragmented permutations and set parti-
tions, characteristically come under the saddle-point method and admissibility, as we
have seen already.
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Closure properties then make it possible to consider structures defined by an arbi-
trary nesting of the constructions in {SEQ,CYC, SET}. For instance, “superpartitions”
defined by

S = SET(SET≥1(SET≥1(Z))), �⇒ S(z) = eeez−1−1,

are third-level structures. They can be subjected to admissibility theory and saddle-
point estimates apply a priori. Notes VIII.14 and VIII.15 further examine such third-
level structures.
� VIII.13. Idempotent mappings. Consider functions from a finite set to itself (“mappings” or
“functional graphs” in the terminology of Chapter II) that are idempotent, i.e., φ ◦ φ = φ. The
EGF is I (z) = exp(zez) since cycles are constrained to have length 1 exactly. The function I (z)
is admissible and

In ∼ n!√
2πnζ

ζ−ne(n+1)/(ζ+1),

where ζ is the positive solution of ζ(ζ + 1)eζ = n + 1. This example is discussed by Harris
and Schoenfeld in [323]. �

� VIII.14. The number of societies. A society on n distinguished individuals is defined by
Sloane and Wieder [545] as follows: first partition the n individuals into non-empty subsets
and then form an ordered set partition [preferential arrangement] into each subset. The class of
societies is thus a third-level (labelled) structure, with specification and EGF

S = SET
(
SEQ≥1(SET≥1(Z))

) �⇒ S(z) = exp

(
1

2 − ez − 1

)
.

The counting sequence starts as 1, 1, 4, 23, 173, 1602 (EIS 75729); asymptotically

Sn ∼ C
e
√

2n/ log 2

n3/4(log 2)n+1/4
n!, C := 1

4
√
π

(
2

e

)3/4
e1/(4 log 2).

(The singularity is of the type “exponential-of-pole” at z = log 2.) �

� VIII.15. Third-level classes. Consider labelled classes defined from atoms (Z) by three
nested constructions, each either a sequence or a set. All cases can be analysed, either by saddle-
point and admissibility or by singularity analysis. Here is a table recapitulating structures,
together with their EGF and radius of convergence (ρ):

Saddle-point: SET(SET≥1(SET≥1(Z))) eeez−1−1 ρ = ∞
SET(SET≥1(SEQ≥1(Z))) eez/(1−z)−1 ρ = 1

SET(SEQ≥1(SET≥1(Z))) exp(
ez − 1

2 − ez ) ρ = log 2

SET(SEQ≥1(SEQ≥1(Z))) ez/(1−2z) ρ = 1
2 ;

Singularity analysis: SEQ(SET≥1(SET≥1(Z)))
1

2 − eez−1
ρ = log log(2e)

SEQ(SET≥1(SEQ≥1(Z)))
1

2 − ez/(1−z)
ρ = log 2

1+log 2

SEQ(SEQ≥1(SET≥1(Z)))
2 − ez

3 − 2ez ρ = log 3
2

SEQ(SEQ≥1(SEQ≥1(Z)))
1 − 2z

1 − 3z
ρ = 1

3 .

The outermost construction dictates the analytic type and precise asymptotic equivalents can be
developed in all cases. �
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� VIII.16. A Multiple Choice Questionnaire. Classify all the 27 third-level structures built
out of {SEQ,CYC, SET}, according to whether they are of type SA (singularity analysis) or SP
(saddle-point). �

� VIII.17. A meta-MCQ. Among the 3n specifications of level n, what is the asymptotic pro-
portion of those that are of type SP? �

VIII. 5.3. Analytic depoissonization. We conclude this section on methodology
with a sketch of an approach to the analysis of exponential generating functions,
which has been termed analytic depoissonization, by its proponents, Jacquet and Sz-
pankowski [346, 564]. This approach, which is based on the saddle-point method, has
affinities with admissibility theory and it plays a rôle in the investigation of several
important models of discrete mathematics.

The Poisson generating function of a sequence (an) is defined as

α(z) =
∑
n≥0

ane−z zn

n!
.

It is thus a simple variant of the EGF (multiply by e−z) and, when z assumes a non-
negative real value λ, it can be viewed as a sum of the an , weighted by the Poisson
probabilities {e−λλn/n!}. Since the Poisson distribution is concentrated around its
mean value λ, it is reasonable to expect an approximation

(60) α(λ) ∼ a�λ� (λ → ∞)

to be valid, provided an , assumed to be known, varies sufficiently “regularly”. A
statement granting us the correctness of (60), based on a priori knowledge of the an ,
is an Abelian theorem, in the usual sense of analysis (see Section VI. 11, p. 433, and
e.g., [69, §1.7]); it is easily established using the Laplace method for sums (p. 755),
upon appealing to a Gaussian approximation of Poisson laws of large rate λ (Note IX.19,
p. 643).

What is of interest here is the converse (Tauberian) problem: we seek ways of
translating information on the Poisson generating function α(z) into an asymptotic
expansion of the coefficients (an). Beyond being fully in the spirit of the book (es-
pecially, Chapters VI and VII), this situation is of interest, since it is encountered in
many probabilistic contexts where a Poisson model intervenes. In this subsection,
we stand on the shoulders of Jacquet and Szpankowski [346, 564], who developed a
whole theory.

A sector Sφ , with φ ∈ R, is defined to be Sφ = { z : | arg(z)| ≤ φ}. A func-
tion f (z) is said to be small, away from the positive real axis, if, for some A > 0 and
φ ∈ (0, π/2), one has∣∣ez f (z)

∣∣ = O
(

e−A|z|
)
, as |z| → ∞, z  ∈ Sφ.

We have [564, Th. 10.6]:

Theorem VIII.6 (Analytic depoissonization). Let the Poisson generating function α(z)
be small, away from the positive real axis, with sector Sφ . Then one has the following
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correspondence between properties of the individual terms in the expansion of α(z)
within Sφ and asymptotic terms in the expansion of the coefficient an:

α(z) an

O
(|z|B | log(z)|C ) −→ O

(
nB(log n)C

)
zb −→ ∼ nb

[
1 − b(b − 1)

2n
+ b(b − 1)(b − 2)(3b − 1)

24n2
− · · ·

]
zb(log z)r −→ ∼ ∂r

∂br

(
nb

[
1 − b(b − 1)

2n
+ · · ·

])
.

Proof. (Sketch) Given the assumptions, we regard ezα(z) as a variant of the expo-
nential function, to which the saddle-point method is known to be applicable: see
the derivation of Example VIII.3 (p. 555), which we closely follow. Accordingly, we
appeal to Cauchy’s formula,

an = n!

2iπ

∫
|z|=n

ezα(z)
dz

zn+1
,

and integrate along the circle |z| = n. The smallness condition on α(z) ensures that
the integral outside of Sφ is exponentially negligible. Setting z = neiθ , we see that,
inside Sφ , we can neglect the part corresponding to |θ | ≥ θ0(n) ≡ n−2/5, since it is
again exponentially small. Then, for the central part of the contour,

a(0)n := n!n−nen

2π
√

n

∫ θ0

−θ0

e−nθ2/2 exp

(
n
[
eiθ − 1 − iθ + 1

2
θ2])α(neiθ ) dθ,

it suffices to perform the change of variables t = θ
√

n, make careful use of the as-
sumed asymptotic approximation of α(z) in each of the three cases, and finally con-
clude. �

The estimates of Theorem VIII.6 are thus considerable refinements of (60). (To
some probabilists, it may come as a surprise that one can depoissonize by making
use of Poisson laws of complex rate!) Analytic depoissonization parallels the philos-
ophy underlying singularity analysis as well as admissibility theory. Its merit is to
be well-suited to solving a large number of problems arising in word statistics, the
analysis of digital trees and distributed algorithms, as well as data compression: see
Szpankowski’s book [564, Ch. 10] and the fundamental study [346] for applications
and advanced results.
� VIII.18. The “Jasz” expansion. Jacquet and Szpankowski prove more generally that

an ∼ α(n)+
∞∑

k=1

k∑
i=1

ci,k+1ni
(
∂k+i

z α(z)
)

z 	→n
,

where ci, j = [xi y j ] exp(x log(1 + y)− xy), under suitable conditions on α(z). �

� VIII.19. The converse “Jasz” expansion. Jacquet and Szpankowski also give an Abelian
result:

α(z) ∼ g(n)+
∞∑

k=1

k∑
j=1

di,k+i zi ∂k+i
z g(z),
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where di, j = [xi y j ] exp(x(ey − 1) − xy, the function g(z) extrapolates an (i.e., an = g(n))
to C, and suitable smoothness conditions on g are imposed. �

VIII. 6. Integer partitions

We now examine the asymptotic enumeration of integer partitions, where the
saddle-point method serves as the main asymptotic engine. The corresponding gener-
ating function enjoys rich properties, and the analysis, which goes back to Hardy and
Ramanujan in 1917, constitutes, as pointed out in the introduction of this chapter, a
jewel of classical analysis.

Integer partitions represent additive decompositions of integers, when the order
of summands is not taken into account. When all summands are allowed, the specifi-
cation and ordinary generating function are (Section I. 3, p. 39)

(61) P = MSET(SEQ≥1(Z)) �⇒ P(z) =
∞∏

m=1

1

1 − zm
,

which, by the exp–log transformation, admits the equivalent form

(62)

P(z) = exp
∞∑

m=1

log(1 − zm)−1

= exp

(
z

1 − z
+ 1

2

z2

1 − z2
+ 1

3

z3

1 − z3
· · ·

)
.

From either of these two forms, it can be seen that the unit circle is a natural boundary,
beyond which the function cannot be continued. The second form, which involves
the quantity exp(z/(1 − z)) is reminiscent of the EGF of fragmented permutations,
examined in Example VIII.7, p. 562, to which the saddle-point method could be suc-
cessfully applied.

In what follows, we show (Example VIII.8 below) that the saddle-point method is
applicable, although the analysis of P(z) near the unit circle is delicate (and pregnant
with deep properties). The accompanying notes point to similar methods being appli-
cable to a variety of similar-looking generating functions, including those relative to
partitions into primes, squares, and distinct summands, as well as plane partitions: see
Figure VIII.8 for a summary of some of the asymptotic results known.

Example VIII.8. Integer partitions. We are dealing here with a famous chapter of both asymp-
totic combinatorics and additive number theory. A problem similar to that of asymptotically
enumerating partitions was first raised by Ramanujan in a letter to Hardy in 1913, and subse-
quently developed in a famous joint work of Hardy and Ramanujan (see the account in Hardy’s
Lectures [321]). The Hardy–Ramanujan expansion was later perfected by Rademacher [22]
who, in a sense, gave an “exact” formula for the partition numbers Pn .

A complete derivation with all details would consume more space than we can devote to
this questions. We outline here the proof strategy in such a way that, hopefully, the reader can
supply the missing details by herself. (The cited references provide a complete treatment).

As before, we start with simple saddle-point bounds, already briefly discussed on p. 248.
Let Pn denote the number of integer partitions of n, with OGF as stated in (61). A form
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Summands specification asymptotics

all, Z≥1 MSET(SEQ≥1(Z))
1

4n
√

3
eπ

√
2n/3 Ex. VIII.8, p. 574

all distinct, Z≥1 PSET(SEQ≥1(Z))
1

4 · 31/4n3/4
eπ

√
n/3 Note VIII.24, p. 579

squares, 1, 4, 9, 16, · · · Cn−7/6eK n1/3
Note VIII.24, p. 579

primes, 2, 3, 5, 7, . . . log P(�)
n ∼ c

√
n

log n
Note VIII.26, p. 580

powers of two, 1, 2, 4, . . . log M2n ∼ (log n)2

2 log 2
Note VIII.27, p. 581

plane

(∏
m

(
1 − zm)−m

)
c1n−25/36ec2n2/3

Note VIII.25, p. 580

Figure VIII.8. Asymptotic enumeration of various types of partitions.

amenable to bounds is derived from the exp–log reorganization (62), which yields

P(z) = exp

((
1

1 − z

)
·
(

z

1
+ z2

2(1 + z)
+ z3

3(1 + z + z2)
+ · · ·

))
.

The denominator of the general term in the exponential satisfies, for x ∈ (0, 1), the inequalities
mxm−1 < (1 + x + · · · + xm−1) < m, so that

(63)
1

1 − x

∑
m≥1

x

m2
> log P(x) >

1

1 − x

∑
m≥1

xm

m2
.

This proves for real x → 1− that

(64) P(x) = exp

(
π2

6(1 − x)
(1 + o(1)

)
,

given the elementary identity
∑

m−2 = π2/6. The singularity type at z = 1 resembles that
of fragmented permutations (p. 562), and at least the growth along the real axis is similar. An
approximate saddle-point is then

(65) ζ̂ (n) = 1 − π√
6n

,

which gives a saddle-point bound

(66) Pn ≤ exp
(
π
√

2n/3(1 + o(1)
)
.

Proceeding further involves transforming the saddle-point bounds into a complete saddle-
point analysis. Based on previous experience, we shall integrate along a circle of radius r =
ζ̂ (n). To do so, two ingredients are needed: (i) an approximation in the central range; (i i) bounds
establishing that the function P(z) is small away from the central range so that tails can be first
neglected, then completed back. Assuming the expansion (62) to lift to an area of the complex
plane near the real axis, the range of the saddle-point should be analogous to that already found
for exp(z/(1 − z)), so that θ0 = n−7/10 will be adopted. Accordingly, we choose to integrate
along a circle of radius r = ζ̂ (n) given by (65) and define the central region by θ0 = n−7/10.
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Under these conditions, the central region is seen under an angle that is O(n−1/5) from the
point z = 1.

(i) Central approximation. This requires a refinement of (64) till o(1) terms as well as an
argument establishing a lifting to a region near the real axis. We set z = e−t and start with
t > 0. The function

L(t) := log P(e−t ) =
∑
m≥1

e−mt

m(1 − e−mt )

is a harmonic sum which is amenable to Mellin transform techniques (as described in Appen-
dix B.7: Mellin transforms, p. 762; see also p. 248). The base function is e−t/(1 − e−t ), the
amplitudes are the coefficients 1/m and the frequencies are the quantities m figuring in the expo-
nents. The Mellin transform of the base function, as given in Appendix B (p. 763), is �(s)ζ(s).
The Dirichlet series associated to the amplitude frequency pairs is

∑
m−1m−s = ζ(s + 1), so

that
L�(s) = ζ(s)ζ(s + 1)�(s).

Thus L(t) is amenable to Mellin asymptotics and one finds

(67) L(t) = π2

6t
+ 1

2
log t − log

√
2π − 1

24
t + O(t2), t → 0+,

from the poles of L�(s) at s = 1, 0,−1. This corresponds to an improved form of (64):

(68) log P(z) = π2

6(1 − z)
+ 1

2
log(1 − z)− π2

12
− log

√
2π + O(1 − z).

At this stage, we make a crucial observation: The precise estimate (67) extends when t lies
in any sector symmetric about the real axis, situated in the half-plane -(t) > 0, and with an
opening angle of the form π − δ for an arbitrary δ > 0. This is derived from the fact that
the Mellin inversion integral and the companion residue calculations giving rise to (67) extend
to the complex realm as long as | arg(t)| < π

2 − 1
2 δ. (See Appendix B.7: Mellin transforms,

p. 762 or the article [234].) Thus, the expansion (68) holds throughout the central region given
our choice of the angle θ0. The analysis in the central region is then practically isomorphic to
that of exp(z/(1 − z)) in the previous example, and it presents no special difficulty.

(i i) Bounds in the non-central region. This is here a non-trivial task since half of the
factors entering the product form (61) of P(z) are infinite at z = −1, one third are infinite at
z = e±2iπ/3, and so on. Accordingly, the landscape of |P(z)| along a circle of radius r that
tends to 1 is quite chaotic: see Figure VIII.9 for a rendering. It is possible to extend the analysis
of log P(z) near the real axis by way of the Mellin transform to the case z = e−t−iφ as t → 0
and φ = 2π p

q is commensurate to 2π . In that case, one must operate with

Lφ(t) =
∑
m≥1

1

m

e−m(t+iφ)

1 − e−m(t+iφ)
=

∑
m≥1

∑
k≥1

1

m
e−mk(t+iφ),

which is yet another harmonic sum. The net result is that when |z| tends radially towards e2π i p
q ,

then P(z) behaves roughly like

(69) exp

(
π2

6q2(1 − |z|)

)
,

which is a power 1/q2 of the exponential growth as z → 1−. This analysis extends next to
a small arc. Finally, consider a complete covering of the circle by arcs whose centres are of
argument 2π j/N , j = 1, . . . , N − 1, with N chosen large enough. A uniform version of the
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Figure VIII.9. Integer partitions. Left: the surface |P(z)| with P(z) the OGF of
integer partitions. The plot shows the major singularity at z = 1 and smaller peaks
corresponding to singularities at z = −1, e±2iπ/3 and other roots of unity. Right: a
plot of P(reiθ ) as a function of θ , for various values r = 0.5, . . . , 0.75, illustrates
the increasing concentration property of P(z) near the real axis.

bound (69) makes it possible to bound the contribution of the non-central region and prove it
to be exponentially small. There are several technical details to be filled in order to justify this
approach, so that we switch to a more synthetic one based on transformation properties of P(z),
following [14, 17, 22, 321]. (Such properties also enter the Hardy–Ramanujan–Rademacher
formula for Pn in an essential way.)

The fundamental identity satisfied by P(z) reads

(70) P(e−2πτ ) = √
τ exp

(
π

12

(
1

τ
− τ

))
P(e−2π/τ ),

which is valid when -(τ ) > 0. The proof is a simple rephrasing of a transformation formula of
Dedekind’s η (eta) function, summarized in Note VIII.20 below.

� VIII.20. Modular transformation for the Dedekind eta function. Consider

η(τ) := q1/24
∞∏

m=1

(1 − qm), q = e2π iτ ,

with .(τ ) > 0. Then η(τ) satisfies the “modular transformation” formula,

(71) η

(
− 1

τ

)
=

√
τ

i
η(τ).

This transformation property is first proved when τ is purely imaginary, i.e., τ = i t , then
extended by analytic continuation. Its logarithmic form results from a residue evaluation of the
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integral
1

2π i

∫
γ

cotπs cotπ
s

τ

ds

s
,

with γ a large contour avoiding poles. (This elementary derivation is due to C. L. Siegel. The
function η(τ) satisfies transformation formulae under S : τ 	→ τ+1 and T : τ 	→ −1/τ , which
generate the group of modular (in fact “unimodular”) transformations τ 	→ (aτ + b)/(cτ + d)
with ad − bc = 1. Such functions are called modular forms.) �

Given (70), the behaviour of P(z) away from the positive real axis and near the unit circle
can now be quantified. Here, we content ourselves with a representative special case, the situa-
tion when z → −1. Consider thus P(z) with z = e−2π t+iπ , where, for our purposes, we may
take t = 1/

√
24n. Then, Equation (70) relates P(z) to P(z′), with τ = t − i/2 and

z′ = e−2π/τ = exp

(
− 2π t

t2 + 1
4

)
eiφ, φ = − π

t2 + 1
4

.

Thus |z′| → 1 as t → 0 with the important condition that |z′| − 1 = O
(
(|z| − 1)1/4). In other

words, z′ has moved away from the unit circle. Thus, since |P(z′)| < P(|z′|), we may apply
the estimate (68) to P(|z′|) to the effect that

log |P(z)| ≤ π

24(1 − |z|) (1 + o(1)), (z → −1+).

This is an instance of what was announced in (69) and is in agreement with the surface plot of
Figure VIII.9. The extension to an arbitrary angle presents no major difficulty.

The two properties developed in (i) and (i i) above guarantee that the approximation (68)
can be used and that tails can be completed. We find accordingly that

Pn ∼ [zn]e−π2/12√1 − z exp

(
π2

6(1 − z)

)
.

All computations done, this provides:

Proposition VIII.6. The number pn of partitions of integer n satisfies

(72) pn ≡ [zn]
∞∏

k=1

1

1 − zk
∼ 1

4n
√

3
eπ

√
2n/3

The singular behaviour along and near the real line is comparable to that of exp((1−z)−1),
which explains a growth of the form e

√
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The asymptotic formula (72) is only the first term of a complete expansion involv-
ing decreasing exponentials that was discovered by Hardy and Ramanujan in 1917 and
later perfected by Rademacher (see Note VIII.22 below). Whereas the full Hardy–
Ramanujan expansion necessitates considering infinitely many saddle-points near the
unit circle and require the modular transformation of Note VIII.20, the main term
of (72) only requires the asymptotic expansion of the partition generating function
near z = 1.

The principles underlying the partition example have been made into a general
method by Meinardus [434] in 1954. Meinardus’ method abstracts the essential fea-
tures of the proof and singles out sufficient conditions under which the analysis of
an infinite product generating function can be achieved. The conditions, in agree-
ment with the Mellin treatment of harmonic sums, require analytic continuation of the
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Dirichlet series involved in log P(z) (or its analogue), as well as smallness towards
infinity of that same Dirichlet series. A summary of Meinardus’ method constitutes
Chapter 6 of Andrews treatise on partitions [14] to which the reader is referred. The
method applies to many cases where the summands and their multiplicities have a
regular enough arithmetic structure.
� VIII.21. A simple yet powerful formula. Define (cf [321, p. 118])

P�
n = 1

2π
√

2

d

dn

(
eKλn

λn

)
, K = π

√
2

3
, λn :=

√
n − 1

24
.

Then P�
n approximates Pn with a relative precision of order e−c

√
n for some c > 0. For

instance, the error is less than 3 · 10−8 for n = 1000. [Hint: The transformation formula makes
it possible to evaluate the central part of the integral giving Pn very precisely.] �

� VIII.22. The Hardy–Ramanujan–Rademacher expansion. The number of integer partitions
satisfies the exact formula

Pn = 1

π
√

2

∞∑
k=1

Ak(n)
√

k
d

dn

sinh( πk

√
2
3 (n − 1

24 ))√
n − 1

24

,

where Ak(n) =
∑

h mod k,gcd(h,k)=1

ωh,ke−2iπh/k ,

ωh,k is a 24th root of unity, ωh,k = exp(π is(h, k)), and sh,k =
k−1∑
μ=1

{{μ
k
}} {{hμ

k
}} is known as a

Dedekind sum, with {{x}} = x − �x� − 1
2 . Proofs are found in [14, 17, 22, 321]. �

� VIII.23. Meinardus’ theorem. Consider the infinite product (an ≥ 0)

f (z) =
∞∏

n=1

(1 − zn)−an .

The associated Dirichlet series is α(s) =
∑
n≥1

an

ns . Assume that α(s) is continuable into a

meromorphic function to -(s) ≥ −C0 for some C0 > 0, with only a simple pole at some
ρ > 0 and corresponding residue A; assume also that α(s) is of moderate growth in the half-
plane, namely, α(s) = O(|s|C1), for some C1 > 0 (as |s| → ∞ in -(s) ≥ −C0). Let
g(z) = ∑

n≥1 anzn and assume a concentration condition of the form

-g(e−t−2iπy)− g(e−t ) ≤ −C2 y−ε .
Then the coefficient fn = [zn] f (z) satisfies

fn = Cnκ exp
(

K nρ/(ρ+1)
)
, K = (1 + ρ−1)

[
A�(ρ + 1)ζ(ρ + 1)

]1/(ρ+1)
.

The constants C, κ are:

C = eα
′(0)(2π(1 + ρ))−1/2 [A�(ρ + 1)ζ(ρ + 1)](1−2α(0))/(2ρ+2) , κ = α(0)− 1 − 1

2ρ

1 + ρ
.

Details of the concentration condition, and error terms are found in [14, Ch 6]. �

� VIII.24. Various types of partitions. The number of partitions into distinct odd summands,
squares, cubes, triangular numbers, are essentially cases of application of Meinardus’ method.



“book” — 2008/10/3 — 16:05 — page 580 — #594

580 VIII. SADDLE-POINT ASYMPTOTICS

For instance the method provides, for the number Qn of partitions into distinct summands, the
asymptotic form

Qn ≡
∏

m≥1

(1 + zm) ∼ eπ
√

n/3

4 · 31/4n3/4
.

The central approximation is obtained by a Mellin analysis from

L(t) := log Q(e−t ) =
∞∑

m=1

(−1)m−1

m

e−mt

1 − e−mt , L�(s) = �(s)ζ(s)ζ(s + 1)(1 − 2−s),

L(t) ∼ π2

12t
− log

√
2 + 1

24
t..

(See the already cited references [14, 17, 22, 321].) �

� VIII.25. Plane partitions. A plane partition of a given number n is a two-dimensional array
of integers ni, j that are non-increasing both from left to right and top to bottom and that add up
to n. The first few terms (EIS A000219) are 1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859 and P.
A. MacMahon proved that the OGF is

R(z) =
∞∏

m=1

(1 − zm)−m .

Meinardus’ method applies to give

Rn ∼ (ζ(3)2−11)1/36n−25/36 exp
(

3 · 2−2/3ζ(3)1/3n2/3 + 2c
)
,

where c = − e
4π2 (log(2π)+ γ − 1).

(See [14, p. 199] for this result due to Wright [617] in 1931.) �

� VIII.26. Partitions into primes. Let P(�)
n be the number of partitions of n into summands

that are all prime numbers,

P(�)(z) =
∞∏

m=1

1

1 − z pm
,

where pm is the mth prime (p1 = 2, p2 = 3, . . . ). The sequence starts as (EIS A000607):

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40.

Then

(73) log P(�)
n ∼ 2π

√
n

3 log n
.

An upper bound of a form consistent with (73) can be derived elementarily as a saddle-point
bound based on the property ∑

n≥1

e−tpn ∼ t

log t
, t → 0.

This last fact results either from the Prime Number Theorem or from a Mellin analysis based
on the fact that �(s) := ∑

p−s
n satisfies, with μ(m) the Möbius function,

�(s) =
∞∑

m=1

μ(m) log ζ(ms).

(See Roth and Szekeres’ study [519] as well as the articles by Yang [625] and Vaughan [593]
for relevant references and recent technology.) The present situation is in sharp contrast with
that of compositions into primes (see Chapter V, p. 297), for which the analysis turned out to
be especially easy. �
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� VIII.27. Partitions into powers of 2. Let Mn be the number of partitions of integer n into
summands that are powers of 2. Thus M(z) = ∏

m≥0(1 − z2m
)−1. The sequence (Mn) starts

as 1, 1, 2, 2, 4, 4, 6, 6, 10 (EIS A018819). One has

log M2n = 1

2 log 2

(
log

n

log n

)2
+

(
1

2
+ 1

log 2
+ log log 2

log 2

)
log n + O(log log n).

De Bruijn [141] determined the precise asymptotic form of M2n . (See also [179] for related
problems.) �

Averages and moments. Based on the foregoing analysis, it is possible to perform
the analysis of several parameters of integer partitions (see also our general discussion
of moments in Subsection VIII. 9.1, p. 594). In particular, it becomes possible to
justify the empirical observations regarding the profile of partitions made in the course
of Example III.7, p. 171.
� VIII.28. Mean number of parts in integer partitions. The mean number of parts (or sum-
mands) in a random integer partition of size n is

1

K

√
n log n + O(n1/2), K = π

√
2

3
.

For a partition into distinct parts, the mean number of parts is

2
√

3 log 2

π

√
n + o(n1/2).

The complex analytic proof starts from the BGFs of Subsection III. 3.3, p. 170 and, analytically,
it only requires the central estimates of log P(e−t ) and log Q(e−t ), given the concentration
properties, as well as the estimates∑

m≥1

e−mt

1 − e−mt ∼ − log t + γ

t
+ 1

4
,

∑
m≥1

(−1)m−1 e−mt

1 − e−mt ∼ log 2

t
− 1

4
,

which result from a standard Mellin analysis, the respective transforms being

�(s)ζ(s)2, �(s)(1 − 21−s)ζ(s)2.

Full asymptotic expansions of the mean and of moments of any order can be determined. In
addition, the distributions are concentrated around their mean. (The first-order estimates are
due to Erdős and Lehner [194] who gave an elementary derivation and also obtained the limit
distribution of the number of summands in both cases: they are a double exponential (for P)
and a Gaussian (for Q).) �

VIII. 7. Saddle-points and linear differential equations.

The purpose of this section is to complete the classification of singularities of
linear ordinary differential equations (see Subsection VII. 9.1, p. 518 for the so-called
“regular” case) and briefly point to potentially useful saddle-point connections. What
is given is, once more, a linear differential equation (linear ODE) of the form

(74) ∂r Y (z)+ d1(z)∂
r−1Y (z)+ · · · + dr Y (z) = 0, ∂ ≡ d

dz
(cf Equation (114), p. 519) and a simply connected open domain � where the coef-
ficients d j (z) are meromorphic. It is assumed that the coefficients d j (z) have a pole
at a single point ζ ∈ � and are analytic elsewhere. As we know, it is only at such a
point ζ that singularities of solutions may arise.
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Consider for instance the ODE

(75) (1 − z)2Y ′(z)− (2 − z)Y (z) = 0,

in a neighbourhood of ζ = 1. The method of trying to match an approximate solution
of the form (z − 1)θ for some θ ∈ C does not succeed: there is no way to find a value
of θ for which there is a cancellation between two terms in the main asymptotic order.
Accordingly, the conditions of Definition VII.7, p. 519, relative to regular singularities
fail to be satisfied: in such cases, we say that the point ζ is an irregular singularity of
the linear ODE. In fact, the solution of (75), together with y(0) = 1, is explicit (see
also Example VIII.13 and Note VIII.43, p. 597): T (z) = 1/(1 − z) exp(z/(1 − z)).
Thus, we encounter an exponential-of-pole singularity rather than the plain algebraic–
logarithmic singularity that prevails in the regular case. The general case is hardly
more complicated to state7.

Theorem VIII.7 (Structure theorem for irregular singularities). Let there be given a
differential equation of the form (74), a singular point ζ , and a sector S with vertex
at ζ . Then, for z in a sufficiently small sector S′ of S and for |z − ζ | sufficiently
small, there exists a basis of d linearly independent solutions of (74), such that any
solution Y in that basis admits, as z → ζ in S′, an asymptotic expansion

(76) Y (z) ∼ exp(P(Z−1/r )) Za
∑

Q j (log Z)Z js, Z := (z − ζ ),

where P is a polynomial, r an integer of Z≥0, a is a complex number, s is a rational
number of Q≥0, and the Q j are a family of polynomials of uniformly bounded degree.

Proof. The proof [602, p. 11] starts by constructing a basis of formal solutions, each of
the form (76), by the method of indeterminate coefficients and exponents. It continues
by appealing to a summation mechanism that transforms such formal solutions into
actual analytic ones. (The restriction of the statement to sectors is inherent: it is
related to what is known as the “Stokes phenomenon”8 of ODE theory [602, §15].) �

In particular, if the polynomial P that intervenes in the expansion (76) has a
positive leading coefficient and the sector is large enough, then the intervening quan-
tities are Hayman admissible. In this way, up to (possibly difficult) connection prob-
lems, the coefficients of solutions to meromorphic ODEs can in principle be analysed,
whether the singularities be of the regular or irregular type. Indeed, proceeding at
least formally (see the analysis of fragmented permutations in Example VIII.7, p. 562
and Note VIII.7, p. 563 for similar computations) suggests that the coefficients of a
solution to a linear ODE with meromorphic coefficients are finite linear combinations
of asymptotic elements of the form

(77) ζ−n exp(R(n1/ρ)) nα
∑

S j (log n)n jσ ,

where R is a polynomial, ρ an integer of Z≥0, α is a complex number, σ is a rational
number of Q≥0, and the S j are a family of polynomials of uniformly bounded degree.

7Singularities at infinity can be transformed into singularities at 0 via Z := 1/z.
8The Stokes phenomenon is roughly the fact that solutions of an ODE with irregular singular points

may involve certain discontinuities in asymptotic expansions, relatively to different sectors.
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(The case of entire functions with an irregular singularity at infinity further introduces
multipliers in the form of fractional powers of n!.)

The fact that expansions of the type (77) hold in all generality is probably true,
but far from being accepted as a theorem by experts. Odlyzko [461, p. 1135–1138],
Wimp [610, p. 64], and Wimp–Zeilberger [611] offer a lucid (and prudent) discussion
of these questions. The result (77) was claimed by G.D. Birkhoff and Trjitzinsky [70,
71], based directly on their general theory of analytic difference equations, but in
Wimp’s words (footnote on p. 64 of [610]):

“Some now believe that the Birkhoff–Trjitzinsky theory has disabling gaps, see
[342]. The alleged deficiencies are difficult to discern by a casual inspection of
the papers [70, 71] since they are extremely long and their arguments are very
laborious. My policy is not to use the theory unless its results can be substantiated
by other arguments.”

A sound strategy consists in basing an analysis of linear ODEs with an irregular singu-
larity on the well-established Theorem VIII.7 and accordingly work out local singular
expansions. Then determine a suitable integration contour for the Cauchy coefficient
formula that wanders from valley to valley, and estimate the local contribution of each
singularity that has an exponential growth by means of the saddle-point method—for
regular singularities, use a Hankel contour, as in Subsection VII. 9.1, p. 518. (As
already noted, this may involve delicate connection problems as well as difficulties
related to the Stokes phenomenon.) The positivity attached to combinatorial problems
can often be used to restrict attention to asymptotically dominant solutions. Estimates
involving asymptotic elements of the form (77) must eventually result, whenever the
strategy is successful. This is in particular applicable to holonomic sequences and
functions in the sense of Appendix B.4: Holonomic functions, p. 748.

Example VIII.9. Symmetric matrices with constant row sums. Let Yk,n be the class of n × n
symmetric matrices with non-negative integer entries and all row sums (hence also column
sums) equal to k. The problem is to determine the cardinalities Yk,n for small values of k. It
is equivalent to determining the number of (regular, undirected) multigraphs, where all vertices
have degree exactly k. We let Yk(z) represent the corresponding EGF.

For all k, the EGF Yk(z) is holonomic; that is, it satisfies a linear ODE with polynomial
coefficients. This results from Gessel’s theory of holonomic symmetric functions (p. 748). We
follow here Chyzak, Mishna, and Salvy [122], who developed an original class of effective
algorithms, which inter alia provide a means of computing the Yk . The cases k = 1 and k = 2
succumb to elementary combinatorics, but the problem becomes non-trivial as soon as k ≥ 3.
We consider here k = 1, 2, 3.

Case k = 1. A matrix of Y1,n is none other than a symmetric permutation matrix, which is

bijectively associated with an involution, so that Y1(z) = ez+z2/2. In that case, the saddle-point
method applied to the entire function Y1(z) yields (Example VIII.5, p. 558):

(78) Y1,n ∼ 1

(8eπ)1/4
n!1/2 e

√
n

n1/4
.

Case k = 2. This one is a classic of combinatorial theory [554, pp. 16–19]. A matrix
of Y2,n is the incidence matrix of a multigraph in which all vertices have degree exactly equal
to 2. A bit of combinatorial reasoning (compare with 2–regular graphs in Note II.22, p. 133)
shows that connected components can be only one of four types:
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single nodes undirected segments 2–cycles undirected cycles of length ≥ 3

z
1

2

z2

1 − z

z2

2

1

2
log

1

1 − z
− z

2
− z2

4
.

(The corresponding EGFs are given by the last line; their sum provides log Y2(z).) Thus, after
simplifications, we obtain

(79) Y2(z) =
1√

1 − z
exp

(
z2

4
+ 1

2

z

1 − z

)
.

The sequence Y2,n starts as 1, 1, 3, 11, 56, 348 (EIS AA000985). An asymptotic estimate
results from an analysis entirely similar to that of fragmented permutations (Example VIII.7,
p. 562), since the singularity is of an “exponential-of-pole type”, only modulated by a function
of moderate growth (1 − z)−1/2. We find:

(80) Y2,n ∼ n!
e
√

2n

2
√
πn

.

Case k = 3. Chyzak, Mishna, and Salvy determined that Y ≡ Y3 satisfies the linear ODE

φ2(z)∂
2
z Y (z)+ φ1(z)∂zY (z)+ φ0Y (z) = 0,

where the coefficients are as in the following table:

φ0(z) = z11 + z10 − 6z9 − 4z8 + 11z7 − 15z6 + 8z5 − 2z3 + 12z2 − 24z − 24
φ1(z) = −3z(z10 − 2z8 + 2z6 − 6z5 + 8z4 + 2z3 + 8z2 + 16z − 8)
φ2(z) = 9z3(z4 − z2 + z − 2).

The first values of Y3,n are 1, 1, 4, 23, 214, 2698. Based on analogy with (78) and (80) supple-
mented by rough combinatorial bounds, we expect the sequence Y3,n to have a growth compa-
rable to n!3/2; that is, the EGF Y3(z) has radius 0. The authors of [122] then opt to introduce a
modified GF, obtained by a Hadamard product,

Ŷ3(z) = Y3(z)3
⎛⎝∑

n≥0

z2n

2 · 4 · · · 2n
+

∑
n≥0

z2n+1

1 · 3 · · · (2n + 1)

⎞⎠ ,

whose radius of convergence is finite and non-zero. Thanks to dedicated symbolic computation
algorithms and programs, they determine that Ŷ ≡ Ŷ3 satisfies a linear ODE order 29,

z27(3z2 − 4)2∂29
z Ŷ (z)+

28∑
j=0

φ̂ j (z)∂
j
z Ŷ (z) = 0,

with coefficients φ̂ j (z) of degree 37(!). This corresponds to a dominant singularity at ζ =
2/
√

3, while the square factor (3z2 − 4)2 betrays an irregular singularity. A local analysis of
the ODE then reveals the existence of exactly one singular solution at ζ (up to a multiplicative
constant),

σ(z) ∼ exp

(
3

4Z

)
Z−1/2

(
1 − 145

144
Z − 8591

41472
Z2 + · · ·

)
, Z := 1 − z/ζ,



“book” — 2008/10/3 — 16:05 — page 585 — #599

VIII. 8. LARGE POWERS 585

whose form is in general agreement with Theorem VIII.7. We must then have Ŷ3(z) ∼ λσ(z)
as z → ζ , for some constant λ > 0, and a similar analysis applies to the conjugate root
ζ ′ = −2/

√
3. The form obtained for Ŷ3(z) is of the exponential-of-pole type, hence amenable

to a saddle-point analysis. Omitting intermediate computations, one finds eventually

(81) Y3,n ∼ C3n!3/2

(√
3

2

)n
exp(

√
3n)

n3/4
,

for a connection constant C3 that is determined numerically: C3
.= 0.37720. . . . . . . . . . . . . . �

� VIII.29. An asymptotic pattern. Based on (78), (79), (81), and further (heavier) computations
at k = 4, Chyzak et al. [122] observe the general asymptotic pattern:

Yn,k ∼ Ckn!k/2

(
kk/2

k!

)n
exp(

√
kn)

nk/4
, Ck = 1√

2

ek(k−2)/4

(2π)k/4
.

This asymptotic formula is indeed valid for each fixed k: it results from estimates of Bender
and Canfield [39]. Although it is here limited to small values of k, the method of Chyzak et
al. still has two advantages: (i) the exact values of the counting sequence are computable in
a linear number of arithmetic operations; (i i) complete asymptotic expansions can be obtained
comparatively easily. �

� VIII.30. The number of regular matrices. The asymptotic enumeration of regular (non-
symmetric) matrices is treated by Békéssy, Békéssy, and Kómlos in [32] and by Bender in [37].
Combining their results with estimates of Bender and Canfield [39] yields the following table
of asymptotic values for the number of regular matrices with row and column sums equal to k:

(0, 1)–entries non-negative entries

Symmetric e−(k−1)2/4 · Ikn

(k!)n

[
1√
2

ek(k−2)/4

(2π)k/4

]
· n!k/2

(
kk/2

k!

)n
exp(

√
kn)

nk/4

Non-sym. e−(k−1)2/2 · (nk)! (k!)−2n e(k−1)2/2 · (nk)! (k!)−2n

(There, In is the number of involutions of size n; see Proposition VIII.2, p. 560.) Thus the
number of regular graphs, either directed or undirected, and with or without multiple edges, is
asymptotically known. �

� VIII.31. Multidimensional integral representations. It is of interest to observe the multidi-
mensional contour integral representation

Yk,n = 1

(2iπ)n

∫
· · ·

∫ ∏
i< j

(
1

1 − xi x j

)∏
i

(
1

1 − xi

)
dx1 · · · dxn

xk+1
1 · · · xk+1

n
,

in connection with the advanced saddle-point methods methods of McKay and his coauthors [296,
432]. Find similar integral representations for all the cases of Note VIII.30 above. �

VIII. 8. Large powers

The extraction of coefficients in powers of a fixed function and more generally
in functions of the form A(z)B(z)n constitutes a prototypical and easy application of
the saddle-point method. We will accordingly be concerned here with the problem of
estimating

(82) [zN ]A(z) · B(z)n = 1

2iπ

∮
A(z)B(z)n

dz

zN+1
,
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as both n and N get large. This situation generalizes directly the example of the
exponential and its inverse factorial coefficients, where we have dealt with a coeffi-
cient extraction equivalent to [zn](ez)n (see pp. 549 and 555), as well as the case of
the central binomial coefficients (p. 549), corresponding to [zn](1 + z)2n . General
estimates relative to (82) are derived in Subsections VIII. 8.1 (bounds) and VIII. 8.2
(asymptotics). We finally discuss perturbations of the basic saddle-point paradigm in
the case of large powers (Subsection VIII. 8.3): Gaussian approximations are obtained
in a way that generalizes “local” versions of the Central Limit Theorem for sums of
discrete random variables. This last subsection paves the way for the analysis of limit
laws in the next chapter, where the rich framework of “quasi-powers” will be shown
to play a central rôle in so many combinatorial applications.

VIII. 8.1. Large powers: saddle-point bounds. We consider throughout this
section two fixed functions, A(z) and B(z) satisfying the following conditions.

L1: The functions A(z) = ∑
j≥0 a j z j and B(z) = ∑

j≥0 b j z j are analytic at 0
and have non-negative coefficients; furthermore it is assumed (without loss
of generality) that B(0)  = 0.

L2: The function B(z) is aperiodic in the sense that gcd
{

j
∣∣ b j > 0

} = 1.
(Thus B(z) is not a function of the form β(z p) for some integer p ≥ 2 and
some β analytic at 0.)

L3: Let R ≤ ∞ be the radius of convergence of B(z); the radius of convergence
of A(z) is at least as large as R.

Define the quantity T called the spread:

(83) T := lim
x→R−

x B ′(x)
B(x)

.

Our purpose is to analyse the coefficients

[zN ] A(z) · B(z)n,

when N and n are linearly related. The condition N < T n will be imposed: it is both
technically needed in our proof and inherent in the nature of the problem. (For B a
polynomial of degree d, the spread is T = d; for a function B whose derivative at its
dominant positive singularity remains bounded, the spread is finite; for B(z) = ez and
more generally for (non-polynomial) entire functions, the spread is T = ∞.)

Saddle-point bounds result almost immediately from the previous assumptions.

Proposition VIII.7 (Saddle-point bounds for large powers). Consider functions A(z)
and B(z) satisfying the conditions L1,L2,L3 above. Let λ be a positive number with
0 < λ < T and let ζ be the unique positive root of the equation

ζ
B ′(ζ )
B(ζ )

= λ.

Then, for N = λn an integer, one has

[zN ]A(z) · B(z)n ≤ A(ζ )B(ζ )nζ−N .
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Proof. The existence and unicity of ζ is guaranteed by an argument already encoun-
tered several times (Note VIII.46, p. 280, and Note VIII.4, p. 550). The conclu-
sion then follows by an application of general saddle-point bounds (Corollary VIII.1,
p. 549). �

Example VIII.10. Entropy bounds for binomial coefficients. Consider the problem of estimat-
ing the binomial coefficients

( n
λn

)
for some λ with 0 < λ < 1 and N = λn. Proposition VIII.7

provides (
n

λn

)
= [zN ](1 + z)n ≤ (1 + ζ )nζ−N ,

where ζ
1+ζ = λ, i.e., ζ = λ

1−λ . A simple computation then shows that(
n

λn

)
≤ exp(nH(λ)), where H(λ) = −λ log λ− (1 − λ) log(1 − λ)

is the entropy function. Thus, for λ  = 1/2, the binomial coefficients
( n
λn

)
are exponentially

smaller than the central coefficient
( n
n/2

)
, and the entropy function precisely quantifies this

exponential gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VIII.32. Anomalous dice games. The probability of a score equal to λn in n casts of an
unbiased die is bounded from above by a quantity of the form e−nK where

K = − log 6 + log

(
1 − ζ 6

1 − ζ

)
− (λ− 1) log ζ,

and ζ is an algebraic function of λ determined by
∑5

j=0(λ− j)ζ j = 0. �

� VIII.33. Large deviation bounds for sums of random variables. Let g(u) = E(u X ) be the
probability generating function of a discrete random variable X ≥ 0 and let μ = g′(1) be the
corresponding mean (assume μ < ∞). Set N = λn and let ζ be the root of ζg′(ζ )/g(ζ ) = λ
assumed to exist within the domain of analyticity of g. Then, for λ < μ, one has∑

k≤N

[uk ]g(u)n ≤ 1

1 − ζ
g(ζ )nζ−N .

Dually, for λ > μ, one finds ∑
k≥N

[uk ]g(u)n ≤ ζ

ζ − 1
g(ζ )nζ−N .

These are exponential bounds on the probability that n copies of the variable X have a sum
deviating substantially from the expected value. �

VIII. 8.2. Large powers: saddle-point analysis. The saddle-point bounds for
large powers are technically shallow but useful, whenever only rough order of magni-
tude estimates are sought. In fact, the full saddle-point method is applicable under the
very conditions of the preceding proposition.

Theorem VIII.8 (Saddle-point estimates of large powers). Under the conditions of
Proposition VIII.7, with λ = N/n, one has

(84) [zN ]A(z) · B(z)n = A(ζ )
B(ζ )n

ζ N+1
√

2πnξ
(1 + o(1)),
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where ζ is the unique root of ζ B ′(ζ )/B(ζ ) = λ and

ξ = d2

dζ 2 (log B(ζ )− λ log ζ ) .

In addition, a full expansion in descending powers of n exists.
These estimates hold uniformly for λ in any compact interval of (0, T ), i.e., any

interval [λ′, λ′′] with 0 < λ′ < λ′′ < T , where T is the spread.

Proof. We discuss the analysis corresponding to a fixed λ. For any fixed r such that
0 < r < R, the function |B(reiθ )| is, by positivity of coefficients and aperiodicity,
uniquely maximal at θ = 0 (see The Daffodil Lemma on p. 266). It is also infinitely
differentiable at 0. Consequently there exists a (small) angle θ1 ∈ (0, π) such that

|B(reiθ )| ≤ |B(reiθ1)| for all θ ∈ [θ1, π ],

and at the same time, |B(reiθ )| is strictly decreasing for θ ∈ [0, θ1] (it is given by a
Taylor expansion without a linear term).

We carry out the integration along the saddle-point circle, z = ζeiθ , where the
previous inequalities on |B(z)| hold. The contribution for |θ | > θ1 is exponentially
negligible. Thus, up to exponentially small terms, the desired coefficient is given
asymptotically by J (θ1), where

J (θ1) = 1

2π

∫ θ1

−θ1

A(ζeiθ )B(ζeiθ )neniθ dθ.

It is then possible to impose a second restriction on θ , by introducing θ0 according to
the general heuristic, namely, nθ2

0 → ∞, nθ3
0 → 0. We fix here

θ0 ≡ θ0(n) = n−2/5.

By the decrease of |B(ζeiθ )| on [θ0, θ1] and by local expansions, the quantity J (θ1)−
J (θ0) is of the form exp(−cn1/5) for some c > 0, that is, exponentially small.

Finally, local expansions are valid in the central range since θ0 tends to 0 as n →
∞. One finds for z = ζeiθ and |θ | ≤ θ0,

A(z)B(z)nz−N ∼ A(ζ )B(ζ )nζ−N exp(−nξθ2/2).

Then the usual process applies upon completing the tails, resulting in the stated es-
timate. A complete expansion in powers of n−1/2 is obtained by extending the ex-
pansion of log B(z) to an arbitrary order (as in the case of Stirling’s formula, p. 557).
Furthermore, by parity, all the involved integrals of odd order vanish so that the ex-
pansion turns out to be in powers of 1/n (rather than 1/

√
n). �

Example VIII.11. Central binomials and trinomials, Motzkin numbers. An automatic applica-
tion of Theorem VIII.8 is to the central binomial coefficient

(2n
n
) = [zn](1 + z)2n . In the same

way, one gets an estimate of the central trinomial number,

Tn := [zn](1 + z + z2)n satisfies Tn ∼ 3n+1/2

2
√
πn

.

The Motzkin numbers count unary–binary trees,

Mn = [zn]M(z) where M = z(1 + M + M2).
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The standard approach is the one seen earlier based on singularity analysis as the implicitly
defined function M(z) has an algebraic singularity of the √ -type, but the Lagrange inversion
formula provides an equally workable route. It gives

Mn+1 = 1

n + 1
[zn](1 + z + z2)n+1,

which is amenable to saddle-point analysis via Theorem VIII.8, leading to

Mn ∼ 3n+1/2

2
√
πn3

.

See below for more on this theme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

We have opted for a basic formulation of the theorem with conditions on A and B
that are not minimal. It is easily recognized that the estimates of Theorem VIII.8
continue to hold, provided that the function |B(reiθ )| attains a unique maximum on
the positive real axis, when r ∈ (0, T ) is fixed and θ varies on [−π, π ]. Also, in order
for the statement to hold true, it is only required that the function A(z) does not vanish
on (0, T ), and A(z) or B(z) could then well be allowed to have negative coefficients:
see Note VIII.36. Finally, if A(ζ ) = 0, then a simple modification of the argument
still provides precise estimates in this vanishing case; see Note VIII.37 below.
� VIII.34. Middle Stirling numbers. The “middle” Stirling numbers of both kinds satisfy

n!

(2n)!

[
2n

n

]
∼ c1 An

1n−1/2
(

1 + O(n−1)
)
,

n!

(2n)!

{
2n

n

}
∼ c2 An

2n−1/2
(

1 + O(n−1)
)
,

where A1
.= 2.45540, A2

.= 1.54413, and A1, A2 are expressible in terms of special values of
the Cayley tree function. Similar estimates hold for

[αn
βn

]
and

{αn
βn

}
. �

� VIII.35. Integral points on high-dimensional spheres. Let L(n, α) be the number of lattice
points (i.e., points with integer coordinates) in n-dimensional space that lie on the sphere of
radius

√
N , where N = αn is assumed to be an integer. Then,

L(n, α) = [zN ]�(z)n, where �(z) :=
∑
m∈Z

zm2 = 1 + 2
∞∑

m=1

zm2
.

Mazo and Odlyzko [431] show that there exist computable constants C, D depending on α,
such that L(n, α) ∼ Cn−1/2 Dn . The number of lattice points inside the sphere can be similarly
estimated. (Such bounds are useful in coding theory, combinatorial optimization, especially the
knapsack problem, and cryptography [393, 431].) �

� VIII.36. A function with negative coefficients that is minimal along the positive axis. Take
B(z) = 1 + z − z10. By design, B(z) has both negative and positive Taylor coefficients. On
the other hand, |B(reiθ )| for fixed r ≤ 1/10 (say) attains its unique maximum at θ = 0. For
certain values of N , an estimate of [zN ]B(z)n is provided by (84): discuss its validity. �

� VIII.37. Coalescence of a saddle-point with roots of the multiplier. Fix ζ and take a
multiplier A(z) in Theorem VIII.8 such that A(ζ ) = 0, but A′(ζ )  = 0. The formula (84) is then
to be modified as follows:

[zN ]A(z) · B(z)n = [
A′(ζ )+ ζ A′′(ζ )

] B(ζ )n

ζ N+1
√

2πn3ξ3
(1 + o(1)).

Higher order cancellations can also be taken into account. �
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Large powers: saddle-points versus singularity analysis. In general, the La-
grange inversion formula establishes an exact correspondence between two a priori
different problems; namely,

the estimation of coefficients of large order in large powers, and
the estimation of coefficients of implicitly defined functions.

In one direction, the Lagrange Inversion Theorem has the capacity of bringing
the evaluation of coefficients of implicit functions into the orbit of the saddle-point
method. Indeed, let Y be defined implicitly by Y = zφ(Y ), where φ is analytic at 0
and aperiodic. One has, by Lagrange,

[zn+1]Y (z) = 1

n + 1
[wn]φ(w)n+1,

which is of the type (84). Then, under the assumption that the equation φ(τ)− τφ′(τ )
has a positive root within the disc of convergence of φ, a direct application of Theo-
rem VIII.8 yields

[zn]Y (z) ∼ γ
ρ−n

2
√
πn3

, ρ := τ

φ(τ)
, γ :=

√
2φ(τ)

φ′′(τ )
.

This last estimate is equivalent to the statement of Theorem VII.2 (p. 453) obtained
there by singularity analysis. (As we know from Chapter VII, this provides the num-
ber of trees in a simple variety, with φ being the degree generating function of the
variety.) This approach is in a few cases more convenient to work with than singu-
larity analysis, especially when explicit or uniform upper bounds are required, since
constructive bounds tend to be more easily obtained on circles than on variable Hankel
contours (Note VIII.38).

Conversely, the Lagrange Inversion Theorem makes it possible to approach prob-
lems relative to large powers by means of singularity analysis of an implicitly defined
function9. This mode of operation can prove quite useful when there occurs a coales-
cence between saddle-points and singularities of the integrand (Note VIII.39).
� VIII.38. An assertion of Ramanujan. In his first letter to Hardy, Ramanujan (1913) an-
nounced that

1

2
en = 1 + n

1!
+ n2

2!
+ · · · + nn−1

(n − 1)!
+ nn

n!
θ,

where θ = 1

3
+ 4

135(n + k)
,

and k lies between 8/45 and 2/21. Ramanujan’s assertion indeed holds for all n ≥ 1; see [237]
for a proof based on saddle-points and effective bounds. �

� VIII.39. Coalescence between a saddle-point and a singularity. The integral in

In := [yn](1 + y)2n(1 − y)−α = 1

2iπ

∫
0+

(1 + y)2n

(1 − y)α
dy

yn+1
,

9This is in essence an approach suggested by several sections of the original memoir of Darboux [137,
§§3–5], in which “Darboux’s method” discussed in Chapter VI was first proposed. It is also of interest to
note that a Lagrangean change of variables transforms a saddle-point circle into a contour whose geometry
is of the type used in singularity analysis.
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Figure VIII.10. The coefficients [zN ]enz , normalized by e−n , when n = 100 is
fixed and N = 0 . . 200 varies, have a bell-shaped aspect.

can be treated directly, but this requires a suitable adaptation of the saddle-point method,
given the coalescence between a saddle-point at 1 [the part without the (1 − y)α factor] and
a singularity at that same point. Alternatively, it can be subjected to the change of variables
z = y/(1 + y)2. Then y is defined implicitly by y = z(1 + y)2, so that

In = 1

2iπ

∫
0+

1 + y

(1 − y)1+α
dz

zn+1
= [zn]

1 + y

(1 − y)1+α
.

Since y(z) has a square-root singularity at z = 1/4, the integrand is of type Z−(1+α)/2, and

In ∼ 22n−α

�(α+1
2 )

n(α−1)/2.

In general, for φ(y) satisfying the assumptions (relative to B) of Theorem VIII.8, one
finds, with τ : φ(τ)− τφ′(τ ) = 0),

1

2iπ

∫
0+

φ(y)n

(φ(τ)− φ(y))α
dy

yn ∼ c

(
φ(τ)

τ

)n n(α−1)/2

�(α+1
2 )

.

Van der Waerden discuses this problem systematically in [589]. See also Section VIII. 10 below
for other coalescence situations. �

VIII. 8.3. Large powers: Gaussian forms. Saddle-point analysis has conse-
quences for multivariate asymptotics and it constitutes a direct way of establishing
that many discrete distributions tend to the Gaussian law in the asymptotic limit. For
large powers, this property derives painlessly from our earlier developments, espe-
cially Theorem VIII.8, by means of a “perturbation” analysis.

First, let us examine a particularly easy problem: How do the coefficients of
[zN ]enz vary as a function of N when n is some large but fixed number? These coef-
ficients are

C (n)
N = [zN ]enz = nN

N !
.
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By the ratio test, they have a maximum when N ≈ n and are small when N differs
significantly from n; see Figure VIII.10. The bell-shaped profile is also apparent on
the figure and is easily verified by elementary real analysis. The situation is then par-
allel to what is already known of the binomial coefficients on the nth line of Pascal’s
triangle, corresponding to [zN ](1 + z)n with N varying.

The asymptotically Gaussian character of coefficients of large powers is actually
universal among a wide class of analytic functions. We prove this within the frame-
work of large powers already investigated in Subsection VIII. 8.1 and consider the
general problem of estimating the coefficients [zN ] (A(z) · B(z)n) as N varies. In ac-
cordance with the conditions on p. 586, we postulate the following: (L1): A(z), B(z)
are analytic at 0, have non-negative coefficients, and are such that B(0)  = 0; (L2):
B(z) is aperiodic; (L3) The radius of convergence R of B(z) is a minorant of the
radius of convergence of A(z). We also recall that the spread has been defined as
T := limx→R− x B ′(x)/B(x).

Theorem VIII.9 (Large powers and Gaussian forms). Consider the “large powers”
coefficients:

(85) C (n)
N := [zN ]

(
A(z) · B(z)n

)
.

Assume that the two analytic functions A(z), B(z) satisfy the conditions (L1), (L2),
and (L3). Assume also that the radius of convergence of B satisfies R > 1. Define the
two constants:

(86) μ = B ′(1)
B(1)

, σ 2 = B ′′(1)
B(1)

+ B ′(1)
B(1)

−
(

B ′(1)
B(1)

)2

(σ > 0).

Then the coefficients C (n)
N for fixed n as N varies admit a Gaussian approximation:

for N = μn + x
√

n, there holds (as n → ∞)

(87)
1

A(1)B(1)n
C (n)

N = 1

σ
√

2πn
e−x2/(2σ 2)

(
1 + O(n−1/2)

)
,

uniformly with respect to x, when x belongs to a finite interval of the real line.

Proof. We start with a few easy observations that shed light on the global behaviour
of the coefficients. First, since R > 1, we have the exact summation,

∞∑
N=0

C (n)
N = A(1)B(1)n,

which explains the normalization factor in the estimate (87). Next, by definition of the
spread and since R > 1, one has

μ = B ′(1)
B(1)

< T = lim
x→R−

x B ′(x)
B(x)

,

given the general property that x B ′(x)/B(x) is increasing. Thus, the estimation of
the coefficients in the range N = μn ± O(

√
n) falls into the orbit of Theorem VIII.8

which expresses the results of the saddle-point analysis in the case of large powers.
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Referring to the statement of Theorem VIII.8, the saddle-point equation is

ζ
B ′(ζ )
B(ζ )

= B ′(1)
B(1)

+ x√
n
,

with ζ a function of x and n. For x in a bounded set, we thus have ζ ∼ 1 as n → ∞. It
then suffices to effect an asymptotic expansion of the quantities ζ, A(ζ ), B(ζ ), ξ in the
saddle-point formula of Equation (84). In other words, the fact that N is close to μn
induces for ζ a small perturbation with respect to the value 1. With b j := B( j)(1),
one finds mechanically

ζ = 1 + b2
0

b0b2 + b0b1 − b1
2

x√
n
+ O(n−1)

B(ζ )

ζμ
= b0 + x2

2n

b3
0

b0b2 + b0b1 − b1
2
+ O(n−3/2),

and so on. The statement follows. �
Take first A(z) ≡ 1. In the particular case when B(z) is the probability generat-

ing function of a discrete random variable Y , one has B(1) = 1, and the coefficient
μ = B ′(1) is the mean of the distribution. The function B(z)n is then the probability
generating function (PGF) of a sum of n independent copies of Y . Theorem VIII.9 de-
scribes a Gaussian approximation of the distribution of the sum near the mean. Such
an approximation is called a local limit law, where the epithet “local” refers to the fact
that the estimate applies to the coefficients themselves. (In contrast, an approximation
of the partial sums of the coefficients by the Gaussian error function is known as a
central limit law or, sometimes, as an integral limit law.) In the more general case
in which A(z) is also the PGF of a non-degenerate random variable (i.e., A(z)  = 1),
similar properties hold and one has:

Corollary VIII.3 (Local limit law for sums). Let X be a random variable with prob-
ability generating function (PGF) A(z) and Y1, . . . ,Yn be independent variables with
PGF B(z), where it is assumed that X and the Y j are supported on Z≥0. Assume that
A(z) and B(z) are analytic in some disc that contains the unit disc in its interior and
that B(z) is aperiodic. Let the coefficients μ, σ be as in (86). Then the sum,

Sn := X + Y1 + Y2 + · · · + Yn,

satisfies a local limit law of the Gaussian type: for t in any finite interval, one has

P
(
Sn = �μn + tσ

√
n�) = e−t2/2

√
2πn

(
1 + O(n−1/2)

)
.

Proof. This is just a restatement of Theorem VIII.9, setting x = tσ and taking into
account A(1) = B(1) = 1. �

Gaussian forms for large powers admit many variants. As already pointed out
in Section VIII. 4, the positivity conditions can be greatly relaxed. Furthermore, es-
timates for partial sums of the coefficients are possible by similar techniques. The
asymptotic expansions can be extended to any order. Finally, suitable adaptations of
Theorems VIII.8 and VIII.9 make it possible to allow x to tend slowly to infinity and
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manage what is known as a “moderate deviation” regime. We do not pursue these as-
pects here since we shall develop a more general framework, that of “Quasi-powers”
in the next chapter.
� VIII.40. An alternative proof of Corollary VIII.3. The saddle-point ζ is near 1 when N is near

the centre N ≈ μn. It is alternatively possible to recover the C(N )
n by Cauchy’s formula upon

integrating along the circle |z| = 1, which is then only an approximate saddle-point contour.
This convenient variant is often used in the literature, but one needs to take care of linear terms
in expansions. Its origins go back to Laplace himself in his first proof of the local limit theorem
(which was expressed however in the language of Fourier series as Cauchy’s theory was yet
to be born). See Laplace’s treatise Théorie Analytique des Probabilités [402] first published in
1812 for much fascinating mathematics related to this problem. �

VIII. 9. Saddle-points and probability distributions

Saddle-point methods are useful not only for estimating combinatorial counts, but
also for extracting probabilistic characteristics of large combinatorial structures. In the
previous section, we have already encountered the large powers framework, giving rise
to Gaussian laws. In this section, we further examine the way a saddle-point analysis
can serve to quantify properties of random structures.

VIII. 9.1. Moment analyses. Univariate applications of admissibility include
the analysis of generating functions relative to moments of distributions, which are
obtained by differentiation and specialization of corresponding multivariate generat-
ing functions. In the context of saddle-point analyses, the dominant asymptotic form
of the mean value as well as bounds on the variance usually result, often leading to
concentration of distribution (convergence in probability) properties. In what follows,
we focus on the analysis of first moments (see also Subsection VII. 10.1, p. 532, for
the “moment pumping” method developed in the context of singularity analysis).

The situation of interest here is that of a counting generating function G(z), cor-
responding to a class G, which is amenable to the saddle-point method. A parameter χ
on G gives rise to a bivariate GF G(z, u), which is a deformation of G(z) when u is
close to 1. Then the GFs

∂uG(z, u)|u=1 , ∂2
u G(z, u)

∣∣∣
u=1

, . . .

relative to successive (factorial) moments, are in many cases amenable to an analysis
that closely resembles that of G(z) itself. In this way, moments can be estimated
asymptotically.

We illustrate the analysis of moments by two examples: (i) Example VIII.12 pro-
vides an analysis of the mean number of blocks in a random set partition by bivariate
generating functions; (i i) Example VIII.13 estimates the mean number of increasing
subsequences in a random permutation by a direct generating function construction.
The first example foreshadows the full treatment of the corresponding limit distribu-
tion in the next chapter (Subsection IX. 8, p. 690).

Example VIII.12. Blocks in random set partitions. The function

G(z, u) = eu(ez−1)
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is the bivariate generating function of set partitions, with u marking the number of blocks (or
parts). We set G(z) = G(z, 1) and define

M(z) = ∂

∂u
G(z, u)

∣∣∣∣
u=1

= eez−1(ez − 1).

Thus, the quantity
mn

gn
= [zn]M(z)

[zn]G(z)
represents the mean number of parts in a random partition of [1 . . n]. We already know that G(z)
is admissible and so is M(z) by closure properties. The saddle-point for the coefficient integral
of G(z) occurs at ζ such that ζeζ = n, and it is already known that ζ = log n− log log n+o(1).

It would be possible to analyze M(z) by means of Theorem VIII.4 directly: the analysis
then involves a saddle-point ζ̂  = ζ that is relative to M(z); an estimation of the mean then
follows, albeit at the expense of some computational effort. It is however more transparent to
appeal to Proposition VIII.5, p. 567, and analyse the coefficients of M(z) at the saddle-point of
G(z).

Let a(r), b(r) and â(r), b̂(r) be the functions α1(r), α2(r) of Equation (47), relative to
G(z) and M(z), respectively:

log G(z) = ez − 1 log M(z) = ez + z − 1
a(r) = rer â(r) = rer + r = a(r)+ r
b(r) = (r2 + r)er b̂(r) = (r2 + r)er + r = b(r)+ r.

Thus, estimating mn by Proposition VIII.5 with the formula taken at r = ζ , one finds

mn = eζG(ζ )

ζ n
√

2π b̂(ζ )

[
exp

(
− ζ 2

2b̂(ζ )

)
+ o(1)

]
,

while the corresponding estimate for gn is

gn = G(ζ )

ζ n
√

2πb(ζ )
(1 + o(1)) .

Given that b̂(ζ ) ∼ b(ζ ) and that ζ 2 is of smaller order than b̂(ζ ), one has
mn

gn
= eζ (1 + o(1)) = n

log n
(1 + o(1)).

A similar computation applies to the second moment of the number of parts which is
found to be asymptotic to e2ζ (the computation involves taking a second derivative). Thus, the
standard deviation of the number of parts is of an order o(eζ ) that is smaller than the mean.
This implies a concentration property for the distribution of the number of parts.

Proposition VIII.8. The variable Xn equal to the number of parts in a random partition of the
set [1 . . n] has expectation

E{Xn} = n

log n
(1 + o(1)).

The distribution satisfies a “concentration” property: for any ε > 0, one has

P

{∣∣∣∣ Xn

E{Xn} − 1

∣∣∣∣ > ε

}
→ 0 as n → +∞.

The calculations are not especially difficult (see Note VIII.41 for the end result) but they re-
quire care in the manipulation of asymptotic expansions: for instance, Salvy and Shackell [530]
who “do it right” report that two discrepant estimates (differing by a factor of e−1) had been
previously published regarding the value of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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� VIII.41. Moments of the number of blocks in set partitions. Let Xn be the number of blocks
in a random partition of n elements. Then, one has

E(Xn) = n

log n
+ n log log n (1 + o(1))

log2 n
, V(Xn) = n

log2 n
+ n(2 log log n − 1 + o(1))

log3 n
,

which proves concentration. The calculation is best performed in terms of the saddle-point ζ ,
then converted in terms of n. (See Salvy’s étude [529] and the paper [530].) �

� VIII.42. The shape of random involutions. Consider a random involution of size n, the EGF

of involutions being ez+z2/2. Then the mean number of 1–cycles and 2-cycles satisfy

E(# 1–cycles) = √
n + O(1), E(# 2–cycles) = 1

2
n − 1

2

√
n + O(1).

In addition, the corresponding distributions are concentrated. �

Example VIII.13. Increasing subsequences in permutations. Given a permutation written in
linear notation as σ = σ1 · · · σn , an increasing subsequence is a subsequence σi1 · · · σik which
is in increasing order, i.e., i1 < · · · < ik and σi1 < · · · σik . The question is: What is the mean
number of increasing subsequences in a random permutation?

The problem has a flavour analogous to that of “hidden” patterns in random words, which
was tackled in Chapter V, p. 315, and indeed similar methods are applicable here. Define a
tagged permutation as a permutation together with one of its increasing subsequence distin-
guished. (We also consider the null subsequence as an increasing subsequence.) For instance,

7 |3 5 2 |6 4 1 |8 9

is a tagged permutation with the increasing subsequence 3 6 8 that is distinguished. The vertical
bars are used to identify the tagged elements, but they may also be interpreted as decomposing
the permutation into sub-permutation fragments. We let T be the class of tagged permutations,
with T (z) the corresponding EGF, and set Tn = n![zn]T (z). The mean number of increasing
subsequences in a random permutation of size n is clearly tn = Tn/n!.

In order to enumerate T , we let P be the class of all permutations and P+ the subclass of
non-empty permutations. Then, one has, up to isomorphism,

T = P � SET(P+),
since a tagged permutation can be reconstructed from its initial fragment and the set of its
fragments (by ordering the set according to increasing values of initial elements). This combi-
natorial argument gives the EGF T (z) as

T (z) = 1

1 − z
exp

(
z

1 − z

)
.

The generating function T (z) can be expanded, so that the quantity Tn admits a closed
form,

Tn =
n∑

k=0

(
n

k

)
n!

k!
.

From this, it is possible to analyse Tn asymptotically by means of the Laplace method for sums,
as was done by Lifschitz and Pittel in [407]. However, analytically, the function T (z) is a
mere variant of the EGF of fragmented permutations. Saddle-point conditions are again easily
checked, either directly or via admissibility, to the effect that

(88) tn ≡ Tn

n!
∼ e−1/2e2

√
n

2
√
πn1/4

.

(Compare with the closely related estimate (45) on p. 562.)
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The estimate (88) has the great advantage of providing information about an important and
much less accessible parameter. Indeed, let λ(σ ) represent the length of the longest increasing
subsequence in σ . With I (σ ) the number of increasing subsequences, one has the general
inequality,

2λ(σ) ≤ I (σ ),

since the number of increasing subsequences of σ is at least as large as the number of subse-
quences contained in the longest increasing subsequence. Let now �n be the expectation of λ
over permutations of size n. Then, convexity of the function 2x implies

(89) 2�n ≤ tn, so that �n ≤ 2

log 2

√
n(1 + o(1)).

In summary:

Proposition VIII.9. The mean number of increasing subsequences in a random permutation
of n elements is asymptotically

e−1/2e2
√

n

2
√
πn1/4

(1 + o(1)) .

Accordingly, the expected length of the longest increasing subsequence in a random permutation
of size n satisfies the inequality

�n ≤ 2

log 2

√
n(1 + o(1)) ≈ 2.89

√
n.

Note VIII.45 describes an elementary lower bound of the form �n ≥ 1
2
√

n. In fact, around
1977, Logan and Shepp [411] and, independently, Vershik and Kerov [596] succeeded in estab-
lishing the much more difficult result

�n ∼ 2
√

n.

Their proof is based on a detailed analysis of the profile of a random Young tableau. (The bound
obtained here by a simple mixture of saddle-point estimates and combinatorial approximations
at least provides the right order of magnitude.) This has led in turn to attempts at characterizing
the asymptotic distribution of the length of the longest increasing subsequence. The problem
remained unsolved for two decades, despite many tangible steps forward. J. Baik, P. A. Deift,
and K. Johansson [24] eventually obtained a solution, in 1999, by relating longest increasing
subsequences to eigenvalues of random matrix ensembles (see Note VIII.45 for the end result).
We regretfully redirect the reader to relevant presentations of the beautiful theory surrounding
this sensational result, for instance [10, 148]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� VIII.43. A useful recurrence. A decomposition according to the location of n yields for tn
the recurrence

tn = tn−1 + 1

n

n−1∑
k=0

tk , t0 = 1.

Hence T (z) satisfies the ordinary differential equation,

(1 − z)2
d

dz
T (z) = (2 − z)T (z), T (0) = 1,

which gives rise to the simpler recurrence

tn+1 = 2tn − n

n + 1
tn−1, t0 = 0, t1 = 2,

by which tn can be computed efficiently in a linear number of operations. �
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� VIII.44. Related combinatorics. The sequence Tn = n!tn starts as 1, 2, 7, 34, 209, 1546, and
is EIS A002720. The number Tn counts the following equivalent objects: (i) the n × n binary
matrices with at most one entry 1 in each column; (i i) the partial matchings of the complete
bipartite graph Kn,n ; (i i i) the injective partial mappings of [1 . . n] to itself. �

� VIII.45. A simple probabilistic lower bound. Elementary probability theory provides a
simple lower bound on �n . Let X1, . . . , Xn be independent random variables uniformly dis-
tributed over [0, 1]. Assume n = m2. Partition [0, 1[ into m subintervals each of the form
[ j − 1/m, j/m[ and X1, . . . , Xn into m blocks, each of the form X(k−1)m+1, . . . , Xkm . There

is a probability 1 − (1 − m−1)m ∼ 1 − e−1 that block numbered 1 contains an element of
subinterval numbered 1, block numbered 2 contains an element of subinterval numbered 2,
and so on. Then, with high probability, at least m/2 of the blocks contain an element in their
matching subinterval. Consequently, �n ≥ 1

2
√

n, for n large enough. (The factor 1/2 can
even be improved a little.) The crisp booklet by Steele [556] describes many similar as well as
more advanced applications to combinatorial optimization. See also the book of Motwani and
Raghavan [451] for applications to randomized algorithms in computer science. �

� VIII.46. The Baik–Deift–Johansson Theorem. Consider the Painlevé II equation

u′′(x) = 2u(x)3 + xu(x)

and the particular solution u0(x) that is asymptotic to −Ai(x) as x → +∞, with Ai(x) the
Airy function, which solves y′′ − xy = 0. Define the Tracy–Widom distribution (arising in
random matrix theory)

F(t) = exp

(∫ ∞

t
(x − t)u0(x)

2 dx

)
.

The distribution of the length of the longest increasing subsequence, λ satisfies

lim
n→∞P

(
λn ≤ 2

√
n + tn1/6

)
= F(t),

for any fixed t . Thus the discrete random variable λn converges to a well-characterized distri-
bution [24]. (An exact formula for associated GFs is due to Gessel; see p. 753.) �

VIII. 9.2. Families of generating functions. There is an extreme diversity of
possible situations, which partly defy classification, when analysing a family of gener-
ating functions associated with an extremal parameter. Accordingly, we must content
ourselves with the discussion of a single representative example relative to random
allocations. (A good rule of thumb is once more that the saddle-point method is likely
to succeed in cases involving some sort of exponential growth of GFs.) Problems of a
true multivariate nature will be examined in the next chapter specifically dedicated to
multivariate asymptotics and limit distributions.

Random allocations. The example that follows is relative to random allocations,
occupancy statistics, and balls-in-bin models, as introduced in Subsection II. 3.2, p. 111.

Example VIII.14. Capacity in occupancy problems. Assume that n balls are thrown into m
bins, uniformly at random. How many balls does the most filled bin contain? We shall examine
the regime n = αm for some fixed α in (0,+∞); see Example III.10 (p. 177) for a first analysis
and relations to the Poisson law. The size of the most filled bin is called the capacity and we let
Cn,m denote the random variable, when all mn allocations are taken equally likely. Under our
conditions a random bin contains on average a constant number, α, of balls. The proposition
below proves that the most filled bin has somewhat more, as illustrated by Figure VIII.11. (We
limit ourselves here to saddle-point bounds. The various regimes of the distribution are well
covered in [388, pp. 94–115].)
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Figure VIII.11. Three random allocations of n = 100 balls in m = 100 bins.

Proposition VIII.10. Let n and m tend simultaneously to infinity, with the constraint that
n/m = α for some constant α > 0. Then, the expected capacity satisfies

1

2

log n

log log n
(1 + o(1)) ≤ E{Cn,m} ≤ 2

log n

log log n
(1 + o(1)).

In addition, the probability of capacity to lie outside the interval determined by the lower and
upper bounds tends to 0 as m, n → ∞.

Proof. We detail the proof when α = 1 and abbreviate Cn = Cn,m , the generalization to α  = 1
requiring only simple adjustments. From Chapter II, we know that

(90)

⎧⎪⎨⎪⎩
P{Cn ≤ b} = n!

nn [zb](eb(z))
n

P{Cn > b} = n!

nn

(
enz − (eb(z))

n),
where eb(z) is the truncated exponential:

eb(z) =
b∑

j=0

z j

j!
.

The two equalities of (90) permit us to bound the left and right tails of the distribution. As
suggested by the Poisson approximation of balls-in-bins model, we decide to adopt saddle-point
bounds based on z = 1. This gives (cf Theorem VIII.2, p. 547):

(91)

⎧⎪⎪⎨⎪⎪⎩
P{Cn ≤ b} ≤ n!en

nn

(
eb(1)

e

)n

P{Cn > b} ≤ n!en

nn

(
1 −

(
eb(1)

e

)n)
.

We set

(92) ρb(n) =
(

eb(1)

e

)n
.

This quantity represents the probability that n Poisson variables of rate 1 all have value b or less.
(We know from elementary probability theory that this should be a reasonable approximation of
the problem at hand.) A weak form of Stirling’s formula, namely, n!en/nn < 2

√
πn, for n ≥ 1,

then yields an alternative version of (91),

(93)

{
P{Cn ≤ b} ≤ 2

√
πnρb(n)

P{Cn > b} ≤ 2
√
πn (1 − ρb(n)).

For fixed n, the function ρb(n) increases steadily from e−n to 1 as b varies from 0 to ∞.
In particular, the “transition region” where ρb(n) stays away from both 0 and 1 is expected to
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play a rôle. This suggests defining b0 ≡ b0(n) such that

b0! ≤ n < (b0 + 1)!,

so that

b0(n) =
log n

log log n
(1 + o(1)).

We also observe that, as n, b → ∞, there holds

(94)

ρb(n) = (e−1eb(1))
n =

(
1 − e−1

(b + 1)!
+ O(

1

(b + 2)!
)

)n

= exp

(
− ne−1

(b + 1)!
+ O(

n

(b + 2)!
)

)
.

Left tail. We take b = � 1
2 b0� and a simple computation from (94) shows that for n large

enough, ρb(n) ≤ exp(− 3√n). Thus, by the first inequality of (93), the probability that the
capacity be less than 1

2 b0 is exponentially small:

(95) P{Cn ≤ 1

2
b0(n)} ≤ 2

√
πn exp(− 3√n).

Right tail. Take b = 2b0. Then, again from (94), for n large enough, one has 1 − ρb(n) ≤
1 − exp(− 1

n ) = 1
n (1 + o(1)). Thus, the probability of observing a capacity that exceeds 2b0 is

vanishingly small, and is O(n−1/2). Taking next b = 2b0 + r with r > 0, similarly gives the
bound

(96) P{Cn > 2b0(n)+ r} ≤ 2

√
π

n

(
1

b0(n)

)r
.

The analysis of the left and right tails in Equations (95) and (96) now implies

(97)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
E {Cn} ≤ 2b0(n)+

∞∑
r=0

2

√
π

n
(b0(n))

−r = 2b0(n)(1 + o(1))

E {Cn} ≥
� 1

2 b0(n)�∑
r=0

[
1 − 2

√
πn exp(− 3√n)

] = 1

2
b0(n)(1 + o(1)).

This justifies the claim of the proposition when α = 1. The general case (α  = 1) follows
similarly from saddle-point bounds taken at z = α. �

The saddle-point bounds described above are obviously not tight: with some care in deriva-
tions, one can show by the same means that the distribution is tightly concentrated around its
mean, itself asymptotic to log n/ log log n. In addition, the saddle-point method may be used
instead of crude bounds. These results, in the context of longest probe sequences in hashing,
were obtained by Gonnet [301] under the Poisson model. Many key estimates regarding random
allocations (including capacity) are to be found in the book by Kolchin et al. [388]. Analyses
of this type are also useful in evaluating various dynamic hashing algorithms by means of
saddle-point methods [217, 504]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

VIII. 10. Multiple saddle-points

We conclude this chapter with a discussion of higher order saddle-points, accom-
panied by brief indications on what are known as phase transitions or critical phenom-
ena in the applied sciences.
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Multiple saddle-point formula. All the analyses carried out so far have been in
terms of simple saddle-points, which represent by far the most common situation. In
order to get a feel of what happens in the case of multiple saddle-points, consider first
the problem of estimating the two real integrals,

In :=
∫ 1

0
(1 − x2)n dx, Jn :=

∫ 1

0
(1 − x3)n dx .

(These examples are illustrative: as a check of the results, note that the integrals can
be evaluated in closed form by way of the Beta function, Note B.10, p. 747.) The con-
tribution of any interval [x0, 1] is exponentially small, and the ranges to be considered
on the right of 0 are about n−1/2 and n−1/3, respectively. One thus sets

x = t√
n

for In, x = t
3
√

n
for Jn .

Following the guidelines of the method of Laplace (Appendix B.6, p. 755), we proceed
as follows: local expansions are applied, then tails are completed in the usual way, to
the effect that

In ∼ 1√
n

∫ ∞

0
e−t2

dt, Jn ∼ 1
3
√

n

∫ ∞

0
e−t3

dt.

The last integrals reduce to the Gamma function integral, which provides

In ∼ 1

2

�( 1
2 )

n1/2
, Jn ∼ 1

3

�( 1
3 )

n1/3
.

The repeated occurrences of 1
2 in the quadratic case and of 1

3 in the cubic case stand
out. The situation in the cubic case corresponds to the Laplace method for integrals,
when a multiple critical point is present (Note B.23, p. 759).

What has been just encountered in the case of real integrals is typical of what
to expect for complex integrals and saddle-points of higher orders, as we now ex-
plain. First, we briefly revisit the discussion of landscapes of analytic functions at the
beginning of Section VIII. 1, p. 543. Consider, for simplicity, the case of a double
saddle-point of an analytic function F(z). At such a point ζ , we have F(ζ )  = 0,
F ′(ζ ) = F ′′(ζ ) = 0, and F ′′′(ζ )  = 0. Then, there are three steepest descent lines
emanating from the saddle-point and three steepest ascent lines. Accordingly, one
should think of the landscape of |F(z)| as formed of three “valleys” separated by
three mountains and meeting at the common point ζ . The characteristic aspect is that
of a “monkey saddle” (comparable to a saddle with places for two legs and a tail) and
is displayed in Figure VIII.12.

In order to avoid an unpleasant discussion of the combinatorics of valleys, we
now discuss the case of a multiple saddle-point estimation of an integral

∫ B
A in the case

where the starting point A coincides with the saddle-point ζ . By a painless surgery of
paths, this entails no loss of generality. We can then enunciate a modified form of the
saddle-point formula of Theorem VIII.3.
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Figure VIII.12. A double saddle-point or “monkey saddle”. Left: the surface
| exp(z3)| around the double saddle point z = 0; right: level curves with arrows
pointing towards directions of increase. (Inward pointing arrows indicate valleys.)

Theorem VIII.10 (Double Saddle-point Algorithm). Consider an integral
∫ B
ζ

F(z) dz,

where the integrand F = e f is an analytic function depending on a large parameter
and ζ is a double saddle-point, which is a root of the saddle-point equations

f ′(ζ ) = 0, f ′′(ζ ) = 0

(or, equivalently, F ′(ζ ) = F ′′(ζ ) = 0). The point B is supposed to lie inside one of
the three valleys of the double saddle-point.

Assume that the contour C connecting ζ to B can be split into C = C(0) ∪ C(1)
in such a way that the following conditions are satisfied: (i) the tail integral

∫
C(1) is

negligible; (i i) in the central domain C(0), a cubic approximation holds,

f (z) = f (ζ )+ 1

3!
f ′′′(ζ )(z − ζ )3 + O(ηn), ;

with ηn → 0 as n → ∞ uniformly; (i i i) tails can be completed back. Then one has

(98)
∫ B

ζ

e f (z) dz ∼ ω

3
�

(
1

3

)
e f (ζ )

3
√− f ′′′(ζ )/3!

,

where ω is a cube root of unity (ω3 = 1), dependent upon the position of the valley
of B.

Proof. The proof is a simple adaptation of that of Theorem VIII.3. The heart of the
matter is now the integration of∫

C
exp

(
1

3!
f ′′′(ζ )(z − ζ )3

)
dz,

with C composed of the half-line connecting ζ to a point at infinity in the valley of
f ′′(ζ )(z − ζ )3 that contains B. A linear change of variable finally reduces the integral
to the canonical form

∫
e−w3

. �
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� VIII.47. Higher-order saddle-points. For a saddle-point of order p + 1, the saddle-point
formula reads ∫ B

ζ
e f (z) dz ∼ ω

p
�

(
1

p

)
e f (ζ )

p
√
− f (p)(ζ )/p!

,

where ωp = 1. �

� VIII.48. Vanishing multipliers and multiple saddle-points. This note supplements Note VIII.47.
For a saddle-point of order p + 1 and an integrand of the form (z − ζ )b · e f (z), the saddle-point
formula must be modified according to∫ ∞

0
xbe−ax p/p! dx = 1

p
�

(
b + 1

p

)(
p!

a

)(b+1)/p
.

Thus, the argument of the � factor is changed from 1/p to (b + 1)/p, as is the exponent of
f (p)(ζ ) and of n in the case of large power estimates. �

Forests and coalescence of saddle-points. We give below an application to the
counting of forests of unrooted trees made of a large number of trees. The analysis
precisely involves a double saddle-point in a certain critical region. The problem is
in particular relevant to the analysis of random graphs during the phase where a giant
component has not yet emerged.

Example VIII.15. Forests of unrooted trees. The problem here consists in determining the
number Fm,n of ordered forests, i.e., sequences, made of m (labelled, non-plane) unrooted trees
and comprised of n nodes in total. The number of unrooted trees of size n is, by virtue of
Cayley’s formula, nn−2 and its EGF is expressed as U = T −T 2/2, where T is the Cayley tree
function satisfying T = zeT . Consequently, we have

1

n!
Fm,n = [zn]

(
T (z)− T (z)2

2

)m

= 1

2iπ

∫
0+

(
T − T 2

2

)m
dz

zn+1
.

The case of interest here is when m and n are linearly related. We thus set m = αn, where
a priori α ∈ (0, 1). Then, the integral representation of Fm,n becomes

(99)
1

n!
Fm,n = 1

2iπ

∫
C

enhα(t)(1 − t)
dt

t
, hα(t) := α log(1 − t

2
)+ t + (α − 1) log t,

where C encircles 0. This has the form of a “large power” integral. Saddle-points are found as
usual as zeros of the derivative h′α ; there are two of them given by

ζ0 = 2 − 2α, ζ1 = 1.

For α < 1/2, one has ζ0 > ζ1 while for α > 1/2 the inequality is reversed and ζ0 < ζ1.
In both cases, a simple saddle-point analysis succeeds, based on the saddle-point nearer to the
origin; see Note VIII.49 below. In contrast, when α = 1/2, the points ζ0 and ζ1 coalesce to
the common value 1. In this last case, we have h′1/2(1) = h′′1/2(1) = 0 while h′′′1/2(1) = −2 is
non-zero: there is a double saddle-point at 1.

The number of forests thus presents two different regimes depending on whether α < 1/2
or α > 1/2, and there is a discontinuity of the analytic form of the estimates at α = 1/2
(see Figure VIII.13). The situation is reminiscent of “critical phenomena” and phase transitions
(e.g., from solid to liquid to gas) in physics, where such discontinuities are encountered. This
provides a good motivation to study what happens right at the “critical” value α = 1/2.

As in the analytic proof of the Lagrange Inversion Theorem it proves convenient to adopt
t = T as an independent variable, so that z = te−t becomes a dependent variable. Since
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Figure VIII.13. The function H(α) governing the exponential rate of the number of
forests exhibits a “phase transition” at α = 1/2 (left); this is reflected by a plot of the
quantity 1

n log(Fm,n/n!), as a function of α = m/n for n = 200 (right).

dz = (1 − t)e−t , this provides the integral representation, a special instance of (99):

1

n!
Fm,n = 1

2iπ

∫
0+

(
t − 1

2
t2
)m

ent (1 − t)
dt

tn+1
.

We thus consider the special value α = 1/2 and set h ≡ h1/2. What is to be determined is
therefore the number of forests of total size n that are made of n/2 trees, assuming naturally n
even. Bearing in mind that the double saddle-point is at ζ = ζ0 = ζ1 = 1, one has

h(z) = 1 − 1

3
(z − 1)3 + O((z − 1)4) (z → 1).

Thus, upon neglecting the tails and localizing the integral to a disc centred at 1 with radius δ ≡
δ(n) such that

nδ3 → ∞, nδ4 → 0

(δ = n−3/10 is suitable), we have the asymptotic equivalence (with y representing z − 1)

(100)
1

n!
Fm,n = − en(1− 1

2 log 2)

2iπ

∫
D

e−ny3/3 y dy + exponentially small,

where D is a certain (small) contour containing 0 obtained by transformation from C .
The discussion so far has left aside the choice of the contour C in (99), hence of the

geometric aspect of D near 0, which is needed in order to fully specify (100). Because of the
minus sign in the third derivative, h′′′(1) = −2, the three steepest descent half-lines stemming
from 1 have angles 0, e2iπ/3, e−2iπ/3. This suggests the adoption, as original contour C in (99),
of two symmetric segments stemming from 1 connected by a loop left of 0; see Figure VIII.14.
Elementary calculations justify that the contour can be suitably dimensioned so as to remain
always below level h(1). See also the right-hand drawing of Figure VIII.14, in which the
level curves of the valleys below the saddle-point are drawn, together with a legal contour of
integration that winds about 0.

Once the original contour of integration has been fixed, the orientation of D in (100) is
fully determined. After effecting the further change of variables y = wn−1/3 and completing
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Figure VIII.14. Left: a plot of eh with the double saddle-point at 1. Right: The level
curves of eh together with a legal integration contour through valleys.

the tails, we find

(101)
1

n!
Fm,n ∼ λ

n2/3
en(1− 1

2 log 2), λ = − 1

2iπ

∫
E

e−y3/3 y dy,

where E connects ∞e−2iπ/3 to 0 then to ∞e2iπ/3. The evaluation of the integral giving λ is
now straightforward (in terms of the Gamma function), which yields the following corollary.

Proposition VIII.11. The number of forests of total size n comprised of n/2 unrooted Cayley
trees satisfies

1

n!
Fn/2,n ∼ 2 · 3−1/3�(2/3)en(1− 1

2 log 2)n−2/3.

The number three is characteristically ubiquitous in the formula. (Furthermore, the formula
displays the exponent 2/3 instead of 1/3 in the general case (98) because of the additional factor
(1 − z) present in the integral representation (99), which vanishes at the saddle-point 1; see
Note VIII.48.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The problem of analysing random forests composed of a large number of trees has
been first addressed by the Russian School, most notably Kolchin and Britikov. We
refer the reader to Kolchin’s book [387, Ch. I] where nearly thirty pages are devoted
to a deeper study of the number of forests and of associated parameters. Kolchin’s
approach is however based on an alternative presentation in terms of sums of indepen-
dent random variables and stable laws of index 3/2, so that it is limited to first order
asymptotics. As it turns out there is a striking parallel with the analysis of the growth
of the random graph in the critical region, when the random graph stops resembling a
large collection of disconnected tree components.

An almost sure sign of (hidden or explicit) monkey saddles is the presence of
�(1/3) factors in the final formulae and cube roots in expressions involving n. It is in
fact possible to go much further than we have done here with the analysis of forests
(where we have stayed right at the critical point) and provide asymptotic expressions
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that describe the transition between regimes, here from Ann−1/2, to Bnn−2/3, then
to Cnn−1/2. The analysis then appeals to the theory of coalescent saddle-points well
developed by applied mathematicians (see, e.g., the presentation in [75, 465, 614]) and
the already evoked rôle of the Airy function. We do not pursue this thread further since
it properly belongs to multivariate asymptotics. It is developed in a detailed manner
in an article of Banderier, Flajolet, Schaeffer, and Soria [28] relative to the size of the
core in a random map, on which our presentation of forests has been modelled (see
also Example IX.42, p. 713).

The results of several studies conducted towards the end of the previous millen-
nium do suggest that, among threshold phenomena and phase changes, there is a fair
amount of universality in descriptions of combinatorial and probabilistic problems by
means of multiple and coalescing saddle-points. In particular �(1/3) factors and the
Airy function surface recurrently in the works of Flajolet, Janson, Knuth, Łuczak and
Pittel [241, 354], which are relative to the Erdős–Renyi random graph model in its
critical phase; see also [254] for a partial explanation. The occurrence of the Airy
area distribution (in the context of certain polygon models related to random walks)
can be related to this orbit of techniques, as first shown by Prellberg [496], and strong
numerical evidence evoked in Chapter V (p. 365) suggests that this might extend to
the difficult problem of self-avoiding walks [509]. Airy-related distributions also ap-
pear in problems relative to the satisfiability of random boolean expressions [77], the
path length of trees (Proposition VII.15, p. 534 and [567, 565, 566]), as well as cost
functionals of random allocations (Note VII.54, p. 534 and [249]). The reasons are
sometimes well understood in separate contexts by probabilists, statistical physicists,
combinatorialist, and analysts, but a global framework is still lacking.
� VIII.49. Forests and simple saddle-points. When 0 < α < 1/2, the number of forests
satisfies, for some computable C−(α):

1

n!
Fn,m ∼ C−(α)

eH−(α)

n1/2
, H−(α) = 1 − α log 2.

When 1/2 < α < 1, the number of forests satisfies, for some computable C+(α):

1

n!
Fn,m ∼ C+(α)

eH+(α)

n1/2
, H+(α) = α logα + 2 − 2α + (α − 1) log(2 − 2α).

This results from a routine simple saddle-point analysis at ζ1 and ζ0, respectively. �

VIII. 11. Perspective

One of the pillars of classical analysis, the saddle-point method plays a major
rôle in analytic combinatorics. It provides an approach to coefficient asymptotics and
can handle combinatorial classes that are not amenable to singularity analysis. The
simplest case is that of urns, whose generating function ez has no singularities at a
finite distance. Similar functions commonly arise as composed SET constructions.
Broadly speaking, for the class of generating functions that arise from the combinato-
rial constructions of Part A of this book, singularity analysis is effective for functions
that have moderate growth at their singularities; the saddle-point method is effective
otherwise.
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The essential idea behind the saddle-point method is simple, and it is very easy to
get good bounds on coefficient growth. In effect, for combinatorial generating func-
tions, the Cauchy coefficient integral defines a surface with a well-defined saddle-point
somewhere along the positive real axis, and choosing a circle centred at the origin and
passing through the saddle-point already provides useful bounds by elementary argu-
ments. The essence of the full saddle-point method is the development of more precise
bounds, which are obtained by splitting the contour into two parts and balancing the
associated errors.

Combinatorial classes that are amenable to saddle-point analysis have so far only
been incorporated into relatively few schemas, compared to what we saw for singu-
larity analysis. The consistency of the approach certainly argues for the existence of
many more such schemas. A positive signal in that direction is the fact that several
researchers have developed concepts of admissibility that serve to delineate classes of
function for which the saddle-point method boils down to verifying simple conditions.

The saddle-point method also provides insights in more general contexts. Most
notably, the general results on analysis of large powers lay the groundwork for distri-
butional analyses and limit laws, which are the subject of the next chapter.

Bibliographic notes. Saddle-point methods take their sources in applied mathematics, one of
them being the asymptotic analysis by Debye (1909) of Bessel functions of large order. (In fact,
there are early signals of its use by Riemann in relation to hypergeometric functions [511] and to
the zeta function, as noted by Edwards [186, p. 139], as well as traces of it in works of Cauchy
published in 1827: see the scholarly study by Petrova and Solov’ev [483].) Saddle-point ana-
lysis is sometimes called steepest descent analysis, especially when integration contours strictly
coincide with steepest descent paths. Saddle-points themselves are also called critical points
(i.e., points where a first derivative vanishes). Because of its roots in applied mathematics, the
method is well covered by the literature in this area, and we refer to the books by Olver [465],
Henrici [329], or Wong [614] for extensive discussions. A vivid introduction to the subject is to
be found in De Bruijn’s book [143]. We also recommend Odlyzko’s impressive survey [460].

To a large extent, saddle-point methods were introduced into the world of combinatorial
enumerations in the 1950s. Early combinatorial papers were concerned with permutations (in-
volutions) or set partitions: this includes works by Moser and Wyman [448, 449, 450] that are
mostly directed towards entire functions.

Hayman’s approach [325] which we have expounded here (see also [614]) is notable in its
generality as it envisions saddle-point analysis in an abstract perspective, which makes it possi-
ble to develop general closure theorems. A similar thread was followed by Harris and Schoen-
feld who gave stronger conditions allowing for full asymptotic expansions [323]; Odlyzko and
Richmond [462] were successful in connecting these conditions with Hayman admissibility.
Another valuable work is Wyman’s extension to non-positive functions [624].

Interestingly enough, developments that parallel the ones in analytic combinatorics have
taken place in other regions of mathematics. Erwin Schrödinger introduced saddle-point meth-
ods in his lectures [535] at Dublin in 1944 in order to provide a rigorous foundation to some
models of statistical physics that closely resemble balls-in-bins models. Daniels’ publica-
tion [136] of 1954 is a historical source for saddle-point techniques in probability and statistics,
in which refined versions of the central limit theorem can be obtained. (See for instance the
description in Greene and Knuth’s book [310].) Since then, the saddle-point method has proved
a useful tool for deriving Gaussian limiting distributions. We have given here some idea of this
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approach which is to be developed further in Chapter IX, where we shall discuss some of Can-
field’s results [101]. Analytic number theory also makes a heavy use of saddle-point analysis.
In additive number theory, the works by Hardy, Littlewood, and Ramanujan relative to integer
partitions have been especially influential, see for instance Andrews’ book [14] and Hardy’s
Lectures on Ramanujan [321] for a fascinating perspective. (In multiplicative number theory,
generating functions take the form of Dirichlet series while Perron’s formula replaces Cauchy’s
formula. For saddle-point methods in this context, we refer to Tenenbaum’s book [576] and his
seminar survey [575].)

A more global perspective on limit probability distributions and saddle-point techniques
will be given in the next chapter, since there are strong relations to the quasi-powers framework
developed there, to local limit laws, and to large deviation estimates. General references for
some of these aspects of the saddle-point method are the articles of Bender–Richmond [45],
Canfield [101], Gardy [280, 281, 282], and Gittenberger–Mandlburger [292]. With regard to
multiple saddle-points and phase transitions, we refer the reader to references provided at the
end of Section VIII. 10, on p. 605.
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Multivariate Asymptotics and Limit
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Un problème relatif aux jeux du hasard,
proposé à un austère janseniste par un homme du monde,

a été à l’origine du Calcul des Probabilités1.

— SIMÉON-DENIS POISSON
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Analytic combinatorics concerns itself with the elucidation of properties of combina-
torial structures in relation to algebraic and analytic properties of generating functions.
The most basic cases are the enumeration of combinatorial classes and the analysis of
moments of combinatorial parameters. These involve generating functions in one (for-
mal or complex) variable as discussed extensively in previous chapters and represent
essentially univariate problems.

Many applications, in various sciences as well as in combinatorics itself, require
quantifying the behaviour of parameters of combinatorial structures. The correspond-
ing problems are now of a multivariate nature, as one typically wants a way to estimate
the number of objects in a combinatorial class having a fixed size and a given param-
eter value. Average-case analyses usually do not suffice, since it is often important to
predict what is likely to be observed in simulations or on actual data that obey a given

1“A problem relative to games of chance proposed to an austere Jansenist by a man of the world has
been at the origin of the calculus of probabilities.” Poisson refers here to the fact that questions of betting
and gambling posed by the Chevalier de Méré (who was both a gambler and a philosopher) led Pascal (an
austere religious man) to develop some of the first foundations of probability theory.

611
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randomness model, in terms of possible deviations from the mean—this signifies that
information on probability distributions is wanted. Useful but crude estimates are de-
rived from the moment inequalities developed in Section III. 2.2, p. 161. However,
much more is usually true. Indeed, it is frequently observed that the histograms of
the distribution of a combinatorial parameter (for varying size values) exhibit a com-
mon characteristic “shape”, as the size of the random combinatorial structure tends
to infinity. In this case, we say that there exists a limit law. Our goal in this chapter
is precisely to introduce a methodology for distilling limit laws from combinatorial
specifications.

In simpler cases, limit laws are discrete and, when this happens, they often turn
out to be of the geometric or Poisson type. In many other situations, limit laws are
continuous, a case of prime importance being the Gaussian law associated with the
famous bell-shaped curve, which is found so often to occur in elementary combinato-
rial structures. This chapter develops a coherent set of analytic techniques dedicated
to extracting such discrete and continuous laws by exploiting properties of bivariate
generating functions. The starting point is provided by symbolic methods of Part A
(especially Chapter III), which enable us to derive systematically bivariate generat-
ing functions for many natural parameters of combinatorial structures. The methods
presented here then combine complex asymptotic techniques of Part B with a small se-
lection of fundamental theorems from the analytic side of classical probability theory
recalled in Appendix C (Complements of Probability Theory).

Under the theory to be expounded, bivariate generating functions are processed
analytically as follows. The auxiliary variable marking the combinatorial parameter
of interest is regarded as inducing a deformation of the (univariate) counting gener-
ating function. The way in which such deformations affect the type of singularity of
the counting generating functions can then be studied: a perturbation of univariate
singularity analysis is often sufficient to derive an asymptotic estimate of the proba-
bility generating function of a given parameter, when taken over objects of some large
size. Continuity theorems from probability theory finally allow us to conclude on the
existence of a limit law and characterize it.

An especially important component of this paradigm is the framework of “quasi-
powers”. Large powers tend to occur in the asymptotic form of coefficients of count-
ing generating functions (think of radius of convergence bounds and ρ−n factors). The
collection of deformations of a counting generating function is then likely to induce
for the corresponding coefficients a collection of approximations that also asymptoti-
cally involve large powers—technically, these are referred to as quasi-powers. From
this, a Gaussian law is derived along lines that are somewhat reminiscent of the classi-
cal Central Limit Theorem of probability theory, which expresses the asymptotically
Gaussian character of sums of independent random variables.

This chapter starts with an informal introduction to limit laws, either discrete or
continuous (Section IX. 1). Sections IX. 2 and IX. 3 then present methods and ex-
amples relative to discrete laws in combinatorics. Continuous limit laws form the
subject of Section IX. 4, dedicated to general methodology, and Section IX. 5 where
the quasi-powers framework is introduced. Three sections, IX. 6, IX. 7, and IX. 8, then
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develop the extension of meromorphic asymptotics, singularity analysis, and saddle-
point methods to the characterization of Gaussian limit laws in combinatorics. Ad-
ditional properties, such as local limits and large deviations, form the subject of Sec-
tions IX. 9 and IX. 10, respectively. The chapter concludes with a discussion of non-
Gaussian limits (in particular stable laws, Section IX. 11) and multivariate problems
(Section IX. 12).

In the business of limit laws in combinatorics, as true elsewhere, the spirit is more
important than the letter. That is, methods are often more important than theorems,
whose statements may involve somewhat intricate technical conditions. We have made
every effort to expound the former in a “conceptual” manner, but shall try our best to
avoid the latter.

Within the perspective of analytic combinatorics, the direct relation that can be es-
tablished between combinatorial specifications and asymptotic properties, in the form
of limit laws, is striking and is a characteristic feature of the theory. In particular, all
the schemas previously introduced in this book lead to well-characterized limit laws.
As we shall see throughout this chapter, almost any basic law of probability theory
and statistics is likely to occur somewhere in combinatorics; conversely, almost any
simple combinatorial parameter is likely to be governed by a limit law.

IX. 1. Limit laws and combinatorial structures

What is given is a combinatorial class F , labelled or unlabelled, and an integer
valued combinatorial parameter χ . There results both a family of probabilistic models,
namely for each n the uniform distribution over Fn that assigns to any γ ∈ Fn the
probability

P(γ ) = 1

Fn
, with Fn = card(Fn),

and a corresponding family of random variables obtained by restricting χ to Fn . Un-
der the uniform distribution over Fn , we then have

PFn (χ = k) = 1

Fn
card

{
γ ∈ Fn

∣∣ χ(γ ) = k
}
.

We write PFn to indicate the probabilistic model relative to Fn , but also freely abbre-
viate it to Pn or write the probability distribution as P(χn = k), whenever F is clear
from context.

As n increases, the histograms of the distribution of χn often share a common
profile; see Example IX.1 and Figure IX.1 for two elementary parameters, one leading
to a discrete law, the other to a continuous limit. It is from such observations that the
notion of a limit law is abstracted.

Example IX.1. Binary words: elementary approach. Consider the class W of binary words
over {a, b}. We examine two parameters purposely chosen simple enough, so that explicit
expressions are available for the probability distributions at stake. Define the parameters

χ(w) := number of initial a in w, ξ(w) := total number of a in w,

and the corresponding counts,

Wχ
n,k := card{w ∈ Wn | χ(w) = k}, W ξ

n,k := card{w ∈ Wn | ξ(w) = k}.



“book” — 2008/10/3 — 16:05 — page 614 — #628

614 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

1050

0.5

0.4

0.3

0.2

0.1

0.0

0.15

0.1

0.05

0.0

20100

Figure IX.1. Histograms of probability distributions for the number of initial a in a
random binary string for n = 10 (χ : left) and the total number of a for n = 20 (ξ :
right). The histogram corresponding to χ is not normalized and direct convergence to
a discrete geometric law is apparent; for ξ , the horizontal axis is scaled to n, and the
histogram closely matches the bell-shaped curve that is characteristic of a continuous
Gaussian limit.

Explicit expressions result from elementary combinatorics: for 0 ≤ k ≤ n, we have

Wχ
n,0 = 2n−1, Wχ

n,1 = 2n−2, · · · ,Wχ
n,n−1 = 1, Wχ

n,n = 1; W ξ
n,k =

(
n

k

)
.

The probability distributions are accordingly ([[ · ]] is Iverson’s notation for the indicator func-
tion): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

PWn (χ = k) = 1

2k+1
[[0 ≤ k < n]] + 1

2n [[k = n]],

PWn (ξ = k) = 1

2n

(
n

k

)
.

The probabilities relative to χ then resemble, in the asymptotic limit of large n, the geo-
metric distribution. Indeed, one has, for each k,

lim
n→∞PWn (χ = k) = 1

2k+1
and lim

n→∞PWn (χ ≤ k) = 1 − 1

2k+1
.

We say that there is a discrete limit law of the geometric type for χ .
In contrast, the parameter ξ taken over Wn has mean μn := n/2 and standard deviation

σn := 1
2
√

n. One should then centre and scale the parameter ξ , introducing the “standardized”
(or “normalized”) random variable

(1) X�
n := ξn − E(ξn)√

V(ξn)
= ξn − n/2

1
2
√

n
.

It then becomes possible to examine the (cumulative) distribution function P(X�
n ≤ y) for fixed

values of y. In terms of ξ itself, we are considering P(ξn ≤ μn+yσn) for real values of y. Then,
the classical approximation of the binomial coefficients yields the approximation (Note IX.1):

(2) lim
n→∞P(ξn ≤ μn + yσn) = 1√

2π

∫ y

−∞
e−t2/2 dt.

We now say that there is a continuous limit law of the Gaussian type for ξ . . . . . . . . . . . . . . . . �
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� IX.1. Local and central approximations of the binomial law. Equation (2) is classically
derived by summation from the “local” approximation,

(3)
1

2n

(
n

1
2 n + 1

2 y
√

n

)
= e−y2/2

√
πn/2

(
1 + O

(
y3
√

n

))
,

valid for y = o(n1/6). A proof of (3) can be obtained by the method of De Moivre (1721), see
Note III.3, p. 160, or by Stirling’s formula. �

Combinatorial distributions and limit laws. In accordance with the general no-
tion of convergence in distribution (or weak convergence, see Appendix C.5: Con-
vergence in law, p. 776), we shall say that a limit law exists for a parameter if there
is convergence of the corresponding family of cumulative distribution functions. In
virtually all cases2 encountered in this book, there are, like in Example IX.1, two
major types of convergence that the a priori discrete distribution of a combinatorial
parameter may satisfy:

Discrete −→ Discrete and Discrete −→ Continuous .

Regarding the discrete-to-discrete case, convergence is established without standard-
izing the random variables involved. In the discrete-to-continuous case, the parameter
is to be centred at its mean and scaled by its standard deviation, as in (1).

There is also interest in obtaining a local limit law, which, when available, quan-
tifies individual probabilities (rather than the cumulative distribution functions). In
the discrete-to-discrete case, the distinction between local and “global” limits is im-
material, since the existence of one type of law implies the other. In the discrete-to-
continuous case, the local limit is expressed in terms of a fixed probability density, as
in (3), and is technically more demanding to derive, since stronger analytic properties
are required.

The speed of convergence in a limit law describes the way the finite combinatorial
distributions approach their asymptotic limit. It provides useful information on the
quality of asymptotic approximations for finite n models.

Finally, quantifying the “risk” of extreme configurations, far away from the mean,
necessitates estimates on the tails of the distributions. Such estimates belong to the
theory of large deviation and they constitute a useful complement to the study of
central and local limits. These various notions are summarized in Figure IX.2.

Classical probability theory has elaborated highly useful tools for analysing limit
distributions. For each of the major two types, a continuity theorem provides condi-
tions under which convergence in law can be established from convergence of trans-
forms. The transforms in question are probability generating functions (PGFs) for the
discrete case, characteristic functions or Laplace transforms otherwise. Refinements,
known as the Berry–Esseen inequalities relate speed of convergence of the combina-
torial distributions to their limit on the one hand, and a distance between transforms
on the other. Put otherwise, distributions are close if their transforms are close. Large
deviation estimates are finally obtained by a technique of “shifting the mean”, which
is otherwise familiar in probability and statistics.

2See, however, the case of longest runs in words in Example V.4, p. 308, for a family of discrete
distributions that need centring.
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Limit law: An asymptotic approximation of the cumulative distribution function of a combi-
natorial parameter in terms of the cumulative distribution function of a fixed random variable,
called the “limit”. Thus one estimates Pn(χ ≤ k). Centring and scaling, a process called
standardization, is needed in the case of a continuous limit.
Local limit law: A direct asymptotic estimate of “local values” of the combinatorial probabili-
ties, Pn(χ = k). In the discrete case, existence of basic and local limits are logically equivalent
properties. In the continuous case, standardization is needed and the resulting estimate is ex-
pressed in terms of the density of a fixed continuous random variable.
Tail estimates and large deviations: For a given distribution, tail estimates are asymptotic
estimates of the probability of deviating from the mean by a large quantity. Large deviation
estimates quantify the tail probabilities of a family of distributions, when these decay at an
exponential rate (in a suitable scale).
Speed of convergence: An upper bound on the error in asymptotic estimates.

Figure IX.2. An informal summary of the main notions of relevance to the analysis
of combinatorial distributions.

Limit laws and bivariate generating functions. In this chapter, the starting point
of a distributional analysis is invariably a bivariate generating function

F(z, u) =
∑
n,k

fn,kuk zn,

where fn,k represents (up to a possible normalization factor) the number of structures
of size n in some class F . What is sought is asymptotic information relative to the
array of coefficients

fn,k = [znuk]F(z, u).

Thus, a double coefficient extraction is to be effected. This task could in principle be
approached by an iterated use of Cauchy’s coefficient formula,

[znuk]F(z, u) =
(

1

2iπ

)2 ∫
γ

∫
γ ′

F(z, u)
dz

zn+1

du

uk+1
,

but this approach is hard to carry out3 and, under our current stage of knowledge, it
appears to be less general than the path taken in this chapter.

Here is a broad outline of the principles behind the theory to be developed in the
next few sections of this chapter. First, as we know all too well, the specialization at
u = 1 of F(z, u) gives the counting generating function of F , that is, F(z) = F(z, 1).
Next, as seen repeatedly starting from Chapter III, the moments of the combinatorial
distribution { fn,k} for fixed n and varying k are attainable through the partial deriva-
tives at u = 1, namely

first moment ↔ ∂

∂u
F(z, u)

∣∣∣∣
u=1

, second moment ↔ ∂2

∂u2
F(z, u)

∣∣∣∣∣
u=1

,

3A collection of recent works by Pemantle and coauthors [474, 475, 476] shows, however, that a
well-defined class of bivariate asymptotic problems can be attacked by the theory of functions of several
complex variables and a detailed study of the geometry of a singular variety.
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Problem GF u-region Reference
counting F(z, 1) u = 1 Ch. I and II

moments
∂r

∂ur F(z, u)

∣∣∣∣
u=1

u = 1 ± o(1) Ch. III

Discrete laws
limit law F(z, u) u ∈ � ⊆ {|u| ≤ 1} Th. IX.1, p. 624
tails F(z, u) |u| = r, r > 1 Th. IX.3, p. 627
Continuous laws
limit law, Gaussian F(z, u) u ∈ �; � ⊂ C, 1 ∈ � Th. IX.8, p. 645
local Limit Law F(z, u) u ∈ � ∪ {|u| = 1} Th. IX.14, p. 696
large deviations F(z, u) u ∈ [1 − δ, 1 + δ′] Th. IX.15, p. 700

Figure IX.3. A summary of the correspondence between analytic properties of bi-
variate generating functions (BGFs) and probabilistic properties of combinatorial dis-
tributions.

and so on. In summary: Counting is provided by the bivariate generating function
F(z, u) taken at u = 1; moments result from the bivariate generating function taken
in an infinitesimal neighbourhood of u = 1.

Our approach to limit laws will then be as follows. The goal is to estimate the
“horizontal” generating function

fn(u) :=
∑

k

fn,kuk ≡ [zn]F(z, u),

which is proportional to the probability generating function of χ taken over Fn ,
since EFn (u

χ ) = fn(u)/ fn(1). The problem is viewed as a single coefficient ex-
traction (extracting the coefficient of zn) but parameterized by u—see our paragraph
on “singularity perturbation” below for a brief discussion. Thanks to the availability
of continuity theorems, the following can then be proved for a great many cases of
combinatorial interest: The existence and the shape of the limit law are derived from
an asymptotic estimate of fn(u), when u is taken in a fixed neighbourhood of 1, which
estimate depends on the behaviour of the generating function z 	→ F(z, u), for u ≈ 1.
This is the basic paradigm of analysis explored throughout most of the chapter.

In addition, thanks to Berry–Esseen inequalities, the quality of a uniform as-
ymptotic estimate for fn(u) translates into a speed of convergence estimate for the
corresponding limit law. Also, for the discrete-to-continuous case, as we shall see
in Section IX. 9 based on the saddle-point method, local limit laws are derived from
consideration of the generating function z 	→ F(z, u), when u is assigned values on
the unit circle, |u| = 1. In that case, the secondary inversion, with respect to u, is
effected by the saddle-point method, rather than by continuity theorems—the princi-
ples extend the analysis of large powers presented in Section VIII. 8, p. 585. Finally,
large deviation estimates are found to arise from estimates of fn(u) when u is real and
either u < 1 (left tail) or u > 1 (right tail), this property being simply a reflection of
saddle-point bounds; see Section IX. 10.
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The correspondence between analytic properties of bivariate generating functions
and probabilistic properties of distributions is summarized in Figure IX.3; see also the
diagram of Figure IX.9 (p. 649) specialized to continuous limit laws.

Singularity perturbation. As seen throughout Chapters IV–VIII, analytic combi-
natorics approaches the univariate problem of counting objects of size n starting from
the Cauchy coefficient integral,

[zn]F(z) = 1

2iπ

∫
γ

F(z)
dz

zn+1
.

The singularities of F(z) can be exploited, whether they are of a polar type (Chap-
ters IV and V), algebraic–logarithmic of singularity analysis class (Chapters VI
and VII) or essential and amenable to the saddle-point method (Chapter VIII).

From the discussion above, crucial information on combinatorial distributions
is accessible from the bivariate generating function F(z, u) when u varies in some
domain containing 1. This suggests to consider F(z, u) not so much as an analytic
function of two complex variables, where z and u would play a symmetric rôle, but
rather as a collection of functions of z indexed by a secondary parameter u. In other
words, F(z, u) is considered as a deformation of F(z) ≡ F(z, 1) when u varies in a
domain containing u = 1. Cauchy’s coefficient integral gives

fn(u) ≡ [zn]F(z, u) = 1

2iπ

∫
γ

F(z, u)
dz

zn+1
.

For u = 1, an asymptotic form of fn(1) = [zn]F(z, 1) is obtained by suitable
contour integration techniques of Part B. We can then examine the way the parame-
ter u affects the asymptotic coefficient extraction process4, with the goal of deriving an
asymptotic estimate of fn(u), when u is close to 1. Such an approach is called a singu-
larity perturbation analysis. For instance, a singularity of F(z, 1) at z = ρ typically
implies for the coefficients of F(z, 1) an estimate of the form fn(1) ≈ ρ−nnα , and,
in lucky cases (of which there are many, see Sections IX. 6 and IX. 7), this univariate
analysis can be extended, resulting in an estimate of the form fn(u) ≈ ρ(u)−nnα .
Under such circumstances, the probability generating function of the parameter χ as-
sociated to F(z, u) satisfies the estimate

(4) EFn (u
χ ) ≡ fn(u)

fn(1)
≈

(
ρ(u)

ρ(1)

)−n

.

This analytical form is reminiscent of the central limit theorem of probability theory,
according to which large powers of a fixed PGF (corresponding to sums of a large
number of independent random variables) entail convergence to a Gaussian law5—
such a law is indeed obtained here. In this chapter, we are going to see numerous
applications of this strategy, which we now briefly illustrate by revisiting the case of
binary words from Example IX.1.

4The essential feature of the analysis of coefficients of GFs by means of complex analytic techniques,
as developed in Chapters IV–VIII, is to be robust: being based on contour integrals, it is usually amenable
to smooth perturbations and provides uniform error terms.

5See also Section VIII. 8, p. 585.
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Example IX.2. Binary words: the BGF approach. Regarding binary words and the two
parameters χ (initial run of a’s) and ξ (total number of a’s), the general strategy of singularity
perturbation starts from the BGFs,⎧⎪⎪⎨⎪⎪⎩

Wχ = SEQ(ua) SEQ(b SEQ(a)) �⇒ Wχ (z, u) = 1

1 − uz

1

1 − z
1−z

Wξ = SEQ(ua + b) �⇒ W ξ (z, u) = 1

1 − (zu + z)
,

and it instantiates as follows.
Consider the secondary variable u fixed at some value u0. In the case of Wχ , there are two

components in the BGF

Wχ (z, u0) =
1

1 − u0z
· 1 − z

1 − 2z
,

and the dominant singular part, with a simple pole at z = 1/2, arises from the second factor as
long as |u0| < 2. Accordingly, one has

Wχ (z, u0) ∼
z→1/2

1/2

1 − u0/2
W (z) implying [zn]Wχ (z, u0) ∼

1/2

1 − u0/2
2n .

The probability generating function of χ over Wn is then obtained upon dividing by 2−n ,

EWn

(
uχ0

) = 1

2n [zn]Wχ (z, u0) ∼
1/2

1 − u0/2
=

∞∑
k=0

1

2k+1
uk

0,

where the last expression is none other than the probability generating function of a discrete law,
namely, the geometric distribution of parameter 1/2. As we shall see in section IX. 2 where we
enunciate a continuity theorem for probability generating functions, this is enough to conclude
that the distribution of χ converges to a geometric law.

In the second case, that of W ξ , the auxiliary parameter modifies the location of the singu-
larity,

W ξ (z, u0) =
1

1 − z (1 + u0)
.

Then, the (unique) singularity smoothly moves,

ρ(u0) =
1

(1 + u0)

as u0 varies, while the type of singularity (here a simple pole) remains the same—we thus
encounter an extremely simplified form of (4). Accordingly, the coefficients [zn]W ξ (z, u0) are
described by a “large power” formula (here of an exact type, as in Section VIII. 8, p. 585). As
regards the probability generating function of ξ over Wn , one has

EWn

(
uξ

)
= 1

2n [zn]W ξ (z, u0) =
(

1

2ρ(u0)

)n
.

In the perspective of the present chapter, this last form (here especially simple) is amenable to
continuity theorems for integral transforms (Section IX. 4). There results a continuous limit law
of the Gaussian type in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

It is typical of the approach taken in this chapter that, once equipped with suitably
general theorems, it is hardly more difficult to discuss the number of leaves in a non-
plane unlabelled tree or the number of summands in a composition into primes.
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F(z, u) for u ≈ 1 type of law method and schemas
Sing. + exp. fixed Discrete limit Subcritical composition §IX. 3

(Neg. bin., Poisson, . . . ) Subcritical Seq., Set, . . . §IX. 3
Sing. moves, exp. fixed Gaussian(n, n) Supercritical composition
— — Meromorphic perturb. §IX. 6
— — (Rational functions) §IX. 6
— — Sing. analysis perturb. §IX. 7
— — (Alg., implicit functions) §IX. 7.3
Sing. fixed, exp. moves Gaussian(log n, log n) (Exp-log structures) §IX. 7.1
— — (Differential eq.) §IX. 7.4
Sing. + exp. move Gaussian [Gao–Richmond [277]]
Essential singularity often Gaussian Saddle-point perturb. §IX. 8
Discontinuous type non-Gaussian Various cases §IX. 11
— stable Critical composition §IX. 11.2

Figure IX.4. A rough typology of bivariate generating functions F(z, u) and limit
laws studied in this chapter, based on the way singularities and exponents evolve for
u ≈ 1.

The foregoing discussion rightly suggests that a “minor” perturbation of bivariate
generating function that affects neither the location nor the nature of the singular-
ity points to a discrete limit law. A “major” change, in location or in exponent, is
conducive to a continuous limit law, of which the prime example is the normal dis-
tribution. Figure IX.4 outlines a typology of limit laws summarizing the spirit of this
chapter: a bivariate generating function F(z, u) is to be analysed; the deformation
induced by u affects the type of singularity of F(z, u) in various ways, and an adapted
complex coefficient extraction provides corresponding limit laws.

IX. 2. Discrete limit laws

This section provides the basic analytic–probabilistic technology needed for the
discrete-to-discrete situation, where the distribution of a (discrete) combinatorial pa-
rameter tends (without normalization) to a discrete limit. The corresponding no-
tion of convergence is examined in Subsection IX. 2.1. Probability generating func-
tions (PGFs) are important since, by virtue of a continuity theorem stated in Subsec-
tion IX. 2.2, convergence in distribution is implied by convergence of PGFs. At the
same time, the fact that PGFs of two distributions are close implies that the origi-
nal distribution functions are close. Finally, tail estimates for a distribution can be
easily related to analytic continuation of the PGFs, a basic property discussed in Sub-
section IX. 2.3. This section organizes some general tools and accordingly we limit
ourselves to a single combinatorial application, that of the number of cycles of some
fixed size in a random permutation. The next section will provide a number of appli-
cations to random combinatorial structures.

This and the next section feature three classical discrete laws described in Appen-
dix C.4: Special distributions, p. 774. For our reader’s convenience, their definitions
are recalled in Figure IX.5,
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Distribution probabilities PGF

geometric (q) (1 − q)qk 1 − q

1 − qu

negative binomial[m] (q)

(
m + k − 1

k

)
qk(1 − q)m

(
1 − q

1 − qu

)m

Poisson (λ) e−λ λ
k

k!
eλ(1−u)

Figure IX.5. The three major discrete laws of analytic combinatorics: the geomet-
ric, negative binomial, and Poisson laws.

IX. 2.1. Convergence to a discrete law. In order to specify precisely what a
limit law is, we base ourselves on the general context described in Appendix C.5:
Convergence in law, p. 776. The principles presented there provide for what must be
the “right” notion convergence of a family of discrete distributions to a limit discrete
distribution. Here is a self-standing definition, particularized to the cases of interest
here.

Definition IX.1 (Discrete-to-discrete convergence). The discrete random variables
Xn supported by Z≥0 are said to converge in law, or converge in distribution, to a
discrete variable Y supported by Z≥0, a property written as Xn ⇒ Y , if, for each k ≥
0, one has

(5) lim
n→∞P(Xn ≤ k) = P(Y ≤ k).

Convergence is said to take place at speed εn if

(6) sup
k

|P(Xn ≤ k)− P(Y ≤ k)| ≤ εn,

The condition in (5) can be expressed in terms of the distribution functions
Fn(k) = P(Xn ≤ k) and G(k) = P(Y ≤ k) as

lim
n→∞ Fn(k) = G(k),

pointwise for each k, in which case it is written as Fn ⇒ G and is known as weak
convergence. One also says that the Xn (or the Fn) admit a limit law of type Y (or G).

In addition to limit laws in the sense of (5), there is also interest in examining the
convergence of individual probability values. One says that there exists a local limit
law if

(7) lim
n→∞P(Xn = k) = P(Y = k),

for each k ≥ 0, and δn is called a local speed of convergence if

sup
k

|P(Xn = k)− P(Y = k)| ≤ δn .

By differencing or summing, it is easily seen that the conditions (5) and (7) imply one
another. In other words: For the convergence of discrete random variables (RVs) to
a discrete RV, there is complete equivalence between the existence of a limit law in
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the sense of (5) and of a local limit law (7). Note IX.2 below shows elementarily that
there always exists a speed of convergence that tends to 0 as n tends to infinity. In
other words, plain convergence of distribution functions or of individual probabilities
implies uniform convergence.

In the following, the random variables Xn are meant to represent a combinatorial
parameter χ taken over some class F and restricted to Fn , that is,

P(Xn = k) := PFn (χ = k).

The limit variable Y , i.e., its probability distribution G, is to be determined in each
particular case. A highly plausible indication of the occurrence of a discrete law is
the fact that the mean μn and variance σ 2

n of Xn remain bounded, i.e., they satisfy
μn = O(1) and σ 2

n = O(1). Examination of initial entries in the table of values of
the probabilities will then normally permit one to detect whether a limit law holds.

Example IX.3. Singleton cycles in permutations. The case of the number of singleton cycles
(cycles of length 1) in a random permutation of size n illustrates the basic notions, while it can
be studied with minimal analytic apparatus. The exponential BGF is

(8) P = SET(uZ + CYC≥2(Z)) �⇒ P(z, u) = exp(z(u − 1))

1 − z
,

which determines the mean μn = 1 (for n ≥ 1) and the standard deviation σn = 1 (for n ≥ 2).
The table of numerical values of the probabilities pn,k := [znuk ]P(z, u) immediately tells what
goes on:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 4 0.375 0.333 0.250 0.000 0.041
n = 5 0.366 0.375 0.166 0.083 0.000 0.008
n = 10 0.367 0.367 0.183 0.061 0.015 0.003
n = 20 0.367 0.367 0.183 0.061 0.015 0.003

The exact distribution is easily extracted from the bivariate GF,

(9) pn,k ≡ [znuk ]P(z, u) = [zn]
zk

k!

e−z

1 − z
= dn−k

k!
,

where n!dn is the number of derangements of size n, that is,

dn = [zn]
e−z

1 − z
=

n∑
j=0

(−1) j

j!

Asymptotically, one has dn ∼ e−1. Thus, for fixed k, we have a local form of a limit law:

lim
n→∞ pn,k = pk , where pk = e−1

k!
.

As a consequence: the distribution of the number of singleton cycles in a random permutation
of large size tends to a Poisson law of rate λ = 1.

Convergence is quite fast. Here is a table of differences, δn,k = pn,k − e−1/k!:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
n = 10 2.3 10−8 −2.5 10−7 1.2 10−6 −3.7 10−6 7.3 10−6 1.0 10−5

n = 20 1.8 10−20 −3.9 10−19 3.9 10−18 −2.4 10−17 1.1 10−16 −3.7 10−16
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The speed of convergence is easily bounded. Indeed, one has dn = e−1 + O(1/n!) by the
alternating series property, so that, uniformly,

pn,k = e−1

k!
+ O

(
1

k! (n − k)!

)
= e−1

k!
+ O

(
1

n!

(
n

k

))
= e−1

k!
+ O

(
2n

n!

)
.

As a consequence, one obtains local (δn) and central (εn) speed estimates

δn = O

(
2n

n!

)
, εn = O

(
n2n

n!

)
.

These bounds are quite tight. For instance one computes that the best speed is δ50
.= 1.5 10−52,

while the quantity 2n/n! evaluates to 3.7 10−50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.2. Uniform convergence. Local and global convergences to a discrete limit law are always
uniform. In other words, there always exist speeds εn, δn tending to 0 as n → ∞.
Proof. Set pn,k := P(Xn = k) and qk := P(Y = k). Assume simply the condition (5) and its
equivalent form (7). Fix a small ε > 0. First dispose of the tails: there exists a k0 such that∑

k≥k0
qk ≤ ε, so that

∑
k<k0

qk > 1 − ε. Now, by simple convergence, for all large enough
n ≥ n0, there holds |pn,k −qk | < ε/k0, for each k < k0. Thus, we have

∑
k<k0

pn,k > 1−2ε,
hence

∑
k≥k0

pn,k ≤ 2ε. At this stage, we have proved that
∑

k≥k0
qk and

∑
k≥k0

pn,k are
both in [0, 2ε]. This shows that convergence of distribution functions is uniform, with speed
εn ≤ 3ε. Furthermore, a local speed exists, which satisfies δn ≤ 2ε. �

� IX.3. Speed in local and global estimates. Let Mn be the spread of χ on Fn defined as
Mn := maxγ∈Fn χ(γ ). Then, a speed of convergence in (6) is given by

εn := Mnδn +
∑

k>Mn

qk .

(Refinements of these inequalities can be obtained from tail estimates detailed on p. 627.) �

� IX.4. Total variation distance. The total variation distance between X and Y is classically

dT V (X, Y ) := sup
E⊆Z≥0

|PY (E)− PX (E)| =
1

2

∑
k≥0

|P(Y = k)− P(X = k)| .

(Equivalence between the two forms is established elementarily by considering the particular
E for which the supremum is attained.) The argument of Note IX.2 shows that convergence
in distribution also implies that the total variation distance between Xn and X tends to 0. In
addition, by Note IX.3, one has dT V (Xn, X) ≤ Mnδn +∑

k>Mn
pk . �

� IX.5. Escape to infinity. The sequence Xn , where

P{Xn = 0} = 1/3, P{Xn = 1} = 1/3, P{Xn = n} = 1/3,

does not satisfy a discrete limit law in the sense above, although limn→∞ P{Xn = k} exists for
each k. Some of the probability mass escapes to infinity—in a way, convergence takes place in
Z ∪ {+∞}. �

IX. 2.2. Continuity theorem for PGFs. A high level approach to discrete limit
laws in analytic combinatorics is based on asymptotic estimates of the PGF pn(u) of
a random variable Xn arising from a parameter χ over a class Cn . If, for sufficiently
many values of u, one has

pn(u) → q(u) (n → +∞),
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one can infer that the coefficients pn,k = [uk]pn(u) (for any fixed k) tend to the limit
qk = [uk]q(u). A general continuity theorem for PGFs describes precisely the condi-
tions under which convergence of PGFs to a limit entails convergence of coefficients
to a limit, that is to say, the occurrence of a discrete limit law.

Theorem IX.1 (Continuity Theorem, discrete laws). Let � be an arbitrary set con-
tained in the unit disc and having at least one accumulation point in the interior of
the disc. Assume that the probability generating functions pn(u) =

∑
k≥0 pn,kuk and

q(u) = ∑
k≥0 qkuk are such that there is convergence,

lim
n→+∞ pn(u) = q(u),

pointwise for each u in �. Then a discrete limit law holds in the sense that, for each k,

lim
n→+∞ pn,k = qk and lim

n→+∞
∑
j≤k

pn, j =
∑
j≤k

q j .

Proof. The pn(u) are a priori analytic in |u| < 1 and uniformly bounded by 1 in
modulus throughout |u| ≤ 1. Vitali’s Theorem, a classical result of analysis (see [577,
p. 168] or [329, p. 566]), is as follows:

Vitali’s theorem. Let F be a family of analytic functions defined in a re-
gion S (an open connected set) and uniformly bounded on every compact
subset of S. Let { fn} be a sequence of functions of F that converges on a set
� ⊂ S having a point of accumulation q ∈ S. Then { fn} converges in all
of S, uniformly on every compact subset T ⊂ S.

Here, we take S to be the open unit disc on which all the pn(u) are bounded
(since pn(1) = 1). The sequence in question is {pn(u)}. By assumption, there is
convergence of pn(u) to q(u) on �. Vitali’s theorem implies that this convergence
is uniform in any compact subdisc of the unit disc, for instance, |u| ≤ 1/2. Then,
Cauchy’s coefficient formula provides

(10)

qk = 1

2iπ

∫
|u|=1/2

q(u)
du

uk+1

= lim
n→∞

1

2iπ

∫
|u|=1/2

pn(u)
du

uk+1

= lim
n→∞ pn,k,

where uniformity granted by Vitali’s theorem is combined with continuity of the con-
tour integral (with respect to the integrand). �

Feller gives the sufficient set of conditions pn(u) → q(u) pointwise for all real
u ∈ (0, 1), which in our terminology corresponds to the special case � = (0, 1);
see [205, p. 280] for a proof that only involves elementary real analysis. It is perhaps
surprising that very different sets � can be taken, for instance,

� =
[
− 1

3 ,− 1
2

]
, � = { 1

n }, � =
{√−1

2 + 1
2n

}
.

The next statement relates a measure of distance between two PGFS, p(u) and
q(u) to the distance between distributions. It is naturally of interest when quantifying
speed of convergence to the limit in the discrete-to-discrete case.
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Theorem IX.2 (Speed of convergence, discrete laws). Consider two random variables
supported by Z≥0, with distribution functions F(x),G(x) and probability generating
functions p(u), q(u).

(i) Assume the existence of first moments. Then, for any T ∈ (0, π), one has,
(11)

sup
k

|F(k)− G(k)| ≤ 1
4

∫ +T

−T

∣∣∣∣ p(eit )− q(eit )

t

∣∣∣∣ dt + 1

2πT
sup

T≤|t |≤π

∣∣∣p(eit )− q(eit )

∣∣∣ .
(i i) Assume that p(u) and q(u) are analytic in |u| < ρ, for some ρ > 1. Then,

for any r satisfying 1 < r < ρ, one has

(12) sup
k

|F(k)− G(k)| ≤ 1

r − 1
sup
|u|=r

|p(u)− q(u)| .

Proof. (i) Observe first that p(1) = q(1) = 1, so that the integrand is of the form 0
0 at

t = 0, corresponding to u ≡ et = 1. By Appendix C.3: Transforms of distributions,
p. 772, the existence of first moments, say μ for F and ν for G, implies that, for
small t , one has p(eit )− q(eit ) = (μ− ν)t + o(t), so that the integral is indeed well
defined.

For any given k, Cauchy’s coefficient formula provides
(13)

F(k)− G(k) = 1

2iπ

∫
γ

p(u)− q(u)

1 − u

du

uk+1
= 1

2π

∫ +π

−π
p(eit )− q(eit )

1 − eit
e−ki t dt,

where γ is taken to be the circle |u| = 1, and the trigonometric form results from
setting u = eit . (The factor (1−u)−1 sums coefficients.) In the trigonometric integral,
split the interval of integration according as |t | ≤ T and |t | ≥ T . For t ∈ [−π, π ],
one has elementarily ∣∣∣∣ t

eit − 1

∣∣∣∣ ≤ π

2
.

For |t | ≤ T , this inequality makes it possible to replace |1 − u|−1 by 1/|t |, up to a
constant multiplier and get as a majorant the first term on the right of (11). For |t | ≥ T ,
trivial upper bounds provide the second term on the right of (11).

(i i) Start from the contour integral in (13), but now integrate along |u| = r .
Trivial bounds provide (12). �

The first form holds with strictly minimal assumptions (existence of expecta-
tions); the second form is a priori only usable for distributions that have exponential
tails, as discussed in Subsection IX. 2.3 below. The first form relates the distance on
the unit circle between the PGF pn(u) of a combinatorial parameter and the limit PGF
q(u) to the speed of convergence to the limit law—it prefigures the Berry–Esseen
inequalities discussed in the continuous context on p. 641.

Example IX.4. Cycles of length m in permutations. Let us first revisit the number χ of
singleton cycles (m = 1) in this new light. The BGF P(z, u) = ez(u−1)/(1 − z), given by
Equation (8) in Example IX.3, has for each u a simple pole at z = 1 and is otherwise analytic
in C \ {1}. Thus, a meromorphic analysis provides instantly, pointwise for any fixed u,

[zn]P(z, u) = e(u−1) + O(R−n),
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Figure IX.6. The PGFs of singleton cycles in random permutations of size n =
4, 8, 12 (left to right and top to bottom) illustrate convergence to the limit PGF of the
Poisson(1) distribution (bottom right). The modulus of each PGF is displayed, for
|-(u)|, |.(u)| ≤ 3.

with any R > 1. This, by the continuity theorem, Theorem IX.1, implies convergence to a limit
law, which is Poisson.

Next, in order to obtain a speed of convergence, one should estimate a distance between
PGFs over the unit circle. One has, for pn(u) and q(u), respectively, the PGF of χ over Pn and
the PGF of a Poisson variable of parameter 1:

pn(u)− q(u) = [zn]
ez(u−1) − e(u−1)

1 − z
.

There is a removable singularity at z = 1. Thus, integration over the circle |z| = 2 in the z-plane
is permissible, and

pn(u)− q(u) = 1

2iπ

∫
|z|=2

ez(u−1) − eu−1

1 − z

dz

zn+1
.

Trivial bounds applied to the last integral then yield

|pn(u)− q(u)| ≤ 2−n sup
|z|=2

∣∣∣ez(u−1) − e(u−1)
∣∣∣ = O

(
2−n |1 − u|) ,

uniformly for u in any compact set of C. One can then apply Theorem IX.2, Part (i). The
value T = π

2 is suitable, to the effect that a speed of convergence to the limit is found to be
O(2−n). (Any O(R−n) is furthermore possible by a similar argument.) Numerical aspects of
the convergence are illustrated in Figure IX.6.



“book” — 2008/10/3 — 16:05 — page 627 — #641

IX. 2. DISCRETE LIMIT LAWS 627

This approach generalizes straightforwardly to the number of m–cycles in a random per-
mutation (m kept fixed). The exponential BGF is

F(z, u) = e(u−1)zm/m

1 − z
.

Then, singularity analysis of the meromorphic function of z (for u fixed) gives immediately

lim
n→∞[zn]F(z, u) = e(u−1)/m .

The right-hand side of this equality is none other than the PGF of a Poisson law of rate λ = 1/m.
The continuity theorem and the first form of the speed of convergence theorem then imply:
The number of m–cycles in a random permutation of large size converges in law to a Poisson
distribution of rate 1/m with speed of convergence O(R−n) for any R > 1. This last result
appreciably generalizes our previous observations on singleton cycles. . . . . . . . . . . . . . . . . . . . �

� IX.6. A quiz. Figure IX.6 tacitly assumes that the property |pn(u)| → |p(u)| suffices to
conclude that pn(u) → p(u). Can you justify it? [Hint: for an analytic function, if we know
|φ(u)|, we know log |φ(u)| = -(logφ(u)). But then we can reconstruct .(logφ(u)) by the
Cauchy-Riemann equations (p. 742). Hence, we know logφ(u), hence φ(u) itself.] �

� IX.7. Poisson law for rare events. Consider the binomial distribution with PGF (q + pu)n .
If p depends on n in such a way that p = λ/n for some fixed λ, then the limit law of the
binomial random variable is Poisson of rate λ. (This “law of small numbers” explains the
Poisson character of activity in radioactive decay as well as the occurrence of accidental deaths
of soldiers in the Prussian army resulting from the kick of a horse [Bortkiewicz, 1898].) �

IX. 2.3. Tail estimates. Tail estimates quantify the rate of decrease of probabil-
ities away from the central part of the distribution. In the case of a discrete limit law
having a finite mean, what one needs is information regarding P(X > k) as k gets
large. A simple, but often effective, approach consists in appealing to saddle-point
bounds. We give here a general statement which is nothing but a rephrasing of such
bounds adapted to discrete probability distributions.

Theorem IX.3 (Tail bounds, discrete laws). Let p(u) = E(u X ) be a probability
generating function that is analytic for |u| ≤ r where r is some number satisfying
r > 1. Then, the following “local” and “global” tail bounds hold:

P(X = k) ≤ p(r)

rk
, P(X > k) ≤ p(r)

rk(r − 1)
.

Proof. The local estimate is a direct consequence of trivial bounds applied to Cauchy’s
integrals, namely

P(X = k) = 1

2iπ

∫
|u|=r

p(u)
du

uk+1
≤ p(r)

rk
.

The cumulative bound is derived from the useful integral representation

P(X > k) = 1

2iπ

∫
|u|=r

p(u)

(
1 + 1

u
+ 1

u2
+ · · ·

)
du

uk+2

= 1

2iπ

∫
|u|=r

p(u)
du

uk+1(u − 1)
,

upon applying again trivial bounds. (Alternatively, summation from the local bounds
can be used.) �
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The bounds provided always exhibit a geometric decay in the value of k—this is
both a strength and a limitation on the method. In accordance with the theorem and as
is easily checked directly, the geometric and the negative binomial distributions have
exponential tails; the Poisson law even has a “superexponential” tail, being O(R−k)

for any R > 1, since its PGF is entire. By their nature, the bounds can also be simul-
taneously applied to a whole family of probability generating functions, as shown
by the characteristic example below. Hence their use in obtaining uniform estimates
in the context of limit laws, in a way that prefigures the study of large deviations
in Section IX. 10.

Example IX.5. Permutations with a large number of singleton cycles. The problem here is to
quantify the probability that a permutation of size n has more than k = log n singleton cycles,
a quantity that is far from the mean value 1. The elementary treatment of Example IX.3 is
certainly applicable but it has the disadvantage of not easily generalizing to other situations. In
the perspective of applying Theorem IX.3, we seek instead to bound pn(u) for u > 0, where
pn(u) := [zn]ez(u−1)/(1 − z), by Equation (8). We have, for u > 0 and any s ∈ (0, 1),

pn(u) ≡ [zn]euz e−z

1 − z
≤ eus e−s

1 − s
s−n,

as found from saddle-point bounds (in the z–plane) applied to the BGF P(z, u). Taking s =
1−1/n, which is suggested by the usual scaling of singularity analysis as well as by the saddle-
point principles, gives the following bound on the PGF,

pn(u) ≤ 2neu ,

valid for all n ≥ 2. (Better estimates are available from the precise analysis of Example IX.4,
but the improvement regarding tail bounds would be marginal.) Choosing now r = log n in the
statement of Theorem IX.3 value provides an approximate saddle-point bound, and we get for
n ≥ 10 (say) ∑

j≥log n

pn, j ≤
2n2

nlog log n
.

Thus the probability of observing more than log n singleton cycles is asymptotically smaller
than any inverse power of n. Note that, in this example, we have made use of Theorem IX.3,
while opting to estimate the PGFs plainly by saddle-point bounds taken with respect to the
principal variable z of the corresponding bivariate generating function. . . . . . . . . . . . . . . . . . . �

IX. 3. Combinatorial instances of discrete laws

In this section, we focus our attention on the general analytic schema based on
compositions (p. 411), and more specifically on its subcritical case (Definition IX.2
below). It is such that the perturbations induced by the secondary variable (u) affects
neither the location nor the nature of the basic singularity involved in the univariate
counting problem. The limit laws are then of the discrete type. In particular, for
the labelled universe and for subcritical sequences, sets, and cycles, these limit laws
are invariably of the negative binomial, Poisson, and geometric type, respectively.
Additionally, it is easy to describe the profiles of combinatorial objects resulting from
such subcritical constructions.
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Subcritical compositions. First, we consider the general composition schema,

F = G ◦ (uH) �⇒ F(z, u) = g(uh(z)).

This schema expresses over generating functions the combinatorial operation G ◦H of
substitution of components H enumerated by h(z) inside “templates” G enumerated
by g(z). (See Chapters I, p. 86 and II, p. 137, for the unlabelled and labelled versions,
and Chapter III, p. 199, for the bivariate versions.) The variable z marks size as usual,
and the variable u marks the size of the G–template.

We assume globally that g and h have non-negative coefficients and that h(0) = 0
so that the composition g(h(z)) is well-defined. We let ρg and ρh denote the radii of
convergence of g and h, and define

(14) τg = lim
x→ρ−g

g(x) and τh = lim
x→ρ−h

h(x).

The (possibly infinite) limits exist due to the non-negativity of coefficients. As already
discussed in Section VI. 9, p. 411, three cases are to be distinguished.

Definition IX.2. The composition schema F(z, u) = g(uh(z)) is said to be subcritical
if τh < ρg, critical if τh = ρg, supercritical if τh > ρg.

In terms of singularities, the behaviour of g(h(z)) at its dominant singularity is
dictated by the dominant singularity of h (subcritical case), or by the dominant singu-
larity of g (supercritical case), or else it involves a mixture of the two (critical case).
This section is concerned with the subcritical case6.

Proposition IX.1 (Subcritical composition, number of components). Consider the
bivariate composition schema F(z, u) = g(uh(z)). Assume that g(z) and h(z) satisfy
the subcriticality condition τh < ρg, and that h(z) has a unique singularity at ρ = ρh

on its disc of convergence, which, in a �–domain, is of the type

h(z) = τ − c

(
1 − z

ρ

)λ

+ o

((
1 − z

ρ

)λ
)
,

where τ = τh, c ∈ R+, 0 < λ < 1. Then, a discrete limit law holds for the number of
H–components: with fn,k := [znuk]F(z, u) and fn = [zn]F(z, 1), one has

lim
n→∞

fn,k

fn
= qk, where qk = kgkτ

k−1

g′(τ )
.

The probability generating function of the limit distribution (qk) is

q(u) = ug′(τu)

g′(τ )
.

Proof. First, we examine the univariate counting problem. Since g(z) is analytic at τ ,
the function g(h(z)) is singular at ρh and is analytic in a �–domain. Its singular ex-
pansion is obtained by composing the regular expansion of g(z) at τ with the singular

6By contrast with the discrete laws encountered here, the case of a supercritical composition leads
to continuous limit laws of the Gaussian type (Section IX. 6). The critical case involves a confluence of
singularities, which induces stable laws (Section IX. 11).
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expansion of h(z) at ρh :

F(z) ≡ g(h(z)) = g(τ )− cg′(τ )(1 − z/ρ)λ(1 + o(1)).

Thus, F(z) satisfies the conditions of singularity analysis, and

(15) fn ≡ [zn]F(z) = − cg′(τ )
�(−λ)ρ

−nn−λ−1(1 + o(1)).

By similar devices, the mean and variance of the distribution are found to be
each O(1).

Next, for the bivariate problem, fix any u with, say, u ∈ (0, 1). The BGF
F(z, u) is also seen to be singular at z = ρ, and its singular expansion obtained
from F(z, u) = g(uh(z)) by composition, is

(16)
F(z, u) = g(uh(z)) = g(uτ − cu(1 − z/ρ)λ + o((1 − z/ρ)λ))

= g(uτ)− cug′(uτ)(1 − z/ρ)λ + o((1 − z/ρ)λ).

Thus, singularity analysis implies immediately:

lim
n→∞

[zn]F(z, u)

[zn]F(z, 1)
= ug′(uτ)

g′(τ )
.

By the continuity theorem for PGFs, this is enough to imply convergence to the dis-
crete limit law with PGF ug′(τu)/g′(τ ), and the proposition is established. �

What stands out in the statement of Proposition IX.1 is the following general fact:
In a subcritical composition, the limit law is a direct reflection of the derivative of the
outer function involved in the composition.
� IX.8. Tail bounds for subcritical compositions. Under the subcritical composition schema,
it is also true that the tails have a uniformly geometric decay. Let u0 be any number of the
interval (1, ρg/τh). Then the function z 	→ F(z, u0) is analytic near the origin with a dominant
singularity at ρh again obtained by composing the regular expansion of g with the singular
expansion of h, and Equation (16) remains valid at u = u0. There results the asymptotic
estimate

pn(u0) =
[zn]F(z, u0)

[zn]F(z, 1)
∼ g′(u0τh).

Thus, for some constant K ≡ K (u0), one has pn(u0) < K . It is also easy to verify that pn(u)
is analytic at u0, so that, by Theorem IX.3,

pn,k ≤ K (u0) · u−k
0 ,

∑
j>k

pn, j ≤
K (u0)

u0 − 1
u−k

0 .

Therefore, the combinatorial distributions satisfy, uniformly with respect to n, a tail bound. In
particular the probability that there are more than a logarithmic number of components satisfies

(17) Pn(χ > log n) = O(n−θ ) and θ = log u0.

Such tail estimates may additionally serve to evaluate the speed of convergence to the limit law
(as well as the total variation distance) in the subcritical composition schema. �

� IX.9. Semi-small powers and singularity analysis. Let h(z) satisfy the stronger singular
expansion

h(z) = τ − c(1 − z/ρ)λ + O(1 − z/ρ)ν,
for 0 < λ < ν < 1. Then, for k ≤ C log n (some C > 0), the results of singularity analysis can
be extended (under the form proved in Chapter VI, they are only valid for fixed k)

[zn]h(z)k = kcρ−nn−λ−1
(

1 + O(n−θ1)
)
,
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for some θ1 > 0, uniformly with respect to k. [The proof recycles the Hankel contour Chap-
ter VI, with some care needed in checking uniformity with respect to k; see also p. 709.] �

� IX.10. Speed of convergence in subcritical compositions. Combining the exponential tail
estimate (17) and local estimates deriving from the singularity analysis of “semi-small” powers
in the previous note, one obtains for the distribution functions associated with pn,k and pk the
speed estimate

sup
k

|Fn(k)− F(k)| ≤ L

nθ2
.

There, L and θ2 are two positive constants. �

Subcritical constructions. The functional composition schema encompasses the
sequence, set, and cycle constructions of the labelled universe. We state the following
proposition.

Proposition IX.2 (Subcritical constructions, number of components). Consider the
labelled constructions of sequence, set, and cycle. Assume the subcriticality condi-
tions of the previous proposition, namely τ < 1, τ < ∞, τ < 1, respectively, where
τ is the singular value of h(z). Then, the distribution of the number χ of compo-
nents determined by fn,k/ fn, is such that χ − 1 admits a discrete limit law that is of
type, respectively, negative binomial N B[2], Poisson, and geometric: the limit forms
qk = limn→∞ Pn(χ = k) satisfy, respectively, for k ≥ 0,

qSEQ
k+1 = (1 − τ)2(k + 1)τ k, qSET

k+1 = e−τ
τ k

k!
, qCYC

k+1 = (1 − τ)τ k .

Proof. It suffices to take for the outer function g in the composition g◦h the quantities

(18) Q(w) = 1

1 − w
, E(w) = ew, L(w) = log

1

1 − w
.

According to Proposition IX.1 and Equation (18) above, the PGF of the discrete limit
law involves the derivatives

Q′(w) = 1

(1 − w)2
, E ′(w) = ew, L ′(w) = 1

1 − w
.

By definition of the classical discrete laws in Figure IX.5, p. 621, it is seen that the
last two cases precisely give rise to the classical Poisson and geometric law. The first
case gives rise to the negative binomial law N B[2], or equivalently the sum of two
independent geometrically distributed random variables. �

The technical simplicity with which limit laws are extracted is worthy of note.
Naturally, the statement also covers unlabelled sequences, since translation into GFs
is the same in both universes. (Other unlabelled constructions usually lead to discrete
laws, as long as they are subcritical; see Note IX.14 for a particular instance.) Also,
subcriticality of a composition g ◦ h necessarily entails that τh is finite (since one has
τh < ρg ≤ +∞, by definition). Primary cases of applications of Proposition IX.2
are thus in the realm of “treelike” structures, for which the GFs remain finite at their
radius of convergence, as we have learnt in Chapter VII.

The example that follows illustrates the application of Proposition IX.1 to the
analysis of root degrees in classical varieties of trees. It is especially interesting to ob-
serve the way limit laws directly reflect the combinatorial specifications. For instance,
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the root degree in a large random plane tree (a Catalan tree) is found to obey, in the
asymptotic limit, a negative binomial (N B[2]) distribution, which, in a precise sense,
echoes the sequence construction that expresses planarity. For labelled non-plane trees
(Cayley tree), a Poisson law echoes the set construction attached to non-planarity.

Example IX.6. Root degrees in trees. Consider first the number of components in a sequence
(ordered forest) of general Catalan trees. The bivariate OGF is

F(z, u) = 1

1 − uh(z)
, h(z) = 1

2

(
1 −√

1 − 4z
)
.

We have τh = 1/2 < ρg = 1, so that the composition schema is subcritical. Thus, for a forest
of total size n, the number Xn of tree components satisfies

lim
n→∞P{Xn = k} = k

2k+1
(k ≥ 1).

Since a tree is equivalent to a node appended to a forest, this asymptotic estimate also holds for
the root degree of a general Catalan tree.

Consider next the number of components in a set (unordered forest) of Cayley trees. The
bivariate EGF is

F(z, u) = euh(z), h(z) = zeh(z).

We have τh = 1 < ρg = +∞, again a subcritical composition schema. Thus the number Xn
of tree components in a random unordered forest of size n admits the limit distribution

lim
n→∞P{Xn = k} = e−1/(k − 1)!, (k ≥ 1),

a shifted Poisson law of parameter 1; asymptotically, the same property also holds for the root
degree of a random Cayley tree

The same method applies more generally to a simple variety of trees V (see Section VII. 3,
p. 452) with generator φ, under the condition of the existence of a root τ of the characteristic
equation φ(τ) − τφ′(τ ) = 0 at a point interior to the disc of convergence of φ. The BGF
satisfies

V (z, u) = zφ(uV (z)), V (z) = 1 − γ
√

1 − z/ρ + O(1 − z/ρ).

so that

V (z, u) ∼
z→ρ

ρφ(uτ)− γ
uφ′(uτ)
φ′(τ )

√
1 − /zρ.

The PGF of the distribution of root degree is accordingly

uφ′(τu)

φ′(τ ) =
∑
k≥1

kφkτ
k

φ′(τ ) uk .

This limit law was established under its local form in Chapter VII, p. 456, by means of univaraite
asymptotics; the present example shows the synthetic character of a derivation based on the
continuity theorem for PGFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

A further direct application of the continuity of PGFs is the distribution of the
number of H–components of a fixed size m in a composition G ◦H with GF g(h(z)),
again under the subcriticality condition. In the terminology of Chapter III, we are thus
characterizing the profile of combinatorial objects, as regards components of some
fixed size. The bivariate GF is then

F = G ◦ (H \Hm + uHm) �⇒ F(z, u) = g(h(z)+ (u − 1)hm zm),
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with hm = [zm]h(z). The singular expansion at z = ρ is

F(z, u) = g(τ + (u −1)hmρ
m)− cg′(τ + (u −1)hmρ

m)(1− z/ρ)λ)+o((1− z/ρ)λ).

Thus, the PGF pn(u) for objects of size n satisfies

(19) lim
n→∞ pn(u) = g′(τ + (u − 1)hmρ

m)

g′(τ )
.

As before this calculation specializes to the case of sequences, sets, and cycles giving
a result analogous to Proposition IX.1.

Proposition IX.3 (Subcritical constructions, number of fixed-size components). Un-
der the subcriticality conditions of Proposition IX.2, the number of components of a
fixed size m in a labelled sequence, set, or cycle construction applied to a class with
GF h(z) admits a discrete limit law. Let hm := [zm]h(z) and let ρ be the radius of
convergence of h(z), with τ := h(ρ). For sequences, sets, and cycles, the limit laws
are, respectively, negative binomial N B[2](a), Poisson(λ), and geometric(b), with
parameters

a = hmρ
m

1 − τ + hmρm
, λ = hmρ

m, b = hmρ
m

1 − τ + hmρm
.

Proof. Instantiate (19) with g, one of the three functions of (18). �

Example IX.7. Root subtrees of size m. In a Cayley tree, the number of root subtrees of some
fixed size m has, in the limit, a Poisson distribution,

pk = e−λ λ
k

k!
, λ := mm−1e−m

m!
.

In a general Catalan tree, the distribution is a negative binomial N B[2]

pk = (1 − a)2(k + 1)ak , a−1 := 1 + m22m−1(2m−2
m−1

) .
Generally, for a simple variety of trees under the usual conditions of existence of a solution to
the characteristic equation, V = zφ(V ), one finds “en deux coups de cuillère à pot”,

V (z, u) = zφ(V (z)+ Vm zm(u − 1))
V (z, u) ∼ ρφ(τ + Vmρ

m(u − 1))− ργφ′(τ + Vmρ
m(u − 1))

√
1 − z/ρ

limit PGF = φ′(τ + Vmρ
m(u − 1))

φ′(τ ) .

(Notations are the same as in Example IX.6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

We shall see later that similar discrete distributions (the Poisson and negative
binomial law of Proposition IX.3) also arise in critical set constructions of the exp–
log type (Example IX.23, p. 675), while supercritical sequences lead to Gaussian
limits (Proposition IX.7, p. 652). Furthermore, given the generality of the methods
and the analytic diversity of functional compositions, it should be clear that schemas
leading to discrete limit laws can be listed ad libitum—in essence, conditions are
that the auxiliary variable u does not affect the location nor the nature of the dominant
singularity of F(z, u). The notes below provide a small sample of the many extensions
of the method that are possible.
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� IX.11. The product schema. Define

F(z, u) = A(uz) · B(z),

that corresponds to a product construction, F = A × B, with u marking the size of the A–
component in the product. Assume that the radii of convergence satisfy ρA > ρB and that B(z)
has a unique dominant singularity of the algebraic–logarithmic type. Then, the size of the A
component in a random F–structure has a discrete limit law with PGF,

p(u) = A(ρu)

A(ρ)
.

The proof follows by singularity analysis. (Alternatively, an elementary derivation can be given
under the weaker requirement that the bn = [zn]B(z) satisfy bn+1/bn → ρ−1.) �

� IX.12. Bell number distributions. Consider the “set-of-sets” schema

F = SET(SET≥1(H)) �⇒ F(z, u) = exp(euh(z) − 1),

assuming subcriticality. Then the number χ of components satisfies asymptotically a “derivative
Bell” law:

lim
n→+∞Pn(χ = k) = 1

K

kSkτ
k

k!
, K = e−eτ−τ−1,

where Sk = k![zk ]eez−1 is a Bell number. There exist parallel results: for sequence-of-sets,
involving the surjection numbers; for set-of-sequences involving the fragmented permutation
numbers. �

� IX.13. High levels in Cayley trees. The number of nodes at level 5 (i.e., at distance 5 from
the root) in a Cayley tree has the nice PGF

u
d

du

⎛⎜⎜⎝e−1 + e−1 + e−1 + e−1 + e−1+u
⎞⎟⎟⎠ ,

so that the distribution involves “super-duper-hyper-Bell numbers”. �

� IX.14. Root degree in non-plane unlabelled trees. Discrete laws may also arise from an unla-
belled set construction, but their form is complicated, reflecting the presence of Pólya operators.
Consider the class of non-plane unlabelled trees (p. 71)

H = Z × MSET(H) �⇒ H(z) = z exp

⎛⎝∑
k≥1

1

k
H(zk)

⎞⎠ .

The OGF H(z) is of singularity analysis class (Section VII. 5, p. 475), and H(z) ∼ 1 − γ (1 −
z/ρ)1/2. Then the distribution with PGF

q(u) = uρ exp

⎛⎝∑
k≥1

uk

k
H(ρk)

⎞⎠
is the limit law of root degree in non-plane unlabelled trees. �

Lattice paths. As a last example here, we discuss the length of the longest initial
run of a’s in random binary words satisfying various types of constraints. This discus-
sion completes the informal presentation of Section IX. 1, Examples IX.1 and 2. The
basic combinatorial objects are the set W = {a, b}� of binary words. A word w ∈ W
can also be viewed as describing a walk in the plane, provided one interprets a and
b as the vectors (+1,+1) and (+1,−1), respectively. Such walks in turn describe
fluctuations in coin-tossing games, as described by Feller [205].
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Figure IX.7. Walks, excursions, bridges, and meanders of Dyck type: from left to
right and top to bottom, random samples of length 50.

The combinatorial decompositions of Section V. 4, p. 318, form the basis of our
combinatorial treatment. What is especially interesting here is to observe the complete
chain where a specific constraint leads in succession to a combinatorial decomposi-
tion, a specific analytic type of BGF, and a local singular structure that is eventually
reflected by a particular limit law.

Example IX.8. Initial runs in random walks. We consider here walks in the right half-plane
that start from the origin and are made of steps a = (1, 1), b = (1,−1). According to the
discussion of Chapter VII (p. 506), one can distinguish four major types of walks (Figure IX.7).

— Unconstrained walks (W) corresponding to words and freely described by W =
SEQ(a, b);

— Dyck paths (D), which always have a non-negative ordinate and end at level 0; the
closely related class G = Db represents the collection of gambler’s ruin sequences.
In probability theory, Dyck paths are also referred to as excursions.

— Bridges (B), which are walks that may have negative ordinates but must finish at
level 0.

— Meanders (M), which always have a non-negative altitude and may end at an arbi-
trary non-negative altitude.

The parameter χ of interest is in all cases the length of the (longest) initial run of a’s.
First, unconstrained walks obey the decomposition

W = SEQ(a) SEQ(b SEQ(a)),

already repeatedly employed. Thus, the BGF is

W (z, u) = 1

1 − zu

1

1 − z(1 − z)−1
.

By singularity analysis of the pole at ρ = 1/2, the PGF of χ on random words of Wn satisfies

pn(u) ∼ 1/2

1 − u/2
,

for all u such that |u| < 2. This asymptotic value of the PGF corresponds to a limit law, which is
a geometric with parameter 1/2, in agreement with what was found in Examples IX.1 and IX.2.

Next, consider Dyck paths. Such a path decomposes into “arches” that are themselves
Dyck paths encapsulated by a pair a, b, namely,

D = SEQ(aDb),
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which yields a GF of the Catalan domain,

D(z) = 1

1 − z2 D(z)
, D(z) = 1 −

√
1 − 4z2

2z2
.

In order to extract the initial run of a’s, we observe that a word whose initial a-run is ak con-
tains k components of the form bD. This corresponds to a decomposition in terms of the first
traversals of altitudes k − 1, . . . , 1, 0,

D =
∑
k≥0

ak(bD)k

(a special “first passage decomposition” in the sense of p. 321), illustrated by the following
diagram:

Thus, the BGF is

D(z, u) = 1

1 − z2u D(z)
,

which is an even function of z. In terms of the singular element, δ = (1 − 4z)1/2, one finds

D(z1/2, u) = 2

2 − u
− 2u

(2 − u)2
δ + O(δ2),

as z → 1/4. Thus, the PGF of χ on random words of D2n satisfies

p2n(u) ∼
u

(2 − u)2
,

which is the PGF of a negative binomial N B[2] of parameter 1/2 shifted by 1. (Naturally, in
this case, explicit expressions for the combinatorial distribution are available, as this counting
is equivalent to the classical ballot problem.)

A bridge decomposes into a sequence of arches, either positive or negative,

B = SEQ(aDb + bDa),

where D is like D, but with the rôles of a and b interchanged. In terms of OGFs, this gives

B(z) = 1

1 − 2z2 D(z)
= 1√

1 − 4z2
.

The set B+ of non-empty walks that start with at least one a admits a decomposition similar to
that of D,

B+(z) =
⎛⎝∑

k≥1

akb(Db)k−1

⎞⎠ · B,

since the paths factor uniquely as a D component that hits 0 for the first time followed by a B
oscillation. Thus,

B+(z) = z2

1 − z2 D(z)
B(z).
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The remaining cases B− = B\B+ consist of either the empty word or of a sequence of positive
or negative arches starting with a negative arch, so that

B−(z) = 1 + z2 D(z)

1 − 2z2 D(z)
.

The BGF results from these decompositions:

B(z, u) = z2u

1 − z2u D(z)
B(z)+ 1 + z2 D(z)

1 − 2z2 D(z)
.

Again, the singular expansion is obtained mechanically,

B(z1/2, u) = 1

(2 − u
)

1

δ
+ O(1), where δ = (1 − 4z)1/2.

Thus, the PGF of χ on random words of B2n satisfies

p2n(u) ∼
1

2 − u
.

The limit law is now geometric of parameter 1/2.
A meander decomposes into an initial run ak , a succession of descents with their compan-

ion (positive) arches in some number � ≤ k, and a succession of ascents with their correspond-
ing (positive) arches. The computations are similar to the previous cases, more intricate but still
“automatic”. One finds that

M(z, u) =
(

XY

(1 − X)(1 − Y )
− XY 2

(1 − XY )(1 − Y )

)
1

1 − Y
+ 1

1 − X
,

with X = zu, Y = zW1(z), so that

M(z, u) = 2
1 − u − 2 z + 2 uz2 + (u − 1)

√
1 − 4 z2

(1 − zu)
(

1 − 2 z −
√

1 − 4 z2
) (

2 − u + u
√

1 − 4 z2
) .

There are now two singularities at z = ±1/2, with singular expansions,

M(z, u) =
z→1/2

u
√

2

(2 − u)2
1√

1 − 2z
+ O(1), M(z, u) =

z→−1/2

4 − u

4 − u2
+ o(1),

so that only the singularity at 1/2 matters asymptotically. Then, we have

pn(u) ∼ u

(2 − u)2
,

and the limit law is a shifted negative binomial N B[2] of parameter 1/2. In summary:

Proposition IX.4. The length of the initial run of a’s in unconstrained walks and bridges is
asymptotically distributed as a geometric; in Dyck excursions and meanders it is distributed as
a negative binomial N B[2].

Similar analyses can be applied to walks with a finite set of step types [27]. . . . . . . . . . . �

� IX.15. Left-most branch of a unary–binary (Motzkin) tree. The class of unary–binary trees
(or Motzkin trees) is defined as the class of unlabelled rooted plane trees where (out)degrees
of nodes are restricted to the set {0, 1, 2}. The parameter equal to the length of the left-most
branch has a limit law that is a negative binomial N B[2]. Find its parameter. �
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IX. 4. Continuous limit laws

Throughout this chapter, our goal is to quantify sequences of random variables
Xn that arise from an integer-valued combinatorial parameter χ defined on a combi-
natorial class F . It is a fact that, when the mean μn and the standard deviation σn

of Xn both tend to infinity as n gets large, then a limit law that is continuous usually
holds. That limit law arises not directly from the Xn themselves (as was the case for
discrete-to-discrete convergence in the previous section) but rather from their stan-
dardized versions:

X�
n = Xn − μn

σn
.

In this section, we provide definitions and major theorems needed to deal with such
a discrete-to-continuous situation7. Our developments largely parallel those of Sec-
tion IX. 2 relative to the discrete case, with integral transforms serving as the continu-
ous analogue of probability generating functions.

IX. 4.1. Convergence to a continuous limit. A real random variable Y is in all
generality specified by its distribution function,

P{Y ≤ x} = F(x).

It is said to be continuous if F(x) is continuous (see Appendix C.2: Random variables,
p. 771). In that case, F(x) has no jump, and there is no single value in the range of
Y that bears a non-zero probability mass. If in addition F(x) is differentiable, the
random variable Y is said to have a density, g(x) = F ′(x), so that

P(Y ≤ x) =
∫ x

−∞
g(x) dx, P{x < Y ≤ x + dx} = g(x) dx .

A particularly important case for us here is the standard Gaussian or normal N (0, 1)
distribution function,

	(x) = 1√
2π

∫ x

−∞
e−w

2/2 dw,

also called the error function (erf), the corresponding density being

ξ(x) ≡ 	′(x) = 1√
2π

e−x2/2.

This section and the next ones are relative to the existence of limit laws of the con-
tinuous type, with Gaussian limits playing a prominent rôle. The general definitions of
convergence in law (or in distribution) and of weak convergence (see Appendix C.5:
Convergence in law, p. 776) instantiate as follows.

Definition IX.3 (Discrete-to-continuous convergence). Let Y be a continuous random
variable with distribution function FY (x). A sequence of random variables Yn with

7Probability theory has elaborated a unified way of dealing with discrete and continuous laws alike,
as well as with mixed cases; see Appendix C.1: Probability spaces and measure, p. 769. For analytic
combinatorics, it seems, however, preferable to develop the two branches of the theory in a parallel fashion.
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distribution functions FYn (x) is said to converge in distribution to Y if, pointwise, for
each x,

lim
n→∞ FYn (x) = FY (x).

In that case, one writes Yn ⇒ Y and FYn ⇒ FY . Convergence is said to take place with
speed εn if

sup
x∈R

∣∣FYn (x)− FY (x)
∣∣ ≤ εn .

The definition does not a priori impose uniform convergence. It is a known fact,
however, that convergence of distribution functions to a continuous limit is always
uniform. This uniformity property means that there always exists a speed εn that tends
to 0 as n → ∞.

IX. 4.2. Continuity theorems for transforms. Discrete limit laws can be es-
tablished via convergence of PGFs to a common limit, as asserted by the continuity
theorem for PGFs, Theorem IX.1, p. 624. In the case of continuous limit laws, one
has to resort to integral transforms (see Appendix C.3: Transforms of distributions,
p. 772), whose definitions we now recall.

— The Laplace transform, also called the moment generating function, λY (s)
is defined by

λY (s) := E{esY } =
∫ +∞

−∞
esx d F(x).

— The Fourier transform, also called the characteristic function, φY (t) is de-
fined by

φY (t) := E{eitY } =
∫ +∞

−∞
eitx d F(x).

(Integrals are taken in the sense of Lebesgue–Stieltjes or Riemann–Stieltjes; cf Ap-
pendix C.1: Probability spaces and measure, p. 769.)

There are two classical versions of the continuity theorem, one for characteris-
tic functions, the other for Laplace transforms. Both may be viewed as extensions
of the continuity theorem for PGFs. Characteristic functions always exist and the
corresponding continuity theorem gives a necessary and sufficient condition for con-
vergence of distributions. As they are a universal tool, characteristic functions are
therefore often favoured in the probabilistic literature. In the context of this book,
strong analyticity properties go along with combinatorial constructions so that both
transforms usually exist and both can be put to good use (Figure IX.8).

Theorem IX.4 (Continuity of integral transforms). Let Y,Yn be random variables
with Fourier transforms (characteristic functions) φ(t), φn(t), and assume that Y has
a continuous distribution function. A necessary and sufficient condition8 for the con-
vergence in distribution, Yn ⇒ Y , is that, pointwise, for each real t ,

lim
n→∞φn(t) = φ(t).

8The first part of this theorem is also known as Lévy’s continuity theorem for characteristic functions.
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Figure IX.8. The standardized distribution functions of the binomial law (top), the
corresponding Fourier transforms (right), and the Laplace transforms (bottom), for
n = 3, 6, 9, 12, 15. The distribution functions centred around the mean μn = n/2
and scaled according to the standard deviation σn = √

n/4 converge to a limit which

is the Gaussian error function, 	(x) = 1√
2π

∫ x

−∞
e−w2/2 dw. Accordingly, the

corresponding Fourier transforms (or characteristic functions) converge to φ(t) =
e−t2/2, while the Laplace transforms (or moment generating functions) converge to

λ(s) = es2/2.

Let Y,Yn be random variables with Laplace transforms λ(s), λn(s) that exist in a
common interval [−s0, s0], with s0 > 0. If, pointwise for each real s ∈ [−s0, s0],

lim
n→∞ λn(s) = λ(s),

then the Yn converge in distribution to Y : Yn ⇒ Y .

Proof. See Billingsley’s book [68, Sec. 26] for Fourier transforms and [68, p. 408],
for Laplace transforms. �
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� IX.16. Laplace transforms need not exists. Let Yn be a mixture of a Gaussian and a Cauchy
distribution:

P(Yn ≤ x) =
(

1 − 1

n

)∫ x

−∞
e−w2/2
√

2π
dw + 1

πn

∫ x

−∞
dw

1 + w2
.

Then Yn converges in distribution to a standard Gaussian limit Y , although λn(s) only exists for
-(s) = 0. �

In the discrete case, the continuity theorem for PGFs (Theorem IX.1, 624) even-
tually relies on continuity of the Cauchy coefficient formula that realizes the inversion
needed in recovering coefficients from PGFs. In an analogous manner, the continuity
theorem for integral transforms may be viewed as expressing the continuity of Laplace
or Fourier inversion in the specific context of probability distribution functions.

The next theorem, called the Berry–Esseen inequality, is an effective version of
the Fourier inversion theorem that proves especially useful for characterizing speeds of
convergence. It bounds in a constructive manner the sup-norm distance between two
distribution functions in terms of a special metric distance between their characteristic
functions. Recall that || f ||∞ := supx∈R | f (x)|.
Theorem IX.5 (Berry–Esseen inequality). Let F,G be distribution functions with
characteristic functions φ(t), γ (t). Assume that G has a bounded derivative. There
exist absolute constants c1, c2 such that for any T > 0,

||F − G||∞ ≤ c1

∫ +T

−T

∣∣∣∣φ(t)− γ (t)

t

∣∣∣∣ dt + c2
||G ′||∞

T
.

Proof. See Feller [206, p. 538] who gives

c1 = 1

π
, c2 = 24

π

as possible values for the constants. �
This theorem is typically used with G being the limit distribution function (often

a Gaussian for which ||G ′||∞ = (2π)−1/2) and F = Fn a distribution that belongs to
a sequence converging to G. The quantity T may be assigned an arbitrary value; the
one giving the best bound in a specific application context is then naturally chosen.
� IX.17. A general version of Berry–Esseen. Let F,G be two distributions functions. Define
Lévy’s “concentration function”, QG(h) := supx (G(x + h) − G(x)), for h > 0. There exists
an absolute constant C such that

||F − G||∞ ≤ C QG(
1

T
)+ C

∫ +T

−T

∣∣∣∣φ(t)− γ (t)

t

∣∣∣∣ dt.

See Elliott’s book [191, Lemma 1.47] and the article by Stef and Tenenbaum for a discus-
sion [557]. The latter provides inequalities analogous to Berry–Esseen, but relative to Laplace
transforms on the real line (distance bounds tend to be much weaker due to the smoothing nature
of the Laplace transform). �

Large powers and the central limit theorem. Here is the simplest conceivable
illustration of how to use the continuity theorem, Theorem IX.4. The unbiased bino-
mial distribution Bin(n, 1/2) is defined as the distribution of a random variable Xn

with PGF

pn(u) ≡ E(u Xn ) =
(

1

2
+ u

2

)n

,
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and characteristic function,

φn(t) ≡ E(eit Xn ) = pn(e
it ) = 1

2n

(
1 + eit

)n
.

The mean is μn = n/2 and the variance is σ 2
n = n/4. Therefore, the standardized

variable X�
n = (Xn − μn)/σn has characteristic function

(20) φ�n(t) ≡ E(eit X�
n ) =

(
cosh

i t√
n

)n

=
(

cos
t√
n

)n

.

The asymptotic form is directly found by taking logarithms, and one gets

(21) logφ�n(t) = n log

(
1 − t2

2n
+ t4

6n2
+ · · ·

)
= − t2

2
+ O

(
1

n

)
,

pointwise, for any fixed t , as n → ∞. Thus, we have φ�n(t) → e−t2/2, as n → ∞.
This establishes convergence to the Gaussian limit. In addition, upon choosing
T = n1/2, the Berry–Esseen inequalities (Theorem IX.5) show that the speed of con-
vergence is O(n−1/2).
� IX.18. De Moivre’s Central Limit Theorem. Characteristic functions extend the normal limit
law to biased binomial distributions with PGF (p + qu)n , where p + q = 1. (Of course, the
result is also accessible from elementary asymptotic calculus, which constitutes De Moivre’s
original derivation; see Note IX.1, p. 615.) �

The Central Limit Theorem, known as the CLT (the term was coined by Pólya
in 1920, originally because of its “zentralle Rolle” [central rôle] in probability the-
ory), expresses the asymptotically Gaussian character of sums of random variables. It
was first discovered9 in the particular case of binomial variables by De Moivre. The
general version is due to Gauss (who, around 1809, had realized from his works on
geodesy and astronomy the universality of the “Gaussian” law but had only unsatis-
factory arguments) and to Laplace (in the period 1812–1820). Laplace in particular
uses Fourier methods and his formulation of the CLT is highly general, although some
of the precise validity conditions of his arguments only became apparent more than a
century later.

Theorem IX.6 (Basic CLT). Let Tj be independent random variables supported by
R with a common distribution of (finite) mean μ and (finite) standard deviation σ . Let
Sn := T1 + · · · + Tn. Then the standardized sum S�n converges to the standard normal
distribution,

S�n ≡ Sn − μn

σ
√

n
⇒N (0, 1).

Proof. The proof is based on local expansions of characteristic functions, much like
those in Equations (20) and (21). First, by a general theorem (see the summary in
Figure B.2, p. 777 and [424, p. 22], for a proof), the existence of the first two moments
implies that φT1 is twice differentiable at 0, so that

φT1(t) = 1 + iμt − 1

2
(μ2 + σ 2)t2 + o(t2), t → 0.

9For a perspective on historical aspects of CLT, we refer to Hans Fischer’s well-informed mono-
graph [213].
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By shifting, it suffices to consider the case of zero-mean variables (μ = 0). We then
have, pointwise for each t as n → ∞,

(22) φT1

(
t

σ
√

n

)n

=
(

1 − t2

2n
+ o

(
t2

2n

))n

→ e−t2/2,

as in Equations (20) and (21). The conclusion follows from the continuity theorem.
(This theorem is in virtually any basic book on probability theory, e.g., [206, p. 259]
or [68, Sec. 27].) �

It is important to observe what happens if the Tj are discrete and given by their
common PGF p(u) ≡ pT1(u) (a case otherwise discussed in Subsection VIII. 8.3,
p. 591, under a different angle). The proof above makes use of characteristic functions,
that is, we set u = eit , so that u = 1 corresponds to t = 0. Since there is a scaling
of t by 1/

√
n in the crucial estimate (22), we only need information on p(u) relatively

to a small neighbourhood of u = 1. What this discussion brings is the following
general fact: in establishing continuous limit laws from discrete distributions, it is the
behaviour near 1 of the discrete probability generating functions that matters. We are
going to make abundant use of this observation in the next section.
� IX.19. Poisson distributions of large parameter. Let Xλ be Poisson with rate λ. As λ tends to
infinity, Stirling’s formula provides easily convergence to a Gaussian limit. The error terms can
then be compared to what the Berry–Esseen bounds provide. (In terms of speed of convergence,
such Poisson variables of large parameters sometimes yield better approximations to combina-
torial distributions than the standard Gaussian law; see Hwang’s comprehensive study [341] for
a general analytic approach.) �

� IX.20. Extensions of the CLT. The central limit theorem in the independent case is the sub-
ject of Petrov’s comprehensive monographs [481, 482]. There are many extensions of the CLT,
to variables that are independent but not necessarily identically distributed (the Lindeberg–
Lyapunov conditions) or variables that are only dependent in some weak sense (mixing con-
ditions); see the discussion by Billingsley [68, Sec. 27]. In the particular case where the T s
are discrete, a stronger “local” form of the Theorem results from the saddle-point method; see
our earlier discussion in Section VIII. 8, p. 585, the classic treatment by Gnedenko and Kol-
mogorov [294], and extensions in Section IX. 9 below. �

IX. 4.3. Tail estimates. Contrary to what happens with characteristic functions
that are always defined, the mere existence of the Laplace transform of a distribution
in a non-empty interval containing 0 implies interesting tail properties. We quote here:

Theorem IX.7 (Exponential tail bounds). Let Y be a random variable such that its
Laplace transform λ(s) = E(esY ) exists in an interval [−a, b], where −a < 0 < b.
Then the distribution of Y admits exponential tails, in the sense that, as x → +∞,
there holds

P(Y < −x) = O(e−ax ), P(Y > x) = O(e−bx ).

Proof. By symmetry (change Y to −Y ), it suffices to establish the right-tail bounds.
We have, for any s such that 0 ≤ s ≤ b,

(23)

P(Y > x) = P(esY > esx )

= P

[
esY >

esx

λ(s)
E(esY )

]
≤ λ(s)e−sx ,
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where the last line results from Markov’s inequality (Appendix A.3: Combinatorial
probability, p. 727). It then suffices to choose s = b. �

Like its discrete counterpart, Theorem IX.3, this theorem is technically quite shal-
low but still useful, since it sets the stage for the ulterior development of large devia-
tion estimates, in Section IX. 10.

IX. 5. Quasi-powers and Gaussian limit laws

The central limit theorem of probability theory admits a fruitful extension in the
context of analytic combinatorics. As we show in this section, it suffices that the PGF
of a combinatorial parameter behaves nearly like a large power of a fixed function to
ensure convergence to a Gaussian limit—this is the quasi-powers framework. We first
illustrate this point by considering the Stirling cycle distribution.

Example IX.9. The Stirling cycle distribution. The number χ of cycles in a permutation is
described by the BGF

P = SET(u CYC(Z)) �⇒ P(z, u) = exp

(
u log

1

1 − z

)
= (1 − z)−u .

Let Xn be the random variable corresponding to χ taken over Pn . The PGF of Xn is

pn(u) =
(

n + u − 1

n

)
= u(u + 1)(u + 2) · · · (u + n − 1)

n!
= �(u + n)

�(u)�(n + 1)
.

We find for u near 1,

(24) pn(u) ≡ E(u Xn ) = nu−1

�(u)

(
1 + O

(
1

n

))
= 1

�(u)

(
e(u−1)

)log n
(

1 + O

(
1

n

))
.

The last estimate results from Stirling’s formula for the Gamma function (or from singularity
analysis of [zn](1 − z)−u , Chapter VI), with the error term being uniformly O(n−1), provided
u stays in a small enough neighbourhood of 1, for instance |u − 1| ≤ 1/2. Thus, as n → +∞,
the PGF pn(u) approximately equals a large power of eu−1, taken with exponent log n and
multiplied by the fixed function, �(u)−1. By analogy with the Central Limit Theorem, we may
reasonably expect a Gaussian law to hold.

The mean satisfiesμn = log n+γ+o(1) and the standard deviation is σn = √
log n+o(1).

We then consider the standardized random variable,

X�
n = Xn − L − γ√

L
, where L := log n.

The characteristic function of X�
n , namely φ�n(t) = E

(
eit X�

n

)
, then inherits the estimate (24)

of pn(u):

φ�n(t) =
e−i t (L1/2+γ L−1/2)

�(eit/
√

L )
exp

(
L(eit/

√
L − 1)

) (
1 + O

(
1

n

))
.

For fixed t , with L → ∞, the logarithm is then found mechanically to satisfy

(25) logφ�n(t) = − t2

2
+ O

(
(log n)−1/2

)
,
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so that φ�n(t) ∼ e−t2/2. This is sufficient to establish a Gaussian limit law,

(26) lim
n→∞P

{
Xn ≤ log n + γ + x

√
log n

}
= 1√

2π

∫ x

−∞
e−w2/2 dw.

Proposition IX.5 (Goncharov’s Theorem). The Stirling cycle distribution, P(Xn = k) =
1
n!

[n
k
]
, describing the number of cycles (equivalently, the number of records) in a random per-

mutation of size n is asymptotically normal.

This result was obtained by Goncharov as early as 1944 (see [299]), albeit without an error
term, as his investigations predate the Berry–Esseen inequalities. Our treatment quantifies the
speed of convergence to the Gaussian limit as O((log n)−1/2), by virtue of Equation (25) and
Theorem IX.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The cycle example is characteristic of the occurrence of Gaussian laws in analytic
combinatorics. What happens is that the approximation (24) by a power with “large”
exponent βn = log n leads after normalization, to the characteristic function of a
Gaussian variable, namely e−t2/2. From this, the limit distribution (26) results by the
continuity theorem. This is in fact a very general phenomenon, as demonstrated by
a theorem of Hsien-Kuei Hwang [337, 340] that we state next and that builds upon
earlier statements of Bender and Richmond [44].

The following notations will prove especially convenient: given a function f (u)
analytic at u = 1 and assumed to satisfy f (1)  = 0, we set

(27) m( f ) = f ′(1)
f (1)

, v( f ) = f ′′(1)
f (1)

+ f ′(1)
f (1)

−
(

f ′(1)
f (1)

)2

.

The notations m, v suggest their probabilistic counterparts while neatly distinguishing
between the analytic and probabilistic realms: If f is the PGF of a random variable X ,
then f (1) = 1 and m( f ), the mean, coincides with the expectation E(X); the quantity
v( f ) then coincides with the variance V(X). Accordingly, we call m( f ) and v( f ),
respectively, the analytic mean and analytic variance of function f .

Theorem IX.8 (Quasi-powers Theorem). Let the Xn be non-negative discrete random
variables (supported by Z≥0), with probability generating functions pn(u). Assume
that, uniformly in a fixed complex neighbourhood of u = 1, for sequences βn, κn →
+∞, there holds

(28) pn(u) = A(u) · B(u)βn

(
1 + O

(
1

κn

))
,

where A(u), B(u) are analytic at u = 1 and A(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called “variability condition”,

v(B(u)) ≡ B ′′(1)+ B ′(1)− B ′(1)2  = 0.

Under these conditions, the mean and variance of Xn satisfy

(29)
μn ≡ E(Xn) = βn m(B(u))+ m(A(u))+ O

(
κ−1

n

)
σ 2

n ≡ V(Xn) = βn v(B(u))+ v(A(u))+ O
(
κ−1

n

)
.
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The distribution of Xn is, after standardization, asymptotically Gaussian, and the
speed of convergence to the Gaussian limit is O(κ−1

n + β
−1/2
n ):

(30) P

{
Xn − E(Xn)√

V(Xn)
≤ x

}
= 	(x)+ O

(
1

κn
+ 1√

βn

)
,

where 	(x) is the distribution function of a standard normal,

	(x) = 1√
2π

∫ x

−∞
e−w

2/2 dw.

This theorem is a direct application of the following lemma, also due to
Hwang [337, 340], that applies more generally to arbitrary discrete or continuous
distributions (see also Note IX.22, p. 647), and is thus entirely phrased in terms of
integral transforms.

Lemma IX.1 (Quasi-powers, general distributions). Assume that the Laplace trans-
forms λn(s) = E{es Xn } of a sequence of random variables Xn are analytic in a disc
|s| < ρ, for some ρ > 0, and satisfy there an expansion of the form

(31) λn(s) = eβnU (s)+V (s)
(

1 + O

(
1

κn

))
,

with βn, κn → +∞ as n → +∞, and U (s), V (s) analytic in |s| ≤ ρ. Assume also
the variability condition, U ′′(0)  = 0.

Under these assumptions, the mean and variance of Xn satisfy

(32)
E(Xn) = βnU ′(0)+ V ′(0)+ O(κ−1

n ),

V(Xn) = βnU ′′(0)+ V ′′(0)+ O(κ−1
n ).

The distribution of X�
n := (Xn − βnU ′(0))/

√
βnU ′′(0) is asymptotically Gaussian,

the speed of convergence to the Gaussian limit being O(κ−1
n + β

−1/2
n ).

Proof. First, we estimate the mean and variance. The variable s is a priori restricted
to a small neighbourhood of 0. By assumption, the function log λn(s) is analytic at 0
and it satisfies

log λn(s) = βnU (s)+ V (s)+ O

(
1

κn

)
This asymptotic expansion carries over, with the same type of error term, to deriva-
tives at 0 because of analyticity: this can be checked directly from Cauchy integral
representations,

1

k!

dr

dsr
log λn(s)

∣∣∣∣
s=0

= 1

2iπ

∫
γ

log λn(s)
ds

sr+1
,

upon using a small but fixed integration contour γ and taking advantage of the basic
expansion of log λn(s). In particular, the mean and variance are seen to satisfy the
estimates of (32).

Next, we consider the standardized variable,

X�
n = Xn − βnU ′(0)√

βnU ′′(0)
, λ�n(s) = E{es X�

n }.
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We have

log λ�n(s) = − βnU ′(0)√
βnU ′′(0)

s + log λn(
s√

βnU ′′(0)
).

Local expansions to third order based on the assumption (31), with λn(0) ≡ 1, yield

(33) log λ�n(s) =
s2

2
+ O

(
|s| + |s|3
β

1/2
n

)
+ O

(
1

κn

)
,

uniformly with respect to s in a disc of radius O(β
1/2
n ), and in particular in any fixed

neighbourhood of 0. This is enough to conclude as regards convergence in distribution
to a Gaussian limit, by the continuity theorem of either Laplace transforms (restrict-
ing s to be real) or of Fourier transforms (taking s = i t).

Finally, the speed of convergence results from the Berry–Esseen inequalities.
Take T ≡ Tn = cβ1/2

n , where c is taken sufficiently small but non-zero, in such a
way that the local expansion of λn(s) at 0 applies. Then, the expansion (33) instanti-
ated at s = i t entails that

�n :=
∫ Tn

−Tn

∣∣∣∣∣λ�n(i t)− e−t2/2

t

∣∣∣∣∣ dt + 1

Tn

satisfies �n = O(β
−1/2
n + κ−1

n ). The statement now follows from the Berry–Esseen
inequality, Theorem IX.5. �

Theorem IX.8 under either form (28) or (31) can be read formally as expressing
the distribution of a (pseudo)random variable

Z = Y0 + W1 + W2 + · · · + Wβn ,

where Y0 “corresponds” to eV (s) (or A(u)) and each W j to eU (s) (or B(u)). However,
there is no a priori requirement that βn should be an integer, nor that eU (s), eV (s) be
Laplace transforms of probability distribution functions (usually they aren’t). In a
way, the theorem recycles the intuition that underlies the classical proof of the central
limit theorem and makes use of the analytic machinery behind it.

It is of particular importance to note that the conditions of Theorem IX.8 and
Lemma IX.1 are purely local: what is required is local analyticity of the quasi-power
approximation at u = 1 for PGFs or, equivalently, s = 0 for Laplace–Fourier trans-
forms. This important feature ultimately owes to the standardization of random vari-
ables and the corresponding scaling of transforms that goes along with continuous
limit laws
� IX.21. Mean, variance and cumulants. With the notations of (27), one has also

m( f ) = d

dt
log f (et )

∣∣∣∣
t=0

, v( f ) = d2

dt2
log f (et )

∣∣∣∣∣
t=0

;

the higher order derivatives give rise to quantities known as cumulants. �

� IX.22. Two equivalent forms of standardization. By simple real analysis, one has also, under
the assumptions of Lemma IX.1:

P

{
Xn − E(Xn)√

V(Xn)
≤ x

}
= 	(x)+ O

(
1

κn
+ 1√

βn

)
.
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Thus, main approximations in the convergence to the Gaussian limit are not affected by the way
standardization is done, either with the exact values of the mean and variance of Xn or with
their first-order asymptotic approximations. The same is true for Theorem IX.8. �

� IX.23. Higher moments under quasi-powers conditions. Following Hwang [340], one has
also, under the conditions of the Quasi-powers Theorem and for each fixed k,

E(Xk
n) = �k(βn)+ O

(
1

κn

)
, �k(x) := k![sk ]exU (s)+V (s).

Thus, a polynomial �k , of exact degree k, describes the asymptotic form of higher moments.
(Hint: make use of differentiability properties of asymptotic expansions of analytic functions,
as in Subsection VI. 10.1, p. 418.) �

Singularity perturbation and Gaussian laws. The main thread of this chapter is
that of bivariate generating functions. In general, we are given a BGF F(z, u) and aim
at extracting a limit distribution from it. The quasi-power paradigm in the form (28)
is what one should look for, when the mean and the standard deviation both tend to
infinity with the size n of the combinatorial model.

We proceed heuristically in the following informal discussion, which expands on
the brief indications of p. 618 relative to singularity perturbation—precise develop-
ments are given in the next sections. Start from a BGF F(z, u) and consider u as a
parameter. If a singularity analysis of sorts is applicable to the counting generating
function F(z, 1), it leads to an approximation,

fn ≈ C · ρ−nnα,

where ρ is the dominant singularity of F(z, 1) and α is related to the critical expo-
nent of F(z, 1) at ρ. A similar type of analysis is often applicable to F(z, u) for u
near 1. Then, it is reasonable to hope for an approximation of the coefficients in the
z-expansion of the bivariate GF,

fn(u) ≈ C(u)ρ(u)−nnα(u).

In this perspective, the corresponding PGF is of the form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

nα(u)−α(1).

The strategy envisioned here is thus a perturbation analysis of singular expansions
with the auxiliary parameter u being restricted to a small neighbourhood of 1.

In particular if only the dominant singularity moves with u, we have a rough form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

,

suggesting a Gaussian law with mean and variance that are both O(n), by the Quasi-
powers Theorem. If only the exponent varies, then

pn(u) ≈ C(u)

C(1)
nα(u)−α(1) = C(u)

C(1)

(
eα(u)−α(1)

)log n
,

suggests again a Gaussian law, but with mean and variance that are now both O(log n).
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           (left)

Moments

Counting

Large deviations
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u = 1 ± o(1) Moments
u ∈ V(1) (neighb.) Central limit law

|u| = 1 Local limit law
u ∈ [α, β] Large deviations

Figure IX.9. The correspondence between regions of the u–plane when considering
a combinatorial BGF F(z, u) and asymptotic properties of combinatorial distribu-
tions.

These cases point to the fact that a rather simple perturbation of a univariate ana-
lysis is likely to yield a limiting Gaussian distribution. Each major coefficient extrac-
tion method of Chapters IV–VIII then plays a rôle, and the present chapter illustrates
this important point in the following contexts.

— Meromorphic analysis for functions with polar singularities (Section IX. 6
below, based on a perturbation of methods of Chapters IV and V);

— Singularity analysis for functions with algebraic–logarithmic singularity
(Section IX. 7 below, based on a perturbation of methods of Chapters VI
and VII);

— Saddle-point analysis for functions with fast growth at their singularity (Sec-
tion IX. 8 below, based on a perturbation of methods of Chapters VIII).

In essence, the decomposable character of many elementary combinatorial structures
is reflected by strong analyticity properties of bivariate GFs that, after perturbation
analysis, lead, via the Quasi-powers Theorem (Theorem IX.8), to Gaussian laws. The
coefficient extraction methods being based on contour integration supply the necessary
uniformity conditions.

We shall also see that several other properties often supplement the existence of
Gaussian limit laws in combinatorics:

— Local limit laws [developed in Section IX. 9, p. 694 below] arise from quasi-
power approximations, whenever these remain valid for all values of u on
the unit circle. In that case, it is possible to express the combinatorial prob-
ability distribution directly in terms of the Gaussian density, by means of
the saddle-point method (in a form similar to that of Section VIII. 8, p. 585,
dedicated lo large powers) replacing the Continuity Theorem to effect the
secondary coefficient extraction in [uk zn]F(z, u).

— Large deviation estimates [developed in Section IX. 10, p. 699 below] quan-
tify the probabilities of rare events, away from the mean value. As could be
anticipated from Subsection IX. 4.3 relative to tail bounds, they are obtained
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by considering [zn]F(z, u0) for some value of u0 away from 1, via what are
essentially saddle-point bounds applied to [zn]F(z, u0).

The correspondence between u–domains and properties of combinatorial distributions
is summarized in Figure IX.9. The next sections will copiously illustrate this paradigm
for each of the main complex asymptotic methods of Part B.

IX. 6. Perturbation of meromorphic asymptotics

Once equipped with the general Quasi-powers Theorem, Theorem IX.8 (p. 645),
it becomes possible to proceed and analyse broad classes of analytic schemas, along
the lines of the principles of singularity perturbation informally presented in the previ-
ous section. We commence by investigating the effect of the secondary variable u on
a bivariate generating function, whose univariate restriction F(z, 1) can be subjected
to a meromorphic analysis (Chapters IV and V), that is, its dominant singularities are
poles. For basic parameters arising from the constructions examined there, Gaussian
laws are the rule.

In what follows, we first examine supercritical compositions and sequences and
establish the Gaussian character of the number of components. In this way, one gets
precise information on the profile of supercritical sequences, which greatly refines the
mean value estimates of Section V. 2, p. 293. We next enunciate a powerful state-
ment widely applicable to meromorphic functions, with typical applications to runs in
permutations, parallelogram polyominoes, and coin fountains. The section concludes
with an investigation of the elementary perturbation theory of linear systems, whose
applications are in the area of paths in graphs, finite automata, and transfer matrix
models (Sections V. 5 and V. 6).

This section is largely based on works of Bender who, starting with his seminal
article [35], was the first to propose abstract analytic schemas leading to Gaussian laws
in analytic combinatorics. Our presentation also relies on subsequent works of Ben-
der, Flajolet, Hwang, Richmond, and Soria [44, 258, 260, 337, 338, 339, 340, 547].
The essential philosophy here is that (almost) any univariate problem studied in Chap-
ter V relative to rational and meromorphic asymptotics is susceptible to singularity
perturbation, to the effect that limit Gaussian laws hold for basic parameters.

Supercritical compositions and sequences. Our first application of the quasi-
powers framework is to supercritical compositions (p. 411), whenever the outer func-
tion has a dominant pole. This covers in particular supercritical sequences, for which
asymptotic enumeration and moments have been worked out in Section V. 2, p. 293.
In this way, we get access to distributions arising in surjections, alignments, and com-
positions of various sorts. Our reader is encouraged to study the proof that follows,
since it constitutes the technically simplest, yet characteristic, instance of a singularity
perturbation process.

Proposition IX.6 (Supercritical compositions). Consider the bivariate composition
schema F(z, u) = g(uh(z)). Assume that g(z) and h(z) satisfy the supercriticality
condition τh > ρg, that g is analytic in |z| < R for some R > ρg, with a unique
dominant singularity at ρg, which is a simple pole, and that h is aperiodic. Then the
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number χ of H–components in a random Fn–structure, corresponding to the proba-
bility distribution [uk zn]F(z, u)/[zn]F(z, 1) has a mean and variance that are asymp-
totically proportional to n; after standardization, the parameter χ satisfies a limiting
Gaussian distribution, with speed of convergence O(1/

√
n).

Proof. We start as usual with univariate analyses. Let ρ be such that h(ρ) = ρg

with 0 < ρ < ρh . (Existence and unicity of ρ are guaranteed by the supercriticality
condition.) The expansions,

g(z) = C

1 − z/ρg
+ D + o(1), h(z) = ρg + h′(ρ)(z − ρ)+ 1

2
h′′(ρ)(z − ρ)2 + · · · ,

result from the hypotheses. Clearly, F(z) ≡ F(z, 1) has a simple pole at z = ρ and,
by composition of the expansions of g and h:

F(z) = Cρg

ρh′(ρ)
1

1 − z/ρ
+ O(1).

Aperiodicity of h also implies that ρ is the unique dominant singularity of F(z, 1).
The usual process of meromorphic coefficient analysis then provides

[zn]F(z) = Cρg

ρh′(ρ)
ρ−n(1 + o(1)),

where o(1) represents an exponentially small error term. Moments can be obtained
by differentiation, to the effect that the GF associated to the moment of order r has
a pole of order (r + 1) and is amenable to singularity analysis. (This mimics the
univariate analysis of supercritical compositions in Section V. 2, p. 293.) However,
moment estimates also result from subsequent developments, so that this phase of the
analysis can be bypassed.

Now comes the singularity perturbation process. In what follows, we repeatedly
restrict u to a sufficiently small neighbourhood of 1. The equation in ρ(u),

uh(ρ(u)) = ρg

admits a unique root near ρ, when u is sufficiently close to 1, and by the analytic
inversion lemma (Lemma IV.2, p. 275), the function ρ(u) is analytic at u = 1. The
function z 	→ F(z, u) then has a simple pole at z = ρ(u), and, by composition of
expansions, we obtain:

(34) F(z, u) ∼ Cρg

uρ(u)h′(ρ(u))
1

1 − z/ρ(u)
(z → ρ(u)).

Next, for u again close enough to 1, we claim that the function z 	→ F(z, u)
admits ρ(u) as unique dominant singularity. The proof of this fact depends on the
aperiodicity of h(z), which grants us the inequality |h(z)| < h(ρ) = ρg for |z| = ρ,
z  = ρ; also, for z near ρ, the equation h(z) = ρg admits locally a unique solution, as
already seen above. Thus, there exists a quantity r > ρ such that the equation h(z) =
ρ admits in |z| < r the unique solution z = ρ. But then, by keeping u close enough
to 1, one can find S with ρ < S < r , such that, in |z| ≤ S, the unique solution to
the equation uh(z) = ρg is ρ(u) (see the continuity argument used in the proof of the
Analytic Inversion Theorem of Appendix B.5: Implicit Function Theorem, p. 753).
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We can now conclude. Let us take S as in the previous paragraph and restrict u
to a suitably small complex neighbourhood of 1, as the need arises. We then revisit
the proof by contour integration of coefficient extraction in meromorphic functions,
Theorem IV.10, p. 258. We have, by residues,

1

2iπ

∫
|z|=S

F(z, u)
dz

zn+1
= [zn]F(z, u)+ Res(g(uh(z))z−n−1, z = ρ(u)),

and, since F(z, u) = g(uh(z)) is analytic, hence uniformly bounded, for |z| = S, we
get via (34) the main uniform estimate

[zn]F(z, u) = C(u) · ρ(u)−n (
1 + O(K−n)

)
, C(u) := Cρg

uρ(u)h′(ρ(u))
,

for some K > 1. Thus, the PGF of χ over Fn , which is pn(u) =
[zn]F(z, u)/[zn]F(z, 1) satisfies

pn(u) = A(u) · B(u)n
(
1 + O(K−n)

)
, A(u) = C(u)

C(1)
, B(u) = ρ(1)

ρ(u)
.

We are then precisely within the conditions of the Quasi-powers Theorem (Theo-
rem IX.8, p. 645), and the statement follows. �

A prime application of the last proposition is to supercritical sequences, where the
properties elicited in Section V. 2, p. 293, are seen to be supplemented by Gaussian
laws.

Proposition IX.7 (Supercritical sequences). Consider a sequence schema F =
SEQ(uH)) that is supercritical, i.e., the value of h at its dominant positive singu-
larity satisfies τh > 1. Assuming h to be aperiodic and h(0) = 0, the number Xn

of H–components in a random Fn–structure of large size n is, after standardization,
asymptotically Gaussian with

E(Xn) ∼ n

ρh′(ρ)
, V(Xn) ∼ n

h′′(ρ)+ h′(ρ)− h′(ρ)2

ρh′(ρ)3
,

where ρ is the positive root of h(ρ) = 1.

The number X (m)
n of components of some fixed size m is asymptotically Gaussian

with mean ∼ θmn, where θm = hmρ
m/(ρh′(ρ)).

Proof. The first part is a direct consequence of Proposition IX.6 with g(z) = (1−z)−1

and ρg replaced by 1. The second part results from the BGF

F = SEQ(uHm +H \Hm) �⇒ F(z, u) = 1

1 − (u − 1)hm zm − h(z)
,

and from the fact that u ≈ 1 induces a smooth perturbation of the pole of F(z, 1) at ρ,
corresponding to u = 1. �

The examples and notes that follow present two different types of applications
of Propositions IX.6 and IX.7. The first batch deals with cases already encountered
in Chapter V, namely, surjections (Example IX.10), alignments, and compositions—
Figure V.1 (p. 297) and Figure IX.10 illustrate typical profiles of these structures. The
second batch shows some purely probabilistic applications to closely related renewal
problems (Example IX.11).
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Figure IX.10. When components are sorted by size and represented by vertical seg-
ments of corresponding length, supercritical sequences present various profiles de-
scribed by Proposition IX.7. The diagrams display the limit mean profiles of large
compositions, surjections, and alignments, for component sizes ≤ 5.

Example IX.10. The surjection distribution. We revisit the distribution of image cardinality in
surjections for which the concentration property has been established in Chapter V. This exam-
ple serves to introduce bivariate asymptotics in the meromorphic case. Consider the distribution
of image cardinality in surjections,

F = SEQ(u SET≥1(Z)) �⇒ F(z, u) = 1

1 − u(ez − 1)
.

Restrict u near 1, for instance |u − 1| ≤ 1/10. The function F(z, u), as a function of z, is
meromorphic with singularities at

ρ(u)+ 2ikπ, ρ(u) = log

(
1 + 1

u

)
.

The principal determination of the logarithm is used (with ρ(u) near log 2 when u is near 1). It
is then seen that ρ(u) stays within 0.06 from log 2, for |u − 1| ≤ 1/10. Thus ρ(u) is the unique
dominant singularity of F , the next nearest one being ρ(u)±2iπ with modulus certainly larger
than 5.

From the coefficient analysis of meromorphic functions (Chapter IV), the quantities
fn(u) = [zn]F(z, u) are estimated as follows,

(35)
fn(u) = −Res

(
F(z, u)z−n−1

)
z=ρ(u) +

1

2iπ

∫
|z|=5

F(z, u)
dz

zn+1

= 1

uρ(u)eρ(u)
ρ(u)−n + O(5−n).

It is important to note that the error term is uniform with respect to u, once u has been con-
strained to (say) |u − 1| ≤ 0.1. This fact is derived from the coefficient extraction method,
since, in the remainder Cauchy integral of (35), the denominator of F(z, u) stays bounded
away from 0.

The second estimate in Equation (35), constitutes a prototypical case of application of the
quasi-powers framework. Thus, the number Xn of image points in a random surjection of size n
obeys in the limit a Gaussian law. The local expansion of ρ(u),

ρ(u) ≡ log(1 + u−1) = log 2 − 1

2
(u − 1)+ 3

8
(u − 1)2 + · · · ,
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yields
ρ(1)

ρ(u)
= 1 + 1

2 log 2
(u − 1)− 3 ln(2)− 2

8(log 2)2
(u − 1)2 + O

(
(u − 1)3

)
,

so that the mean and standard deviation satisfy

(36) μn ∼ C1n, σn ∼
√

C2 n, C1 := 1

2 log 2
, C2 := 1 − log 2

4(log 2)2
.

In particular, the variability condition is satisfied. Finally, one obtains, with 	 the Gaussian
error function,

P{Xn ≤ C1n + x
√

C2n} = 	(x)+ O

(
1√
n

)
.

This estimate can alternatively be viewed as a purely asymptotic statement regarding Stirling
partition numbers.

Proposition IX.8. The surjection distribution defined as k!
Sn

{n
k
}
, with Sn = ∑

k k!
{n

k
}

a surjec-
tion number, satisfies uniformly for all real x and C1,C2 given by (36):

1

Sn

∑
k≤C1n+x

√
C2n

k!

{
n

k

}
= 1√

2π

∫ x

−∞
e−w2/2 dw + O

(
1√
n

)
.

This result already appears in Bender’s foundational study [35]. . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.24. Alignments and Stirling cycle numbers. Alignments are sequences of cycles (Chap-
ter II, p. 119), with exponential BGF given by

F = SEQ(u CYC(Z)) �⇒ F(z, u) = 1

1 − u log(1 − z)−1
.

The function ρ(u) is explicit, ρ(u) = 1 − e−1/u , and the number of cycles in a random align-
ment is asymptotically Gaussian. This yields an asymptotic statement on Stirling cycle num-
bers: Uniformly for all real x, with On = ∑

k k!
[n
k
]

the alignment number, there holds

1

On

∑
k≤C1n+x

√
C2n

k!

[
n

k

]
= 1√

2π

∫ x

−∞
e−w2/2 dw + O

(
1√
n

)
,

where the two constants C1,C2 are C1 = 1

e − 1
, C2 = 1

(e − 1)2
. �

� IX.25. Summands in constrained integer compositions. Consider integer compositions where
the summands are constrained to belong to a set � ⊆ Z≥1, and let Xn be the number of
summands in a random composition of integer n. The ordinary BGF is

F(z, u) = 1

1 − uh(z)
, h(z) :=

∑
γ∈�

zγ .

Assume that � contains at least two relatively prime elements, so that h(z) is aperiodic. The
radius of convergence of h(z) can only be ∞ (when h(z) is a polynomial) or 1 (when h(z)
comprises infinitely many terms but is dominated by (1 − z)−1). In all cases, the sequence
construction is supercritical, so that the distribution of Xn is asymptotically normal. For in-
stance, a Gaussian limit law holds for compositions into prime (or even twin-prime) summands
enumerated in Chapter V (p. 297). �
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Example IX.11. The Central Limit Theorem and discrete renewal theory. Let g(u) be any PGF
(g(1) = 1) of a random variable supported by Z≥0 that is analytic at 1 and non-degenerate (i.e.,
v(g) > 0). Then

F(z, u) = 1

1 − zg(u)

has a singularity at ρ(u) := 1/g(u) that is a simple pole. Theorem IX.9 then applies to give
the special form of the central limit theorem (p. 642) that is relative to discrete probability
distributions with PGFs analytic at 1.

Under the same analytic assumptions on g, consider now the “dual” BGF,

G(z, u) = 1

1 − ug(z)
,

where the rôles of z and u have been interchanged. In addition, we must impose for consistency
that g(0) = 0. There is a simple probabilistic interpretation in terms of renewal processes of
classical probability theory, when g(1) = 1. Assume a light bulb has a lifetime of m days with
probability gm = [zm ]g(z) and is replaced as soon as it ceases to function. Let Xn be the
number of light bulbs consumed in n days assuming independence, conditioned upon the fact
that a replacement takes place on the nth day. Then the PGF of Xn is [zn]G(z, u)/[zn]G(z, 1).
(The normalizing quantity [zn]G(z, 1) is precisely the probability that a renewal takes place on
day n.) Theorem IX.9 applies. The function G has a simple dominant pole at z = ρ(u) such
that g(ρ(u)) = 1/u, with ρ(1) = 1 since g is by assumption a PGF. One finds

1

ρ(u)
= 1 + 1

g′(1) (u − 1)+ 1

2

g′′(1)+ 2g′(1)− 2g′(1)2
g′(1)3

(u − 1)2 + · · · .

Thus the limit distribution of Xn is normal with mean and variance satisfying

E(Xn) ∼ n

μ
, V(Xn) ∼ n

σ 2

μ3
,

where μ := m(g) and σ 2 := v(g) are the mean and variance attached to g. (This calcula-
tion checks the variability condition en passant.) The mean value result certainly conforms to
probabilistic intuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.26. Renewals every day. In the renewal scenario, no longer condition on the fact that a
bulb breaks down on day n. Let Yn be the number of bulbs consumed so far. Then the BGF of
Yn is found by expressing that there is a sequence of renewals followed by a last renewal that is
to be credited to all intermediate epochs:∑

n≥1

E(uYn )zn = 1

1 − ug(z)

g(u)− g(zu)

1 − z
.

A Gaussian limit also holds for Yn . �

� IX.27. A mixed CLT–renewal scenario. Consider G(z, u) = 1/(1 − g(z, u)) where g has
non-negative coefficients, satisfies g(1, 1) = 1, and is analytic at (z, u) = (1, 1). This models
the situation where bulbs are replaced but a random cost is incurred, depending on the duration
of the bulb. Under general conditions, a limit law holds and it is Gaussian. This applies for
instance to H(z, u) = 1/(1 − a(z)b(u)), where a and b are non-degenerate PGFs (a random
repairman is called). �
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Singularity perturbation for meromorphic functions. The following analytic
schema vastly generalizes the case of supercritical compositions.

Theorem IX.9 (Meromorphic schema). Let F(z, u) be a function that is bivariate
analytic at (z, u) = (0, 0) and has non-negative coefficients. Assume that F(z, 1) is
meromorphic in z ≤ r with only a simple pole at z = ρ for some positive ρ < r .
Assume also the following conditions.

(i) Meromorphic perturbation: there exists ε > 0 and r > ρ such that in the
domain, D = {|z| ≤ r} × {|u − 1| < ε} , the function F(z, u) admits the
representation

F(z, u) = B(z, u)

C(z, u)
,

where B(z, u),C(z, u) are analytic for (z, u) ∈ D with B(ρ, 1)  = 0. (Thus
ρ is a simple zero of C(z, 1).)

(i i) Non-degeneracy: one has ∂zC(ρ, 1) · ∂uC(ρ, 1)  = 0, ensuring the existence
of a non-constant ρ(u) analytic at u = 1, such that C(ρ(u), u) = 0 and
ρ(1) = ρ.

(i i i) Variability: one has

v

(
ρ(1)

ρ(u)

)
 = 0.

Then, the random variable Xn with probability generating function

pn(u) = [zn]F(z, u)

[zn]F(z, 1)

after standardization, converges in distribution to a Gaussian variable, with a speed
of convergence that is O(n−1/2). The mean and the standard deviation of Xn are
asymptotically linear in n.

Proof. First we offer a few comments. Given the analytic solution ρ(u) of the implicit
equation C(ρ(u), u) = 0, the PGF E(u Xn ) satisfies a quasi-power approximation of
the form A(u)(ρ(1)/ρ(u))n , as we prove below. The mean μn and variance σ 2

n are
then of the form

(37) μn = m

(
ρ(1)

ρ(u)

)
n + O(1), σ 2

n = v

(
ρ(1)

ρ(u)

)
n + O(1).

The variability condition of the Quasi-powers Theorem is precisely ensured by condi-
tion (i i i). Set

ci, j := ∂ i+ j

∂zi∂u j
C(z, u)

∣∣∣∣
(ρ,1)

.

The numerical coefficients in (37) can themselves be solely expressed in terms of
partial derivatives of C(z, u) by series reversion,
(38)

ρ(u) = ρ− c0,1

c1,0
(u − 1)− c2

1,0c0,2 − 2c1,0c1,1c0,1 + c2,0c2
0,1

2c3
1,0

(u − 1)2 + O((u − 1)3).
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In particular the fact that ρ(u) is non-constant, analytic, and is a simple root corre-
sponds to c0,1c1,0  = 0 (by the analytic Implicit Function Theorem). The variance
condition is then computed to be equivalent to the cubic inequality in the ci, j :

(39) ρ c1,0
2c0,2 − ρ c1,0c1,1c0,1 + ρ c2,0c0,1

2 + c0,1
2c1,0 + c0,1c1,0

2ρ  = 0.

We can now proceed with asymptotic estimates. Fix a u–domain |u−1| ≤ δ such
that B,C are analytic. Then, one has

fn(u) := [zn]F(z, u) = 1

2iπ

∮
F(z, u)

dz

zn+1
,

where the integral is taken along a small enough contour encircling the origin. We
use the analysis of polar singularities described in Chapter IV, exactly as in (35). As
F(z, u) has at most one (simple) pole in |z| ≤ r , we have

(40) fn(u) = Res

(
B(z, u)

C(z, u)
z−n−1

)
z=ρ(u)

+ 1

2iπ

∫
|z|=r

F(z, u)
dz

zn+1
,

where we may assume u suitably restricted by |u − 1| < δ in such a way that |r −
ρ(u)| < 1

2 (r − ρ).
The modulus of the second term in (40) is bounded from above by

(41)
K

rn
where K = sup|z|=r,|u−1|≤δ |B(z, u)|

inf|z|=r,|u−1|≤δ |C(z, u)| .

Since the domain |z| = r, |u − 1| ≤ δ is closed, C(z, u) attains its minimum that must
be non-zero, given the unicity of the zero of C . At the same time, B(z, u) being
analytic, its modulus is bounded from above. Thus, the constant K in (41) is finite.

Trivial bounds applied to the integral of (40) then yield

fn(u) = B(ρ(u), u)

C ′
z(ρ(u), u)

ρ(u)−n−1 + O(r−n),

uniformly for u in a small enough fixed neighbourhood of 1. The mean and variance
then satisfy (37), with the coefficient in the leading term of the variance term that is,
by assumption, non-zero. Thus, the conditions of the Quasi-powers Theorem in the
form (28), p. 645, are satisfied, and the law is Gaussian in the asymptotic limit. �

Some form of condition, such as those in (i i) and (i i i), is a necessity. For in-
stance, the functions

1

1 − z
,

1

1 − zu
,

1

1 − zu2
,

1

1 − z2u
,

each fail to satisfy the non-degeneracy and the variability condition, the variance of
the corresponding discrete distribution being identically 0. The variance is O(1) for a
related function such as

F(z, u) = 1

1 − z(u + 2)+ 2z2u
= 1

(1 − 2z)(1 − zu)
,
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which is excluded by the variability condition of the theorem—there, a discrete limit
law (a geometric) is known to hold (p. 614). Yet another situation arises when consid-
ering

F(z, u) = 1

(1 − z)(1 − zu)
.

There is now a double pole at 1 when u = 1 that arises from “confluence” at u = 1
of two analytic branches ρ1(u) = 1 and ρ2(u) = 1/u. In this particular case, the limit
law is continuous but non-Gaussian; in fact, this limit is the uniform distribution over
the interval [0, 1], since

F(z, u) = 1 + z(1 + u)+ z2(1 + u + u2)+ z3(1 + u + u2 + u3)+ · · · .
In addition, for this case, the mean is O(n) but the variance is O(n2). Such situations
are examined in Section IX. 11, p. 703, at the end of this Chapter.
� IX.28. Higher order poles. Under the conditions of Theorem IX.9, a limit Gaussian law holds
for the distributions generated by the BGF F(z, u)m . More generally, the statement extends to
functions with an mth order pole. See [35]. �

The next four applications of Theorem IX.9 are relative to runs in permutations,
patterns in words, the perimeter of parallelogram polyominoes, and finally the analysis
of Euclid’s algorithm on polynomials. It is of interest to note that, for runs and pat-
terns, the BGFs were each deduced in Chapter III by an inclusion–exclusion argument
that involves sequences in an essential way.

Example IX.12. Ascending runs in permutations and Eulerian numbers. The exponential
BGF of Eulerian numbers (that count runs in permutations) is, by Example III.25, p. 209,

F(z, u) = u(1 − u)

e(u−1)z − u
,

where, for u = 1, we have F(z, 1) = (1 − z)−1. The roots of the denominator are then

(42) ρ j (u) = ρ(u)+ 2i jπ

u − 1
, where ρ(u) := log u

u − 1
,

and j is an arbitrary element of Z. As u approaches 1, ρ(u) is close to 1, whereas the other
poles ρ j (u) with j  = 0 escape to infinity. This fact is also consistent with the limit form

F(z, 1) = (1 − z)−1 which has only one (simple) pole at 1. If one restricts u to |u| ≤ 2, there
is clearly at most one root of the denominator in |z| ≤ 2, given by ρ(u). Thus, we have for u
close enough to 1,

F(z, u) = 1

ρ(u)− z
+ R(z, u),

with z 	→ R(z, u) analytic in |z| ≤ 2, and

[zn]F(z, u) = ρ(u)−n−1 + O(2−n).

The variability conditions are satisfied since

ρ(u) = log u

(u − 1)
= 1 − 1

2
(u − 1)+ 1

3
(u − 1)2 + · · · ,

so that v(1/ρ(u)) = 1
12 is non-zero.

Proposition IX.9. The Eulerian distribution is, after standardization, asymptotically Gaussian,
with mean and variance given by μn = (n + 1)/2, σ 2

n = (n + 1)/12. The speed of convergence
is O(n−1/2).
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Figure IX.11. The diagram of poles of the BGF z 	→ F(z, u) associated to the pat-
tern abaa with correlation polynomial c(z) = 1+z3, when u varies on the unit circle.
The denominator is of degree 4 in z: one branch, ρ(u) clusters near the dominant sin-
gularity ρ = 1/2 of F(z, 1), whereas three other singularities stay away from the disc
|z| ≤ 1/2 and escape to infinity as u → 1.

This example is a famous one (see also our Invitation, p. 9) and our derivation follows
Bender’s paper [35]. The Gaussian character of the distribution has been known for a long
time; it is for instance to be found in David and Barton’s Combinatorial Chance [139] published
in 1962. There are in this case interesting connections with elementary probability theory: if
U j are independent random variables that are uniformly distributed over the interval [0, 1], then
one has

[znuk ]F(z, u) = P{�U1 + · · · + Un� < k}.
Because of this fact, the normal limit is thus often derived as a consequence of the Central Limit
Theorem, after one takes care of unimportant details relative to the integer part �·� function;
see [139, 524]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example IX.13. Patterns in strings. Consider the class F of binary strings (the “texts”), and
fix a “pattern” w of length k. Let χ be the number of (possibly overlapping) occurrences of
w. (The pattern w occurs if it is a factor, i.e., if its letters occur contiguously in the text.) Let
F(z, u) be the BGF relative to the pair (F , χ). The Guibas–Odlyzko correlation polynomial10

relative to w is denoted by c(z) ≡ cw(z). We know, from Chapter I, that the OGF of words
with pattern w excluded is

F(z, 0) = c(z)

zk + (1 − 2z)c(z)
.

By the inclusion–exclusion argument of Chapter III (p. 212), the BGF is

F(z, u) = 1 − (c(z)− 1)(u − 1)

1 − 2z − (u − 1)(zk + (1 − 2z)(c(z)− 1))
.

10The correlation polynomial, as defined in Chapter I (p. 60), has coefficients in {0, 1}, with [z j ]c(z) =
1 iff w matches its image shifted to the right by j positions.
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Let D(z, u) be the denominator. Then D(z, u) depends analytically on z, for u near 1 and z near
1/2. In addition, the partial derivative D′

z(1/2, 1) is non-zero. Thus, ρ(u) is analytic at u = 1,
with ρ(1) = 1/2 (see Figure IX.11). The local expansion of the root ρ(u) of D(ρ(u), u) follows
from local series reversion,

2ρ(u) = 1 − 2−k(u − 1)+ (k2−2k − 2−kc(1/2)) (u − 1)2 + O
(
(u − 1)3

)
.

Theorem IX.9 applies.

Proposition IX.10. The number of occurrences of a fixed pattern in a large string is, after
standardization, asymptotically normal. The mean μn and variance σ 2

n satisfy

n

2k
+ O(1), σ 2

n =
(

2−k(1 + 2c(1/2))+ 2−2k(1 − 2k)
)

n + O(1),

and the speed of convergence to the Gaussian limit is O(n−1/2).

(The mean does not depend on the order of letters in the pattern, only the variance does.) Propo-
sition IX.10 has been derived independently by many authors and it has been generalized in
many ways, see for instance [43, 455, 506, 564, 603] and references therein. . . . . . . . . . . . . . �

� IX.29. Patterns in Bernoulli texts. Asymptotic normality also holds when letters in strings
are chosen independently but with an arbitrary probability distribution. It suffices to use the
weighted correlation polynomial described in Note III.39, p. 213. �

Example IX.14. Parallelogram polyominoes. Polyominoes are plane diagrams that are closely
related to models of statistical physics, while having been the subject of a vast combinatorial
literature. This example has the merit of illustrating a level of difficulty somewhat higher than
in previous examples and typical of many “real-life” applications. Our presentation follows an
early article of Bender [38] and a more recent paper of Louchard [419]. We consider here the
variety of polyominoes called parallelograms. A parallelogram is a sequence of segments,

[a1, b1], [a2, b2], . . . , [am , bm ], a1 ≤ a2 · · · ≤ am , b1 ≤ b2 ≤ · · · ≤ bm ,

where the a j and b j are integers with b j − a j ≥ 1, and one takes a1 = 0 for definiteness. A
parallelogram can thus be viewed as a stack of segments (with [a j+1, b j+1] placed on top of
[a j , b j ]) that leans smoothly to the right:

The quantity m is called the height, the quantity bm − a1 the width, their sum is called the
(semi)perimeter, and the grand total

∑
j (b j − a j ) is called the area. (This instance has area 39,

width 13, height 9, and perimeter 13 + 9 = 22.) We examine here parallelograms of fixed area
and investigate the distribution of perimeter.
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The ordinary BGF of parallelograms, with z marking area and u marking perimeter is11,
as we shall prove momentarily

(43) F(z, u) = u
J1(z, u)

J0(z, u)
,

where J0, J1 belong to the realm of “q–analogues” and generalize the classical Bessel functions,

J0(q, u) :=
∑
n≥0

(−1)nunqn(n+1)/2

(q; q)n(uq; q)n
, J1(q, u) :=

∑
n≥1

(−1)n−1unqn(n+1)/2

(q; q)n−1(uq; q)n
,

with the “q–factorial” notation being used:

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

Combinatorially, the BGF stated by (43), is obtained in a way that is reminiscent of Exam-
ple III.22, p. 199. Its expression results from a simple construction: a parallelogram is either an
interval, or it is derived from an existing parallelogram by stacking on top a new interval. Let
G(w) ≡ G(x, y, z, w) be the OGF with x, y, z, w marking width, height, area, and length of
top segment, respectively. The GF of a parallelogram made of a single non-zero interval is

a(w) ≡ a(x, y, z, w) = xyzw

1 − xzw
.

The operation of piling up a new segment on top of a segment of length m that is represented
by a term wm is described by

y

(
zmwm

1 − xzw
+ · · · + zw

1 − xzw

)
= yzw

1 − zmwm

(1 − zw)(1 − xzw)
.

Thus, G satisfies the functional equation,

(44) G(w) = xyzw

1 − xzw
+ xyzw

(1 − zw)(1 − xzw)
[G(1)− G(xzw)] .

This is the method of “adding a slice” introduced in Chapter III, p. 199, which is reflected by
the relation (44). Now, an equation of the form,

G(w) = a(w)+ b(w)[G(1)− G(λw)],

is solved by iteration:

G(w) = a(w)+ b(w)G(1)− b(w)G(λw)

=
(

a(w)− b(w)a(λw)+ b(w)b(λw)a(λ2w)− · · ·
)

+G(1)
(

b(w)− b(w)b(λw)+ b(w)b(λw)b(λ2w)− · · ·
)
.

One then isolates G(1) by setting w = 1. This expresses G(1) as the quotient of two similar
looking series (formed with sums of products of b values). Here, this gives G(x, y, z, 1), from
which the form (43) of F(z, u) derives, since F(z, u) = G(u, u, z, 1).

Analytically, one should first estimate [zn]F(z, 1), the number of parallelograms of size
(i.e., area) equal to n. We have F(z, 1) = J1(z, 1)/J0(z, 1), where the denominator is

J0(z, 1) = 1 − z

(1 − z)2
+ z3

(1 − z)2(1 − z2)2
− z6

(1 − z)2(1 − z2)2(1 − z3)2
+ · · · .

11Thus, F(z, 1) = z+2z2+4z3+9z4+20z5+46z6+· · · , corresponding to EIS A006958 (“staircase
polyominoes”).
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Clearly, J0(z, 1) and J1(z, 1) are analytic in |z| < 1, and it is not hard to see that J0(z, 1)
decreases from 1 to about −0.24 when z varies between 0 and 1/2, with a root at

ρ
.= 0.43306 19231 29252,

where J ′0(ρ, 1)
.= −3.76  = 0, so that the zero is simple12. Since F(z, 1) is by construction

meromorphic in the unit disc and J1(ρ, 1)
.= 0.48  = 0, the number of parallelograms satisfies

[zn]F(z, 1) ∼ J1(ρ, 1)

ρ J ′0(ρ, 1)

(
1

ρ

)n
= α1 · αn

2 ,

where

α1
.= 0.29745 35058 07786, α2

.= 2.30913 85933 31230.

As is common in meromorphic analyses, the approximation of coefficients is quite good; for
instance, the relative error is only about 10−8 for n = 35.

We are now ready for bivariate asymptotics. Take |z| ≤ r = 7/10 and |u| ≤ 11/10.

Because of the form of their general terms that involve zn2/2un in the numerators while the
denominators stay bounded away from 0, the functions J0(z, u) and J1(z, u) remain analytic
there. Thus, ρ(u) exists and is analytic for u in a sufficiently small neighbourhood of 1 (by
Weierstrass preparation or implicit functions). The non-degeneracy conditions are easily veri-
fied by numerical computations. There results that Theorem IX.9 applies.

Proposition IX.11. The perimeter of a random parallelogram polyomino of area n admits a
limit law that is Gaussian with mean and variance that satisfy μn ∼ μn, σn ∼ σ

√
n, with

μ
.= 0.84176 20156, σ

.= 0.42420 65326.

This indicates that a random parallelogram is most likely to resemble a slanted stack of
fairly short segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.30. Width and height of parallelogram polyominoes are normal. Similar perturbation
methods show that the expected height and width are each O(n) on average, again with Gauss-
ian limit laws. �

� IX.31. The base of a coin fountain. A coin fountain (Example V.9, p. 330) is defined as a
vector v = (v0, v1, . . . , v�), such that v0 = 0, v j ≥ 0 is an integer, v� = 0 and |v j+1−v j | = 1.
Take as size the area, n = ∑

v j . Then the distribution of the base length � in a random coin
fountain of size n is asymptotically normal. (This amounts to considering all ruin sequences
of a fixed area as equally likely, and regarding the number of steps in the game as a random
variable.) Similarly the number of “arches” is asymptotically Gaussian. �

Example IX.15. Euclid’s GCD Algorithm over polynomials. We revisit the class P ⊂ Fp[X ]
of monic polynomials in a variable X and coefficients in a prime field Fp (Example I.20, p. 90).
Size of a polynomial is identified with degree. Euclidean division applies to any pair of poly-
nomials (u, v), with v  = 0: it provides a quotient (q) and a remainder (r ), such that

u = vq + r, with r = 0 or deg(r) < deg v.

12As usual, such computations can be easily validated by carefully controlled numerical evaluations
coupled with Rouché’s theorem (see Chapter IV, p. 263).
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Euclid’s Greatest Common Divisor (GCD) Algorithm applies to any pair of polynomials
(u1, u0) satisfying deg(u1) < deg(u0), proceeding by successive divisions [379]:

(45)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0 = q1u1 + u2
u1 = q2u2 + u3
...

...
...

uh−2 = qh−1uh−1 + uh
uh−1 = qhuh + 0.

The number h is the number of steps of the algorithm. (It also corresponds to the height of
the continued fraction representation of u1/u0: write u1/u0 = 1/(q1 + 1/ · · · ).) The quotient
polynomials q j , for 1 ≤ j ≤ h are each of degree at least 1 and one can always normalize
things so that the u j are monic. The last polynomial uh is the gcd of the pair (u1, u0). (By
convention, deg(0) = −∞, the gcd of (0, u0) is 1 and its height is 0.)

Together with the class P , we introduce the class G of “general” (non-necessarily monic)
polynomials and the subclass G+ of those of degree at least 1. The class F of fractions consists
of all the pairs (u1, u0) such that: (i) the polynomial u0 is monic; (i i) either u1 = 0 or
deg(u1) < deg(u0). (View the pair as representing u1/u0.) The size of a fraction is by definition
the degree of u0. The corresponding OGF are instantly found to be:

(46) P(z) = 1

1 − pz
, G+(z) = p(p − 1)z

1 − pz
, F(z) = 1

1 − p2z
.

The simple but startling fact that renders the analysis easy is the following: Euclid’s al-
gorithm yields a combinatorial isomorphism between F–fractions and pairs composed of a
sequence of G+–polynomials (the quotients) and a P–polynomial (the gcd). In symbols:

(47) F ∼= SEQ(G+)× P.

A direct consequence of (47) is the BGF of F , with u marking the number of steps:

(48) F(z, u) = 1

1 − uG+(z) ·
1

1 − pz
= 1

1 − u p(p−1)z
1−pz

· 1

1 − pz
.

Similarly, with u marking the number of quotients of some fixed degree k, one obtains the BGF

(49) F̂(z, u) = 1

1 − p(p−1)z
1−pz − zk(u − 1)pk(p − 1)

· 1

1 − pz
.

Both cases give rise to direct applications of Theorem IX.9, p. 656, relative to the meromorphic
schema. A simple computation then gives:

Proposition IX.12. When applied to a random polynomial fraction of degree n, the number of
steps of Euclid’s algorithm is asymptotically normal with mean

E(# steps) = p − 1

p
n + O(1),

and variance O(n). The number of quotients of a fixed degree k is also asymptotically Gaussian,
with mean ∼ ckn and variance O(n), where ck = p−k−1(p − 1)2.

Similar considerations and the methods of Section IX. 2 show that the degree of the gcd
itself is asymptotically geometric, with rate p−1. Original analyses are due to Knopfmacher–
Knopfmacher [371] and Friesen–Hensley [270]. In such a case, the transparent character of the
analytic–combinatorial proofs is worthy of note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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� IX.32. Euclid’s integer-gcd algorithm is Gaussian. This spectacular and deep result is orig-
inally due to Hensley [331], with important improvements brought by Baladi–Vallée [25]. The
reference set is now the pair of integers in [1 . . n], to which Euclid’s algorithm is applied. The
number of steps has expectation

12 log 2

π2
log n + o(log n),

as first established by Dixon [166] and Heilbronn [327]; see Knuth’s book [379, pp. 356–373]
for a good story. The proof of the Gaussian limit, following [25, 331], makes use of the transfer
operator Gs associated with the transformation x 	→ {1/x} ≡ 1/x − �1/x�; namely,

Gs [ f ](x) :=
∞∑

n=1

1

(n + x)2s
f

(
1

n + x

)
.

It is then proved that a bivariate Dirichlet series describing the number of steps of Euclid’s
algorithm can be expressed in terms of the quasi-inverse (I−uGs)

−1; compare with (48).
Perturbation theory of the dominant eigenvalue λ1(s) of Gs in conjunction with the Mellin–
Perron formula, an adapted form of singularity analysis, and the Quasi-powers Theorem (and
hard work, as well) eventually yield the result. An operator analogue of (49) also holds, from
which the frequency of quotient values can be quantified: the asymptotic frequency of k is
log2(1 + 1/(k(k + 1))). See Vallée’s surveys [583, 584], Hensley’s book [332], and references
therein for a review of these methods and many other applications. �

Perturbation of linear systems. There is usually a fairly transparent approach
to the analysis of BGFs defined implicitly as solutions of functional equations. One
should start with the analysis at u = 1 and then examine the effect on singularities
when u varies in a very small neighbourhood of 1. In accordance with what we have
already seen many times, the process involves a perturbation analysis of the solution
to a functional equation near a singularity, here one that moves.

We consider here functions defined implicitly by a linear system of positive equa-
tions, nonlinear systems being discussed in the next section. Positive linear systems
arise in connection with problems specified by finite state devices, paths in graphs,
and finite Markov chains, and transfer matrix models (Sections V. 5, p. 336 and V. 6,
p. 356). The bivariate problem is then expressed by a linear equation

(50) Y (z, u) = V (z, u)+ T (z, u) · Y (z, u),

where T (z, u) is an m × m matrix with entries that are polynomial in z, u with non-
negative coefficients, Y (z, u) is an m × 1 column vector of unknowns, and V (z, u) is
a column vector of non-negative initial conditions.

Regarding the univariate problem,

(51) Y (z) = V (z)+ T (z) · Y (z),

where Y (z) = Y (z, 1) and so on, we place ourselves under the assumptions of Corol-
lary V.1, p. 358. This means that properness, positivity, irreducibility, and aperiodicity
are assumed throughout. In this case (see the developments of Chapter V), Perron–
Frobenius theory applies to the univariate matrix T (z). In other words, the function

C(z) = det(I − T (z))

has a unique dominant root ρ > 0 that is a simple zero. Accordingly, any component
F(z) = Yi (z) of a solution to the system (50) has a unique dominant singularity
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at z = ρ that is a simple pole,

F(z) = B(z)

C(z)
,

with B(ρ)  = 0.
In the bivariate case, each component of the solution to the system (50) can be

put under the form

F(z, u) = B(z, u)

C(z, u)
, C(z, u) = det(I − T (z, u)).

Since B(z, u) is a polynomial, it does not vanish for (z, u) in a sufficiently small
neighbourhood of (ρ, 1). Similarly, by the analytic Implicit Function Theorem, there
exists a function ρ(u) locally analytic near u = 1, such that

C(ρ(u), u) = 0, ρ(1) = ρ.

Thus, it is sufficient that the variability conditions (38) be satisfied in order to infer a
limit Gaussian distribution.

Theorem IX.10 (Positive rational systems). Let F(z, u) be a bivariate function that
is analytic at (0, 0) and has non-negative coefficients. Assume that F(z, u) coincides
with the component Y1 of a system of linear equations in Y = (Y1, . . . ,Ym)

T ,

Y = V + T · Y,

where V = (V1(z, u), . . . , Vm(z, u)), T = (
Ti, j (z, u)

)m
i, j=1, and each of Vj , Ti, j

is a polynomial in z, u with non-negative coefficients. Assume also that T (z, 1) is
transitive, proper, and primitive, and let ρ(u) be the unique solution of

det(I − T (ρ(u), u)) = 0,

assumed to be analytic at 1, such that ρ(1) = ρ. Then, provided the variability
condition,

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F(z, u) with mean and
variance that are O(n) and speed of convergence that is O(n−1/2).

Example IX.16. Tilings. (This prolongs the enumerative discussion of Example V.18, p. 360.)
Take a (2 × n) chessboard of 2 rows and n columns, and consider coverings with “monomer
tiles” that are (1 × 1)-pieces, and “dimer tiles” that are either of the horizontal (1 × 2) or
vertical (2 × 1) type. The parameter of interest is the (random) number of tiles. Consider
next the collection of all “partial coverings” in which each column is covered exactly, except
possibly for the last one. The partial coverings are of one of four types and the legal transitions
are described by a compatibility graph. For instance, if the previous column started with one
horizontal dimer and contained one monomer, the current column has one occupied cell, and
one free cell that may then be occupied either by a monomer or a dimer. This finite state
description corresponds to a set of linear equations over BGFs (with z marking the area covered
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and u marking the total number of tiles), with the transition matrix found to be

T (z, u) = z

⎛⎜⎜⎝
u u2 u2 u2

1 0 0 0
u 0 0 0
u 0 0 0

⎞⎟⎟⎠ .

In particular, we have

det(I − T (z, u)) = 1 − zu − z2(u2 + u3).

Then, Theorem IX.10 applies: the number of tiles is asymptotically normal. The method clearly
extends to (k × n) chessboards, for any fixed k (see Bender et al. [35, 46]). . . . . . . . . . . . . . . �

Example IX.17. Limit theorem for Markov chains. Assume that M is the transition matrix of
an irreducible aperiodic Markov chain, and consider the parameter χ that records the number of
passages through state 1 in a path of length n that starts in state 1. Then, Theorem IX.10 applies
with

V = (1, 0, . . . , 0)T , Ti, j (z, u) = zMi, j + z(u − 1)Mi,1δ j,1.

We therefore derive a classical limit theorem for Markov chains:

Proposition IX.13. In an irreducible and aperiodic (finite) Markov chain, the number of times
that a designated state is reached when n transitions are effected is asymptotically Gaussian.

The conclusion also applies to paths in any strongly connected aperiodic digraph as well
as to paths conditioned by their source and/or destination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
� IX.33. Sets of patterns in words. This note extends Example IX.13 (p. 659) relative to the
occurrence of a single pattern in a random text. Given the class W = SEQ(A) of words over
a finite alphabet A, fix a finite set of “patterns” S ⊂ W and define χ(w) as the total number
of occurrences of members of S in the word w ∈ W . It is possible to build finite automaton
(essentially a digital tree built on S equipped with return edges) that records simultaneously the
number of partial occurrences of each pattern. Then, the limit law of χ is Gaussian; see Bender
and Kochman’s paper [43], the papers [240, 263] for an approach based on the de Bruijn graph,
[30, 457] for an inclusion–exclusion treatment, and [564] for a perspective. �

� IX.34. Constrained integer compositions. Consider integer compositions where consecutive
summands add up to at least 4. The number of summands in such a composition is asymptoti-
cally normal [46]. Similarly for a Carlitz composition (p. 201). �

� IX.35. Height in trees of bounded width. Consider general Catalan trees of width less than a
fixed bound w. (The width is the maximum number of nodes at any level in the tree.) In such
trees, the distribution of height is asymptotically Gaussian. �

IX. 7. Perturbation of singularity analysis asymptotics

In this central section, we examine analytic–combinatorial schemas that arise
when generating functions contain algebraic–logarithmic singularities. The under-
lying machinery is the method of singularity analysis detailed in Chapters VI and VII,
on which suitable perturbative developments are grafted.

An especially important feature of the method of singularity analysis, stemming
from properties of Hankel contours, is the fact that it preserves uniformity of expan-
sions13. This feature is crucial in analysing bivariate generating functions, where we

13For instance, Darboux’s method discussed in Section VI. 11, p. 433, only provides non-effective
error terms, since it is based on the Riemann–Lebesgue lemma, so that it cannot be conveniently employed
for bivariate asymptotics. A similar comment applies to Tauberian theorems.
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need to estimate uniformly a coefficient fn(u) = [zn]F(z, u) that depends on the para-
meter u, given some (uniform) knowledge on the singular structure of F(z, u), as a
function of z. It is from such estimates that limit Gaussian laws can typically be de-
rived via quasi-power approximations and the Quasi-powers Theorem (Theorem IX.8,
p. 645).

In this section, we shall encounter two different types of situations, depending on
the way the deformation induced by the secondary parameter affects the singularity
of the function z 	→ F(z, u), when u is near 1. In accordance with the preliminary
discussion of singularity perturbation and Gaussian laws, on p. 648, regarding the PGF
pn(u) := fn(u)/ fn(1), there is a fundamental dichotomy, depending on whether it is
the singular exponent that varies or the dominant singularity that moves.

— Variable exponent. This corresponds to the case where the dominant singu-
larity of z 	→ F(z, u) remains a constant ρ, but the singular exponent α(u)
in the approximation F(z, u) ≈ (1−z/ρ)−α(u) varies smoothly, to the effect
that pn(u) ≈ nα(u)−α(1). We then have a Gaussian limit law in the scale of
log n for the mean and the variance.

— Movable singularity. This is the case where the singular exponent retains
a constant value α, but the dominant singularity ρ(u) in the approximation
F(z, u) ≈ (1−z/ρ(u))−α moves smoothly with u, to the effect that pn(u) ≈
(ρ(1)/ρ(u))n . There is again a Gaussian limit law, but a mean and variance
that are now of the order of n.

The case of a variable exponent typically arises from the set construction, in the
context of the exp–log schema introduced in Section VII. 2 (p. 445), which covers the
cycle decomposition of permutations, connected components in random mappings, as
well as the factorization of polynomials over finite fields. The mean value analyses
of Chapter VII are then nicely supplemented by limit Gaussian laws, as we prove in
Subsection IX. 7.1. Trees often lead to singularities that are of the square-root type
and such a singular behaviour persists for a number of bivariate generating functions
associated to additively inherited parameters (for instance the number of leaves). In
that case, the singular exponent remains constant (equal to 1/2), while the singularity
moves. The basic technology adequate for such movable singularities is developed
in Subsection IX. 7.2, where it is illustrated by means of simple examples relative to
trees.

A notable feature of complex analytic methods is to be applicable to functions
only known implicitly through a functional equation of sorts. We study implicit sys-
tems and algebraic functions in Subsection IX. 7.3: there, movable singularities are
found, resulting in Gaussian limits in the scale of n. Differential systems display a
broader range of singular behaviours, as discussed in Subsection IX. 7.4, to the effect
that Gaussian laws can arise, both in the scale of log n and of n.

IX. 7.1. Variable exponents and the exp–log schema. The organization of this
subsection is as follows. First, we state an easy but crucial lemma (Lemma IX.2)
that takes care of the remainder terms in the expansions and hence enables the use of
singularity analysis in a perturbed context. Then, we state a general theorem relative
to the case of a fixed singularity and a variable exponent (Theorem IX.11). The major
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application is to the analysis of the exp–log schema as introduced in Section VII. 2,
p. 445: Gaussian laws in the scale of log n are found to hold true for the number of
components in several of the most classical structures of combinatorial theory.

Uniform expansions. The basis of the developments in this section is a unifor-
mity lemma obtained from a simple re-examination of basic singularity analysis in the
perspective of bivariate asymptotics.

Lemma IX.2 (Uniformity lemma, singularity analysis). Let fu(z) be a family of func-
tions analytic in a common �–domain �, with u a parameter taken in a set U. Sup-
pose that there holds

(52) | fu(z)| ≤ K (u)
∣∣∣(1 − z)−α(u)

∣∣∣ , z ∈ �, u ∈ U,

where K (u) and α(u) remain absolutely bounded: K (u) ≤ K and |α(u)| ≤ A,
for u ∈ U. Let B be such that -(α(u)) ≤ −B. Then, there exists a constant λ
(computable from A, B,�) such that

(53)
∣∣[zn] fu(z)

∣∣ < λK nB−1.

Proof. It suffices to revisit the proof of the Big-Oh Transfer Theorem (Theorem VI.3,
p. 390), paying due attention to uniformity. The proof starts from Cauchy’s formula,

fu,n ≡ [zn] fu(z) = 1

2iπ

∫
γ

fu(z)
dz

zn+1
,

where γ = ⋃
j γ j is the Hankel contour displayed in Figure VI.6, p. 390. This contour

is comprised of an inner circular arc (γ1), an outer arc (γ4), and two connecting linear
parts (γ2, γ3); its half-angle is θ .

Decompose α(u) into its real and imaginary parts and set α(u) = σ(u) + iτ(u).
Also, set z = 1 + t/n, so that t lies on an image contour γ̃ = −1 + n� and write
t = ρeiξ . We have

(54)
∣∣∣(1 − z)−α(u)

∣∣∣ = ∣∣∣(1 − z)−σ(u)
∣∣∣ · ∣∣∣∣∣

(
− t

n

)−iτ(u)
∣∣∣∣∣ ,

with |τ(u)| ≤ A. As t varies along γ̃ , its argument ξ decreases continuously
from 2π − θ to θ . Thus, the second factor on the right of (54) remains bounded
independently of n: ∣∣∣∣∣

(
− t

n

)−iτ(u)
∣∣∣∣∣ ≡

∣∣∣∣∣
(
−ρeiξ

n

)−iτ(u)
∣∣∣∣∣ ≤ λ1,

for some computable λ1 > 0. In summary, we have found, for z on γ ,

(55)
∣∣∣(1 − z)−α(u)

∣∣∣ ≤ λ1

∣∣∣(1 − z)−σ(u)
∣∣∣ ,

where σ(u) is real and −σ(u) ≥ B.
At this final stage, making use of (55), we can bound [zn] fu(z) by a curvilinear

integral: ∣∣[zn] fu(z)
∣∣ ≤ λ1

2π

∫
γ

∣∣∣(1 − z)−σ(u)
∣∣∣ |dz|
|z|n+1

.
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A direct application of the majorizations used in the proof of Theorem VI.3 then es-
tablishes the statement. �
� IX.36. Uniformity in the presence of logarithmic multipliers. Similar estimates hold when
f (z) is multiplied by a power of L(z) = − log(1 − z): if the condition (52) is replaced by

| fu(z)| ≤ K (u)
∣∣∣(1 − z)−α(u)

∣∣∣ |L(z)|β,
for some β ∈ R, then one has ∣∣[zn] fu(z)

∣∣ < λ̃K nB−1(log n)β ,

for some λ̃ = λ̃(A, B,�, β) (compare with (53)). �

The prototypical instance of a bivariate GF with a fixed singularity and a variable
exponent is that of F(z, u) := C(z)−α(u). We can in fact state a slightly more general
result guaranteeing the presence of a Gaussian limit law in this and similar cases.

Theorem IX.11 (Variable exponent perturbation). Let F(z, u) be a bivariate func-
tion that is analytic at (z, u) = (0, 0) and has non-negative coefficients. Assume the
following conditions.

(i)Analytic exponents. There exist ε > 0 and r > ρ such that, with the domain D
defined by

D = {
(z, u)

∣∣ |z| ≤ r, |u − 1| ≤ ε
}
,

the function F(z, u) admits the representation

(56) F(z, u) = A(z, u)+ B(z, u)C(z)−α(u)

where A(z, u), B(z, u) are analytic for (z, u) ∈ D. Suppose also that the function
α(u) is analytic in |u − 1| ≤ ε with α(1)  ∈ {0,−1,−2, . . .} and C(z) is analytic for
|z| ≤ r , with the equation C(z) = 0 having a unique root ρ ∈ (0, r) in the disc |z| ≤ r
that is simple and such that B(ρ, 1)  = 0.

(i i) Variability: one has

α′(1)+ α′′(1)  = 0.

Then the variable with probability generating function

pn(u) = [zn]F(z, u)

[zn]F(z, 1)

converges in distribution to a Gaussian variable with a speed of convergence
O((log n)−1/2). The corresponding mean μn and variance σ 2

n satisfy

μn ∼ α′(1) log n, σ 2
n ∼ (α′(1)+ α′′(1)) log n.

Proof. Clearly, for the univariate problem, by singularity analysis, one has

(57) [zn]F(z, 1) = B(ρ, 1)(−ρC ′(ρ))−α(1)ρ−n nα(1)−1

�(α(1))

(
1 + O

(
1

n

))
.

For the bivariate problem, the contribution to [zn]F(z, u) arising from [zn]A(z, u) is
uniformly exponentially smaller than ρ−n , since A(z, u) is z–analytic in |z| ≤ r .

Write next
B(z, u) = (B(z, u)− B(ρ, u))+ B(ρ, u).
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The first term satisfies

B(z, u)− B(ρ, u) = O((z − ρ)),

uniformly with respect to u, since

B(z, u)− B(ρ, u)

z − ρ

is analytic for (z, u) ∈ D (as seen by division of power series representations). Let
A be an upper bound on |α(u)| for |u − 1| ≤ ε. Then, by singularity analysis and its
companion uniformity lemma,

(58) [zn](B(z, u)− B(ρ, u))C(z)−α(u) = O(ρ−nn A−2).

By suitably restricting the domain of u, one may freely assume that A < α(1) + 1/2
(say), ensuring that A − 2 ≤ α(1) − 3/2. Thus, the contribution arising from (58) is
uniformly polynomially small (by a factor O(n−1/2)).

It only remains to analyse

[zn]B(ρ, u)C(z)−α(u).
This is done exactly like in the univariate case: we have, uniformly for u in a small
neighbourhood of 1,

(59) C(z)−α(u) = (−ρC ′(ρ))−α(u)(1 − z/ρ)−α(u) (1 + O(1 − z/ρ)) ,

and, taking once more advantage of the uniformity afforded by singularity analysis,
we find by (58) and (59):

[zn]F(z, u) = B(ρ, u)ρ−n

�(α(u))
(−ρC ′(ρ))−α(u)nα(u)−1

(
1 + O(n−1/2)

)
.

Thus, the Quasi-powers Theorem applies and the law is Gaussian in the limit. �
The exp–log schema. The next proposition covers the exponential–logarithmic

(“exp–log”) schema of Section VII. 2, p. 445, which is amenable to singularity pertur-
bation techniques.

Proposition IX.14 (Sets of labelled logarithmic structures). Consider the labelled set
construction F = SET(G). Assume that G(z) has radius of convergence ρ and is
�–continuable with a singular expansion of the form

G(z) = κ log
1

1 − z/ρ
+ λ+ O

(
1

log2(1 − z/ρ)

)
.

Then, the limit law of the number of G–components in a large F–structure is asymp-
totically Gaussian with mean and variance each asymptotic to κ log n and with speed
of convergence O((log n)−1/2).

Proof. Use the enhanced version of the uniformity lemma in Note IX.36. A quasi-
power approximation of the form pn(u) ≈ nα(u)−α(1), with α(u) ≡ κu, results from
developments of the same type as in the proof of Theorem IX.11. �

Clearly, all the labelled structures of Section VII. 2 (p. 445) are covered by this
proposition. A few examples, related to permutations, 2–regular graphs, and map-
pings, follow.
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Example IX.18. Cycles in derangements. The bivariate EGF for permutations with u marking
the number of cycles is given by the specification

F = SET(u CYC(Z)) �⇒ F(z, u) =
∑[

n

k

]
uk zn

n!
= exp

(
u log

1

1 − z

)
,

so that we are in the simplest case of an exp–log schema. Proposition IX.14 implies immediately
that the number of cycles in a random permutation of size n converges to a Gaussian limiting
distribution. (This classical result stating the asymptotically normality distribution of the Stir-
ling cycle numbers could be derived directly in Proposition IX.5, p. 645, thanks to the explicit
character of the horizontal generating functions—the Stirling polynomials—in this particular
case.)

Similarly, the number of cycles is asymptotically normal in generalized derangements (Ex-
amples II.14, p. 122 and VII.1, p. 448) where a finite set S of cycle lengths are forbidden. This
results immediately from Proposition IX.14, given the BGF

F = SET(u CYCZ≥1\S(Z)) �⇒ F(z, u) = exp

⎛⎝u

⎡⎣log
1

1 − z
−

∑
s∈S

zs

s

⎤⎦⎞⎠ .

The classical derangement problem corresponds to S = {1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example IX.19. 2–regular graphs. A 2–regular graph is an undirected graph such that each ver-
tex has degree exactly 2. Any 2–regular graph may be decomposed into a product of connected
components that are undirected cycles of length at least 3 (Note II.22, p. 133 and Example VII.2,
p. 449). Hence the bivariate EGF for 2–regular graphs, with u marking the number of connected
components, is given by

F = SET(u UCYC≥3(Z)) �⇒ F(z, u) = exp

(
u

[
1

2
log

1

1 − z
− z

2
− z2

4

])
.

By the logarithmic character of the function inside the exponential, the number of connected
components in a 2–regular graph, has a Gaussian limit distribution. . . . . . . . . . . . . . . . . . . . . . . �

Example IX.20. Connected components in mappings. Mappings from a finite set to itself
can be represented as labelled functional graphs. With u marking the number of connected
components, the specification is (Subsection II. 5.2, p. 129 and Example VII.3, p. 449)

F = SET(u CYC(T )) �⇒ F(z, u) = exp

(
u log

1

1 − T (z)

)
,

where T (z) is the Cayley tree function defined implicitly by the relation T (z) = z exp(T (z)).
By the inversion theorem for implicit functions (Example VI.8, p. 403), we have a square-root
singularity,

T (z) = 1 −
√

2(1 − ez)+ O(1 − ez),

so that

F(z, u) = exp

(
u

[
1

2
log

1

1 − ez
+ O((1 − ez)1/2)

])
.

From Proposition IX.14, we obtain a theorem originally due to Stepanov [559]: The number of
components in functional digraphs has a limiting Gaussian distribution.

This approach extends to functional digraphs satisfying various degree constraints as con-
sidered in [18]. This analysis and similar ones are relevant to integer factorization, using Pol-
lard’s “rho” method [247, 379, 538]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Unlabelled constructions. In the unlabelled universe, the class of all finite mul-
tisets over a class G has ordinary bivariate generating function given by

F = MSET(uG) �⇒ F(z, u) = exp

(
u

1
G(z)+ u2

2
G(z2)+ u3

3
G(z3)+ · · ·

)
.

where u marks the number of G–components (Chapter III).
The function F(z, u) is consequently of the form F(z, u) = euG(z)B(z, u), where

B(z, u) collects the contributions arising from G(z2),G(z3), . . .. If the radius of con-
vergence ρ of G(z) is assumed to be strictly less than 1, then, as it is easily checked,
the function B(z, u) is bivariate analytic in |u| < 1 + ε, |z| < R for some ε > 0
and R > ρ. Here, we are interested in structures such that G(z) has a logarithmic
singularity, in which case the conclusions of Proposition IX.14 relative to the con-
struction F = MSET(uG) hold (this is verified by a simple combination of the proofs
of Proposition IX.14 and Theorem IX.11). In summary:

For the construction F = MSET(G), under the assumption that ρ < 1 and
G(z) is logarithmic, the number of G–components in a random Fn structure
is asymptotically Gaussian in the scale of log n, with speed O((log n)−1/2).

The same property also holds for the unlabelled powerset construction F = PSET(G).
In what follows, we present two illustrations, one relative to the factorization of

polynomials over finite fields, the other to unlabelled functional graphs.

Example IX.21. Polynomial factorization. Fix a finite field Fp and consider the class P of
monic polynomials (having leading coefficient 1) in the polynomial ring Fp[z], with I the sub-
class of irreducible polynomials. The algebraic analysis has been performed in Example I.20,
p. 90. One has Pn = pn and

P(z) = (1 − pz)−1.

Because of the unique factorization property, a polynomial is a multiset of irreducible polyno-
mials, whence the relation

P(z) = exp

(
I (z)

1
+ I (z2)

2
+ I (z3)

3
+ · · ·

)
.

The preceding relation can be inverted using Möbius inversion. With L(z) = log P(z), we have

I (z) =
∑
k≥1

μ(k)
L(zk)

k
= log

1

1 − pz
+

∑
k≥2

μ(k)
L(zk)

k
,

where μ is the Möbius function.
As it is apparent, I (z) is logarithmic (it is indeed the sum of a logarithmic term and a

function analytic for |z| < p−1/2; see Example VII.4, p. 449). We have yet another instance of
the exp–log schema (with κ = 1). Hence:

Proposition IX.15. Let �n be the random variable representing the number of irreducible
factors of a random polynomial of degree n over Fp, each factor being counted with its order
of multiplicity. Then as n tends to infinity, we have, for any real x:

lim
n→+∞P{�n < log n + x

√
log n} = 1√

2π

∫ x

−∞
e−t2/2 dt.
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This statement, which originally appears in [258], constitutes a counterpart of the famous
Erdös–Kac Theorem (1940) for the number of prime divisors of natural numbers (with here
log n that replaces log log n when dealing with integers at most n; see [576]). The speed of
convergence is once more O((log n)−1/2). Also, by the same devices, the same property holds
for the parameter ωn that represents the number of distinct irreducible factors in a random
polynomial of degree n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

It is perhaps instructive to re-examine this last example at an abstract level, in the
light of general principles of analytic combinatorics.

A polynomial over a finite field is determined by the sequence of its coeffi-
cients. Hence, the class of all polynomials, as a sequence class, has a polar
singularity. On the other hand, unique factorization entails that a polyno-
mial is also a multiset of irreducible factors (“primes”). Thus, the class of
irreducible polynomials, that is implicitly determined, is logarithmic, since
the multiset construction to be inverted is in essence an exponential oper-
ator. As a consequence of the exp–log schema, the number of irreducible
factors is asymptotically Gaussian.

Example IX.22. Unlabelled functional graphs (mapping patterns). These are unlabelled di-
rected graphs in which each vertex has outdegree equal to 1 (Chapter VII, p. 480). The specifi-
cation of the class F of such digraphs is

F = MSET(L), L = CYC(H)), H = Z × MSET(H),

corresponding to multisets of cycles of rooted unlabelled trees H.
Analytically, we know from Section VII. 5 (p. 475) relative to non-plane trees that H(z)

has a dominant square-root singularity:

H(z) = 1 − γ
√
(1 − z/η)+ O(1 − z/η),

where η
.= 0.33832 and γ is some positive constant. As a consequence, L(z), which is obtained

by translating an unlabelled cycle construction, is logarithmic with parameter κ = 1/2. Thus:
The number of components in a mapping pattern has a Gaussian limit distribution, with mean
and variance each of the form 1

2 log n + O(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.37. Arithmetical semigroups. Knopfmacher [370] defines an arithmetical semigroup as a
semigroup with unique factorization, together with a size function (or degree) such that

|xy| = |x | + |y|,
and the number of elements of a fixed size is finite. If P is an arithmetical semigroup and I its
set of ‘primes’ (irreducible elements), axiom A# of Knopfmacher asserts the condition

card{x ∈ P / |x | = n} = cqn + O(qαn) (α < 1),

with q > 1. It is shown in [370] that several algebraic structures forming arithmetical semi-
groups satisfy axiom A#, and thus the conditions of Theorem IX.11 are automatically verified.
Therefore, the results deriving from Theorem IX.11 fit into the framework of Knopfmacher’s
“abstract analytic number theory”—they provide general conditions under which theorems of
the Erdös–Kac type must hold true. Examples of application mentioned in [370] are Galois
polynomial rings (the case of polynomial factorization), finite modules or semi-simple finite
algebras over a finite field K = Fq , integral divisors in algebraic function fields, ideals in the
principal order of a algebraic function field, finite modules, or semi-simple finite algebras over
a ring of integral functions. �
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Figure IX.12. Small components of size ≤ 20 in random permutations (left) and
random mappings (right) of size 1 000: each object corresponds to a line and each
component is represented by a square of proportional area (for some of the mappings,
such components may be lacking).

� IX.38. A Central Limit Theorem on GLn(Fq ). The title of this note is that of an article by
Goh and Schmutz [297] who prove asymptotic normality for the number of irreducible factors
that the characteristic polynomial of a random n × n matrix with entries in Fq has. [Some
linear algebra relative to the canonical decomposition of matrices and due to Kung and Stong
is needed.] The topic of random matrix theory over finite fields is blossoming: see Fulman’s
survey [272]. �

Number of fixed-size components in the exp–log schema. As we know all too
well, the cycle structure of permutations is a typical instance of the exp–log schema,
where everything is as explicit as can be. The Gaussian law for the total number of
cycles actually summarizes information relative to the number of 1–cycles, 2–cycles,
and so on. These can be analysed separately, and we learnt in Example IX.4 (p. 625)
that, for m fixed, the number of m–cycles is asymptotically Poisson(1/m)—in a way,
the Gaussian law for cycles appears as the resultant of a large number of Poisson
variables of slowly decreasing rates. As a matter of fact, similar properties hold true
for any labelled class that belongs to the exp–log schema, namely, the number of
m–components is in general asymptotically Poisson(λm), where the rate λm is com-
putable and satisfies λm = O(1/m); see Figure IX.12 for an illustration. (The alert
reader may have noticed that we already obtained this property directly in Proposi-
tion VII.1 on p. 451, relative to profiles of exp–log structures, and that it is similar in
spirit to what happens in subcritical constructions of Proposition IX.3, p. 633, although
now the exp–log schema is critical!) Here we briefly indicate how such properties can
be obtained by singularity perturbation: no quasi-power approximation is involved
since a discrete-to-discrete convergence occurs, but the uniformity properties of the
singularity analysis process, Lemma IX.2, p. 668, remains a central ingredient of the
synthetic analysis to be developed below.
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Example IX.23. Fixed-size components in sets of logarithmic structures14. The number of
components of some fixed size m in a set construction corresponds to the specification

F = SET (uGm + (G \ Gm)) �⇒ F(z, u) = exp
(
G(z)+ (u − 1)gm zm)

,

where F(z, u) is an exponential BGF, G(z) is an EGF, and gm := [zm ]G(z). As a consequence:

F(z, u) = exp
(
(u − 1)gm zm)

F(z).

Under the assumption that G(z) is logarithmic, one has, for u in a small neighbourhood
of 1, as z → ρ in a �–domain,

F(z, u) = eλw(u)(1− z/ρ)−κ
(

1 + O(log−2(1 − z/ρ))
)
, w(u) = exp

(
(u − 1)gmρ

m)
,

the uniformity of the expansion with respect to u being granted by the same argument as in
Proposition IX.14. By singularity analysis, it is seen that

[zn]F(z, u) = eλw(u)

�(κ)
ρ−nnκ−1

(
1 + o(log−1 n)

)
.

Given the particular shape of w(u), this last estimate tells us that the number of m–components
in a random F–structure of large size tends to a Poisson distribution with parameter μ :=
gmρ

m.
This result applies for any m less than some arbitrary fixed bound B. In addition, truly

multivariate methods evoked at the end of this chapter enable one to prove that the number
of components of sizes 1, 2, . . . , B are asymptotically independent. This gives a very precise
model of the probabilistic profile of small components in random F–objects as a product of
independent Poisson laws of parameter gmρ

m for m = 1, . . . , B. Similar results hold for
unlabelled multisets, but with the negative binomial law replacing the Poisson law. . . . . . . . . �

� IX.39. Random mappings. The number of components of some fixed size m in a large
random mapping (functional graph) is asymptotically Poisson(λ) where λ = Kme−m/m! and
Km = m![zm ] log(1 − T )−1 enumerates connected mappings. (There T is the Cayley tree
function.) The fact that Kme−m/m! ≈ 1/(2m) explains the fact that small components are
somewhat sparser for mappings than for permutations (Figure IX.12). �

The last example concludes our detailed investigation of exp–log structures, and
we may legitimately regard the most basic phenomena as well understood. Exam-
ple IX.23 quantifies the distribution of the number of “small” components, whose
presence is fairly sporadic (Figure IX.12) and for which an asymptotically indepen-
dent Poisson structure prevails. Panario and Richmond [470] have further succeeded
in proving that the size of the smallest component is asymptotically O(log n) on av-
erage. “Large” components also enjoy a rich set of properties. They cannot be in-
dependently distributed, since, for instance, a permutation can have only one cycle
larger than n/2, two cycles larger than n/3, etc. As shown by Gourdon [305] under
general exp–log conditions, the size of the largest component is �(n) on average and
in probability, and the limit law involves the Dickman function otherwise known to
describe the distribution of the largest prime divisor of a random integer over a large
interval. A general probabilistic theory of the joint distribution of largest compo-
nents in exp–log structures has been developed by Arratia, Barbour, and Tavaré [20],
some of the initial developments of that theory drawing their inspiration from earlier

14This example revisits the analysis of Proposition VII.1, p. 451, under the perspective of continuity
theorems for PGFs.
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combinatorial–analytic studies. The joint distribution of large components appears to
be characterized in terms of what is known as the Poisson–Dirichlet process.

IX. 7.2. Movable singularities. In accordance with the preliminary discussion
offered at the beginning of the section (p. 666), we now examine BGFs F(z, u) such
that, for the function z 	→ F(z, u), the exponent at the singularity retains a constant
value, while the location of the singularity ρ(u) moves smoothly with u, for u kept
in a sufficiently small neighbourhood of 1. A prototypical instance is a BGF involv-
ing a term C(z, u)−α , when C(z, u) is bivariate analytic and C(z, 1) has an isolated
zero at the point ρ ≡ ρ(1). The developments in the present subsection can then be
seen as extending the perturbative analysis of meromorphic functions in Theorem IX.9
(p. 656), where the latter corresponds to exponents restricted to α = 1, 2, . . . .

This subsection provides the general machinery for addressing such fixed-
exponent movable-singularity situations, and it is once more based on the uniformity
afforded by singularity analysis (Lemma IX.2, p. 668). We illustrate it by means of a
few simple examples related to trees, where BGFs are explicitly known. (The next two
subsections will explore further applications where BGFs are only accessible indirect-
ly, via implicit analytic (especially, algebraic) equations and differential equations.)
Our starting point is the following general statement, which parallels Theorem IX.9,
p. 656.

Theorem IX.12 (Algebraic singularity schema). Let F(z, u) be a function that is
bivariate analytic at (z, u) = (0, 0) and has non-negative coefficients. Assume the
following conditions:

(i) Analytic perturbation: there exist three functions A, B,C, analytic in a do-
main D = {|z| ≤ r}× {|u −1| < ε}, such that, for some r0 with 0 < r0 ≤ r ,
and ε > 0, the following representation15 holds, with α  ∈ Z≤0,

(60) F(z, u) = A(z, u)+ B(z, u)C(z, u)−α;
furthermore, assume that, in |z| ≤ r , there exists a unique root ρ of the
equation C(z, 1) = 0, that this root is simple, and that B(ρ, 1)  = 0.

(i i) Non-degeneracy: one has ∂zC(ρ, 1) ·∂uC(ρ, 1)  = 0, ensuring the existence
of a non-constant ρ(u) analytic at u = 1, such that C(ρ(u), u) = 0 and
ρ(1) = ρ.

(i i i) Variability: one has

v

(
ρ(1)

ρ(u)

)
 = 0.

Then, the random variable with probability generating function

pn(u) = [zn]F(z, u)

[zn]F(z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The mean μn and the standard deviation σn are asymptotically linear in n.

15By unicity of analytic continuation, the representation of F(z, u) only needs to be established ini-
tially near (z, u) = (0, 1), that is, for |z| < r0, for some (arbitrarily small) positive r0. (The statement is
given in this form so as to avoid issues about multivaluedness of non-integral powers.)
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Proof. We start with the asymptotic analysis of the univariate counting problem. By
the assumptions made, the function F(z, 1) is analytic in |z| < ρ and continuable to
a �–domain. It admits a singular expansion of the form

(61)
F(z, 1) = (a0 + a1(z − ρ)+ · · · )

+ (b0 + b1(z − ρ)+ · · · ) (c1(z − ρ)+ c2(z − ρ)2 + · · · )−α .
There, the a j , b j , c j represent the coefficients of the expansion in z of A, B,C for
z near ρ when u is instantiated at 1. (We may consider C(z, u) normalized by the
condition that c1 is positive real, and take, e.g., c1 = 1.) Singularity analysis then
implies the estimate

(62) [zn]F(z, 1) = b0(−c1ρ)
−αρ−n nα−1

�(α)

(
1 + O

(
1

n

))
.

All that is needed now is a uniform lifting of relations (61) and (62), for u in a small
neighbourhood of 1.

First, we observe that, by the analyticity assumption on A, the coefficient
[zn]A(z, u) is exponentially small compared to ρ−n , for u close enough to 1. Thus,
for our purposes, we may freely restrict attention to [zn]B(z, u)C(z, u)−α . (The func-
tion A is only needed in some cases so as to ensure non-negativity of the first few
coefficients of F .)

Next, we observe that there exists for u sufficiently near to 1, a unique simple root
ρ(u) near ρ of the equation

C(ρ(u), u) = 0,

which is an analytic function of u and satisfies ρ(1) = ρ. This results from the
Analytic Implicit Function Theorem or, if one prefers, the Weierstrass Preparation
Theorem: see Appendix B.5: Implicit Function Theorem, p. 753.

At this stage, due to the changing geometry of �–domains as u varies, it proves
convenient to operate with a fixed rather than movable singularity. This is simply
achieved by considering the normalized function


(z, u) := B (zρ(u), u)C (zρ(u), u)−α .

Provided u is restricted to a suitably small neighbourhood of 1 and z to |z| < R for
some R > 1, the functions B(zρ(u), u) and C(zρ(u), u) are analytic in both z and u
(by composition of analytic functions), while C(zρ(u), u) now has a fixed (simple)
zero at z = 1. There results that the function

1

1 − z
C (zρ(u), u)

has a removable singularity at z = 1 (by division of series expansions) and hence is
analytic in |z| < R and |u − 1| < δ, for some δ > 0. In particular, near z = 1, 

satisfies an expansion of the form

(63) 
(z, u) = (1 − z)−α
∑
n≥0

ψn(u)(1 − z)n,

that is convergent and such that each coefficient ψ j (u) is an analytic function of u for
|u − 1| < δ.
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We can finally return to the analysis of [zn]F(z, u) and undo what has been done.
We have

[zn]F(z, u) = ρ(u)−n[zn]
(z, u)+ [zn]A(z, u),

where the second term in the sum is (exponentially) negligible. Now, as we know
from (63) and surrounding considerations, the function z 	→ 
(z, u) is analytic in a
fixed �–domain, in which it admits a uniform singular approximation obtained by a
simplification of (63),


(z, u) = ψ0(u)(1 − z)−α + O
(
(1 − z)α−1

)
.

An application of the uniformity property of singularity analysis, Lemma IX.2, then
provides the estimate

(64) [zn]F(z, u) = ψ0(u)ρ(u)
−n nα−1

�(α)

(
1 + O

(
1

n

))
,

uniformly, for u restricted to a small neighbourhood of 1.
Equation (64) shows that pn(u) = fn(u)/ fn(1), where fn(u) := [zn]F(z, u), sat-

isfies precisely the conditions of the Quasi-powers Theorem, Theorem IX.8. There-
fore, the law with PGF pn(u) is asymptotically normal with a mean and a standard
deviation that are both O(n). Since the error term in (64) is O(1/n), the speed of
convergence to the Gaussian limit is O(1/

√
n). �

The remarks following the statement of Theorem IX.9 apply. Accordingly, the
mean μn and variance σ 2

n are computable by the general formula (37), and the vari-
ability condition is expressible in terms of the values of C and its derivatives at (ρ, 1)
by means of Equation (39), p. 657.
� IX.40. Logarithmic multipliers. The conclusions of Theorem IX.12 extend to functions
representable under the more general form (k ∈ Z≥0)

F(z, u) = A(z, u)+ B(z, u)C(z, u)−α (log C(z, u))k .

(The proof follows the same pattern, based on Note IX.36, p. 669.) �

In the remainder of this subsection, we illustrate the use of Theorem IX.12 by
means of examples involving an explicit fractional power of a bivariate analytic func-
tion. Privileged cases of application of the theorem are the number of leaves in clas-
sical varieties of trees, such as Cayley trees, general or binary Catalan trees, and
Motzkin trees, for which the GFs lead to an explicit square-root expression.

Example IX.24. Leaves in general Catalan trees. We revisit here under a complex asymp-
totic angle the analysis of the number of leaves in general Catalan trees G, a problem already
introduced in Example III.13, p. 182. The specification is

G = Zu +Z × SEQ≥1(G) �⇒ G(z, u) = zu + zG(z, u)

1 − G(z, u)
,

with u marking the number of leaves. The solution of the implied quadratic equation then yields
the explicit form

G(z, u) = 1

2

(
1 + (u − 1)z −

√
1 − 2(u + 1)z + (u − 1)2z2

)
,
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Figure IX.13. A display of the family of GFs z 	→ F(z, u) corresponding to leaves
in general Catalan trees when u ∈ [1/2, 3/2]. It can be observed that the singularities
are all of the square-root type , with a movable singularity at ρ̃(u) = (1 + u1/2)−2

(represented by the dashed line).

which is readily verified to be amenable to Theorem IX.12. Indeed, we have, in the notations of
that theorem,

A(z, u) = 1

2
(1 + (u − 1)z), B(z, u) ≡ −1

2
, C(z, u) = 1 − 2(u + 1)z + (u − 1)2z2,

whose analyticity is obvious, together with the fixed exponent α = −1/2. The factorization

C(z, u2) = (1 − z(1 + u)2) · (1 − z(1 − u)2),

implies that the zeros of z 	→ C(z, u) are at (1 ±√
u)−2. In particular, if |u − 1| < 1/10 (say),

then the dominant singularity of G(z, u) is at ρ(u) = (1 +√
u)−2 and ρ ≡ ρ(1) = 1/4, as it

should be.
The analytic perturbation assumption of Theorem IX.12 (Condition (i)) is then satisfied,

with (say) r = 1/3. We next verify that ∂zC(ρ, 1) = −4 and ∂uC(ρ, 1) = −1, which en-
sures non-degeneracy (Condition (i i)). Finally, variability (Condition (i i i)) is satisfied since
v(ρ(1)/ρ(u)) = 1/8. Thus the theorem is applicable and the number of leaves is asymptoti-
cally normal.

The smooth displacement of singularities induced by the secondary variable u, which lies
at the basis of such a Gaussian limit result, is illustrated in Figure IX.13. (Compare also with
Figure 0.6 of our Invitation, p. 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example IX.25. Leaves in classical varieties of trees. First, for leaves in binary Catalan trees,
we have (Example III.14, p. 182)

B = Zu + 2(B ×Z)+ (B × Z × B) �⇒ B(z, u) = z(u + 2zB(z, u)+ B(z, u)2),
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so that

B(z, u2) = 1

2z

(
1 − 2z −

√
(1 − 2z(1 + u))(1 − 2z(1 − u))

)
.

This is almost the same as the BGF of leaves in general Catalan trees. The dominant singularity
of z 	→ B(z, u) is at ρ(u) = 1

2(1+√
u)

and one finds v(ρ(1)/ρ(u)) = 1/16, so that the limit

law is Gaussian. The asymptotic form of the mean and variance are also provided by ρ(u):
the number of leaves Xn in a binary Catalan tree of size n satisfies E{Xn} = 1

4 n + O(1) and

σ {Xn} = 1
4
√

n + O(n−1/2); the limit law is Gaussian.
Next, comes the case of Cayley trees (Note III.17, p. 183):

T = Zu + SET≥1(T ) �⇒ T (z, u) = z(u − 1 + eT (z,u)).

(The distribution is closely related to the Stirling partition numbers.) By simple algebra, it is
seen that the functional equation admits an explicit solution in terms of the Cayley tree function
itself (T = zeT ): we find

T (z, u) = z(u − 1)+ T (zez(u−1)).

As we know, the function T (z) has a dominant singularity of the square-root type at e−1, so

(65) ρ(u) = 1

1 − u
T (e−1(1 − u)),

and we get ρ(1) = e−1, as we should. Accordingly, the function z 	→ T (z, u) has a singularity
of the square-root type at ρ(u), to which Theorem IX.12 can be applied. The expansion near
u = 1 then comes automatically from (65):

ρ(u)

ρ(1)
= 1 − e−1(u − 1)+ 3

2
e−2(u − 1)2 + O((u − 1)3).

Hence the mean and the variance of the number Xn of leaves in a random tree of size n satisfy
E{Xn} ∼ e−1 n ≈ 0.36787 n and σ 2{Xn} ∼ e−2(e − 2) n ≈ 0.09720 n, the limit law being
Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example IX.26. Patterns in binary Catalan trees. We present here a more sophisticated
example that generalizes the problem of counting leaves in trees. It arises from the analysis of
pattern matching and of compact representations of trees [257, 561]. The BGF of the number of
(pruned) binary trees with z marking size and u marking the number of occurrences of a pattern
of size m is

(66) F(z, u) = 1

2z

(
1 −

√
1 − 4z − 4(u − 1)zm+1

)
,

as seen in Note III.40 (p. 213) and Note III.41 (p. 214).
The quantity under the square-root in (66) has a unique root at ρ = 1/4 when u = 1,

while it has m + 1 roots for u  = 1. By general properties of implicit and, specifically, algebraic
functions (Implicit Function Theorem, Weierstrass Preparation), as u tends to 1, one of these
roots, call it ρ(u) tends to 1/4, while all the others {ρ j (u)}mj=1 escape to infinity. We have

H(z, u) := 1 − 4z − 4zm+1(u − 1)

1 − z/ρ(u)
=

m∏
j=1

(1 − z/ρ j (u)),
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which is an analytic function in (z, u) for (z, u) in a complex neighbourhood of (1/4, 1). (This
results from the fact that the algebraic function ρ(u) is analytic at u = 1.) The singular expan-
sion of G(z, u) = zF(z, u) is then given by

G(z, u) = 1

2
− 1

2

√
H(z, u)

√
1 − z/ρ(u).

Thus, we are under the conditions of Theorem IX.12. Accordingly, the number of occurrences
taken over a random binary tree of size n + 1 has mean and variance given asymptotically
by m((4ρ(u))−1)n and v((4ρ(u))−1)n, respectively. The expansion of ρ(u) at 1 is computed
easily by iteration (“bootstrapping”) from the defining equation,

z = 1

4
− zm+1(u − 1) = 1

4
−

(
1

4
− zm+1(u − 1)

)m+1
(u − 1) = · · · ,

to the effect that

ρ(u) = 1

4
− 1

4m+1
(u − 1)+ m + 1

42m+1
(u − 1)2 + · · · .

Proposition IX.16. The number of occurrences of a pattern of size m in a random Catalan tree
of size n + 1 admits a Gaussian limit distribution, with mean μn and variance σ 2

n that satisfy

μn ∼ n

4m , σ 2
n ∼ n

(
1

4m − 2m + 1

42m

)
.

In particular, the probability of occurrence of a pattern at a random node of a random trees
decreases fast (the factor of 4−m in the estimate of averages) with the size of the pattern, a
property that parallels the one already known for strings (p. 659). The paper of Steyaert and
Flajolet [561] shows that similar properties hold for any simply generated family, at least in
an expected value sense. Flajolet, Sipala, and Steyaert [257] build upon the foregoing analysis
to show that the minimal “dag representation” of a random tree (where identical subtrees are
“shared” and represented only once) is of average size O(n(log n)−1/2). . . . . . . . . . . . . . . . . �
� IX.41. Leaves in Motzkin trees. The number of leaves in a unary–binary (Motzkin) tree is
asymptotically Gaussian. �

� IX.42. Patterns in classical varieties of trees. Patterns in general Catalan trees and Cayley
trees can be similarly analysed. �

IX. 7.3. Algebraic and implicit functions. Under the univariate counting sce-
nario, we have encountered in Chapter VII many analytic–combinatorial conditions
leading to singular exponents that are non-integral. For instance, many implicitly
defined functions, including important algebraic cases, have a dominant singularity
that is of the square-root type (the exponent is α = −1/2 in the notations of The-
orem IX.12). If a corresponding specification is enriched by markers, there is a fair
chance that the square-root singularity property will persist (as in Figure IX.13, p. 679)
when the marking variable u remains close to 1, so that, by Theorem IX.12, a Gaussian
law results in the scale of n. Similar comments apply to functions defined implicitly by
systems of equations, including algebraic functions, provided suitable non-degeneracy
conditions16 are satisfied. Here, we only state a single proposition, which is meant to
illustrate in a simple situation the type of treatment to which implicitly defined BGFs
can be subjected.

16Subsection IX. 11.2 (p. 707) below examines cases where a confluence of singularities induces a
stable law instead of the customary Gaussian distribution.
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Proposition IX.17 (Perturbation of algebraic functions). Let F(z, u) be a bivari-
ate function that is analytic at (0, 0) and has non-negative coefficients. Assume that
F(z, u) is one of the solutions y of a polynomial equation

y −	(z, u, y) = 0,

where 	 is a polynomial of degree d ≥ 2 in y, such that 	(z, 1, y) satisfies the
conditions of the smooth implicit function schema of Section VII.4, p. 467, with
G(z, w) := 	(z, 1, w). Let ρ, τ be the solutions of the characteristic system (rel-
ative to u = 1), so that y(z) := F(z, 1) is singular at z = ρ and y(ρ) = τ . Define the
resultant polynomial (Appendix B.1: Algebraic elimination, p. 739),

�(z, u) = R
(

y −	(z, u, y), 1 − ∂

∂y
	(z, u, y), y

)
,

so that ρ is a simple root of �(z, 1). Let ρ(u) be the unique root of the equation

�(ρ(u), u),

analytic at 1, such that ρ(1) = ρ. Then, provided the variability condition

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F(z, u).

Proof. By the developments of Theorem VII.3, p. 468, the function y(z) = F(z, 1)
has a square-root singularity at z = ρ. The polynomial y − 	(ρ, 1, y) has a double
(not triple) zero at y = τ , so that(

∂

∂y
	(ρ, 1, y)

)
y=τ

= 0,

(
∂2

∂y2
	(ρ, 1, y)

)
y=τ

 = 0.

Thus, the Weierstrass Preparation Theorem gives the local factorization

y −	(z, u, y) = (y2 + c1(z, u)y + c2(z, u))H(z, u, y),

where H(z, u, y) is analytic and non-zero at (ρ, 1, τ ) while c1(z, u), c2(z, u) are ana-
lytic at (z, u) = (ρ, τ ).

From the solution of the quadratic equation, we must have locally

y = 1

2

(
−c1(z, u)±

√
c1(z, u)2 − 4c2(z, u)

)
.

Consider first (z, u) restricted by 0 ≤ z < ρ and 0 ≤ u < 1. Since F(z, u) is real
there, we must have c1(z, u)2 − 4c2(z, u) also real and non-negative. Since F(z, u) is
continuous and increasing with z for fixed u, and since the discriminant c1(z, u)2 −
4c2(z, u) vanishes at 0, the determination with the minus sign has to be constantly
taken. In summary, we have

(67) F(z, u) = 1

2

(
−c1(z, u)−

√
c1(z, u)2 − 4c2(z, u)

)
.

Set D(z, u) := c1(z, u)2 − 4c2(z, u). The function D(z, 1) has a simple real zero
at z = ρ. Thus, by the Analytic Inverse Function Theorem (or Weierstrass preparation
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again), there is locally a unique analytic branch of the solution to C(ρ(u), u) = 0 such
that ρ(1) = ρ, and D(z, u) factorizes as

D(z, u) = (ρ(u)− z)K (z, u),

for some analytic K satisfying K (ρ, 1)  = 0. The conditions of Theorem IX.12 there-
fore hold. The stated Gaussian law follows. �

The last proposition asserts that, under certain conditions, the only possible dom-
inant singularity of the function z 	→ F(z, u) is a smooth lifting of the singularity
of the univariate GF F(z, 1), while the nature of the singularity does not change—it
remains of the square-root type. Similar results, established by similar methods, hold
true for more general equations and systems, under suitable non-degeneracy and vari-
ability conditions. Indeed, one can go all the way from algebraic functions defined by
a single polynomial equation, as above, to functions implicitly defined by systems of
analytic equations. This has been done by Drmota in an important paper [172]. For a
system y = 	(z, u, y), the approach consists of looking at the Jacobian of the trans-
formation, as in Subsection VII. 6.1 (p. 482) and imposing conditions that allow for a
smooth singularity displacement. The Weierstrass Preparation Theorem normally pro-
vides the needed permanence of analytic relations that imply a persistent square-root
singularity

The scope of Theorem IX.12, Proposition IX.17, and their derivative products
is enormous—potentially, all the recursive combinatorial structures examined in Sec-
tions VII. 3–VII. 8 (pp. 452–518) are concerned. This includes trees of various sorts,
mappings, lattice paths and their generalizations, planar maps, as well as languages
and classes described by context-free specifications, to name a few.

Example IX.27. A pot-pourri of Gaussian laws. In the list that follows, all the mentioned
parameters obey a Gaussian limit distribution in the scale of n. The proofs (omitted) involve in
each case a precise investigation of the perturbation of univariate singular expansions induced
by the secondary parameter, in a way similar to Theorem IX.12.

Simple varieties of trees, p. 452. The number of leaves is Gaussian (see Examples IX.24
and IX.25 above) and the property extends to the number of nodes of any fixed degree r as well
as to the number of occurrences of any fixed pattern (see Example IX.26). This property also
holds true for simple varieties of trees introduced in Section VII. 3, and it extends to unlabelled
non-plane trees [121].

Mappings, p. 462. The number of points with r predecessors is Gaussian, as is the car-
dinality of the image set, the property being also true for mappings defined by degree restric-
tions [18, 247].

Irreducible context-free structures, p. 482. Examples given in the paper of Drmota [172]
are the number of independent sets in a random tree and the number of patterns in a context-free
language.

Non-crossing graphs, p. 485. The number of connected components and the number of
edges in either forests or general non-crossing graphs is Gaussian [245]. (These properties are
thus in sharp contrast with those of the usual random graph model of Erdős and Rényi [76].)

Walks in the discrete plane, p. 506. The number of steps of any fixed kind is Gaussian
for walks, excursions, bridges and meanders. An extension of the known methods shows that
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the number of occurrences of any fixed pattern (made of contiguous letters) is also asymptoti-
cally normal. For instance, the number of occurrences of the pattern up-down-up-up-down in a
random Dyck word (excursion) satisfies this property.

Planar maps, p. 513. The number of occurrences of any fixed submap is asymptotically
Gaussian (see [278] for a proof based on moment methods). Thus, maps are like words and
trees: any fixed collection of patterns occurs in a large enough random object with high proba-
bility (Borges’ Theorem, p. 61). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

IX. 7.4. Differential equations. We have encountered in this book sporadic
combinatorial classes whose GFs are determined as solutions of ordinary differen-
tial equations (ODEs), and we have presented in Section VII. 9 (p. 518) several such
structures that are amenable to singularity analysis. Basic parameters are then likely
still to lead to ODEs, but ones that are now parameterized by the secondary vari-
able u. (By contrast, partial differential equations have so far been only scarcely used
in analytic combinatorics.) In such cases, a singularity perturbation analysis is often
feasible. Both situations, that of a variable exponent and that of a movable singularity,
can occur, as we now illustrate, largely by means of examples. The partial treatment
given here should at least convey the spirit of the singularity perturbation process, in
the context of differential equations.

Linear differential equations. ODEs in one variable, when linear and when hav-
ing analytic coefficients, admit solutions whose singularities occur at well-defined
places, namely those that entail a reduction of order (see Subsection VII. 9.1, p. 518,
and Section VIII. 7, p. 581, for the so-called “regular and “irregular cases, respec-
tively). The possible singular exponents of solutions are then obtained as roots of a
polynomial equation, the indicial equation. Such ordinary differential equations are
usually a reflection of a combinatorial decomposition of sorts, so that suitably param-
eterized versions open access to a number of combinatorial parameters. In the cases
considered here, the ODE satisfied by a BGF F(z, u) remains an ODE in the main
variable z that records size, while the auxiliary variable u only affects coefficients.
We start with a simple example, Example IX.28, relative to node levels in increas-
ing binary trees, continue with a general statement, Proposition IX.18 relative to the
case of a variable exponent in a linear ODE, and conclude with an application to node
levels in quadtrees in Example IX.29.

Example IX.28. Node levels in increasing binary trees. Increasing binary trees are labelled
(pruned) binary trees, such that any branch from the root has monotonically increasing labels.
As explained in Example II.17 (p. 143), these trees are an important representation of permuta-
tions. Their specification, in terms of the boxed product of Chapter II, is

(68) F = 1 +
(
Z� � F � F

)
�⇒ F(z) = 1 +

∫ z

0
F(t)2 dt,

and, accordingly, their EGF is

F(z) = 1

1 − z
=

∑
n≥0

n!
zn

n!
,

Let F(z, u) be the BGF of trees where u records the depth of external nodes. In other
words, fn,k = [znuk ]F(z, u) is such that 1

n+1 fn,k represents the probability that a random
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external node in a random tree of size n is at depth k. (The probability space is then a product
set of cardinality (n + 1) · n!, as there are n! trees each containing (n + 1) external nodes. By
a standard equivalence principle, the quantity 1

n+1 fn,k also give the probability that a random
unsuccessful search in a random binary search tree of size n necessitates k comparisons.)

Since the depth of a node is inherited from subtrees, the function F(z, u) satisfies the
linear integral equation derived from (68) (see also Equation (VI.67), p. 429 in relation to the
BST recurrence),

(69) F(z, u) = 1 + 2u
∫ z

0
F(t, u)

dt

1 − t
,

or, after differentiation,

∂

∂z
F(z, u) = 2u

1 − z
F(z, u), F(0, u) = 1.

This equation is nothing but a linear ODE, with u entering as a parameter in the coefficients,

d

dz
y(z)− 2u

1 − z
y(z) = 0, y(0) = 0,

the solution of any such separable first-order ODE being obtained by quadratures:

F(z, u) = 1

(1 − z)2u
.

From singularity analysis, provided u avoids {0,−1/2,−1, . . .}, we have

fn(u) := [zn]F(z, u) = n2u−1

�(2u)

(
1 + O

(
1

n

))
,

and a uniform approximation holds, provided (say) |u−1| ≤ 1/4. Thus, Theorem IX.11 applies,
to the effect that the distribution of the depth of a random external node in a random increasing
binary tree, with PGF fn(u)/ fn(1), admits a Gaussian limit law.

Naturally, explicit expressions are available in such a simple case,

fn(u)

fn(1)
= 2u · (2u + 1) · · · (2u + n − 1)

(n + 1)!
,

so a direct proof of the Gaussian limit in the line of Goncharov’s theorem (p. 645) is clearly
possible; see Mahmoud’s book [429, Ch. 2], for this result originally due to Louchard. What is
interesting here is the fact that F(z, u) viewed as a function of z has a singularity at z = 1 that
does not move and, in a way, originates in the combinatorics of the problem, through the EGF
of permutations, (1− z)−1. The auxiliary parameter u appears here directly in the exponent, so
that the application of singularity analysis or of the more sophisticated Theorem IX.11, (p. 669)
is immediate.

A similar Gaussian law holds for levels of internal nodes, and is proved by similar devices.
The Gaussian profile is even perceptible on single instance. In particular, Figure III.18 (p. 203)
suggests a much stronger “functional limit theorem” for these objects (namely, almost all trees
have an approximate Gaussian profile): this property, which seems currently beyond the scope
of analytic combinatorics, has been proved by Chauvin and Jabbour [114] using martingale
theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Proposition IX.18 (Linear differential equations). Let F(z, u) be a bivariate generat-
ing function with non-negative coefficients that satisfies a linear differential equation

a0(z, u)
∂r F

∂zr
+ a1(z, u)

(ρ − z)

∂r−1 F

∂zr−1
+ · · · + ar (z, u)

(ρ − z)r
F = 0,
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with a j (z, u) analytic at ρ, and a0(ρ, 1)  = 0. Let fn(u) = [zn]F(z, u), and assume
the following conditions:

• [Non-confluence] The indicial polynomial

(70) J (α) = a0(ρ, 1)(α)(r) + a1(ρ, 1)(α)(r−1) + · · · + ar (ρ, 1)

has a unique root σ > 0 which is simple and such that all other roots α  = σ

satisfy -(α) < σ ;
• [Dominant growth] fn(1) ∼ C · ρ−nnσ−1, for some C > 0.
• [Variability condition]

sup
v( fn(u))

log n
> 0.

Then the coefficients of F(z, u) admit a limit Gaussian law.

Proof. (See the paper by Flajolet and Lafforgue [243] for a detailed analysis and the
books by Henrici [329] and Wasow [602] for a general treatment of singularities of lin-
ear ODEs.) We assume in this proof that no two roots of the indicial polynomial (70)
differ by an integer. Consider first the univariate problem, for which we summarize
the discussion started on p. 518. A differential equation,

(71) a0(z)
dr F

dzr
+ a1(z)

(ρ − z)

dr−1 F

dzr−1
+ · · · + ar (z)

(ρ − z)r
F = 0,

with the a j (z) analytic at ρ and a1(ρ)  = 0 has a basis of local singular solutions
obtained by substituting (ρ − z)−α and cancelling the terms of maximum order of
growth. The candidate exponents are thus roots of the indicial equation,

J (α) ≡ a0(ρ)(α)(r) + a1(ρ)(α)(r−1) + · · · + ar (ρ) = 0.

If there is a unique (simple) root of maximum real part, α1, then there exists a solution
to (71) of the form

Y1(z) = (ρ − z)−α1 h1(ρ − z),

where h1(w) is analytic at 0 and h1(0) = 1. (This results easily from a solution by
indeterminate coefficients.) All other solutions are then of smaller growth and of the
form

Y j (z) = (ρ − z)−α j h j (ρ − z) (log(z − ρ))k j ,

for some integers k j and some functions h j (w) analytic at w = 0. Then, F(z) has the
form

F(z) =
r∑

j=1

c j Y j (z).

Then, provided c1  = 0,

[zn]F(z) = c1

�(σ)
ρ−nnα1−1(1 + o(1)).

Under the assumptions of the theorem, we must have σ = α1, and c1  = 0. (The reality
assumption on σ is natural for a series F(z) that has real coefficients.)

When u varies in a neighbourhood of 1, we have a uniform expansion

(72) F(z, u) = c1(u)(ρ − z)−σ(u)H1(ρ − z, u)(1 + o(1)),
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for some bivariate analytic function H1(w, u) with H1(0, u) = 1, where σ(u) is the
algebraic branch that is a root of

J (α, u) ≡ a0(ρ, u)(α)(r) + a1(ρ, u)(α)(r−1) + · · · + ar (ρ, u) = 0,

and coincides with σ at u = 1. By singularity analysis, this entails

(73) [zn]F(z, u) = c1(u)

�(σ )
ρ−nnσ(u)−1(1 + o(1)),

uniformly for u in a small neighbourhood of 1, with the error term being O(n−a) for
some a > 0. Thus Theorem IX.11 (p. 669) applies and the limit law is Gaussian.

The crucial point in (72) and (73) is the uniform character of expansions with
respect to u. This results from two facts: (i) the solution to (71) may be specified
by analytic conditions at a point z0 such that z0 < ρ and there are no singularities
of the equation between z0 and ρ; and (i i) there is a suitable set of solutions with an
analytic component in z and u and singular parts of the form (ρ − z)−α j (u), as results
from the matrix theory of differential systems and majorant series. (This last point is
easily verified if no two roots of the indicial equation differ by an integer; otherwise,
see [243] for an alternative basis of solutions for u near 1, u  = 1.) �
Example IX.29. Node levels in quadtrees. Quadtrees defined in Example VII.23 (p. 522)
are one of the most versatile data structures known for managing collections of points in multi-
dimensional space. They are based on a recursive decomposition similar to that of binary search
trees and increasing binary trees of the previous example.

This example is borrowed from [243]. We fix the dimension d ≥ 2 of the ambient data
space. Let fn,k be the number of external nodes at level k in a quadtree of size n grown by
random insertions, and let F(z, u) be the corresponding BGF. Two integral operators play an
essential rôle,

I g(z) =
∫ z

0
g(t)

dt

1 − t
J g(z) =

∫ z

0
g(t)

dt

t (1 − t)
.

The basic equation that reflects the recursive splitting process of quadtrees is then (see [243]
and Chapter VII, p. 522 for similar techniques)

(74) F(z, u) = 1 + 2d uJd−1I F(z, u).

The integral equation (74) satisfied by F then transforms into a differential equation of order d ,

I−1J1−d F(z, u) = 2d uF(z, u),

where
I−1g(z) = (1 − z)g′(z), J−1g(z) = z(1 − z)g′(z).

The linear ODE version of (74) has an indicial polynomial that is easily determined by
examination of the reduced form of the ODE (74) at z = 1. There, one has

J−1g(z) = I−1g(z)− (z − 1)2g′(z) ≈ (1 − z)g′(z).
Thus,

I−1J1−d (1 − z)−θ = θd (1 − z)−θ + O((1 − z)−θ+1),

and the indicial polynomial is
J (α, u) = αd − 2d u.

In the univariate case, the root of largest real part is α1 = 2; in the bivariate case, we have

α1(u) = 2u1/d ,
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where the principal branch is chosen. Thus,

fn(u) = γ (u)nα1(u)(1 + o(1)).

By the combinatorial origin of the problem, F(z, 1) = (1 − z)−2, so that the coefficient γ (1)
is non-zero. Thus, the conditions of Proposition IX.18 are satisfied: The depth of a random
external node in a randomly grown quadtree is Gaussian in the limit, with mean and variance

μn ∼ 2

d
log n, σ 2

n ∼ 2

d
log n.

The same result applies to the cost of a (fully specified) random search, either successful or not,
as shown in [243] by an easy combinatorial argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

From the global point of view of analytic combinatorics, it is of interest to place
the last two examples in perspective. Simple varieties of trees, as considered in ear-
lier subsections, are “square-root trees”, where height and depth of a random node are
each of order

√
n (on average, in distribution), while the corresponding univariate GFs

satisfy algebraic or implicit equations and have a square-root singularity. Trees that
in some way arise from permutations (increasing trees, binary search trees, quadtrees)
are “logarithmic trees”: they are specified by order-constrained constructions that cor-
respond to integro-differential operators, and their depth appears to be logarithmic
with Gaussian fluctuations, as a reflection of a perturbative singularity analysis of
ODEs.

Nonlinear differential equations. Although nonlinear differential equations defy
classification in all generality, there are a number of examples in analytic combina-
torics that can be treated by singularity perturbation methods. We detail here the
typical analysis of “paging” in binary search trees (BSTs), or equivalently increasing
binary trees, taken from [235]. The Riccati equation involved reduces, by classical
techniques, to a linear second-order equation whose perturbation analysis is particu-
larly transparent and akin to earlier analyses of ODEs. In this problem, the auxiliary
parameter induces a movable singularity that leads to a Gaussian limit law in the scale
of n.

Example IX.30. Paging of binary search trees and increasing binary trees. Fix a “page size”
parameter b ≥ 2. Given a tree t , its b–index is a tree constructed by retaining only those internal
nodes of t which correspond to subtrees of size> b. As a computer data structure, such an index
is well-suited to “paging”, where one has a two-level hierarchical memory structure: the index
resides in main memory and the rest of the tree is kept in pages of capacity b on peripheral
storage, see for instance [429]. We let ι[t] = ιb[t] denote the size —number of nodes— of the
b–index of t .

We consider here the analysis of paging in binary search trees, whose model is known to
be equivalent to that of increasing binary trees. The bivariate generating function

F(z, u) :=
∑

t

λ(t)uι[t]z|t |

satisfies a Riccati equation that reflects the root decomposition of trees (see (68)),

(75)
∂

∂z
F(z, u) = uF(z, u)2 + (1 − u)

d

dz

(
1 − zb+1

1 − z

)
, F(0, u) = 1,

where the quadratic relation has to be adjusted in its low-order terms.
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The GFs of moments are rational functions with a denominator that is a power of (1 − z),
as results from differentiation at u = 1. Mean and variance follow:

μn = 2(n + 1)

b + 2
− 1, σ 2

n = 2

3

(b − 1)b(b + 1)

(b + 2)2
(n + 1).

(The result for the mean is well-known, refer to quantity An in the analysis of quicksort on
p. 122 of [378].)

Multiplying both sides of (75) by u now gives an equation satisfied by H(z, u) :=
uF(z, u),

∂

∂z
H(z, u) = H(z, u)2 + u(1 − u)

d

dz

(
1 − zb+1

1 − z

)
,

that may as well be taken as a starting point since H(z, u) is the bivariate GF of parameter 1+ιb
(a quantity also equal to the number of external pages). The classical linearization transforma-
tion of Riccati equations,

H(z, u) = − X ′
z(z, u)

X (z, u)
,

yields

(76)
∂2

∂z2
X (z, u)+ u(u − 1)A(z)X (z, u) = 0, A(z) = d

dz

(
1 − zb+1

1 − z

)
,

with X (0, u) = 1, X ′
z(0, u) = −u. By the classical existence theorem of Cauchy, the solution

of (76) is an entire function of z for each fixed u, since the linear differential equation has
no singularity at a finite distance. Furthermore, the dependency of X on u is also everywhere
analytic; see the remarks of [602, §24], for which a proof derives by inspection of the classical
existence property, based on indeterminate coefficients and majorant series. Thus, X (z, u) is
actually an entire function of both complex variables z and u. As a consequence, for any fixed
u, the function z 	→ H(z, u) is a meromorphic function whose coefficients are amenable to
singularity analysis.

In order to proceed further, we need to prove that, in a sufficiently small neighbourhood of
u = 1, X (z, u) has only one simple root, corresponding for H(z, u) to a unique dominant and
simple pole. This fact derives from the usual considerations surrounding the analytic Implicit
Function Theorem and the Weierstrass Preparation Theorem (Appendix B.5: Implicit Function
Theorem, p. 753). Here, we have X (z, 1) ≡ 1 − z. Thus, as u tends to 1, all solutions in z
of X (z, u) = 0 must escape to infinity, except for one (analytic) branch ρ(u) that satisfies
ρ(1) = 1.

The argument is now complete: the BGF F(z, u) and its companion H(z, u) = uF(z, u)
have a movable singularity at ρ(u), which is a pole. Theorem IX.9 (p. 656) relative to the
meromorphic case applies, and a Gaussian limit law results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

As shown in [235], a similar analysis applies to patterns in binary search trees.
The corresponding properties are (somewhat) related to the analysis of local or-
der patterns in permutations, for which Gaussian limit laws have been obtained by
Devroye [159] using extensions of the central limit theorem to weakly dependent ran-
dom variables.

� IX.43. Leaves in varieties of increasing trees. Similar displacements of singularity arise for
the number of nodes of a given type in varieties of increasing trees (Example VII.24, p. 526).
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For instance, if φ(w) is the degree generator of a family of increasing trees, the nonlinear ODE
satisfied by the BGF of the number of leaves is

∂

∂z
F(z, u) = (u − 1)φ(0)+ φ(F(z, u)).

Whenever φ is a polynomial, there is a spontaneous singularity at some ρ(u) that depends
analytically on u. Thus, the number of leaves is asymptotically Gaussian [49]. A similar result
holds for nodes of any fixed degree r . �

IX. 8. Perturbation of saddle-point asymptotics

The saddle-point method, which forms the subject of Chapter VIII, is also
amenable to perturbation. For instance, we already know that the number of parti-
tions of a domain of cardinality n into classes (set partitions enumerated by the nth
Bell number) can be estimated by this method; a suitable perturbative analysis can
then be developed, to the effect that the number of classes in a random set partition
of large size is asymptotically Gaussian. Given the nature of univariate saddle-point
expansions and their diversity (they do not reduce to the ρ−nnα paradigm), the Quasi-
powers Theorem ceases to be applicable, and a more flexible framework is needed.
In what follows, we base our brief discussion on a theorem taken from Sachkov’s
book [524].

Theorem IX.13 (Generalized quasi-powers). Assume that, for u in a fixed neighbour-
hood� of 1, the generating function pn(u) of a non-negative discrete random variable
(supported by Z≥0) Xn admits a representation of the form

(77) pn(u) = exp (hn(u)) (1 + o(1)) ,

uniformly with respect to u, where each hn(u) is analytic in �. Assume also the
conditions,

(78) h′
n(1)+ h′′

n(1) → ∞ and
h′′′

n (u)

(h′
n(1)+ h′′

n(1))
3/2

→ 0,

uniformly for u ∈ �. Then, the random variable

X�
n = Xn − h′

n(1)

(h′
n(1)+ h′′

n(1))
1/2

converges in distribution to a Gaussian with mean 0 and variance 1.

Proof. See [524, §1.4] for details. Set σ 2
n = h′

n(1) + h′′
n(1), and expand the char-

acteristic function of Xn at t/σn . Thanks to the form (77) and the conditions (78),
inequalities implied by the Mean Value Theorem (Note IV.18, p. 249) give

hn(e
it/σn ) = h′

n(1)
i t

σn
− t2

2
+ o(1).

Thus, the characteristic function of X�
n converges to the transform of a standard Gauss-

ian. The statement follows from the continuity theorem of characteristic functions. �
� IX.44. Real neighbourhoods. The conditions of Theorem IX.13 can be relaxed by postulating
only that � is a real interval containing u = 1. (Hint: use the continuity theorem for Laplace
transforms of distributions.) �
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� IX.45. Effective speed bounds. When � is a complex neighbourhood of 1 (as stated in
Theorem IX.13), a metric version of the theorem, with speed of convergence estimates, can
be developed assuming effective error bounds in (77) and (78). (Hint: use the Berry–Esseen
inequalities.) �

The statement above extends the Quasi-powers Theorem, and, in order to stress
the parallel, we have opted for a complex neighbourhood condition, which has the
benefit of providing better error bounds in applications (Note IX.45). In effect, to see
the analogy, note that if

hn(u) = βn log B(u)+ A(u),

then the second quantity in (78) is O(β
−1/2
n ), uniformly. The application of this

theorem to saddle-point integrals is in principle routine, although the manipulation of
asymptotic scales associated with expressions involving the saddle-point value may
become cumbersome. The fact that information for positive real values of u is suf-
ficient (Note IX.44) may, however, help, since in applications, the GF z 	→ F(z, u)
specialized for positive u stands a good chance of being an admissible function in
the sense of Chapter VIII (p. 565), when F(z, 1) is itself admissible. General condi-
tions have been stated by Bender, Drmota, Gardy, and coauthors [174, 279, 280, 281].
Broadly speaking, such situations constitute the saddle-point perturbation process.
Once more, uniformity of expansions is an issue, which can be technically demanding
(one needs to revisit the dependency of univariate analyses on the secondary parameter
u ≈ 1), but is not conceptually difficult.

We first detail here the case of singletons in random involutions for which the
saddle-point is an explicit algebraic function of n and u. Then, we prove the Gaussian
character of the Stirling partition numbers, which is a classic result first obtained by
Harper [322] in 1967. We continue with a pot-pourri of Gaussian laws, which can
be obtained by the saddle-point method, and conclude with a note that provides brief
indications on BGFs only indirectly accessible through functional equations,

Example IX.31. Singletons in random involutions. The exponential BGF of involutions, with u
marking the number of singleton cycles, is given by

F = SET (u CYC1(Z)+ CYC2(Z)) �⇒ F(z, u) = exp

(
zu + z2

2

)
.

The saddle-point equation (Theorem VIII.3, p. 553) is then

d

dz

(
uz + z2

2
− (n + 1) log z

)
z=ζ

= 0.

This defines the saddle-point ζ ≡ ζ(n, u),

ζ(n, u) = −u

2
+ 1

2

√
4n + 4 + u2

= √
n − u

2
+ u2 + 4

8

1√
n
+ O(n−1),

where the error term is uniform for u near 1. By the saddle-point formula, one has

[zn]F(z, u) ∼ 1√
2πD(n, u)

F(ζ(n, u), u)ζ(n, u)−n .
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The denominator is determined in terms of second derivatives, according to the classical saddle-
point formula (p. 553),

D(n, u) = ∂2

∂z2

(
uz + z2

2
− (n + 1) log z

)
z=ζ(n,u)

,

and its main asymptotic order does not change when u varies in a sufficiently small neighbour-
hood of 1,

D(n, u) = 2n − u
√

n + O(1),

again uniformly. Thus, the PGF of the number of singleton cycles satisfies

(79) pn(u) = F(ζ(n, u), u)

F(ζ(n, 1), 1)

(
ζ(n, u)

ζ(n, 1)

)−n
(1 + o(1)).

This is of the form
pn(u) = exp (hn(u)) (1 + o(1)),

and local expansions then yield the centring and scaling constants

an := h′n(1) =
√

n − 1

2
+ O(n−1/2), b2

n := h′n(1)+ h′′n(1) =
√

n − 1 + O(n−1/2).

Uniformity in (79) can be checked by returning to the original Cauchy coefficient integral and
to bounds relative to the saddle-point contour. Theorem IX.13 then applies to the effect that
the variable 1

bn
(Xn − an) is asymptotic to a standard normal. (With a little additional care,

one can verify that the mean μn and the standard deviation σn are asymptotic to an and bn ,
respectively.) Therefore:

Proposition IX.19. The number of singletons in a random involution of size n has mean μn ∼
n1/2 and standard deviation σn ∼ n1/4; it admits a limit Gaussian law.

A random involution thus has, with high probability, a small number of singletons. . . . . . . . . �

Example IX.32. The Stirling partition numbers. The numbers
{n

k
}

correspond to the BGF

F = SET
(
u SET≥1(Z)

) �⇒ F(z, u) = exp
(
u(ez − 1)

)
.

The saddle-point ζ ≡ ζ(n, u) is determined as the positive root near n/ log n of the equation
ζeζ = (n + 1)/u. The derivatives occurring in the saddle-point approximation are computed as
derivatives of inverse functions in a standard way. The conditions of Theorem IX.13, together
with the required uniformity, can then be checked. Hence:

Proposition IX.20. The Stirling partition distribution defined by 1
Sn

{n
k
}
, with Sn a Bell number,

is asymptotically normal, with mean and variance that satisfy

μn ∼ n

log n
, σ 2

n ∼ n

(log n)2
.

(See also p. 594 for first moments.) We refer once more to Sachkov’s book [524, 526] for
computational details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.46. Harper’s analysis of Stirling behaviour. Harper’s original derivation [322] of
Proposition IX.20 is of independent interest. Consider the Stirling polynomials defined by
σn(u) := n![zn] exp(u(ez − 1)). Each such polynomial has roots that are real, distinct, and
non-positive. Then, for some positive βn,k , one has

σn(u) = u
n−1∏
k=1

(
1 + u

βn,k

)
.
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Thus, σn(u)/σn(1) can be viewed as the PGF of the sum of a large number of independent (but
not identical) Bernoulli variables. One then can conclude by a suitable version of the Central
Limit Theorem. �

Example IX.33. A pot-pourri of saddles and Gaussian laws. Theorem IX.13 combined with
a uniformly controlled use of the saddle-point method yields Gaussian laws for most of the
structures examined in Chapter VIII. We leave the following cases as exercises to the reader.

Section VIII. 4 (p. 558) has examined three classes, (involutions, set partitions, and frag-
mented permutations), of which the first two have already been identified as leading to Gaussian
laws. Fragmented permutations (p. 562) also have a number of components (fragments) that is
Gaussian in the asymptotic limit. In this case, we have a singularity at a finite distance, which
is of the exponential-of-a-pole type. (This last result can be rephrased as the fact that the coef-
ficients of the classical Laguerre polynomials are asymptotically normal.)

Saddle-point perturbation applies to the field of exponentials-of-polynomials (p. 568),
which vastly generalizes the case of involutions: this field has been pioneered by Canfield [101]
in 1977. The number of components is Gaussian in permutations of order p, permutations with
longest cycle ≤ p, and set partitions with largest block ≤ p, with p a fixed parameter. The
number of connected components in idempotent mappings (p. 571) is also Gaussian.

Integer partitions have been asymptotically enumerated in VIII. 6 (p. 574). As regards
unconstrained integer partitions, the Gaussian law for the number of summands is originally
due to Erdős and Lehner [194]. By contrast, the number of summands in partitions with distinct
summands is not Gaussian (it is a double-exponential distribution [194]). Subtle phenomena
are at stake in these cases, which involve Pólya operators and functions having the unit circle as
a natural boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.47. Saddle-points and functional equations. The average-case analysis of the number of
nodes in random digital trees or “tries” can be carried out using the Mellin transform technol-
ogy. The corresponding distributional analysis is appreciably harder and due to Jacquet and
Régnier [344]. A complete description is offered in Section 5.4 of Mahmoud’s book which we
follow. What is required is to analyse the BGF

F(z, u) = ez T (z, u),

where the Poisson generating function T (z, u) satisfies the nonlinear difference equation,

T (z, u) = uT
( z

2
, u

)2 + (1 − u)(1 + z)e−z .

This equation is a direct reflection of the problem specification. At u = 1, one has T (z, 1) = 1,
F(z, 1) = ez . The idea is thus to analyse [zn]F(z, u) by the saddle-point method.

The saddle-point analysis of F requires asymptotic information on T (z, u) for u = eit

(the original treatment of [344] is based on characteristic functions). The main idea is to quasi-
linearize the problem, setting

L(z, u) = log T (z, u),

with u a parameter. This function satisfies the approximate relation L(z, u) ≈ 2L(z/2, u), and a
bootstrapping argument shows that, in suitable regions of the complex plane, L(z, u) = O(|z|),
uniformly with respect to u. The function L(z, u) is then expanded with respect to u = eit

at u = 1, i.e., t = 0, using a Taylor expansion, its companion integral representation, and the
bootstrapping bounds. The moment-like quantities,

L j (z) =
∂ j

∂t j
L(z, eit )

∣∣∣∣∣
t=0

,
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can be subjected to Mellin analysis for j = 1, 2 and bounded for j ≥ 3. In this way, it is shown
that

L(z, eit ) = L1(z)t +
1

2
L2(z)t

2 + O(zt3),

uniformly. The Gaussian law under a Poisson model immediately results from the continuity
theorem of characteristic functions. Under the original Bernoulli model, the Gaussian limit
follows from a saddle-point analysis of

F(z, eit ) = ezeL(z,eit ).

An even more delicate analysis has been carried out by Jacquet and Szpankowski [345]
by means of analytic depoissonization (Subsection VIII. 5.3, 572). It is relative to path length
in digital search trees and involves the formidable nonlinear bivariate difference-differential
equation

∂

∂z
F(z, u) = F

( z

2
, u

)2
.

See Szpankowski’s book [564] for this and similar results that play an important rôle in the
analysis of data compression algorithms (the Lempel–Ziv schemes). �

At this stage, by making use of the material expounded in Sections IX. 5–IX. 8,
we can avail ourselves of a fairly large arsenal of techniques dedicated to extracting
Gaussian limit laws from BGFs. For instance, we now have the property that all four
Stirling distributions,

(80)
1

n!

[
n

k

]
,

k!

On

[
n

k

]
,

1

Sn

{
n

k

}
,

k!

Rn

{
n

k

}
,

associated with permutations, alignments, set partitions, and surjections are, after
standardization, asymptotically Gaussian. The method is in each case a reflection
of the underlying combinatorics. Typically, for the four cases of (80), we have
used, respectively: (i) singularity analysis perturbation (the exp–log schema for the
SET ◦ CYC construction of permutations); (i i) meromorphic perturbation (for align-
ments that are of type SEQ ◦ CYC); (i i i) saddle-point perturbation (for set partitions
that are of type SET ◦ SET and whose BGF is entire); (iv) meromorphic perturbation
again (for surjections that are of type SEQ ◦ SET).

IX. 9. Local limit laws

The occurrence of continuous limit laws has been examined so far from the angle
of convergence of (cumulative) distribution functions. Combinatorially, regarding the
random variable Xn that represents some parameter χ taken over a class Fn , we then
quantify the sums ∑

j≤k

Fn, j .

Specifically, we have focused our attention in previous sections on the case in which
these sums (once normalized by 1/Fn) are approximated by the Gaussian “error func-
tion”, i.e., the (cumulative) distribution function of a standard normal variable. Com-
binatorialists would often rather have a direct estimate of the individual counting quan-
tities, Fn,k , which is then a true bivariate asymptotic estimate.

Assume that we have already obtained the existence of a convergence in law,
Xn ⇒ Y , and the standard deviation σn of Xn tends to infinity while the distribution
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Figure IX.14. The histogram of the Eulerian distribution scaled to (n + 1) on the
horizontal axis, for n = 3 . . 60. (The distribution is seen to quickly converge to a

bell-shaped curve corresponding to the Gaussian density e−x2/2/(2π)1/2.)

of Y admits a density g(x). (Here, typically, g(x) will be the Gaussian density.) If
the Fn,k vary smoothly enough, one may expect each of them to share about 1/σn of
the total probability mass, and, in addition, somehow anticipate that their profile could
resemble the curve x 	→ g(x). In that case, we expect an approximation of the form

Fn,k ≈ 1

σn
g(x), where x := k − μn

σn
,

and μn is the expectation of Xn . Informally speaking, we say that a Local Limit Law
(LLL) holds in this case.

We examine here the occurrence of local limit laws of the Gaussian type, which
means convergence of a discrete probability distribution to the Gaussian density func-
tion. Figure IX.14 reveals that, at least for the Eulerian distribution (rises in permuta-
tions), such a local limit law holds, and we know, from De Moivre’s original Central
Limit Theorem (Note IX.1, p. 615) that a similar property holds for binomial coeffi-
cients as well. As a matter of fact, for reasons soon to be presented, virtually all the
Gaussian limit laws obtained in Sections IX. 5–IX. 8 admit a local version.

Definition IX.4. A sequence of discrete probability distributions, pn,k = P{Xn =
k}, with mean μn and standard deviation σn is said to obey a local limit law of the
Gaussian type if, for a sequence εn → 0,

(81) sup
x∈R

∣∣∣∣σn pn,�μn+xσn� −
1√
2π

e−x2/2
∣∣∣∣ ≤ εn .

The local limit law is said to hold with speed εn.

Note carefully, that a local limit law does not logically follows from a convergence
in distribution in the usual sense, upon taking differences (the individual probabilities
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appear as differences at nearly identical points of values of a distribution function,
hence they are “hidden” behind the error terms). Some additional regularity assump-
tions are needed. Here, we are naturally concerned with distilling local limit laws
from BGFs F(z, u). It turns out, rather nicely, that the Quasi-powers Theorem (Theo-
rem IX.8, p. 645) can be amended by imposing constraints on the way the secondary
variable affects the asymptotic approximation of [zn]F(z, u), when u varies globally
on the whole of the unit circle (rather than just in a complex neighbourhood of 1). In
that case, the saddle-point method is effective to effect the inversion with respect to
the secondary variable u.

Theorem IX.14 (Quasi-powers, Local Limit Law). Let Xn be a sequence of non-
negative discrete random variables with probability generating function pn(u). As-
sume that the pn(u) satisfy the conditions of the Quasi-powers Theorem, in particular,
the quasi-power approximation,

pn(u) = A(u) · B(u)βn

(
1 + O

(
1

κn

))
,

holds uniformly in a fixed complex neighbourhood � of 1. Assume in addition the
existence of a uniform bound,

(82) |pn(u)| ≤ K−βn ,

for some K > 1 and all u in the intersection of the unit circle and the complement
C \�. Under these conditions, the distribution of Xn satisfies a local limit law of the
Gaussian type with speed of convergence O(β

−1/2
n + κ−1

n ).

Proof. Note first that the Quasi-powers Theorem (Theorem IX.8, p. 645) provides the
mean and variance of the distribution of Xn as quantities asymptotically proportional
to βn . Furthermore, the standardized version of Xn converges to a standard Gaussian
(in the sense of cumulative distribution functions).

The idea is to use Cauchy’s formula and integrate along the unit circle. We have

(83) pn,k ≡ [uk]pn(u) = 1

2iπ

∫
|u|=1

pn(u)
du

uk+1
.

We propose to appeal to the saddle-point method as a replacement for the continuity
theorem of integral transforms used in the case of the central limit law (p. 645).

We first estimate pn,k when k is at a fixed number of standard deviations from the
mean μn , namely, k = μn + xσn , and accordingly restrict x to some arbitrary com-
pact set of the real line. We can then import verbatim the treatment of large powers
given in Section VIII. 8, p. 585. The integration circle in (83) is split into the “central
range”, near the real axis, where | arg(u)| ≤ θ0 with θ0 = n−2/5, and the remainder of
the contour. The remainder integral is exponentially small, as is verified by the argu-
ments of the proof of Theorem VIII.8, p. 587 and the condition (82). The perturbative
analysis conducted in Theorem IX.14 then shows the existence of a uniform local
Gaussian approximation (in the sense of (81)), with βn replacing n in the statement of
Theorem IX.14.

We are almost done. It suffices to observe that, as x increases unboundedly, both
the pn,k and the Gaussian density are fast decreasing functions of x , that is, the tails
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of the combinatorial distribution and of the limit Gaussian distribution, are both small.
(For the pn,k , this results from the Large Deviation Theorem, Theorem IX.15 below.)
Thus Equation (81) actually holds when the supremum is taken over all real x (not just
values of x restricted to compact sets). A careful revisitation of the arguments used in
the proof then shows that the speed of convergence is, like in the central limit case, of
the order of κ−1

n + β
−1/2
n . �

This theorem applies in particular to the case of a movable singularity in a BGF
F(z, u), whenever the dominant singularity ρ(u), of the function z 	→ F(z, u), as u
ranges over the unit circle |u| = 1, uniquely attains its minimum modulus at u = 1.
Given the positivity inherent in combinatorial GFs, we may expect this situation to oc-
cur frequently. Indeed, for a BGF F(z, u) with non-negative coefficients, we already
know that the property |ρ(u)| ≤ ρ(1) holds for u  = 1 and u on the unit circle—only
a strengthening to the strict inequality |ρ(u)| < ρ(1) is needed. Similar comments
apply to the case of variable exponents (where -(α(u)) should be uniquely minimal)
and, with adaptation, to the generalized quasi-powers framework of Theorem IX.13
(p. 690), which is suitable for the saddle-point method. These are the ultimate reasons
why essentially all our previous central limit results can be supplemented by a local
limit law.

Example IX.34. Local limit laws for sums of discrete random variables. The simplest ap-
plication is to the binomial distribution, for which B(u) = (1 + u)/2. In a precise technical
sense, the local limit arises from the BGF, F(z, u) = 1/(1− z(1+u)/2), because the dominant
singularity ρ(u) = 2/(1+u) exists on the whole of the unit circle, |u| = 1, and attains uniquely
its minimum modulus at u = 1, so that B(u) = ρ(1)/ρ(u) is uniquely maximal at u = 1.

More generally, Theorem IX.14 applies to any sum Sn = T1+· · ·+Tn of independent and
identically distributed discrete random variables whose maximal span is equal to 1 and whose
PGF is analytic on the unit circle. In that case, the BGF is

F(z, u) = 1

1 − zB(u)
,

the PGF of Sn is a pure power, pn(u) = B(u)n , and the fact that the minimal span of the X j
is 1 entails that B(u) attains uniquely its maximum at 1 (by the Daffodil Lemma IV.1, p. 266).
Such cases have been known for a long time in probability theory. See Chapter 9 of [294]. . �

Example IX.35. Local limit law for the Eulerian distribution. This example relative to Euler-
ian numbers shows the case of a movable singularity, subjected to a meromorphic analysis on
p. 658, which we now revisit. The approximation obtained there is

pn(u) = B(u)−n−1 + O(2−n),

when u is close enough to 1, with

B(u) = ρ(u)−1 = u − 1

log u
.

A rendering of the function |B(u)| when u ranges over the unit circle is given in Figure IX.15.
The analysis leading to (42), p. 658, also characterizes the complete set of poles ρ j (u)} j∈Z

of the associated BGF F(z, u). From it, we can deduce, by simple complex geometry, that ρ(u)
is the unique dominant singularity, when -(u) ≥ 0. the other ones remaining at distance at
least π/

√
8
.= 1.110721. Also, it is not hard to see that all the poles, including the dominant
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Figure IX.15. The values of the function |B(u)| relative to the Eulerian distribution
when |u| = 1, as represented by a polar plot of |B(eiθ )| on the ray of angle θ . (The
dashed contour represents the unit circle, for comparison.) The maximum is uniquely
attained at u = 1, where B(1) = 1, which entails a local limit law.

one, remain in the region |z| > 11/10, when -(u) < 0 and |u| = 1. Thus, pn(u) satisfies an es-
timate which is either of the quasi-powers type (when -(u) ≥ 0) or of the form O((10/11)−n)

(when -(u) ≤ 0). As a consequence: a local limit law of the Gaussian type holds for the
Eulerian distribution. (This result appears in [35, p. 107].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.48. Congruence properties associated to runs. Fix an integer d ≥ 2. Let P( j)
n be the

number of permutations whose number of runs is congruent to j modulo d . Then, there exists

a constant K > 1 such that, for all j , one has: |P( j)
n − n!/d| ≤ K−n . Thus, the number of runs

is in a strong sense almost uniformly distributed over all residue classes modulo d . [Hint: use
properties of the BGF for values of u = ωd , with ω a primitive dth root of unity.] �

Example IX.36. A pot-pourri of local limit laws. The following combinatorial distributions
admit a local limit law (LLL).

The number of components in random surjections (p. 653) corresponds to the array of
Stirling2 numbers k!

{n
k
}
. In that case, we have a movable singularity at ρ(u) = log(1 + u−1),

all the other singularities remaining at distance at least 2π , and escaping to infinity as u → −1.
This ensures the validity of condition (82), hence an LLL (with βn = n). Similarly for align-
ments (p. 654) associated to the array of Stirling1 numbers k!

[n
k
]
, various types of constrained

compositions (p. 654), and more generally, the number of components in supercritical compo-
sitions, including compositions into prime summands.

Variable exponents also lead to an LLL under normal circumstances. Prototypically, the
Stirling cycle distribution (p. 671) associated to the array

[n
k
]

satisfies

pn(u) ∼ e(u−1) log n

�(u)
,

and a suitably uniform version results from the Uniformity Lemma (p. 668), hence an LLL
(this fact was already observed in [35, p. 105]). The property extends to the exp–log schema
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including the number of components in mappings (p. 671) and the number of irreducible factors
in polynomials over finite fields (p. 672).

Cases of structures amenable to singularity perturbation with a movable singularity include
leaves in Catalan and other classical varieties of trees (p. 678), patterns in binary trees (p. 680),
as well as the mean level profile of increasing trees (p. 684), whose BGF is given by a differential
equation.

Finally, central limit laws resulting from the saddle-point method and Theorem IX.13
(p. 690) can often be supplemented by an LLL. An important case is that of the number of
blocks in set partitions, which is associated to the Stirling2 array

{n
k
}
. (The result appears in

Bender’s paper [35, p. 109], where it is derived from log-concavity considerations.) . . . . . . . �

� IX.49. Non-existence of a local limit. Consider a binomial RV conditioned to assume only
even values, so that pn,2k = 21−n( n

2k
)

and pn,2k+1 = 0. The BGF

F(z, u) = 1

2

1

1 − z(1 + u)/2
+ 1

2

1

1 − z(1 − u)/2

has two poles, namely ρ1(u) = 2/(1 + u) and ρ2(u) = 2/(1 − u), and it is simply not true that
a single one dominates throughout the domain |u| = 1. Accordingly, the PGF satisfies

pn(u) = 2−n [
(1 + u)n + (1 − u)n

]
,

and smallness away from the positive real line cannot be guaranteed all along the unit circle
(one has for instance pn(1) = pn(−1)). �

IX. 10. Large deviations

The term large deviation principle17 is loosely defined as an exponentially small
bound on the probability that a collection of random variables deviate substantially
from their mean value. It thus quantifies rare events in an appropriate scale. Mo-
ment inequalities, although useful in establishing concentration of distribution (Sub-
section III. 2.2, p. 161), usually fall short of providing such exponentially small es-
timates, and the improvement over Chebyshev inequalities afforded by the methods
presented here can be dramatic. For instance, for runs in permutations (the Eulerian
distribution), the probability of deviating by 10% or more from the mean appears to
be of the order of 10−6 for n = 1 000 and 10−65 for n = 10 000, with a spectac-
ular 10−653 for n = 100 000. (By contrast, the Chebyshev inequalities would only
bound from above the last probability by a quantity about 10−3.) Figure IX.16 pro-
vides a plot of the logarithms of the individual probabilities associated to the Eulerian
distribution, which is characteristic of the phenomena at stake here.

Definition IX.5. Let βn be a sequence tending to infinity and ξ a non-zero real num-
ber. A sequence of random variables (Xn) having E(Xn) ∼ ξβn, satisfies a large
deviation property relative to the interval [x0, x1] containing ξ if a function W (x)
exists, such that W (x) > 0 for x  = ξ and, as n tends to infinity:

(84)

⎧⎪⎨⎪⎩
1

βn
log P(Xn ≤ xβn) = −W (x)+ o(1) x0 ≤ x ≤ ξ (left tails)

1

βn
log P(Xn ≥ xβn) = −W (x)+ o(1) ξ ≤ x ≤ x1 (right tails).

17Large deviation theory is introduced nicely in the book of den Hollander [153].
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Figure IX.16. The quantities log pn,xn relative to the Eulerian distribution illustrate
an extremely fast decay away from the mean, which corresponds to ξ ≡ 1

2 . Here, the
diagrams are plotted for n = 10, 20, 30, 40 (top to bottom). The common shape of
the curves indicates a large deviation principle.

The function W (x) is called the rate function and βn is the scaling factor.

Figuratively, a large deviation property, in the case of left tails (x < ξ ), expresses
an exponential approximation of the rough form

P(Xn ≤ xβn) ≈ e−βn W (x),

for the probability of being away from the mean, and similarly for right tails. Under
the conditions of the Quasi-powers Theorem, a large deviation principle invariably
holds, a fact first observed by Hwang in [338].

Theorem IX.15 (Quasi-powers, large deviations). Consider a sequence of discrete
random variables (Xn) with PGF pn(u). Assume the conditions of the Quasi-powers
Theorem (Theorem IX.8, p. 645); in particular, there exist functions A(u), B(u), which
are analytic over some interval [u0, u1] with 0 < u0 < 1 < u1, such that, with κn →
∞, one has

(85) pn(u) = A(u)B(u)βn
(

1 + O(κ−1
n )

)
,

uniformly. Then the Xn satisfy a large deviation property, relative to the interval
[x0, x1], where x0 = u0 B ′(u0)/B(u0), x1 = u1 B ′(u1)/B(u1); the scaling factor is βn

and the large deviation rate W (x) is given by

(86) W (x) = − min
u∈[u0,u1]

log

(
B(u)

ux

)
.

Proof. We examine the case of the left tails, P(Xn ≤ xβn) with x < ξ and ξ =
B ′(1), the case of right tails being similar. It proves instructive to start with a simple
inequality that suggests the physics of the problem, then refine it into an equality by a
classical technique known as “shifting of the mean”.
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Inequalities. The basic observation is that, if f (u) = ∑
k fkuk is a function

analytic in the unit disc with non-negative coefficients at 0, then, for positive u ≤ 1,
we have

(87)
∑
j≤k

f j ≤ f (u)

uk
,

which belongs to the broad category of saddle-point bounds (see also our discussion
of tail bounds on p. 643). The combination of (87), applied to pn(u) := E(u Xn ), and
of assumption (85) yields

(88) P(Xn ≤ xβn) ≤ O(1)

(
B(u)

ux

)βn

,

which is usable a priori for any fixed u ∈ [u0, 1]. In particular the value of u that
minimizes B(u)/ux can be used, provided that this value of u exists, is less than 1,
and also the minimum itself is less than 1.

The required conditions are granted by developments closely related to Boltz-
mann models and associated convexity properties, as developed in Note IV.46, p. 280,
which we revisit here. Simple algebra with derivatives shows that

(89)
d

du

(
B(u)

ux

)
=

[
u B ′(u)
B(u)

− x

]
B(u)

ux+1
,

d

du

(
u B ′(u)
B(u)

)
= 1

u
vt (B(ut)),

where by vt (B(ut)) is meant the analytic variance of the function t 	→ B(ut): u
is treated as a parameter and v( f ) is taken in the sense of (27), p. 645. From the
non-negativity of variances, we see by the second relation of (89) that the function
u B ′(u)/B(u) is increasing. This grants us the existence of a root of the equation
u B ′(u)/B(u) = x , at which point, by the first relation of (89), the quantity B(u)/ux

attains its minimum. Since B(1) = 1, that minimum is itself strictly less than 1, so
that an inequality,

(90) log P(Xn ≤ xβn) ≤ −βn W (x)+ O(1),

results, with W (x) as stated in (86).
Equalities. The family Xn,λ of random variables, with PGF

pn,λ(u) := pn(λu)

pn(λ)
,

when λ varies, is known as an exponential family (or as a family of exponentially
shifted versions of Xn). Fix now λ to be the particular value of u at which the mini-
mum of B(u)/ux is attained, so that λB ′(λ)/B(λ) = x . The PGFs pn,λ(u) satisfy a
quasi-power approximation

(91) pn,λ(u) = A(λu)

A(λ)

(
B(λu)

B(λ)

)βn (
(1 + O(κ−1

n )
)
,

so that a central limit law (of Gaussian type) holds for these specific Xn,λ. By elemen-
tary calculus, we have E(Xn,λ) = xβn + O(1). Thus, by the Quasi-powers Theorem



“book” — 2008/10/3 — 16:05 — page 702 — #716

702 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

applied to the centre of the Gaussian distribution, we find

(92) lim
n→∞P(Xn,λ ≤ xβn) = 1

2
.

Fix now an arbitrary ε > 0. We have a useful refinement of (92):

(93) P((x − ε)βn < Xn,λ ≤ xβn) = 1

2
+ o(1).

We can then write

(94)

P(Xn ≤ xβn) ≥ P((x − ε)βn < Xn ≤ xβn)

≥ pn(λ)

λ(x−ε)βn
P((x − ε)βn < Xn,λ ≤ xβn)

≥
(

1

2
+ o(1)

)
B(λ)βn

λ(x−ε)βn
A(λ) (1 + o(1)) ,

where the second line results from the definition of exponential families and the third
from (93) and the quasi-powers assumption. Then, since the last line of (94) is valid
for any ε > 0, we get, in the limit ε → 0, the desired lower bound:

(95) log P(Xn ≤ xβn) ≥ −βn W (x)+ O(1),

Hence, Equation (95) combined with its converse (90), yields the statement relative to
left tails. �

The proof above yields an explicit algorithm to compute the rate function W (x)
from B(u) and its derivatives. Indeed, the quantity λ ≡ λ(x) is obtained by inversion
of u B ′(u)/B(u),

(96) λ(x)
B ′(λ(x))
B(λ(x))

= x,

and the large deviation rate function is

(97) W (x) = − log B(λ(x))− x log λ(x).

� IX.50. Extensions. Speed of convergence estimates can be developed by making use of the
Quasi-powers Theorem, with error terms. Also “local” forms of the large deviation princi-
ple (concerning log pn,k ) can be derived under additional properties similar to those of Theo-
rem IX.14 (p. 696) relative to local limit laws. (Hint: see [338, 339].) �

Example IX.37. Large deviations for the Eulerian distribution. In this case, the BGF has
a unique dominant singularity for u with ε < u < 1/ε, and any ε > 0. Thus, there is a
quasi-power expansion with

B(u) = u − 1

log u
,

valid on any compact subinterval of the positive real line. Then, λ(x) is computable as the
inverse function of

h(u) = u

u − 1
− 1

log u
.

(The function h(u) maps increasingly R>0 to the interval (0, 1), so that its inverse function is
always defined.) The function W (x) is then computable by (96) and (97). Figure IX.17 presents
a plot of W (x) that explains the data of Figure IX.16, p. 700, as well as the estimates given in
the introduction of this section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
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Figure IX.17. The large deviation rate function −W (x) relative to the Eulerian dis-
tribution, for x ∈ [0.3, 0.7], with scaling sequence βn = n and ξ = 1/2.

All the distributions mentioned in previous pot-pourris (Example IX.27, p. 683
and IX.36, p. 698) that result either from meromorphic perturbation or from sin-
gularity perturbation satisfy a large deviation principle, as a consequence of Theo-
rem IX.15. For distributions amenable to the saddle-point method (Example IX.33,
p. 693) tail probabilities also tend to be very small: their approximations are not ex-
pressed as simply as in Definition IX.5, but depend on the particulars of the asymp-
totic scale at play in each case. The interest of large deviation estimates in probability
theory stems from their robustness with respect to changes in randomness models or
under composition with non-mass-preserving transformations. In combinatorics, they
have been most notably used to analyse depth and height in several types of increasing
trees and search trees by Devroye and his coauthors [95, 160, 161].

IX. 11. Non-Gaussian continuous limits

Previous sections of this chapter have stressed two basic paradigms for bivariate
asymptotics:

— a “minor” change in singularities, leading to discrete laws, which occurs
when the nature and location of the dominant singularity remains unaffected
by small changes in the values of the secondary parameter u;

— a “major” singularity perturbation mode leading to the Gaussian law, which
arises from a variable exponent and/or a movable singularity.

However, it has been systematically the case, so far, that the collection of singular
expansions parameterized by the auxiliary variable all belong to a sufficiently gentle
analytic type (eventually leading to a quasi-power approximation) and, in particu-
lar, exhibit no sharp discontinuity when the secondary parameter traverses the special
value u = 1. In this section we first illustrate, by means of examples, the way dis-
continuities in singular behaviour induce non-Gaussian laws (Subsection IX. 11.1),
then examine a fairly general case of confluence of singularities, corresponding to the
critical composition schema (Subsection IX. 11.2). The discontinuities observed in
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such situations are reminiscent of what is known as phase-transition phenomena in
statistical physics, and we have found it suggestive to import this terminology here.

IX. 11.1. Phase-transition diagrams. Perhaps the simplest case of discontinu-
ity in singular behaviour is provided by the BGF,

F(z, u) = 1

(1 − z)(1 − zu)
,

where u records the parameter equal to the number of initial occurrences of a in a
random word of F = SEQ(a) SEQ(b). Clearly the distribution is uniform over the
discrete set of values {0, 1, . . . n}. The limit law is then continuous: it is the uniform
distribution over the real interval [0, 1]. From the point of view of the singular struc-
ture of z 	→ F(z, u), summarized by a formula of the type (1 − z/ρ(u))−α(u), three
distinct cases arise, depending on the values of u:

— u < 1: simple pole at ρ(u) = 1, corresponding to α(u) = 1;
— u = 1: double pole at ρ(1) = 1, corresponding to α(u) = 2;
— u > 1: simple pole at ρ(u) = 1/u, corresponding to α(u) = 1.

Here, both the location of the singularity ρ(u) and the singular exponent α(u) experi-
ence a non-analytic transition at u = 1. This situation arises from a collapsing of two
singular terms, when u = 1.

In order to visualize such cases, it is useful to introduce a simplified diagram
representation, called a phase-transition diagram and defined as follows. Write Z =
ρ(u) − z and summarize the singular expansion by its dominant singular term Zα(u).
Then, the diagram corresponding to F(z, u) is

u = 1 − ε u = 1 u = 1 + ε

ρ(u) = 1 ρ(1) = 1 ρ(u) = 1/u
Z−1 Z−2 Z−1

Z := ρ(u)− z.

A complete classification of such discontinuities is lacking (see, however, Mari-
anne Durand’s thesis [181] for several interesting schemas), and is probably beyond
reach given the vast diversity of situations to be encountered in a combinatorialist’s
practice. We provide here two illustrations: the first example is relative to the classical
theory of coin-tossing games (the arcsine distribution); the second one is relative to
area under excursions and path length in trees (the Airy distribution of the area type).
Both are revisited here under the perspective of phase transition diagrams, which pro-
vide a useful way to approach and categorize non-Gaussian limits.

Example IX.38. Arcsine law for unbiased random walks. This problem is studied in detail
by Feller [205, p. 94] who notes, regarding gains in coin-tossing games: “Contrary to intuition,
the maximum accumulated gain is much more likely to occur towards the very beginning or the
very end of a coin-tossing game than somewhere in the middle.” See Figure IX.18.

We let χ be the time of first occurrence of the maximum in a random game (that is, a
walk with ±1 steps) and write Xn for the RV representing χ restricted to the set Wn of walks
of duration n. The BGF W (z, u), where u marks χ , results from the standard decomposition
of positive walks. Essentially, there is a sequence of steps ascending to the (non-negative)
maximum accompanied by “arches” (the left factor) followed by a mirror excursion back to
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Figure IX.18. Histograms of the distribution of the location of the maximum of a
random walk for n = 10 . . 60 (left) and the density of the arcsine law (right).

the maximum, followed by a sequence of descending steps with their companion arches. This
construction translates directly into an equation satisfied by the BGF W (z, u) of the location of
the first maximum

(98)

W (z, u) = 1

1 − zu D(zu)
· D(z) · 1

1 − zD(z)
,

which involves the GF of a gambler’s ruin sequences (equivalently Dyck excursions, Exam-
ple IX.8, p. 635), namely,

(99) D(z) = 1 −
√

1 − 4z2

2z2
.

In such a simple case, explicit expressions are available from (98), when we expand first with
respect to u, then to z. We obtain in this way the ultra-classical result that the probability that
Xn equals either k = 2r or k = 2r + 1 is 1

2 u2r u2ν−2r , where u2ν := 2−2ν(2ν
ν

)
. The usual

approximation of central binomial coefficients, u2ν ∼ (πν)−1/2, followed by a summation
then leads to the following statement.

Proposition IX.21 (Arcsine law). For any x ∈ (0, 1), the position Xn of the first maximum in
a random walk of even length n satisfies a limit arcsine law:

lim
n→∞Pn(Xn < xn) = 2

π
arcsin

√
x .

It is instructive to compare this to the way singularities evolve as u crosses the value 1.
The dominant positive singularity is at ρ(u) = 1/2 if u < 1, while ρ(u) = 1/(2u), if u > 1.
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Figure IX.19. A plot of 1/W (z, u) for z ∈ [0.4, 0.55] when u is assigned values
between 1/2 and 5/4 (left); The exponent function α(u) (top right) and the singular
value ρ(u) (bottom right), for u ∈ [0.5, 0.55].

Local expansions show that, with c<(u), c>(u) two computable functions, there holds:

W (z, u) ∼ c<(u)
1√

1 − 2z
, W (z, u) ∼ c>(u)

1√
1 − 2zu

.

Naturally, at u = 1, all sequences are counted and W (z, 1) = 1/(1−2z). Thus, the correspond-
ing phase-transition diagram is (see Figure IX.19):

u = 1 − ε u = 1 u = 1 + ε

ρ(u) = 1/2 ρ(1) = 1/2 ρ(u) = 1/(2u)

Z−1/2 Z−1 Z−1/2

The point to be made here is that the arcsine law could be expected when a similar phase-
transition diagram occurs. There is indeed universality in this singular view of the arcsine law,
which extends to walks with zero drift (Chapter VII). This analytic kind of universality is a
parallel to the universality of Brownian motion, which is otherwise familiar to probabilists. �

� IX.51. Number of maxima and other stories. The construction underlying (98) also serves
to analyse; (i) the number of times the maximum is attained. (i i) the difference between the
maximum and the final altitude of the walk; (i i i) the duration of the period following the last
occurrence of the maximum. �

Example IX.39. Path length in trees. A final example is the distribution of path length in trees,
whose non-Gaussian limit law has been originally characterized by Louchard and Takács [416,
417, 567, 569]. The distribution is recognized not to be asymptotically Gaussian, as it is verified
from a computation of the first few moments. In the case of general Catalan trees, the analysis
is equivalent to that of area under Dyck paths (Examples V.9, p. 330, and VII.26, p. 533) and is
closely related to our discussion of coin fountains and parallelogram polyomino models, earlier
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in this chapter (p. 662). It reduces to that of the functional equation

F(z, u) = 1

1 − zF(zu, u)
,

which determines F(z, u) as a formal continued fraction, and setting F(z, u) =
A(z, u)/B(z, u), we found (p. 331)

B(z, u) = 1 +
∞∑

n=1

(−1)n
un(n−1)zn

(1 − u)(1 − u2) · · · (1 − un)
,

with a very similar expression for A(z, u). Because of the quadratic exponent involved in the
powers of u, the function z 	→ F(z, u) has radius of convergence 0 when u > 1, and is thus
non-analytic. By contrast, when u < 1, the function z 	→ B(z, u) is an entire function, so that
z 	→ F(z, u) is meromorphic. Hence the singularity diagram:

u = 1 − ε u = 1 u = 1 + ε

ρ(u) > 1
4 ρ(1) = 1

4 ρ(u) = 0

Z−1 Z1/2 —

The limit law is the Airy distribution of the area type [244, 352, 416, 417, 567, 569], which
we have encountered in Chapter VII, p. 533. By an analytical tour de force, Prellberg [496]
has developed a method based on contour integral representations and coalescing saddle-points
(Chapter VIII, p. 603) that permits us to make precise the phase transition diagram above and
obtain uniform asymptotic expansions in terms of the Airy function. Since similar problems
occur in relation to connectivity of random graphs under the Erdős–Rényi model [254], and
conjecturally in self-avoiding walks (p. 363), future years might see more applications of Prell-
berg’s methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

IX. 11.2. Semi-large powers, critical compositions, and stable laws. We con-
clude this section by a discussion of critical compositions that typically involve con-
fluences of singularities and lead to a general class of continuous distributions closely
related to stable laws of probability theory. We start with an example where every-
thing is explicit, that of zero contacts in random bridges, then state a general theorem
on “semi-large” powers of functions of singularity analysis type, and finally return to
combinatorial applications, specifically trees and maps.

Example IX.40. Zero-contacts in bridges. Consider once more fluctuations in coin tossings,
and specifically bridges, corresponding to a conditioning of the game by the fact that the final
gain is 0 (negative capitals are allowed). These are sequences of arbitrary positive or negative
“arches”, and the number of arches in a bridge is exactly equal to the number of intermediate
steps at which the capital is 0. From the arch decomposition, it is found that the ordinary BGF
of bridges with z marking length and u marking zero-contacts is

B(z, u) = 1

1 − 2uz2 D(z)

with D(z) as in (99), p. 705. Analysing this function is conveniently done by introducing

F(z, u) ≡ B

(
1

2

√
z, u

)
= 1

1 − u(1 −√
1 − z)

.
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The phase-transition diagram is then easily found to be:

u = 1 − ε u = 1 u = 1 + ε

ρ(u) = 1 ρ(1) = 1 ρ(u) = 1 − (1 − u−1)2

Z1/2 Z−1/2 Z−1

Thus, there are discontinuities, both in the location of the singularity and the exponent, but of a
different type from that which gives rise to the arcsine law of random walks.

The problem of the limit law is here easily solved since explicit expressions are provided
by the Lagrange Inversion Theorem. One finds:

(100)
[uk ][zn]F(z, u) = [zn]

(
1 −√

1 − z
)k

= k

n
[wn−k ](2 − w)−n = 2k−2n k

n

(
2n − k − 1

n − 1

)
.

A random variable with density and distribution function given by

(101) r(x) = x

2
e−x2/4, R(x) = 1 − e−x2/4,

is called a Rayleigh law. Then Stirling’s formula easily provides the following proposition.

Proposition IX.22. The number Xn of zero-contacts of a random bridge of size 2n satisfies, as
n → ∞ a local limit law of the Rayleigh type:

lim
n→∞P(Xn = x

√
n) = x

2
√

n
e−x2/4.

The explicit character of (100) makes the analysis transparently simple. . . . . . . . . . . . . . . . . . . �

� IX.52. The number of cyclic points in mappings. The number of cyclic points in mappings
has exponential BGF (1 − uT (z))−1, with T the Cayley tree function. The singularity diagram
is of the same form as in Example IX.40. Explicit forms are derived from Lagrange inversion:
the limit law is again Rayleigh. This property extends to the number of cyclic points in a
simple variety of mappings (e.g., mappings defined by a finite constraint on degrees, as in
Example VII.10, p. 464): see [18, 175, 176]. �

Both Example IX.40 and Note IX.52 above exemplify the situation of an analytic
composition scheme of the form (1 − uh(z))−1 which is critical, since in each case h
assumes value 1 at its singularity. Both can be treated elementarily since they involve
powers that are amenable to Lagrange inversion, eventually resulting in a Rayleigh
law. As we now explain, there is a family of functions that appear to play a universal
rôle in problems sharing similar singular types. What follows is largely borrowed
from an article by Banderier et al. [28].

We first introduce a function S that otherwise naturally surfaces in the study of
stable18 distributions in probability theory. For any parameter λ ∈ (0, 2), define the
entire function

18In probability theory, stable laws are defined as the possible limit laws of sums of independent
identically distributed random variables. The function S is a trivial variant of the density of the stable law
of index λ; see Feller’s book [206, p. 581–583]. Valuable informations regarding stable laws may be found
in the books by Breiman [93, Sec. 9.8], Durrett [182, Sec. 2.7], and Zolotarev [629].
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Figure IX.20. The S-functions for λ = 0.1 . .0.8 (left; from bottom to top) and for
λ = 1.2 . . 1.9 (right; from top to bottom); the thicker curves represent the Rayleigh
law (left, λ = 1/2) and the Airy map law (right, λ = 3/2).

(102) S(x, λ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

π

∑
k≥1

(−1)k−1xk �(1 + λk)

�(1 + k)
sin(πkλ) (0 < λ < 1)

1

πx

∑
k≥1

(−1)k−1xk �(1 + k/λ)

�(1 + k)
sin(πk/λ) (1 < λ < 2)

The function S(x; 1/2) is a variant of the Rayleigh density (101). The function
S(x; 3/2) constitutes the density of the “Airy map distribution” found in random maps
as well as in other coalescence phenomena, as discussed below; see (109).

Theorem IX.16 (Semi-large powers). The coefficient of zn in a power H(z)k of a �–
continuable function H(z) with singular exponent λ admits the following asymptotic
estimates.

(i) For 0 < λ < 1, that is, H(z) = σ − hλ(1 − z/ρ)λ + O(1 − z/ρ), and when
k = xnλ, with x in any compact subinterval of (0,+∞), there holds

(103) [zn]Hk(z) ∼ σ kρ−n 1

n
S

(
xhλ
σ

, λ

)
.

(i i) For 1 < λ < 2, that is, H(z) = σ − h1(1 − z/ρ)+ hλ(1 − z/ρ)λ + O((1 −
z/ρ)2), when k = σ

h1
n + xn1/λ, with x in any compact subinterval of (−∞,+∞),

there holds

(104) [zn]Hk(z) ∼ σ kρ−n 1

n1/λ
(h1/hλ)

1/λS

(
xh1+1/λ

1

σh1/λ
λ

, λ

)
.

(i i i) For λ > 2, a Gaussian approximation holds. In particular, for 2 < λ < 3,
that is, H(z) = σ − h1(1 − z/ρ)+ h2(1 − z/ρ)2 − hλ(1 − z/ρ)λ + O((1 − z/ρ)3) ,
when k = σ

h1
n + x

√
n, with x in any compact subinterval of (−∞,+∞), there holds

(105) [zn]Hk(z) ∼ σ kρ−n 1√
n

σ/h1

a
√

2π
e−x2/2a2

with a = 2( h2
h1

− h1
2σ )σ

2/h2
1.
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The term “semi-large” refers to the fact that the exponents k in case (i) are of the
form O(nθ ) for some θ < 1 chosen in accordance with the region where an “interest-
ing” renormalization takes place and dependent on each particular singular exponent.
When the interesting region reaches the O(n) range in case (i i i), the analysis of large
powers, as detailed in Chapter VIII (p. 591), takes over and Gaussian forms result.

Proof. The proofs are somewhat similar to the basic ones in singularity analysis, but
they require a suitable adjustment of the geometry of the Hankel contour and of the
corresponding dimensioning.

Case (i). A classical Hankel contour, with the change of variable z = ρ(1− t/n),
yields the approximation

[zn]Hk(z) ∼ −σ kρ−n

2iπn

∫
et− hλx

σ
tλ dt

The integral is then simply estimated by expanding exp(− hλx
σ

tλ) and integrating
termwise

(106) [zn]Hk(z) ∼ −σ kρ−n

n

∑
k≥1

(−x)k

k!

(
hλ
σ

)k 1

�(−λk)
,

which is equivalent to Equation (103), by virtue of the complement formula for the
Gamma function.

Case (i i). When 1 < λ < 2, the contour of integration in the z-plane is chosen
to be a positively oriented loop, made of two rays of angle π/(2λ) and −π/(2λ) that
intersect on the real axis at a distance 1/n1/λ left of the singularity. The coefficient
integral of Hk is rescaled by setting z = ρ(1 − t/n1/λ), and one has

[zn]Hk(z) ∼ − σ kρ−n

2iπn1/λ

∫
e

hλ
h1

tλ
e−

xh1
σ

t dt.

There, the contour of integration in the t-plane comprises two rays of angle π/λ and
−π/λ, intersecting at −1. Setting u = tλhλ/h1, the contour transforms into a clas-
sical Hankel contour, starting from −∞ over the real axis, winding about the origin,
and returning to −∞. So, with α = 1/λ, one has

[zn]Hk(z) ∼ −σ kρ−n

2iπnα
α

(
h1

hλ

)α ∫
eu e

− xhα+1
1
σhα

λ
uα

uα−1 du .

Expanding the exponential, integrating termwise, and appealing to the complement
formula for the Gamma function finally reduces this last form to (104).

Case (i i i). This case is only included here for comparison purposes, but, as
recalled before the proof, it is essentially implied by the developments of Chapter VIII
based on the saddle-point method. When 2 < λ < 3, the angle φ of the contour of
integration in the z–plane is chosen to be π/2, and the scaling is

√
n: under the change

of variable z = ρ(1 − t/
√

n), the contour is transformed into two rays of angle π/2
and −π/2 (i.e., a vertical line), intersecting at −1, and

[zn]Hk(z) ∼ − σ kρ−n

2iπ
√

n

∫
ept2− h1x

σ
t dt ,
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with p = h2
h1

− h1
2σ . Complementing the square, and letting u = t − h1x

2pσ , we get

[zn]Hk(z) ∼ − σ kρ−n

2iπ
√

n
e
− h2

1
4pσ2 x2

∫
epu2

du ,

which gives Equation (105). By similar means, such a Gaussian approximation can
be shown to hold for any non-integral singular exponent λ > 2. �
� IX.53. Zipf distributions. Zipf’s law, named after the Harvard linguistic professor George
Kingsley Zipf (1902–1950), is the observation that, in a language like English, the frequency
with which a word occurs is roughly inversely proportional to its rank—the kth most frequent
word has frequency proportional to 1/k. The generalized Zipf distribution of parameter α > 1
is the distribution of a random variable Z such that

P(Z = k) = 1

ζ(α)

1

kα
.

It has infinite mean for α ≤ 2 and infinite variance for α ≤ 3. It was proved in Chapter VI
(p. 408) that polylogarithms are amenable to singularity analysis. Consequently, the sum of a
large number of independent Zipf variables satisfies a local limit law of the stable type with
index α − 1 (for α  = 2). �

Example IX.41. Mean level profiles in simple varieties of trees. Consider the RV equal to
the depth of a random node in a random tree taken from a simple variety Y that satisfies the
smooth inverse-function schema (Definition VII.3, p. 453). The problem of quantifying the
corresponding distribution is equivalent to that of determining the mean level profile, that is
the sequence of numbers Mn,k representing the mean number of nodes at distance k from the
root. (Indeed, the probability that a random node lies at level k is Mn,k/n.) The first few levels
have been characterized in Example VII.7 (p. 458) and the analysis of Chapter VII can now be
completed thanks to Theorem IX.16. (The problem was solved by Meir and Moon [435] in an
important article that launched the analytic study of simple varieties of trees. Meir and Moon
base their analysis on a Lagrangean change of variable and on the saddle-point method, along
the lines of our remarks in Chapter VIII, p. 590.) As usual, we let φ(w) be the generator of the
simple variety Y , with Y (z) satisfying Y = zφ(Y ), and we designate by τ the positive root of
the characteristic equation:

τφ′(τ )− φ(τ) = 0.

It is known from Theorem VII.3 (p. 468) that the GF Y (z) has a square root singularity at ρ =
τ/φ(τ). For convenience, we also assume aperiodicity of φ. Meir and Moon’s major result
(Theorem 4.3 of [435]) is as follows

Proposition IX.23 (Mean level profiles). The mean profile of a large tree in a simple variety
obeys a Rayleigh law in the asymptotic limit: for k/

√
n in any bounded interval of R≥0, the

mean number of nodes at altitude k satisfies asymptotically

Mn,k ∼ Ake−Ak2/(2n),

where A = τφ′′(τ ).
The proof goes as follows. For each k, define Yk(z, u) to be the BGF with u marking the

number of nodes at depth k. Then, the root decomposition of trees translates into the recurrence:

Yk(z, u) = zφ(Yk−1(z, u)), Y0(z, u) = zuφ(Y (z)) = uY (z).

By construction, we have

Mn,k = 1

Yn
[zn]

(
∂

∂u
Yk(z, u)

)
u=1

.
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On the other hand, the fundamental recurrence yields(
∂

∂u
Yk(z, u)

)
u=1

= (
zφ′(Y (z))

)k Y (z).

Now, φ′(Y ) has, like Y, a square-root singularity. The semi-large powers theorem applies
with λ = 1

2 , and the result follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.54. The width of trees. The expectation of the width W of a tree in a simple variety
satisfies

C1
√

n ≤ EYn (W ) ≤ C2
√

n log n,

for some C1,C2 > 0. (This is due to Odlyzko and Wilf [463], a possible approach consisting in
suitably bounding the level profile of random trees. Better bounds are known, now that Wn/

√
n

has been recognized to be related to Brownian excursion. In particular, the expected width is
∼ c

√
n; see Example V.17, p. 359 and the references there.)

�

Critical compositions. Theorem IX.16 provides useful information on composi-
tions of the form

F(z, u) = G(u H(z)),

provided G(z) and H(z) are of singularity analysis class. As we know, combinatori-
ally, this represents a substitution between structures, F = G ◦H, and the coefficient
[znuk]F(z, u) counts the number of M–structures of size n whose G–component, also
called core in what follows, has size k. Then the probability distribution of core-size
Xn in F–structures of size n is given by

P(Xn = k) = [zk]G(z)

[zn]G(H(z))
[zn]H(z)k .

The case where the schema is critical, in the sense that H(rH ) = rG with rH , rG

the radii of convergence of H,G, follows as a direct consequence of Theorem IX.16.
What comes out is the following informally stated general principle (details would
closely mimic the statement of Theorem IX.16 and are omitted: see [28]).

Proposition IX.24 (Critical compositions). In a composition schema F(z, u) =
G(u H(z)) where H and G have singular exponents λ, λ′ with λ′ ≤ λ:

(i) for 0 < λ < 1, the normalized core-size Xn/nλ is spread over (0,+∞) and it
satisfies a local limit law whose density involves a stable law of index λ; in particular,
λ = 1

2 corresponds to a Rayleigh law.
(i i) for 1 < λ < 2, the distribution of Xn is bimodal and the “large region”

Xn = cn + xn1/λ involves a stable law of index λ;
(i i i) for 2 < λ, the standardized version of Xn admits a local limit law that is of

Gaussian type.

Similar phenomena occur when λ′ > λ, but with a greater preponderance of
the “small” region. Many instances have already appeared scattered in the literature.
especially in connection with rooted trees. For instance, this proposition explains well
the occurrence of the Rayleigh law (λ = 1/2) as the distribution of cyclic points
in random mappings and of zero-contacts in random bridges. The case λ = 3/2
appears in forests of unrooted trees (see the discussion in Chapter VIII, p. 603, for an
alternative approach based on coalescing saddle-points) and it is ubiquitous in planar



“book” — 2008/10/3 — 16:05 — page 713 — #727

IX. 11. NON-GAUSSIAN CONTINUOUS LIMITS 713

maps, as attested by the article of Banderier et al. on which this subsection is largely
based [28]. We detail one of the cases in the following example, which explains the
meaning of the term “large region” in Proposition IX.24.

Example IX.42. Biconnected cores of planar maps. The OGF of rooted planar maps, with size
determined by the number of edges, is, by Subsection VII. 8.2 (p. 513),

(107) M(z) = − 1

54z2

(
1 − 18z − (1 − 12z)3/2

)
,

with a characteristic 3/2 exponent. Define a separating vertex or articulation point in a map
to be a vertex whose removal disconnects the graph. Let C denote the class of non-separable
maps, that is, maps without an articulation point (also known as biconnected maps). Starting
from the root edge, any map decomposes into a non-separable map, called the “core” on which
are grafted arbitrary maps, as illustrated by the following diagram:

There results the equation:

(108) M(z) = C(H(z)), H(z) = z(1 + M(z))2.

Since we know M , hence H , this last relation gives by inversion the OGF of non-separable
maps as an algebraic function of degree 3 specified implicitly by the equation

C3 + 2C2 + (1 − 18z)C + 27z2 − 2z = 0,

with expansion at the origin (EIS A000139):

C(z) = 2 z + z2 + 2 z3 + 6 z4 + 22 z5 + 91 z6 + · · · , Ck+1 = 2
(3k)!

(k + 1)!(2k + 1)!
.

(The closed form results from a Lagrangean parameterization.) Now the singularity of C is also
of the Z3/2 type as seen by inversion of (108) or from the Newton diagram attached to the cubic
equation. We find in particular

C(z) = 1

3
− 4

9
(1 − 27z/4)+ 8

√
3

81
(1 − 27z/4)3/2 + O((1 − 27z/4)2),

which is reflected by the asymptotic estimate,

Ck ∼ 2

27

√
3

π

(
17

4

)k
k−5/2.

The parameter considered here is the distribution of the size Xn of the core (containing
the root) in a random map of size n. The composition relation is M = C ◦ H , where H =
Z(1 + M)2. The BGF is thus M(z, u) = C(u H(z)) where the composition C ◦ H is of the
singular type Z3/2 ◦ Z3/2. What is peculiar here is the “bimodal” character of the distribution
of core-size (see Figure IX.21 borrowed from [28]), which we now detail.



“book” — 2008/10/3 — 16:05 — page 714 — #728

714 IX. MULTIVARIATE ASYMPTOTICS AND LIMIT LAWS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

–4 –3 –2 –1 1 2              x
0

0.0005

0.001

0.0015

0.002

0.0025

200 400 600 800 1000
k

Figure IX.21. Left: The standard “Airy map distribution”. Right: Observed frequen-
cies of core-sizes k ∈ [20; 1000] in 50 000 random maps of size 2 000, showing the
bimodal character of the distribution.

First straight singularity analysis shows that, for fixed k,

P(Xn = k) = Ck
[zn]H(z)k

Mn
∼

n→∞ kCkhk−1
0 ,

where h0 = 4/27 is the value of H(z) at its singularity. In other words, there is local con-
vergence of the probabilities to a fixed discrete law. The estimate above can be proved to
remain uniform as long as k tends to infinity sufficiently slowly. We shall call this the “small
range” of k values. Now, summing the probabilities associated to this small range gives the
value C(h0) = 1/3. Thus, one-third of the probability mass of core-size arises from the small
range, where a discrete limit law is observed.

The other part of the distribution constitutes the “large range” to which Theorem IX.16
applies. It contains asymptotically 2/3 of the probability mass of the distribution of Xn . In that
case, the limit law is related to a stable distribution with density S(x; 3/2) and is also known as
the “Airy map” distribution: one finds for k = 1

3 n + xn2/3, the local limit approximation:

(109) P(Xn = k) ∼ 1

3n2/3
A

(
3

4
22/3x

)
, A(x) := 2e−2x2/3

(
x Ai(x2)− Ai′(x2)

)
.

There Ai(x) is the Airy function (defined in the footnote on p. 534) and A(x) specifies the Airy
map distribution displayed in Figure IX.21.

The bimodal character of the distribution of core-sizes can now be better understood [28].
A random map decomposes into biconnected components and the largest biconnected compo-
nent has, with high probability, a size that is O(n). There are also a large number (O(n)) of
“dangling” biconnected components. In a rooted map, the root is in a sense placed “at random”.
Then, with a fixed probability, it either lies in the large component (in which case, the distri-
bution of that large component is observed, this is the continuous part of the distribution given
by the Airy map law), or else one of the small components is picked up by the root (this is the
discrete part of the distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� IX.55. Critical cycles. The theory adapts to logarithmic factors. For instance the critical
composition F(z, u) = − log(1 − ug(z)) leads to developments similar to those of the critical
sequence. In this way, it becomes possible for instance to analyse the number of cyclic points
in a random connected mapping. �

� IX.56. The base of supertrees. Supertrees defined in Chapter VI (p. 412) are trees grafted on
trees. Consider the bicoloured variant K = G(2ZG), with G the class of general Catalan trees.
Then, the law of the external G–component is related to a stable law. �
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IX. 12. Multivariate limit laws

Combinatorics can take advantage of the enumeration of objects with respect to a
whole collection of parameters. The symbolic methods of Part A are well suited and
we have seen in Chapter III ways to solve problems like: how many permutations are
there of size n with n1 singleton cycles and n2 cycles of length 2? In combinatorial
terms we are seeking information about a multivariate (rather than plainly bivariate)
sequence, say Fn,k1,k2 . In probabilistic terms, we aim at characterizing the joint dis-

tribution, say (X (1)
n , X (2)

n ), of a family of random variables. Methods developed in
this chapter adapt well to multivariate situations. Typically, there exist natural exten-
sions of continuity theorems, both for PGFs and for integral transforms and the most
abstract aspects of the foregoing discussion regarding central and local limit laws as
well as tail estimates and large deviations can be recycled.

Consider for instance the joint distribution of the numbers χ1, χ2 of singletons
and doubletons in random permutations. Then, the parameter χ = (χ1, χ2) has a
trivariate EGF

F(z, u1, u2) = exp((u1 − 1)z + (u2 − 1)z2/2)

1 − z
.

Thus, the bivariate PGF satisfies, by meromorphic analysis,

pn(u1, u2) = [zn]F(z, u1, u2) ∼ e(u1−1) e(u2−1)/2,

uniformly when the pair (u1, u2) ranges over a compact set of C × C. As a result, the
joint distribution of (χ1, χ2) is a product of a Poisson(1) and a Poisson(1/2) distribu-
tion; in particular χ1 and χ2 are asymptotically independent.

Consider next the joint distribution of χ = (χ1, χ2), where χ j is the number
of summands equal to j in a random integer composition. Each parameter individu-
ally obeys a limit Gaussian law, since the sequence construction is supercritical. The
trivariate GF is

F(z, u1, u2) = 1

1 − z(1 − z)−1 − (u1 − 1)z − (u2 − 1)z2
.

By meromorphic analysis, a higher dimensional quasi-power approximation may be
derived:

[zn]F(z, u1, u2) ∼ c(u1, u2)ρ(u1, u2)
−n,

for some third-degree algebraic function ρ(u1, u2). In such cases, multivariate ver-
sions of the continuity theorem for integral transforms can be applied. (See the book
by Gnedenko and Kolmogorov [294] and especially the treatment of Bender and Rich-
mond in [44].) As a result, the joint distribution is, in the asymptotic limit, a bivariate
Gaussian distribution with a covariance matrix that is computable from ρ(u1, u2).
Such generalizations are typical and involve essentially no radically new concept, just
natural technical adaptations.

A highly interesting approach to multivariate problems is that of functional limit
theorems. The goal is now to characterize the joint distribution of an unbounded
collection of parameters. The limit process is then a stochastic process, essentially an
object that lives in some infinite-dimensional space. For instance, the joint distribution
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of all altitudes in random walks is accounted for by Brownian motion. The joint distri-
bution of all cycle lengths in random permutations is described explicitly by Cauchy’s
formula (p. 188) and DeLaurentis and Pittel [149] have shown a convergence to the
standard Brownian motion process, after a suitable renormalization. A rather spectac-
ular application of this circle of ideas was provided in 1977 by Logan, Shepp, Vershik
and Kerov [411, 596]. These authors established that the shape of the pair of Young
tableaux associated to a random permutation conforms, in the asymptotic limit and
with high probability, to a deterministic trajectory defined as the solution to a varia-
tional problem. In particular, the width of a Young tableau associated to a permutation
gives the length of the longest increasing sequence of the permutation. By special-
izing their results, the authors were then able to show that the expected length in a
random permutation of size n is asymptotic to 2

√
n, a long-standing conjecture at the

time (see also our remarks on p. 597 for subsequent developments). There is currently
a flurry of activity on these questions, with methods ranging from purely probabilistic
to purely analytic.

Among extensions of the standard approach presented in this book to analytic
combinatorics, we single out a few, which seem especially exciting. Lalley [397] has
extended the framework of the important Drmota–Lalley–Woods Theorem (p. 489)
to certain infinite systems of equations, by appealing to Banach space theory—this
has applications in the theory of random walks on groups. Vallée and coauthors (see
Note IX.32, p. 664, and the survey [584]) have developed a broad theory based on
transfer operators from dynamical systems theory, where generating operators replace
generating functions and operate on certain infinite dimensional functional spaces—
there are surprising applications both in information theory and in analytic number
theory (e.g., the analysis of Euclidean algorithms). McKay [432] has shown how
to extend the one-dimensional saddle-point theory presented in Chapter VIII in a
highly non-trivial way in order to treat certain counting problems where a problem
of size n is represented by a d(n)-dimensional integral, with d(n) tending to infinity
with n—this is especially important since a great many hard combinatorial problems
can be represented in this manner, including for instance the celebrated random SAT-
problem [77, 486].

We hope that the fairly complete treatment of standard aspects of the theory of-
fered in this book will help our reader to master and enrich a field, which is extremely
vast, blooming, and pregnant with fascinating problems at the crossroads of discrete
and continuous mathematics.

IX. 13. Perspective

The study of parameters of combinatorial structures ideally culminates in an un-
derstanding of the distribution of the parameter’s values, typically under the assump-
tion that each instance of a given size in a combinatorial class appears with equal
likelihood.

First, as we have already seen in Chapter III, we can extend the basic combi-
natorial constructions of Chapters I and II to include bivariate generating functions
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(BGFs) whose second variable carries information about the parameter. Our combi-
natorial constructions then provide a systematic way to develop succinct BGFs for a
broad range of combinatorial classes and parameters, which are of interest in combi-
natorics, computer science, and other applied sciences.

Next, the various methods considered in Chapters IV–VIII (Part B) of this book
can be extended to develop asymptotic results for BGFs by studying slight perturba-
tions of the singularities, controlled by the second variable. The uniform precision of
the asymptotic results that we develop in Part B is a critical component in our ability
to do this, by contrast with other classical methods for coefficient asymptotics (Dar-
boux’s method and Tauberian theorems) which are, to a large extent, non-constructive.

These asymptotic results take the form of limit laws: the distribution governing
the behaviour of parameters converge to a fixed discrete distribution, or appropriately
scaled, to a continuous distribution. Whereas BGFs are purely formal objects, to de-
termine whether the distribution is discrete or continuous requires analysis of them as
functions of complex variables. In a preponderance of cases, the limit laws say that
parameter values approach a single distribution, the well-known Gaussian (normal)
distribution. The well-known central limit theorem is but one example (not the ex-
planation) of this phenomenon, whose breadth is truly remarkable. For example, we
have encountered numerous examples where the occurrence of a given fixed pattern in
a large random object is almost certain, with the number of occurrences governed by
Gaussian fluctuations. This property holds true for strings, uniform tree models, and
increasing trees. The associated BGFs are rational functions, algebraic functions, and
solutions to nonlinear differential equations, respectively, but the approach of extend-
ing the methods of Part B to study local perturbations of singularities is effective in
each case—the proofs eventually reduce to establishing an extremely simple property,
a singularity that smoothly moves.

Such studies are an appropriate conclusion to this book, because they illustrate the
power of analytic combinatorics. We are able to use formal methods to develop suc-
cinct formal objects that encapsulate the combinatorial structure (BGFs), then, treat-
ing those BGFs as objects of analysis (functions of one, then two complex variables)
we are able to obtain wide encompassing asymptotic information about the original
combinatorial structure. Such an approach has serendipitous consequences. Combi-
natorial problems can then be organized into broad schemas, covering infinitely many
combinatorial types and governed by simple asymptotic laws—the discovery of such
schemas and of the associated universality properties constitutes the very essence of
analytic combinatorics.

Bibliographic notes. This chapter is primarily inspired by the studies of Bender and Rich-
mond [35, 44, 46], Canfield [101], Flajolet, Soria, and Drmota [171, 172, 175, 176, 258, 260,
547] as well as Hwang [337, 338, 339, 340]. Bender’s seminal study [35] initiated the study
of bivariate analytic schemes that lead to Gaussian laws and the paper [35] may rightly be con-
sidered to be at the origin of the field. Canfield [101], building upon earlier studies showed the
approach to extend to saddle-point schemas.

Tangible progress was next made possible by the development of the singularity analysis
method [248]. Earlier research was mostly restricted to methods based on subtraction of sin-
gularities, as in [35], which is in particular effective for meromorphic cases. The extension to
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algebraic–logarithmic singularities was, however, difficult given that the classical method of
Darboux does not provide for uniform error terms. In contrast, singularity analysis does ap-
ply to classes of analytic functions, since it allows for uniformity of estimates. The papers by
Flajolet and Soria [258, 260] were the first to make clear the impact of singularity analysis on
bivariate asymptotics. Gao and Richmond [277] were then able to extend the theory to cases
where both a singularity and its singular exponent are allowed to vary.

From there, Soria developed the framework of schemas considerably in her doctor-
ate [547]. Hwang extracted the very important concept of “quasi-powers” in his thesis [337]
together with a wealth of properties such as full asymptotic expansions, speed of convergence,
and large deviations. Drmota established general existence conditions leading to Gaussian laws
in the case of implicit, especially algebraic, functions [171, 172]. The “singularity perturbation”
framework for solutions of linear differential equations first appears under that name in [243].
Finally, the books by Sachkov, see [525] and especially [526] (based on the 1978 edition [524])
offer a modern perspective on bivariate asymptotics applied to classical combinatorial struc-
tures.

(“But beyond this, my son, be warned: the writing of many books

is endless; and excessive devotion to books is wearying to the body.”))

— Tanakh (The Bible), Qohelet (Ecclesiastes) 12:12.
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APPENDIX A

Auxiliary Elementary Notions

We combine in the three appendices definitions and theorems related to key mathematical con-
cepts not covered directly in the text. Generally, the entries in the appendices are independent,
intended for reference while addressing the main text. Our own Introduction to the Analy-
sis of Algorithms [538] is a gentle introduction to many of the concepts underlying analytic
combinatorics at a level accessible to any college student and is reasonable preparation for un-
dergraduates or anyone undertaking to read this book for self-study.

This appendix contains entries that are arranged in alphabetical order, regarding the fol-
lowing topics:

Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle
construction; Formal power series; Lagrange inversion; Regular languages; Stir-
ling numbers; Tree concepts.

The corresponding notions and results are used throughout the book, and especially in Part A
relative to Symbolic Methods. Accessible introductions to the subject of this appendix are the
books by Graham–Knuth–Patashnik [307], and Wilf [608], regarding combinatorial enumer-
ation, and De Bruijn’s vivid booklet [142], regarding asymptotic analysis. Reference works
in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stan-
ley [552, 554].

A.1. Arithmetical functions

A general reference for this section is Apostol’s book [16]. First, the Euler totient
function ϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well
as 729 below). It is defined as the number of integers in [1 . . k] that are relatively
prime to k. Thus, one has ϕ(p) = p − 1 if p ∈ {2, 3, 5, . . .} is a prime. More
generally when the prime number decomposition of k is k = pα1

1 · · · pαr
r , then

ϕ(k) = pα1−1
1 (p1 − 1) · · · pαr−1

r (pr − 1).

A number is squarefree if it is not divisible by the square of a prime. The Möbius
function μ(n) is defined to be 0 if n is not squarefree and otherwise is (−1)r if n =
p1 · · · pr is a product of r distinct primes.

Many elementary properties of arithmetical functions are easily established by
means of a Dirichlet generating functions (DGF). Let (an)n≥1 be a sequence; its DGF
is formally defined by

α(s) =
∞∑

n=1

an

ns
.

In particular, the DGF of the sequence an = 1 is the Riemann zeta function, ζ(s) =∑
n≥1 n−s . The fact that every number uniquely decomposes into primes is reflected

721
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by Euler’s formula,

(1) ζ(s) =
∏
p∈P

(
1 − 1

ps

)−1

,

where p ranges over the set P of all primes. (As observed by Euler, the fact that
ζ(1) = ∞ in conjunction with (1) provides a simple analytic proof that there are
infinitely many primes! See Note IV.1, p. 228)

Equation (1) implies that the DGF of the Möbius function satisfies

(2) M(s) :=
∑
n≥1

μ(n)

ns
=

∏
p∈P

(
1 − 1

ps

)
= 1

ζ(s)
.

(Verification: expand the infinite product and collect the coefficient of 1/ns .)
Finally, if (an), (bn), (cn) have DGF α(s), β(s), γ (s), then one has the equiva-

lence
α(s) = β(s)γ (s) ⇐⇒ an =

∑
d | n

bdcn/d .

In particular, taking cn = 1 (γ (s) = ζ(s)) and solving for β(s) shows (using (2)) the
implication

(3) an =
∑
d | n

bd ⇐⇒ bn =
∑
d | n

μ(d)an/d ,

which is known as Möbius inversion. This relation is used in the enumeration of
irreducible polynomials (Section I. 6.3, p. 88).

A.2. Asymptotic notations

Let S be a set and s0 ∈ S a particular element of S. We assume a notion of
neighbourhood to exist on S. Examples are S = Z>0 ∪ {+∞} with s0 = +∞, S = R

with s0 any point in R; S = C or a subset of C with s0 = 0, and so on. Two functions
φ and g from S \ {s0} to R or C are given.

— O–notation: write
φ(s) =

s→s0
O(g(s))

if the ratio φ(s)/g(s) stays bounded as s → s0 in S. In other words, there
exists a neighbourhood V of s0 and a constant C > 0 such that

|φ(s)| ≤ C |g(s)| , s ∈ V, s  = s0.

One also says that “φ is of order at most g”, or “φ is big–Oh of g” (as s
tends to s0).

— ∼–notation: write
φ(s) ∼

s→s0
g(s)

if the ratio φ(s)/g(s) tends to 1 as s → s0 in S. One also says that “φ and
g are asymptotically equivalent” (as s tends to s0).
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— o–notation: write
φ(s) =

s→s0
o(g(s))

if the ratio φ(s)/g(s) tends to 0 as s → s0 in S. In other words, for any
(arbitrarily small) ε > 0, there exists a neighbourhood Vε of s0 (depending
on ε), such that

|φ(s)| ≤ ε |g(s)| , s ∈ Vε, s  = s0.

One also says that “φ is of order smaller than g, or φ is little–oh of g” (as s
tends to s0).

These notations are due to Bachmann and Landau towards the end of the nineteenth
century. See Knuth’s note for a historical discussion [381, Ch. 4].

Related notations, of which, however, we only make a scant use, are

— �-notation: write
φ(s) =

s→s0
�(g(s))

if the ratio φ(s)/g(s) stays bounded from below in modulus by a non-zero
quantity, as s → s0 in S. One then says that φ is of order at least g.

— �-notation: if φ(s) = O(g(s)) and φ(s) = �(g(s)), write

φ(s) =
s→s0

�(g(s)).

One then says that φ is of order exactly g.

For instance, one has as n → +∞ in Z>0:

sin n = o(log n); log n = O(
√

n); log n = o(
√

n);(n
2

) = �(n
√

n); πn +√
n = �(n).

As x → 1 in R≤1, one has
√

1 − x = o(1); ex = O(sin x); log x = �(x − 1).

We take as granted in this book the elementary asymptotic calculus with such
notations (see, e.g., [538, Ch. 4] for a smooth introduction close to the needs of an-
alytic combinatorics and de Bruijn’s classic [143] for a beautiful presentation.). We
shall retain here in particular the fact that Taylor expansions (Note A.6, p. 726) imply
asymptotic expansions; for instance, the convergent expansions, all valid for |u| < 1,

log(1 + u) =
∞∑

k=1

(−1)k−1

k
uk , exp(u) =

∑
k≥0

1

k!
uk , (1 − u)−α =

∑
k≥0

(
k + α − 1

k

)
uk,

imply (as u → 0)

log(1 + u) = u + O(u2), exp(u) = 1 + u + u2

2
+ O(u3), (1 − u)1/2 = 1 − u

2
+ O(u2),

and so forth. Consequently, as n → +∞, one has:

log

(
1 + 1

n

)
= 1

n
+ O

(
1

n2

)
,

(
1 − 1

log n

)1/2

= 1 − 1

2 log n
+ o

(
1

log n

)
.
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Two important asymptotic expansions are Stirling’s formula for factorials and the
harmonic number approximation, valid for n ≥ 1,

(4)
n! = nne−n

√
2πn (1 + εn) , 0 < εn <

1
12n

Hn = log n + γ + 1

2n
− 1

12n2
+ ηn ηn = O

(
n−4

)
, γ

.= 0.57721,

that are commonly established as consequences of the Euler–Maclaurin summation
formula that relates sums to integrals (see Note A.7, p. 726, references [143, 538], as
well as Appendix B.7: Mellin transform, p. 762).
� A.1. Simplification rules for the asymptotic calculus. Some of them are

O(λ f ) −→ O( f ) (λ  = 0)
O( f )± O(g) −→ O(| f | + |g|)

−→ O( f ) if g = O( f )
O( f · g) −→ O( f )O(g).

Similar rules apply for o(·). �

Asymptotic scales. An important notion due to Poincaré is that of an asymptotic
scale. A sequence of functions ω0, ω1, . . . is said to constitute an asymptotic scale if
all functions ω j exist in a common neighbourhood of s0 ∈ S and if they satisfy there,
for all j ≥ 0:

ω j+1(s) = o(ω j (s)), i.e., lim
s→s0

ω j+1(s)

ω j (s)
= 0.

Examples at 0 are the scales: u j (x) = x j ; v2 j (x) = x j log x and v2 j+1(x) = x j ;
w j (x) = x j/2. Examples at infinity are t j (n) = n− j , and so on. Given a scale
	 = (ω j (s)) j≥0, a function f is said to admit an asymptotic expansion in the scale 	
if there exists a family of complex coefficients (λ j ) (the family is then necessarily
unique) such that, for each integer m:

(5) f (s) =
m∑

j=0

λ jω j (s)+ O(ωm+1(s)) (s → s0).

In this case, one writes

(6) f (s) ∼
∞∑
j=0

λ jω j (s), (s → s0)

with an extension of the symbol ‘∼’. (Some authors prefer the notation ‘≈”, but in
this book, we reserve it to mean informally “approximately equal” or “of the rough
form”.)

The scale may be finite and in most cases, we do not need to specify it as it is
clear from context. For instance, one can write

Hn ∼ log n + γ + 1

12n
, tan x ∼ x + 1

3
x3 + 2

15
x5.

In the first case, it is understood that n → ∞ and the scale is log n, 1, n−1, n−2, . . . .
In the second case, x → 0 and the scale is x, x3, x5, . . . . Note carefully that in the
case of a complete expansion (6), convergence of the infinite sum is not in any way
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implied: the relation is to be interpreted literally, in the sense of (5); namely, as a
collection of more and more precise descriptions of f when s becomes closer and
closer to s0. (As a matter of fact, almost all the asymptotic expansions of number
sequences developed in this book, starting with Stirling’s formula, are divergent.)
� A.2. Harmonics of harmonics. The harmonic numbers are readily extended to non-integral
index by (cf also the ψ function p. 746)

Hx :=
∞∑

k=1

(
1

k
− 1

k + x

)
.

For instance, H1/2 = 2 − 2 log 2. This extension is related to the Gamma function [604], and it
can be proved that the asymptotic estimate (4), with x replacing n, remains valid as x → +∞.
A typical asymptotic calculation shows that

HHn = log log n + γ + γ + 1
2

log n
+ O

(
1

log2 n

)
.

What is the shape of an asymptotic expansion of HHHn
? �

� A.3. Stackings of dominos. A stock of dominos of length 2cm is given. It is well known that
one can stack up dominos in a harmonic mode:

11/3 1/2

Estimate within 1% the minimal number of dominos needed to achieve a horizontal span of
1m (=100cm). (Hint: about 1.50926 1043 dominos!) Set up a scheme to evaluate this integer
exactly, and do it! �

� A.4. High precision fraud. Why is it that, to forty decimal places, one finds

4
500 000∑

k=1

(−1)k−1

2k − 1
.= 3.141590653589793240462643383269502884197

π
.= 3.141592653589793238462643383279502884197,

with only four “wrong” digits in the first sum? (Hint: consider the simpler problem

1

9801
.= 0.00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 · · · .)

Many fascinating facts of this kind are found in works by Jon and Peter Borwein [79, 80]. �

Uniform asymptotic expansions. The notions previously introduced allow for
uniform versions in the case of families dependent on a secondary parameter [143,
pp. 7–9]. Let { fu(s)}u∈U be a family of functions indexed by U . An asymptotic
equivalence like

fu(s) = O (g(s)) (s → s0),

is said to be uniform with respect to u if there exists an absolute constant K (indepen-
dent of u ∈ U ) and a fixed neighbourhood V of s0 such that

∀u ∈ U, ∀s ∈ V : | fu(s)| ≤ K |g(s)|.
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This definition in turn gives rise to the notion of a uniform asymptotic expansion: it
suffices that, for each m, the O error term in (5) be uniform. Such notions are central
for the determination of limit laws in Chapter IX, where a uniform expansion of a
class of generating functions near a singularity is usually required.
� A.5. Examples of uniform asymptotics. One has uniformly, for u ∈ R and u ∈ [0, 1] respec-
tively:

sin(ux) =
x→∞ O(1),

(
1 + 1

n

)u
=

n→∞ 1 + u

n
+ O

(
1

n2

)
.

However, the second expansion no longer holds uniformly with respect to u when u ∈ R (take
u = ±n), although it holds pointwise (non-uniformly) for any fixed u ∈ R. What about the

assertion

(
1 + 1

n

)u
=

n→∞ 1 + u

n
+ O

(
u2

n2

)
for u ∈ R? �

� A.6. Taylor expansions. Let (φk) be a sequence of polynomials such that φ0 = 1 and
φ′k+1 = φk , for all k ≥ 0. A repeated use of integration by parts shows that, for a function f

assumed to be sufficiently smooth, one has ([h]B
A denotes the variation h(B)− h(A))

(7)

∫ 1

0
f (t)φ0(t) dt = [

f φ1
]1
0 − [

f ′φ2
]1
0 + · · · + (−1)m−1[ f (m−1)φm

]1
0

+ (−1)m
∫ 1

0
f (m)(t) φm(t) dt.

Choosing φk(t) = (t − 1)k/k! yields the basic Taylor expansion with remainder:

(8)
∫ 1

0
f (t) dt =

m−1∑
k=0

f (k)(0)

(k + 1)!
+ 1

m!

∫ 1

0
f (m)(t) (1 − t)m dt.

If | f (m)(t)| is less than m!A−m for some A > 1, then a convergent representation follows.
Setting f (t) = xg′(xt) then yields the classical Taylor expansion with remainder

(9) g(x) =
m∑

k=0

g(k)(0)
xk

k!
+ 1

m!

∫ x

0
g(m+1)(t) (x − t)m dt,

and a convergent infinite series can be deduced under suitable growth assumptions on the deriva-
tives of g. (Complex analytic methods of Chapter IV and Appendix B develop a powerful theory
by which one can avoid explicitly determining and bounding derivatives.) �

� A.7. Euler–Maclaurin summation. Choose now φk(t) = [zn]zetz/(ez − 1). The φk are, up
to normalization, Bernoulli polynomials and their coefficients involve the Bernoulli numbers
(p. 268): φ0(t) = 1, φ1(t) = t − 1

2 , φ2(t) = t2/2 − t/2 + 1/12, and so on. Equation (7) then
yields the basic Euler–Maclaurin expansion with remainder:∫ 1

0
f (t) dt = f (0)+ f (1)

2
−

M∑
k=1

B2k

(2k)!

[
f (2k−1)]1

0 +
∫ 1

0
f (2M)(t)φ2M (t) dt.

From here, a formula results by summation (with {x} := x − �x�), which serves to compare
sums and integrals:∫ n

0
f (t) dt = f (0)+ f (n)

2
+

n−1∑
j=1

f ( j)−
M∑

k=1

B2k

(2k)!

[
f (2k−1)]n

0 +
∫ n

0
f (2M)(t)φ2M ({t}) dt.

The asymptotic expansions of (4), p. 724, can finally be developed: use f (t) = log(t + 1)
and f (t) = 1/(t + 1). (Hint: see [142, §3.6], [465, pp. 281–289], or [538, §4.5].) The
fine characterisation of the “Euler–Maclaurin constants” (Euler’s constant γ for Hn , Stirling’s
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constant
√

2π for Stirling’s approximation) is in general non-obvious: see pp. 238, pp. 410, and
pp. 766 for complex-analytic alternatives. �

A.3. Combinatorial probability

This entry gathers elementary concepts from probability theory specialized to the
discrete case and used in Chapter III. A more elaborate discussion of probability
theory forms the subject of Appendix C.

Given a finite set S, the uniform probability measure assigns to any σ ∈ S the
probability mass

P(σ ) = 1

card(S) .

The probability of any set, also known as event, E ⊆ S, is then measured by

P{E} := card(E)
card(S) =

∑
σ∈E

P(σ )

(“the number of favorable cases over the total number of cases”).
Given a combinatorial class A, we make extensive use of this notion with the

choice of S = An . This defines a probability model (indexed by n), in which elements
of size n in A are taken with equal likelihood. For this uniform probabilistic model,
we write

Pn and PAn ,

whenever the size and the type of combinatorial structure considered need to be em-
phasized.

Next consider a parameter χ , which is a function from S to Z≥0. We regard such
a parameter as a random variable, determined by its probability distribution,

P(χ = k) = card ({σ | χ(σ) = k})
card(S) .

The notions above extend gracefully to non-uniform probability models that are de-
termined by a family of non-negative numbers (pσ )σ∈S which add up to 1:

P(σ ) = pσ , P(E) :=
∑
σ∈E

pσ , P(χ = k) =
∑

χ(σ)=k

pσ .

Moments. Important information on a distribution is provided by its moments.
We state here the definitions for an arbitrary discrete random variable supported by Z

and determined by its probability distribution, P(X = k) = pk where the (pk)k∈Z

are non-negative numbers that add up to 1. The expectation of f (X) is defined as the
linear functional

E( f (X)) =
∑

k

P{X = k} · f (k).

In particular, the (power) moment of order r is defined as the expectation:

E(Xr ) =
∑

k

P{X = k} · kr .
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Of special importance are the first two moments of the random variable X . The
expectation (also mean or average) E(X) is

E(X) =
∑

k

P{X = k} · k.

The second moment E(X2) gives rise to the variance,

V(X) = E

(
(X − E(X))2

)
= E(X2)− E(X)2,

and, in turn, to the standard deviation

σ(X) =
√

V(X).

The mean deserves its name as first observed by Galileo Galilei (1564–1642): if a
large number of draws are effected and values of X are observed, then the arithmetical
mean of the observed values will normally be close to the expectation E(X). The
standard deviation measures in a mean quadratic sense the dispersion of values around
the expectation E(X).
� A.8. The weak law of large numbers. Let (Xk) be a sequence of mutually independent
random variables with a common distribution. If the expectation μ = E(Xk) exists, then for
every ε > 0:

lim
n→∞P

(∣∣∣∣ 1

n
(X1 + · · · + Xn)− μ

∣∣∣∣ > ε

)
= 0.

(See [205, Ch X] for a proof.) Note that the property does not require finite variance. �

Probability generating function. The probability generating function (PGF) of
a discrete random variable X , with values in Z≥0, is by definition:

p(u) :=
∑

k

P(X = k)uk,

and an alternative expression is p(u) = E(u X ). Moments can be recovered from the
PGF by differentiation at 1, for instance:

E(X) = d

du
p(u)

∣∣∣∣
u=1

, E(X (X − 1)) = d2

du2
p(u)

∣∣∣∣∣
u=1

.

More generally, the quantity,

E(X (X − 1) · · · (X − k + 1)) = dk

duk
p(u)

∣∣∣∣
u=1

,

is known as the kth factorial moment.
� A.9. Relations between factorial and power moments. Let X be a discrete random variable
with PGF p(u); denote by μr = E(Xr ) its r th moment and by φr its factorial moment. One
has

μr = ∂r
t p(et )

∣∣
t=0 , φr = ∂r

u p(u)
∣∣
u=1 .

Consequently, with
{n

k
}

and
[n
k
]

the Stirling numbers of both kinds (Appendix A.8: Stirling
numbers, p. 735),

φr =
∑

j

(−1)r− j
[

r

j

]
μ j ; μr =

∑
j

{
r

j

}
φ j .
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(Hint: for φr → μr , expand the Stirling polynomial defined in (17), p. 736; in the converse
direction, write p(et ) = p(1 + (et − 1)).) �

Markov–Chebyshev inequalities. These are fundamental inequalities that apply
equally well to discrete and to continuous random variables (see Appendix C for the
latter).

Theorem A.1 (Markov–Chebyshev inequalities). Let X be a non-negative random
variable and Y an arbitrary real random variable. One has for an arbitrary t > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

Proof. Without loss of generality, one may assume that X has been scaled in such
a way that E(X) = 1. Define the function f (x) whose value is 1 if x ≥ t , and 0
otherwise. Then

P{X ≥ t} = E( f (X)).

Since f (x) ≤ x/t , the expectation on the right is less than 1/t . Markov’s inequality
follows. Chebyshev’s inequality then results from Markov’s inequality applied to X =
|Y − E(Y )|2. �

Theorem A.1 informs us that the probability of being much larger than the mean
must decay (Markov) and that an upper bound on the decay is measured in units given
by the standard deviation (Chebyshev).

Moment inequalities are discussed for instance in Billingsley’s reference trea-
tise [68, p. 74]. They are of great importance in discrete mathematics where they
have been put to use in order to show the existence of surprising configurations. This
field was pioneered by Erdős and is often known as the “probabilistic method” [in
combinatorics]; see the book by Alon and Spencer [13] for many examples. Moment
inequalities can also be used to estimate the probabilities of complex events by reduc-
ing the problems to moment estimates for occurrences of simpler configurations—this
is one of the bases of the “first and second moment methods”, again pioneered by
Erdős, which are central in the theory of random graphs [76, 355]. Finally, moment
inequalities serve to design, analyse, and optimize randomized algorithms, a theme
excellently covered in the book by Motwani and Raghavan [451].

A.4. Cycle construction

The unlabelled cycle construction is introduced in Chapter I and is classically
obtained within the framework of Pólya theory (Note I.58, p. 85 and [129, 488, 491]).
The derivation given here is based on an elementary use of symbolic methods that
follows [259]. It relies on bivariate GFs developed in Chapter III, with z marking size
and u marking the number of components. Consider a class A and the sequence class
S = SEQ≥1(A). A sequence σ ∈ S is primitive (or aperiodic) if it is not the repetition
of another sequence (e.g., αββαα is primitive, but αβαβ = (αβ)2 is not). The class
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PS of primitive sequences is determined implicitly,

S(z, u) ≡ u A(z)

1 − u A(z)
=

∑
k≥1

P S(zk, uk),

which expresses that every sequence possesses a “root” that is primitive. Möbius
inversion (Equation (3), p. 722) then gives

P S(z, u) =
∑
k≥1

μ(k)S(zk, uk) =
∑
k≥1

μ(k)
uk A(zk)

1 − uk A(zk)
.

A cycle is primitive if all of its linear representations are primitive. There is an
exact one-to-� correspondence between primitive �–cycles and primitive �–sequences.
Thus, the BGF PC(z, u) of primitive cycles is obtained by effecting the transforma-
tion u� 	→ 1

�
u� on P S(z, u), which means

PC(z, u) =
∫ u

0
P S(z, v)

dv

v
,

giving after term-wise integration,

PC(z, u) =
∑
k≥1

μ(k)

k
log

1

1 − uk A(zk)
.

Finally, cycles can be composed from arbitrary repetitions of primitive cycles
(each cycle has a primitive “root”), which yields for C = CYC(A):

C(z, u) =
∑
k≥1

PC(zk, uk).

The arithmetical identity
∑

d | k μ(d)/d = ϕ(k)/k gives eventually

(10) C(z, u) =
∑
k≥1

ϕ(k)

k
log

1

1 − uk A(zk)
.

Formula (10) is reduced to the formula that appears in the translation of the cy-
cle construction in the unlabelled case (Theorem I.1, p. 27), upon setting u = 1; this
formula also coincides with the statement of Proposition III.5, p. 171, regarding the
number of components in cycles, and it yields the general multivariate version (Theo-
rem III.1, p. 165) by a simple adaptation of the argument.

A.5. Formal power series

Formal power series [330, Ch. 1] extend the usual algebraic operations on poly-
nomials to infinite series of the form

(11) f =
∑
n≥0

fnzn,

where z is a formal indeterminate. The notation f (z) is also employed. Let K be a
ring of coefficients (usually we shall take one of the fields Q,R,C); the ring of formal
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power series is denoted by K[[z]] and it is the set KN of infinite sequences of elements
of K, written as infinite sums (11), endowed with the operations of sum and product:(∑

n

fnzn

)
+

(∑
n

gnzn

)
:=

∑
n

( fn + gn) zn(∑
n

fnzn

)
×

(∑
n

gnzn

)
:=

∑
n

(
n∑

k=0

fk gn−k

)
zn .

A topology, known as the formal topology, is put on K[[z]] by which two series
f, g are “close” if they coincide to a large number of terms. First, the valuation of a
formal power series f = ∑

n fnzn is the smallest r such that fr  = 0 and is denoted
by val( f ). (One sets val(0) = +∞.) Given two power series f and g, their distance
d( f, g) is then defined as 2− val( f −g). With this distance (in fact an ultrametric dis-
tance), the space of all formal power series becomes a complete metric space. The
limit of a sequence of series { f ( j)} exists if, for each n, the coefficient of order n in
f ( j) eventually stabilizes to a fixed value as j → ∞. In this way formal convergence
can be defined for infinite sums: it suffices that the general term of the sum should
tend to 0 in the formal topology, i.e., the valuation of the general term should tend
to ∞. Similarly for infinite products, where

∏
(1 + u( j)) converges as soon as u( j)

tends to 0 in the topology of formal power series.
It is then a simple exercise to prove that the sum Q( f ) := ∑

k≥0 f k exists (the
sum converges in the formal topology) whenever f0 = 0; the quantity then defines the
quasi-inverse written (1 − f )−1, with the implied properties with respect to multipli-
cation (namely, Q( f )(1 − f ) = 1). In the same way one defines formally logarithms
and exponentials, primitives and derivatives, etc. Also, the composition f ◦g is defined
whenever g0 = 0 by substitution of formal power series. More generally, any process
on series that involves only finitely many operations at each coefficient is well-defined
and is accordingly a continuous functional in the formal topology.

It can then be verified that the usual functional properties of analysis extend to
formal power series provided they make sense formally; for instance, the logarithm
and the exponential of formal power series, as defined by their usual expansions, are
inverses of one another (e.g., log(exp(z f )) = z f ; exp(log(1 + z f )) = 1 + z f ). The
extension to multivariate formal power series follows along entirely similar lines.
� A.10. The OGF of permutations. The ordinary generating function of permutations,

P(z) :=
∞∑

n=0

n!zn = 1 + z + 2z2 + 6z3 + 24z4 + 120z5 + 720z6 + 5040z7 + · · ·

exists as an element of C[[z]], although the series has radius of convergence 0. The quantity
1/P(z) is well-defined (via the quasi-inverse) and one can effectively compute 1 − 1/P(z)
whose coefficients enumerate indecomposable permutations (p. 90). The formal series P(z)
can even be made sense of, analytically, but as an asymptotic series (Euler [198]), since∫ ∞

0

e−t

1 + t z
dt ∼ 1 − z + 2!z2 − 3!z3 + 4!z4 − · · · (z → 0+).

Thus, the OGF of permutations is also representable as the (formal, divergent) asymptotic series
associated to an integral. �
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A.6. Lagrange inversion

Lagrange inversion (Lagrange, 1770) relates the coefficients of the compositional
inverse of a function to coefficients of the powers of the function itself (see [129, §3.8]
and [330, §1.9]). It thus establishes a fundamental correspondence between functional
composition and standard multiplication of series. Although the proof is technically
simple, the result is altogether non-elementary.

The inversion problem z = h(y) consists in expressing y as a function of z;
it is solved by the Lagrange series given below. It is assumed that [y0]h(y) = 0,
so that inversion is formally well defined, and [y1]h(y)  = 0. The problem is then
conveniently standardized by defining φ(y) = y/h(y).

Theorem A.2 (Lagrange Inversion Theorem). Let φ(u) = ∑
k≥0 φkuk be a power

series of C[[u]] with φ0  = 0. Then, the equation y = zφ(y) admits a unique solution
in C[[z]] whose coefficients are given by (Lagrange form)

(12) y(z) =
∞∑

n=1

ynzn, where yn = 1

n
[un−1]φ(u)n .

Furthermore, one has for k > 0 (Bürmann form)

(13) y(z)k =
∞∑

n=1

y(k)n zn, where y(k)n = k

n
[un−k]φ(u)n .

By linearity, a form equivalent to Bürmann’s (13), with H an arbitrary function, is

(14) [zn]H(y(z)) = 1

n
[un−1]

(
H ′(u)φ(u)n

)
.

Proof. The method of indeterminates coefficients provides a system of polynomial
equations for {yn} that is seen to admit a unique solution:

y1 = φ0, y2 = φ0φ1, y3 = φ0φ
2
1 + φ2

0φ2, . . . .

Since yn only depends polynomially on the coefficients of φ(u) till order n, one may
assume without loss of generality, in order to establish (12) and (13), that φ is a poly-
nomial. Then, by general properties of analytic functions, y(z) is analytic at 0 (see
Chapter IV and Appendix B.2: Equivalent definitions of analyticity, p. 741 for defini-
tions) and it maps conformally a neighbourhood of 0 into another neighbourhood of 0.
Accordingly, the quantity nyn = [zn−1]y′(z) can be estimated by Cauchy’s coefficient
formula:

(15)

nyn = 1

2iπ

∫
0+

y′(z)
dz

zn
(Direct coefficient formula for y′(z))

= 1

2iπ

∫
0+

dy

(y/φ(y))n
(Change of variable z 	→ y)

= [yn−1]φ(y)n (Reverse coefficient formula for φ(y)n).

In the context of complex analysis, this useful result appears as nothing but an avatar
of the change-of-variable formula. The proof of Bürmann’s form is similar. �



“book” — 2008/10/3 — 16:05 — page 733 — #747

A.7. REGULAR LANGUAGES 733

There exist instructive (but longer) combinatorial proofs based on what is known
as the “cyclic lemma” or “conjugacy principle” [503] for Łukasiewicz words. (See
Note I.47, p. 75 and the remarks surrounding Proposition III.7, p. 194.) Another
classical proof due to Henrici relies on properties of iteration matrices [330, §1.9]; see
also Comtet’s book for related formulations [129].

Lagrange inversion serves most notably to develop explicit formulae for simple
varieties of trees (Chapters I, p. 66, and II, p. 128), mappings (Subsection II. 5.2,
p. 129), planar maps (Chapter VII, p. 516) and more generally for problems involving
coefficients of powers of functions.

� A.11. Lagrange–Bürmann inversion for fractional powers. The formula

[zn]

(
y(z)

z

)α
= α

n + α
[un]φ(u)n+α

holds for any real or complex exponent α, and hence generalizes Bürmann’s form. One can
similarly expand log(y(z)/z). �

� A.12. Abel’s identity. By computing in two different ways the coefficient

[zn]e(α+β)y = [zn]eαy · eβy ,

where y = zey is the Cayley tree function, one derives a collection of identities

(α + β)(n + α + β)n−1 = αβ

n∑
k=0

(
n

k

)
(k + α)k−1(n − k + β)n−k−1,

known as Abel’s identities. �

� A.13. A variant of Lagrange inversion. If y(z) satisfies y = zφ(y), then one has zy′ =
y/(1 − zφ′(y)). Hence, for a function a(y), the chain

[zn]
ya(y)

1 − zφ′(y) = [zn−1]y′a(y) = n[zn]A(y),

where A is such that A′ = a. This, by (14), yields the general evaluation:

[zn]
ya(y)

1 − zφ′(y) = [un−1]a(u)φ(u)n .

In particular, for φ(u) = eu , we have y ≡ T (the Tree function), and [zn]T/(1 − T ) = nn,
which gives back the number of mappings of size n. �

A.7. Regular languages

A language is a set of words over some fixed alphabet A. The structurally sim-
plest (yet non-trivial) languages are the regular languages that, as asserted on p. 57,
can be defined in several equivalent ways (see [6, Ch. 3] or [189]): by regular expres-
sions, either ambiguous or not, and by finite automata, either deterministic or non-
deterministic. Our definitions of S–regularity (S as in specification) and A–regularity
(A as in automaton) from Section I. 4, p. 49, correspond to definability by unambigu-
ous regular expression and deterministic automaton, respectively.
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Regular expressions and ambiguity. Here is first the classical definition of a
regular expression in formal language theory.

Definition A.1. The category RegExp of regular expressions is defined inductively
by the property that it contains all the letters of the alphabet (a ∈ A) as well as the
empty symbol ε, and is such that, if R1, R2 ∈ RegExp, then the formal expressions
R1 ∪ R2, R1 · R2 and R�

1 are regular expressions.

Regular expressions are meant to denote languages. The language L(R) asso-
ciated to R is obtained by interpreting ‘∪’ as set-theoretic union, ‘·’ as catenation
product extended to sets and ‘�’ as the star operation: L(R�) := {ε} ∪ L(R) ∪
(L(R) · L(R)) ∪ · · · . These operations, since they rely on set-theoretic operations,
place no condition on multiplicities (a word may be obtained in several different
ways). Accordingly, the notions of a regular expression and a regular language are
useful when studying structural properties of languages, but they must be adapted for
enumeration purposes, where unambiguous specifications are needed.

A word w ∈ L(R) may be parsable in several ways according to R: the ambiguity
coefficient (or multiplicity) of w with respect to the regular expression R is defined1

as the number of parsings and written κ(w) = κR(w).
A regular expression R is said to be unambiguous if for all w, we have κR(w) ∈

{0, 1}, ambiguous otherwise. In the unambiguous case, if L = L(R), then L is S–
regular in the sense of Chapter I, and a specification is obtained by the translation
rules

(16) ∪ 	→ +, · 	→ ×, ( )� 	→ SEQ,

so that the translation mechanism afforded by Proposition I.2 p. 52 applies. (Use of
the general mechanism (16) in the ambiguous case would imply that we enumerate
words with multiplicities [ambiguity coefficients] taken into account.)

A–regularity implies S–regularity. This construction is due to Kleene [367]
whose interest had its origin in the formal expressive power of nerve nets. Within
the classical framework of the theory of regular languages, it produces from an au-
tomaton (possibly non-deterministic) a regular expression (possibly ambiguous).

For our purposes, let a deterministic automaton a (as defined in Subsection I. 4.2,
p. 56) be given, with alphabet A, set of states Q, with q0 and Q the initial state
and the set of final states respectively (Definition I.11, p. 56). The idea consists in
constructing inductively the family of languages L(r)

i, j of words that connect state qi to
state q j passing only through states q0, . . . , qr in between qi and q j . We initialize the

data with L(−1)
i, j to be the singleton set {a} if the transition (qi ◦ a) = q j exists, and

the emptyset (∅) otherwise. The fundamental recursion

L(r)
i, j = L(r−1)

i, j + L(r−1)
i,r SEQ(S){L(r−1)

r,r }L(r−1)
r, j ,

incrementally takes into account the possibility of traversing the “new” state qr .
(The unions are clearly disjoint and the segmentation of words according to passages

1 For instance if R = (a ∪ aa)� and w = aaaa, then κ(w) = 5 corresponding to the five parsings:
a · a · a · a, a · a · aa, a · aa · a, aa · a · a, aa · aa.
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S–regularity ≡ Unambiguous
RegExp −→ General

RegExp
↑ K ↓ I

A–regularity ≡ Deterministic
FA

RS←− Non-deterministic
FA

Figure A.1. Equivalence between various notions of regularity: K is Kleene’s con-
struction; RS is Rabin–Scott’s reduction; I is the inductive construction of the text.

through state qr is unambiguously defined, hence the validity of the sequence con-
struction.) The language L accepted by a is then given by the regular specification

L =
∑

q j∈Q

L||Q||
0, j ,

that describes the set of all words leading from the initial state q0 to any of the final
states while passing freely through any intermediate state of the automaton.

S–regularity implies A–regularity. An object described by a regular specifica-
tion r can be first encoded as a word, with separators indicating the way the word
should be parsed unambiguously. These encodings are then describable by a regular
expression using the correspondence of (16). Next any language described by a regular
expression is recognizable by an automaton (possibly non-deterministic) as shown by
an inductive construction. (We only state the principles informally here.) Let → r →
represent symbolically the automaton recognizing the regular expression r, with the
initial state represented by an incoming arrow on the left and the final state(s) by an
outgoing arrow on the right. Then, the rules are schematically

r�

r × s

r + s

r

r s

r

s

�

�

�

Finally, a standard result of the theory, the Rabin–Scott theorem, asserts that any
non-deterministic finite automaton can be emulated by a deterministic one. (Note:
this general reduction produces a deterministic automaton whose set of states is the
powerset of the set of states of the original automaton; it may consequently involve an
exponential blow-up in the size of descriptions.)

A.8. Stirling numbers.

These numbers count among the most famous ones of combinatorial analysis.
They appear in two kinds:
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• the Stirling cycle number (also called ‘of the first kind’)
[n

k

]
enumerates

permutations of size n having k cycles;
• the Stirling partition number (also called ‘of the second kind’)

{n
k

}
enumer-

ates partitions of an n-set into k non-empty equivalence classes.

The notations
[n

k

]
and

{n
k

}
proposed by Knuth (himself anticipated by Karamata) are

nowadays most widespread; see [307].
The most natural way to define Stirling numbers is in terms of the “vertical” EGFs

when the value of k is kept fixed:

∑
n≥0

[
n

k

]
zn

n!
= 1

k!

(
log

1

1 − z

)k

∑
n≥0

{
n

k

}
zn

n!
= 1

k!

(
ez − 1

)k
.

From here, the bivariate EGFs follow straightforwardly:∑
n,k≥0

[
n

k

]
uk zn

n!
= exp

(
u log

1

1 − z

)
= (1 − z)−u

∑
n,k≥0

{
n

k

}
uk zn

n!
= exp

(
u(ez − 1)

)
.

Stirling numbers and their cognates satisfy a host of algebraic relations. For in-
stance, the differential relations of the EGFs imply recurrences reminiscent of the
binomial recurrence[

n

k

]
=

[
n − 1

k − 1

]
+ (n − 1)

[
n − 1

k

]
,

{
n

k

}
=

{
n − 1

k − 1

}
+ k

{
n − 1

k

}
.

By techniques akin to Lagrange inversion or by expanding the powers in the vertical
EGF of the Stirling partition numbers, one finds explicit forms[

n

k

]
=

∑
0≤ j≤h≤n−k

(−1) j+h
(

h

j

)(
n − 1 + h

n − k + h

)(
2n − k

n − k − h

)
(h − j)n−k+h

h!{
n

k

}
= 1

k!

k∑
j=0

(
k

j

)
(−1) j (k − j)n .

Although comforting, these forms are not too useful in general, due to their sign al-
ternation. (The one relative to Stirling cycle numbers was obtained by Schlömilch
in 1852; see [129, p. 216].)

An important relation is that of the generating polynomials of the
[n

r

]
for fixed n,

(17) Pn(u) ≡
n∑

r=0

[
n

r

]
ur = u · (u + 1) · (u + 2) · · · (u + n − 1),
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which nicely parallels the OGF for the
{n

r

}
, for fixed r :

∞∑
n=0

{
n

r

}
zn = zr

(1 − z)(1 − 2z) · · · (1 − r z)
.

� A.14. Schlömilch’s formula. It is established starting from

k!

n!

[
n

k

]
= 1

2iπ

∮
logk 1

1 − z

dz

zn+1
,

via the change of variable a la Lagrange: z = 1 − e−t . See [129, p.216] and [251]. �

A.9. Tree concepts

In the abstract graph-theoretic sense, a forest is an acyclic (undirected) graph and
a tree is a forest that consists of just one connected component. A rooted tree has a
specific node is distinguished, the root. Rooted trees are drawn with the root either
below (the mathematician’s and botanist’s convention) or on top (the genealogist’s
and computer scientist’s convention), and in this book, we employ both conventions
interchangeably. Here then are two planar representations of the same rooted tree

(18)

a∗

b

c d

e f

g h i

j k

l

a∗

b

d

j e k

l

f

i g h

c

where the star distinguishes the root. (Tags on nodes, a, b, c, etc, are not part of the
tree structure but only meant to discriminate nodes here.) A tree whose nodes are
labelled by distinct integers then becomes a labelled tree, this in the precise technical
sense of Chapter II. Size is defined by the number of nodes (vertices). Here is for
instance a labelled tree of size 9:

(19)

5

9

6 4

3

8 1

7

2

In a rooted tree, the outdegree of a node is the number of its descendants; with the
sole exception of the root, outdeegree is thus equal to degree (in the graph-theoretic
sense, i.e., the number of neighbours) minus 1. Once this convention is clear, one
usually abbreviates “outdegree” by “degree” when speaking of rooted trees. A leaf is
a node without descendant, that is, a node of (out)degree equal to 0. For instance the
tree in (19) has five leaves. Non-leaf nodes are also called internal nodes.

Many applications from genealogy to computer science require superimposing
an additional structure on a graph-theoretic tree. A plane tree (sometimes also called
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Figure A.2. Three representations of a binary tree.

a planar tree) is defined as a tree in which subtrees dangling from a common node
are ordered between themselves and represented from left to right in order. Thus, the
two representations in (18) are equivalent as graph-theoretic trees, but they become
distinct objects when regarded as plane trees.

Binary trees play a very special role in combinatorics. These are rooted trees
in which every non-leaf node has degree 2 exactly as, for instance, in the first two
drawings of Figure A.2. In the second case, the leaves have been distinguished by ‘�’.
The pruned binary tree (third representation) is obtained from a regular binary tree by
removing the leaves—such a tree then has unary branching nodes of either one of two
possible types (left- or right-branching). A binary tree can be fully reconstructed from
its pruned version, and a tree of size 2n + 1 always expands a pruned tree of size n.

A few major classes are encountered throughout this book. Here is a summary2.

general plane trees (Catalan trees) G = Z × SEQ(G) (unlabelled)
binary trees A = Z + (Z ×A×A) (unlabelled)
non-empty pruned binary trees B = Z + 2(Z × B)+ (Z × B × B) (unlabelled)
pruned binary trees C = 1 + (Z × B × B) (unlabelled)

general non-plane trees (Cayley trees) T = Z × SET(T ) (labelled)

The corresponding GFs are, respectively,

G(z) = 1 −√
1 − 4z

2
, A(z) = 1 −

√
1 − 4z2

2z
, B(z) = 1 − 2z −√

1 − 4z

2z
,

C(z) = 1 −√
1 − 4z

2z
, T (z) = zeT (z),

being of type OGF for the first four and EGF for the last one. The corresponding
counts are

Gn = 1

n

(
2n − 2

n − 1

)
, A2n+1 = 1

n + 1

(
2n

n

)
, Bn = 1

n + 1

(
2n

n

)
(n ≥ 1),

Cn = 1

n + 1

(
2n

n

)
, Tn = nn−1.

The common occurrence of the Catalan numbers, (Cn = Bn = A2n+1 = Gn+1) is
explained by pruning and by the rotation correspondence described on p. 73.

2 The term “general” refers to the fact that no degree constraint is imposed.
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APPENDIX B

Basic Complex Analysis

This appendix contains entries arranged in alphabetical order regarding the following topics:

Algebraic elimination; Equivalent definitions of analyticity; Gamma function; Holo-
nomic functions; Implicit Function Theorem; Laplace’s method; Mellin transform;
Several complex variables.

The corresponding notions and results are used starting with Part B, which is relative to Complex
Asymptotics. The present entries, together with the first sections of Chapter IV, should enable
a reader, previously unacquainted with complex analysis but with a fair background in basic
calculus, to follow the main developments of analytic combinatorics. There are a number of ex-
cellent classic presentations of complex analysis: the books by Dieudonné [165], Henrici [329],
Hille [334], Knopp [373], Titchmarsh [577], and Whittaker–Watson [604] are of special inter-
est, given their concrete approach to the subject (see also our comments on p. 286).

B.1. Algebraic elimination

Auxiliary quantities can be eliminated from systems of polynomial equations. In
essence, elimination is achieved by suitable combinations of the equations themselves.
One of the best strategies is based on Gröbner bases and is presented in the excellent
book of Cox, Little, and O’Shea [135]. This entry develops a more elementary ap-
proach based on resultants. It is necessitated by the analysis of algebraic curves,
function, and systems (Sections VII. 6, p. 482, and VII. 7, p. 493), with a general
applicability to context-free structures introduced on p. 79.

Resultants. Consider a field of coefficients K, which may be specialized as
Q,C,C(z), . . ., as the need arises. A polynomial of degree d in K[x] has at most
d roots in K and exactly d in the algebraic closure K of K. Given two polynomials,

P(x) =
�∑

j=0

a j x�− j , Q(x) =
m∑

k=0

bk xm−k,

their resultant (with respect to the variable x) is the determinant of order (�+ m),

(1) R(P, Q, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a�−1 a�
b0 b1 b2 · · · 0 0
0 b0 b1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bm−1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

also called the Sylvester determinant. By its definition, the resultant is a polynomial
form in the coefficients of P and Q. The main properties of resultants are the fol-
lowing: (i) ff P(x), Q(x) ∈ K[x] have a common root in the algebraic closure K of

739
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K, then R(P(x), Q(x), x) = 0; (i i) conversely, if R(P(x), Q(x), x) = 0 holds, then
either a0 = b0 = 0 or else P(x), Q(x) have a common root in K. (The idea of the
proof of (i) is as follows. Let S be the matrix in (1). Then the homogeneous linear
system Sw = 0 admits a solution w = (ξ�+m−1, . . . , ξ2, ξ, 1) in which ξ is a com-
mon root of P and Q; this is only possible if det(S) ≡ R vanishes.) See especially van
der Waerden’s crisp treatment in [590] and Lang’s treatise [401, V.10] for a detailed
presentation of resultants

Equating the resultant to 0 thus provides a necessary condition for the existence
of common roots, but not always a sufficient one. This has implications in situations
where the coefficients a j , bk depend on one or several parameters. In that case, the
condition R(P, Q, x) = 0 will certainly capture all the situations in which P and Q
have a common root, but it may also include some situations where there is a reduction
in degree, although the polynomials have no common root. For instance, take P(x) =
t x − 2 and Q(x) = t x2 − 4 (with t a parameter); the resultant with respect to x is

R = 4t (1 − t).

Indeed, the condition R = 0 corresponds to either a common root (t = 1 for which
P(2) = Q(2) = 0) or to some degeneracy in degree (t = 0 for which P(x) = −2 and
Q(x) = −4 have no common zero).

Systems of equations. Given a system

(2) {Pj (z, y1, y2, . . . , ym) = 0}, j = 1 . .m,

defining an algebraic curve, we can then proceed as follows in order to extract a single
equation satisfied by one of the indeterminates. By taking resultants with Pm , elimi-
nate all occurrences of the variable ym from the first m−1 equations, thereby obtaining
a new system of m−1 equations in m−1 variables (with z kept as a parameter, so that
the base field is C(z)). Repeat the process and successively eliminate ym−1, . . . , y2.
The strategy (in the simpler case where variables are eliminated in succession exactly
one at a time) is summarized in the skeleton procedure Eliminate:

procedure Eliminate (P1, . . . , Pm , y1, y2, . . . ym );
{Elimination of y2, . . . , ym by resultants}
(A1, . . . , Am) := (P1, . . . , Pm);
for j from m by −1 to 2 do
for k from j − 1 by −1 to 1 do

Ak := R(Ak , A j , y j );
return(A1).

The polynomials obtained need not be minimal, in which case, one should appeal
to multivariate polynomial factorization in order to select the relevant factors at each
stage. (Gröbner bases provide a neater alternative to these questions, see [135].)

Computer algebra systems usually provide implementations of both resultants and
Gröbner bases. The complexity of elimination is, however, exponential in the worst-
case: degrees essentially multiply, which is somewhat intrinsic. For example, y0 in
the quadratic system of k equations

y0 − z − yk = 0, yk − y2
k−1 = 0, . . . , y1 − y2

0 = 0
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(determining the OGF of regular trees of degree 2k) represents an algebraic function
of degree 2k and no less.
� B.1. Resultant and roots. Let P, Q ∈ C[x] have roots {α j } and {βk}, respectively. Then

R(P, Q, x) = a�0bm
0

�∏
i=1

m∏
j=1

(αi − β j ) = a�0

m∏
i=1

Q(αi ).

The discriminant of P classically defined by D(P) := a−1
0 R(P(x), P ′(x), x) satisfies

D(P) ≡ a−1
0 R(P(x), P ′(x), x) = a2�−2

0

∏
i  = j

(αi − α j ).

Given the coefficients of P and the value of D(P), an effectively computable bound on
the minimal separation distance δ between any two roots of P can be found. (Hint. Let
A = 1 + max j (|a j/a0|). Then each α j satisfies |α j | < m A. Set L = (�

2
)
. Then

δ ≥ |a0|2−2�|D(P)|(2A)L−1.) �

B.2. Equivalent definitions of analyticity

Two parallel notions are introduced at the beginning of Chapter IV: analyticity
(defined by power series expansions) and holomorphy (defined as complex differen-
tiability). As is known from any textbook on complex analysis, these notions are
equivalent. Given their importance for analytic combinatorics, this appendix entry
sketches a proof of the equivalence, which is summarized by the following diagram:

Analyticity
[A]−→←−
[C]

C-differentiability
↓ [B]

Null integral Property

A. Analyticity implies complex-differentiability. Let f (z) be analytic in the disc
D(z0; R). We may assume without loss of generality that z0 = 0 and R = 1 (else
effect a linear transformation on the argument z). According to the definition of ana-
lyticity, the series representation

(3) f (z) =
∞∑

n=0

fnzn,

converges for all z with |z| < 1. Elementary series rearrangements first entail that f (z)
given by this representation is analytic at any z1 interior to D(0; 1); similar techniques
then show the existence of the derivative as well as the fact that the derivative can be
obtained by term-wise differentiation of (3). See Note B.2 for details.
� B.2. Proof of [A]: Analyticity implies differentiability. Formally, the binomial theorem pro-
vides

(4)

f (z) =
∑
n≥0

fn zn =
∑
n≥0

fn(z1 + z − z1)
n

=
∑
n≥0

n∑
k=0

(
n

k

)
fn zk

1(z − z1)
n−k

=
∑
m≥0

cm(z − z1)
m , cm :=

∑
k≥0

(
m + k

k

)
fm+k zk

1.
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Let r1 be any number smaller than 1 − |z1|. We observe that (4) makes analytic sense. Indeed,
one has the bound | fn | ≤ C An , valid for any A > 1 and some C > 0. Thus, the terms in (4)
are dominated in absolute value by those of the double series

(5)
∑
n≥0

n∑
k=0

(
n

k

)
C An |z1|krn−k

1 = C
∑
n≥0

An(|z1| + r1)
n = C

1 − A(|z1| + r1)
,

which is absolutely convergent as soon as A is chosen such that A < (|z1| + r1)
−1.

Complex differentiability of at any z1 ∈ D(0; 1) is derived from the analogous calculation,
valid for small enough δ,

(6)

1

δ
( f (z1 + δ)− f (z1))) =

∑
n≥0

n fnzn−1
1 + δ

∑
n≥0

n∑
k=2

(
n

k

)
fn zk

1δ
n−k−2

=
∑
n≥0

n fnzn−1
1 + O(δ),

where boundedness of the coefficient of δ results from an argument analogous to (5). �

The argument of Note B.2 has shown that the derivative of f at z1 is obtained by
differentiating termwise the series representing f . More generally derivatives of all
orders exist and can be obtained in a similar fashion. In view of this fact, the equalities
of (4) can also be interpreted as the Taylor expansion (by grouping terms according to
values of k first)

(7) f (z1 + δ) = f (z1)+ δ f ′(z1)+ δ2

2!
f ′′(z1)+ · · · ,

which is thus generally valid for analytic functions.

B. Complex differentiability implies the “Null Integral” Property. The Null Inte-
gral Property relative to a domain � is the property:∫

λ

f (z) dz = 0 for any loop λ ⊂ �.

(A loop is a closed path that can be contracted to a single point in the domain �.) Its
proof results from the Cauchy–Riemann equations and Green’s formula.
� B.3. Proof of [B]: the Null Integral Property. This starts from the Cauchy–Riemann equa-
tions. Let P(x, y) = - f (x + iy) and Q(x, y) = . f (x + iy). By adopting successively in the
definition of complex differentiability δ = h and δ = ih, one finds P ′

x + i Q′
x = Q′

y − i P ′
y ,

implying the Cauchy–Riemann equations:

(8)
∂P

∂x
= ∂Q

∂y
and

∂P

∂y
= −∂Q

∂x
,

(The functions P and Q satisfy the partial differential equations � f = 0, where � is the two-

dimensional Laplacian � := ∂2

∂x2 + ∂2

∂y2 ; such functions are known as harmonic functions.)

The Null Integral Property, given differentiability, results from the Cauchy–Riemann equations,
upon taking into account Green’s theorem of multivariate calculus,∫

∂K
Adx + Bdy =

∫ ∫
K

(
∂B

∂x
− ∂A

∂y

)
dx dy,

which is valid for any (compact) domain K enclosed by a simple curve ∂K . �
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C. Complex differentiability implies analyticity. The starting point is the formula

(9) f (a) = 1

2iπ

∫
γ

f (z)

z − a
dz,

knowing only differentiability of f and its consequence, the Null Integral Property,
but precisely not postulating the existence of an analytic expansion (here γ is a simple
positive loop encircling a inside a region in which f is analytic).

� B.4. Proof of [C]: the integral representation. The proof of (9) is obtained by decomposing
f (z) in the original integral as f (z) = f (z) − f (a) + f (a). Define accordingly g(z) =
( f (z) − f (a))/(z − a), for z  = a, and g(a) = f ′(a). By the differentiability assumption, g
is continuous and holomorphic (differentiable) at any point other than a. Its integral is thus 0
along γ . On the other hand, we have ∫

γ

1

z − a
dz = 2iπ,

by a simple computation: deform γ to a small circle around a and evaluate the integral directly
by setting z − a = reiθ . �

Once (9) is granted, it suffices to write, e.g., for an expansion at 0,

f (z) = 1

2iπ

∫
γ

f (t)
dt

t − z

= 1

2iπ

∫
γ

f (t)

(
1 + z

t
+ z2

t2
+ · · ·

)
dt

t

=
∑
n≥0

fnzn, fn := 1

2iπ

∫
γ

f (t)
dt

tn+1
.

(Exchanges of integration and summation are justified by normal convergence.)
Analyticity is thus proved from the Null Integral Property.

� B.5. Cauchy’s formula for derivatives. One has

f (n)(a) = n!

2iπ

∫
γ

f (z)

(z − a)n+1
dz.

This follows from (9) by differentiation under the integral sign. �

� B.6. Morera’s Theorem. Suppose that f is continuous [but not a priori known to be differ-
entiable] in an open set � and that its integral along any triangle in � is 0. Then, f is analytic
(hence holomorphic) in �. (For details, see, e.g, [497, p. 68].) This theorem is useful for
disposing of apparent (or “removable”) singularities, as in (cos(z)− 1)/ sin(z). �

B.3. Gamma function

The formulae of singularity analysis in Chapter IV involve the Gamma function
in an essential manner. The Gamma function extends to non-integral arguments the
factorial function. We collect in this appendix a few classical facts regarding it. Proofs
may be found in classic treatises like Henrici’s [329] or Whittaker and Watson’s [604].
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Figure B.1. A plot of �(s) for real s.

Basic properties. Euler introduced the Gamma function as

(10) �(s) =
∫ ∞

0
e−t t s−1 dt,

where the integral converges provided -(s) > 0. Through integration by parts, one
immediately derives the basic functional equation of the Gamma function,

(11) �(s + 1) = s�(s).

Since �(1) = 1, one has �(n + 1) = n!, so that the Gamma function serves to extend
the factorial function for non-integral arguments. The special value,

(12) �

(
1

2

)
:=

∫ ∞

0
e−t dt√

t
= 2

∫ ∞

0
e−x2

dx = √
π,

proves to be quite important. It implies in turn �(− 1
2 ) = −2

√
π .

From (11), the Gamma function can be analytically continued to the whole of C

with the exception of poles at 0,−1,−2, . . . . indeed, the functional equation used
backwards yields

�(s) ∼ (−1)m

m!

1

s + m
(s → −m) ,

so that the residue of �(s) at s = −m is (−1)m/m!. Figure B.1 depicts the graph of
�(s) for real values of s.

� B.7. Evaluation of the Gaussian integral. Define J := ∫∞
0 e−x2

dx . The idea is to evalu-

ate J 2:

J 2 =
∫ ∞

0

∫ ∞

0
e−(x2+y2) dxdy.

Going to polar coordinates, (x2 + y2)1/2 = ρ, x = ρ cos θ , y = ρ sin θ yields, via the standard
change of variables formula:

J 2 =
∫ ∞

0

∫ π
2

0
e−ρ2

ρdρdθ.

The equality J 2 = π/4 results. �
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Hankel contour representation. Euler’s integral representation of �(s) used in
conjunction with the functional equation permits us to continue �(s) to the whole of
the complex plane. A direct approach due to Hankel provides an alternative integral
representation valid for all values of s.

Theorem B.1 (Hankel’s contour integral). Let
∫ (0)
+∞ denote an integral taken along

a contour starting at +∞ in the upper plane, winding counterclockwise around the
origin, and proceeding towards +∞ in the lower half-plane. Then, for all s ∈ C,

(13)
1

π
sin(πs)�(1 − s) = 1

�(s)
= − 1

2iπ

∫ (0)

+∞
(−t)−se−t dt.

In (13), (−t)−s is assumed to have its principal determination when t is negative real,
and this determination is then extended uniquely by continuity throughout the contour.
The integral then closely resembles the definition of �(1 − s). The first form of (13)
can also be rewritten as 1

�(s) , by virtue of the complement formula given below.

� B.8. Proof of Hankel’s representation. We refer to volume 2 of Henrici’s book [329, p. 35]
or Whittaker and Watson’s treatise [604, p. 245] for a detailed proof.

A contour of integration that fulfills the conditions of the theorem is typically the contour
H that is at distance 1 of the positive real axis comprising three parts: a line parallel to the
positive real axis in the upper half-plane; a connecting semi-circle centered at the origin; a line
parallel to the positive real axis in the lower half-plane. More precisely, H = H− ∪H+ ∪H◦,
where

(14)

⎧⎨⎩
H− = {z = w − i, w ≥ 0}
H+ = {z = w + i, w ≥ 0}
H◦ = {z = −eiφ, φ ∈ [−π

2 ,
π
2 ]}.

Let ε be a small positive real number, and denote by ε · H the image of H by the trans-
formation z 	→ εz. By analyticity, for the integral representation, we can equally well adopt as
integration path the contour ε ·H, for any ε > 0. The main idea is then to let ε tend to 0.

Assume momentarily that s < 0. (The extension to arbitrary s then follows by analytic
continuation.) The integral along ε ·H decomposes into two parts:

1. The integral along the semi-circle is 0 if we take the circle of a vanishing small
radius, since −s > 0.

2. The combined contributions from the upper and lower lines give, as ε → 0∫ (0)

+∞
(−t)−se−t dt = (−U + L)

∫ ∞

0
t−se−t dt

where U and L denote the determinations of (−1)−s on the half-lines lying in the
upper and lower half-planes respectively.

By continuity of determinations, U = (e−iπ )−s and L = (e+iπ )−s . Therefore, the right-hand
side of (13) is equal to

− (−eiπs + e−iπs)

2iπ
�(1 − s) = sin(πs)

π
�(1 − s),

which completes the proof of the theorem. �
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Expansions. The Gamma function has poles at the non-positive integers but has
no zeros. Accordingly, 1/�(s) is an entire function with zeros at 0,−1, . . ., and the
position of the zeros is reflected by the product decomposition,

(15)
1

�(s)
= seγ s

∞∏
n=1

[
(1 + s

n
)e−s/n

]
(of the so-called Weierstrass type). There γ = 0.57721 denotes Euler’s constant

γ = lim
n→∞ (Hn − log n) ≡

∞∑
n=1

[
1

n
− log(1 + 1

n
)

]
.

The logarithmic derivative of the Gamma function is classically known as the psi
function and is denoted by ψ(s):

ψ(s) := d

ds
log�(s) = �′(s)

�(s)
.

In accordance with (15), ψ(s) admits a partial fraction decomposition

(16) ψ(s + 1) = −γ −
∞∑

n=1

[
1

n + s
− 1

n

]
.

From (16), it can be seen that the Taylor expansion of ψ(s + 1), and hence of �(s +
1), involves values of the Riemann zeta function, ζ(s) = ∑∞

n=1
1
ns , at the positive

integers: for |s| < 1,

ψ(s + 1) = −γ +
∞∑

n=2

(−1)nζ(n)sn−1.

so that the coefficients in the expansion of �(s) around any integer are polynomi-
ally expressible in terms of Euler’s constant γ and values of the zeta function at the
integers. For instance, as s → 0,

�(s + 1) = 1 − γ s +
(
π2

12
+ γ 2

2

)
s2 +

(
−ζ(3)

3
− π2γ

12
− γ 3

6

)
s3 + O(s4).

Another direct consequence of the infinite product formulae for �(s) and sinπs
is the complement formula for the Gamma function,

(17) �(s)�(−s) = − π

s sinπs
,

which directly results from the factorization of the sine function (due to Euler),

sin s = s
∞∏

n=1

(
1 − s2

n2π2

)
.

In particular, Equation (17) gives back the special value (cf (12)): �(1/2) = √
π .
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� B.9. The duplication formula. This is

22s−1�(s)�(s + 1/2) = π1/2�(2s),

which provides the expansion of � near 1/2:

�(s + 1/2) = π1/2 − (γ + 2 log 2) π1/2s +
(
π5/2

4
+ (γ + 2 log 2)2 π1/2

2

)
s2 + O(s3).

The coefficients now involve log 2 as well as zeta values. �

Finally, a famous and absolutely fundamental asymptotic formula is Stirling’s
approximation, familiarly known as “Stirling’s formula”:

�(s + 1) = s�(s) ∼ sse−s
√

2πs

[
1 + 1

12s
+ 1

288s2
− 139

51840s3
+ · · ·

]
.

It is valid for (large) real s ∈ R>0, and more generally for all s → ∞ in | arg(s)| <
π − δ (any δ > 0). For the purpose of obtaining effective bounds, the following
quantitative relation [604, p. 253] often proves useful,

�(s + 1) = sse−s(2πs)1/2eθ/(12s), where 0 < θ ≡ θ(s) < 1,

an equality that holds now for all s ≥ 1. Stirling’s formula is usually established by
appealing to the method of Laplace applied to the integral representation for �(s +
1), see Appendix B.6: Laplace’s method, p. 755, or by Euler–Maclaurin summation
(Note A.7, p. 726). It is derived by Mellin transforms in Appendix B.7, p. 762.
� B.10. The Eulerian Beta function. It is defined for -(p),-(q) > 0 by any of the following
integrals,

B(p, q) :=
∫ 1

0
x p−1(1−x)q−1 dx =

∫ ∞

0

y p−1

(1 + y)p+q dy = 2
∫ π

2

0
cos2p−1 θ sin2q−1 θ dθ,

where the last form is known as a Wallis integral. It satisfies:

B(p, q) = �(p)�(q)

�(p + q)
.

[See [604, p. 254] for a proof generalizing that of Note B.7.] �

� B.11. Facts about the Riemann zeta function (ζ ). Here are a few properties of this function,
whose elementary theory centrally involves the Gamma function. It is initially defined by

ζ(s) :=
∑
n≥1

1

ns , -(s) > 1,

and it admits a meromorphic expansion to the whole of C, with only a pole at s = 1, where
ζ(s) = 1/(s − 1)+ γ + · · · and γ is Euler’s constant. Special values for k ∈ Z≥1 are

ζ(2k) = 22k−1|B2k |
(2k)!

π2k , ζ(−2k + 1) = − B2k

2k
, ζ(−2k) = 0,

with B2k a Bernoulli number. Other interesting values are ζ(0) = − 1
2 , ζ ′(0) = − log

√
2π .

The functional equation admits many forms, among which the reflection formula:

�
( s

2

)
π−s/2ζ(s) = �

(
1 − s

2

)
π−(1−s)/2ζ(1 − s).

The proofs make an essential use of Mellin transforms (Appendix B.7, p. 762, and especially
Equation (46), p. 764) as well as Hankel contours. Accessible introductions are to be found
in [186, 578, 604]. �
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B.4. Holonomic functions

Doron Zeilberger [626] has introduced discrete mathematicians to a powerful
framework, the holonomic framework, which takes its roots in classical differential
algebra [72, 133] and has found innumerable applications in the theory of special
functions and symbolic computation [480], combinatorial identities, and combinato-
rial enumeration. In these pages, we can only offer a (too) brief orientation tour of this
wonderful theory. Major contributions in the perspective of Analytic Combinatorics
are due to Stanley [551], Zeilberger [626], Gessel [289], and Lipshitz [409, 410]. As
we shall see there is a chain of growing generality and power,

rational → algebraic → holonomic.

The associated asymptotic problems are examined in Subsection VII. 9.1, p. 518 (“reg-
ular” singularities) and Section VIII. 7, p. 581 (“irregular” singularities).

Univariate holonomic functions. Holonomic functions1 are solutions of linear
differential equations or systems whose coefficients are rational functions. The uni-
variate theory is elementary.

Definition B.1. A formal power series (or function) f (z) is said to be holonomic if it
satisfies a linear differential equation,

(18) c0(z)
dr

dzr
f (z)+ c1(z)

dr−1

dzr−1
f (z)+ · · · + cr (z) f (z) = 0,

where the coefficients c j (z) lie in the field C(z) of rational functions. Equivalently,
f (z) is holonomic if the vector space over C(z) spanned by the set of all its derivatives
{∂ j f (z)}∞j=0 is finite dimensional.

By clearing denominators, we can assume, if needed, the quantities c j (z) in (18)
to be polynomials. It then follows that the coefficient sequence ( fn) of a holo-
nomic f (z) satisfies a recurrence,

(19) ĉs(n) fn+s + ĉs−1(n) fn+s−1 + · · · + ĉ0(n) fn = 0,

for some polynomials ĉ j (n), provided n ≥ n0 (some n0). Such a recurrence (19) is
known as a P–recurrence. (The two properties of sequences, to be the coefficients of
a holonomic function and to be P–recursive, are equivalent.)

Functions such as ez, log z, cos(z), arcsin(z),
√

1 + z, and Li2(z) :=∑
n≥1 zn/n2 are holonomic. Formal power series like

∑
zn/(n!)2 and

∑
n!zn

are holonomic. Sequences like 1
n+1

(2n
n

)
, 2n/(n2 + 1) are coefficients of holonomic

functions and are P–recursive. However, sequences like
√

n, log n are not P–
recursive, a fact that can be proved by an examination of singularities of associated
generating functions [232]. For similar reasons, tan z, sec z, and �(z) that have
infinitely many singularities are not holonomic.

Holonomic functions enjoy a rich set of closure properties. Define the Hadamard
product of two functions h = f 3 g to be the termwise product of series: [zn]h(z) =
([zn] f (z)) · ([zn]g(z)). We have the following theorem.

1A synonymous name is ∂-finite or D-finite.
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Theorem B.2 (Univariate holonomic closure). The class of univariate holonomic
functions is closed under the following operations: sum (+), product (×), Hadamard
product (3), differentiation (∂z), indefinite integration (

∫ z
), and algebraic substitu-

tion (z 	→ y(z) for some algebraic function y(z)).

Proof. An exercise in vector space manipulations. For instance, let VS(∂� f ) be
the vector space over C(z) spanned by the derivative {∂ j

z f } j≥0. If h = f + g
(or h = f · g), then VS(∂�h) is finite dimensional since it is included in the direct
sum VS(∂� f )⊕VS(∂�g) (respectively, the tensor product VS(∂� f )⊗VS(∂�g)). For
Hadamard products, if hn = fngn , then a system of P–recurrences can be obtained
for the quantities h(i, j)

n = fn+i gn+ j from the recurrences satisfied by fn, gn , and then
a single P–recurrence can be obtained. Closure under algebraic substitution results
from the methods of Note B.12. See Stanley’s historic paper [551] and his book chap-
ter [554, Ch. 6] for details. �

� B.12. Algebraic functions are holonomic. Let y(z) satisfy P(z, y(z)) = 0, with P a poly-
nomial. Any non-degenerate rational fraction Q(z, y(z)) can be expressed as a polynomial
in y(z) with coefficients in C(z). [Proof: let D be the denominator of Q; the Bezout relation
AP − B D = 1 (in C(x)[y]), obtained by a gcd calculation between polynomials (in y), ex-
presses 1/D as a polynomial in y.] Then, all derivatives of y live in the space spanned over
C(z) by 1, y, . . . , yd−1, with d = degy P(z, y). (The fact that algebraic functions are holo-
nomic was known to Abel [1, p. 287], and an algorithm has been described in recent times by
Comtet [128].) The closure under algebraic substitutions (y 	→ y(z)) asserted in Theorem B.2
can be established along similar lines. �

Zeilberger observed that holonomic functions with coefficients in Q can be spe-
cified by a finite amount of information. Equality in this subclass is then a decidable
property, as the following skeleton algorithm suggests (detailed validity conditions are
omitted).

Algorithm Z: Decide whether two holonomic functions A(z), B(z) are equal
Let #, T be holonomic descriptions of A, B (by equations or systems);
Compute a holonomic differential equation ϒ for h := A − B;
Let e be the order of ϒ .
Output ‘equal’ iff h(0) = h′(0) = · · · = h(e−1)(0) = 0, with e the order of ϒ .

The book titled “A = B” by Petkovšek, Wilf, and Zeilberger [480] abundantly illus-
trates the application of this method to combinatorial and special function identities.
Interest in the approach is reinforced by the existence of powerful symbolic manip-
ulation systems and algorithms: Salvy and Zimmermann [531] have implemented
univariate algebraic closure operations; Chyzak and Salvy [120, 123] have developed
algorithms for multivariate holonomicity discussed below.

Example B.1. The Euler–Landen identities for dilogarithms. Let as usual Liα(z) :=∑
n≥1 zn/nα represent the polylogarithm function (p. 408). Around 1760, Landen and Eu-

ler discovered the dilogarithmic identity [52, p. 247],

(20) Li2

(
− z

1 − z

)
= −1

2
log2(1 − z)− Li2(z),
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which corresponds to the (easy) identity on coefficients (extract [zn])

(21)
n∑

k=1

(
n − 1

k − 1

)
(−1)k

k2
= − 1

n2
−

n−1∑
k=1

1

k(n − k)
,

and specializes (at z = 1/2) to the infinite series evaluation

Li2

(
1

2

)
≡

∑
n≥1

1

n22n
= π2

12
− 1

2
log2 2.

Write A and B for the left and right sides of (20), respectively. The differential equations for A,
B are built in stages, according to closure properties:

(22)

Li1(z) : (1 − z)∂2 y − ∂y = 0
Li1(z)

2 : (1 − z)2∂3 y + 3(1 − z)∂2 y + ∂y = 0
Li2(z) : z(1 − z)∂3 y + (2 − 3z)∂2 y − ∂y = 0
B(z) : z3(36z5 + · · · )(1 − z)6∂9 y + · · · − 48(225z5 + · · · )∂y = 0
A(z) : z(1 − z)2∂3 y + (1 − z)(2 − 5z)∂2 y − (3 − 4z)∂y = 0

Thus, A − B lives a priori in a vector space of dimension 12 = 3 + 9. It thus suffices to check
the coincidence of the expansions of both members of (20) up to order 12 in order to prove the
identity A = B. (An upper bound on the dimension of the vector space is actually enough.)
Equivalently, given the automatic computations of (22), it suffices to verify sufficiently many
cases of the identity (21) in order to have a complete proof of it. . . . . . . . . . . . . . . . . . . . . . . . . �

� B.13. Holonomic functions as solutions of systems. (This is a simple outcome of Note VII.48,
p. 522.) A holonomic function y(z) which satisfies a linear differential equation of order m with
coefficients in C(z) is also the first component of a first-order differential system of order m with
rational coefficients: y(z) = Y1(z), where

(23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

dz
Y1(z) = a11(z)Y1 + · · · + a1m(z)Ym(z)

...
...

...
d

dz
Ym(z) = am1(z)Y1 + · · · + amm(z)Ym(z),

where each ai, j (z) is a rational function. Conversely, any solution of a system (23) with the
ai, j ∈ C(z) is holonomic in the sense of Definition B.1. �

� B.14. The Laplace transform. Let f (z) = ∑
n≥0 fn zn be a formal power series. Its (formal)

Laplace transform g = L[ f ] is defined as the formal power series:

L[ f ](x) =
∞∑

n=0

n! fn xn .

(Thus Laplace transforms convert EGFs into OGFs.) Under suitable convergence conditions,
the Laplace transform is analytically representable by

L[ f ](x) =
∫ ∞

0
f (xz)e−z dz.

The following property holds: A series is holonomic if and only if its Laplace transform is
holonomic. [Hint: use P–recurrences (19).] �
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� B.15. Hypergeometric functions. It is customary to employ the notation (a)n for representing
the falling factorial a(a−1) · · · (a−n+1). The function of one variable, z, and three parameters,
a, b, c, defined by

(24) F[a, b; c; z] = 1 +
∞∑

n=1

(a)n(b)n
(c)n

zn

n!
,

is known as a hypergeometric function. It satisfies the differential equation

(25) z(1 − z)
d2 y

dz2
+ (c − (a + b + 1)z)

dy

dz
− aby = 0,

and is consequently a holonomic function. An accessible introduction appears in [604, Ch XIV].
The generalized hypergeometric function (or series) depends on p + q parameters

a1, . . . , ap and c1, . . . , cq , and is defined by

(26) p Fq [a1, . . . , ap; c1, . . . , cq ; z] = 1 +
∞∑

n=1

(a1)n · · · (ap)n

(c1)n · · · (cq )n

zn

n!
,

so that F in (24) is a 2 F1. Hypergeometric functions satisfy a rich set of identities [193, 542],
many of which can be verified (though not discovered) by Algorithm Z . �

Multivariate holonomic functions. Let z = (z1, . . . , zm) be a collection of
variables and C(z) the field of all rational fractions in the variables z. For n =
(n1, . . . , nm), we define zn to be zn1

1 · · · znm
m and let ∂n represent ∂z

n1
1
· · · ∂znm

m
.

Definition B.2. A multivariate formal power series (or function) f (z) is said to be
holonomic if the vector space over C(z) spanned by the set of all derivatives {∂n f (z)}
is finite dimensional.

Since the partial derivatives ∂ j
z1 f are bound, a multivariate holonomic function

satisfies a differential equation of the form

c1,0(z)
∂r1

∂zr1
1

f (z)+ · · · + c1,r1(z) f (z) = 0,

and similarly for z2, . . . , zm . (Any system of equations with possibly mixed partial
derivatives that allows one to determine all partial derivatives in terms of a finite num-
ber of them serves to define a multivariate holonomic function.) Denominators can be
cleared, upon multiplication by the l.c.m of all the denominators that figure in the sys-
tem of defining equations. There results that coefficients of multivariate holonomic
functions satisfy particular systems of recurrence equations with polynomial coeffi-
cients, which are characterized in [410].

Given f (z) viewed as a function of z1, z2 (the remaining variables being param-
eters) and abbreviated as f (z1, z2), the diagonal with respect to variables z1, z2 is

Diagz1,z2
[ f (z1, z2)] =

∑
ν

fν,νzν1, where f (z1, z2) =
∑
n1,n2

fn1,n2 zn1
1 zn2

2 .

The Hadamard product is defined, as in the univariate case, with respect to a specific
variable (e.g., z1).

Theorem B.3 (Multivariate holonomic closure). The class of multivariate holonomic
functions is closed under the following operations: sum (+), product (×), Hadamard
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product (3), differentiation (∂), indefinite integration (
∫
), algebraic substitution, spe-

cialization (setting some variable to a constant), and diagonal.

An elementary proof of this remarkable theorem (in the sense that it does not
appeal to higher concepts of differential algebra) is given by Lipshitz in [409, 410].
The closure theorem and its companion algorithms [120, 570] make it possible to
prove, or verify, automatically identities, many of which are non-trivial. For instance,
in his proof of the irrationality of the number ζ(3) = ∑

n≥1 1/n3, Apéry introduced
the combinatorial sequence,

(27) An =
n∑

k=0

(
n

k

)2(n + k

k

)2

,

for which a proof was needed [588] of the fact that it satisfies the recurrence

(28) (n + 1)3 Bn + (n + 2)3 Bn+2 − (2n + 3)(17n2 + 51n + 39)Bn+1 = 0,

with B1 = 5, B2 = 73. Obviously, the generating function B(z) of the sequence
(Bn) as defined by the P–recurrence (28) is univariate holonomic. Repeated use of
the multivariate closure theorem shows that the ordinary generating function A(z) of
the sequence An of (28) is holonomic. (Indeed, start from the explicit∑

n1,n2

(
n1

n2

)
zn1

1 zn2
2 = 1

1 − z1(1 + z2)
,

∑
n1,n2

(
n1 + n2

n2

)
zn1

1 zn2
2 = 1

1 − z1 − z2
,

and apply suitable Hadamard products and diagonal operations.) This gives an ordi-
nary differential equation satisfied by A(z). The proof is then completed by checking
that An and Bn coincide for enough initial values of n.

Holonomic functions in infinitely many variables. Let f be a power series in
infinitely many variables x1, x2, . . .. Let S ⊂ Z≥1 be a subset of indices. We write
fS for the specialization of f in which all the variables whose indices do not belong
to S are set to 0. Following Gessel [289], we say that the series f is holonomic if, for
each finite S, the specialization fS is holonomic (in the variables xs for s ∈ S). Gessel
has developed a powerful calculus in the case of series f that are symmetric functions,
with stunning consequences for combinatorial enumeration.

An undirected graph is called k–regular if every vertex has exact degree k. A
standard Young tableau is the Ferrers diagram of an integer partition, filled with con-
secutive integers in a way that is increasing along rows and columns. The classical
Robinson–Schensted–Knuth correspondence establishes a bijection between permu-
tations of size n and pairs of Young tableaux of size n having the same shape. The
common height of the tableaux in the pair associated to a permutation σ coincides
with the length of the longest increasing subsequence of σ . A k × n Latin rectangle is
a k × n matrix with elements in the set {1, 2, . . . , n} such that entries in each row and
column are distinct. (It is thus a k–tuple of “discordant” permutations.)

Gessel’s calculus [288, 289] provides a unified approach for establishing the holo-
nomic character of many generating functions of combinatorial structures, such as:
Young tableaux, permutations of uniform multisets, increasing subsequences in per-
mutations, Latin rectangles, regular graphs, matrices with fixed row and column sums,
and so on. For instance: the generating functions of Latin rectangles and Young
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tableaux of height at most k, of k–regular graphs, and of permutations with longest
increasing subsequence of length k are holonomic functions. In particular, the number
Yn,k of permutations of size n with longest increasing subsequence ≤ k satisfies

(29)
∑
n≥0

Yn,k
z2n

(n!)2
= det

[
I|i− j |(2z)

]
1≤i, j≤k , where Iν(2z) =

∞∑
n=0

x2n+ν

n!(n + ν)!
,

that is, a corresponding GF is expressible as a determinant of Bessel functions. Other
applications are described in [122, 444].

The asymptotic problems relative to the holonomic framework are examined in
Subsection VII. 9.1, p. 518 and Section VIII. 7, p. 581.

B.5. Implicit Function Theorem

In its real-variable version, the Implicit Function Theorem asserts that, for a
sufficiently smooth function F(z, w) of two variables, a solution to the equation
F(z, w) = 0 exists in the vicinity of a solution point (z0, w0) (therefore satisfying
F(z0, w0) = 0) provided the partial derivative satisfies F ′

w(z0, w0)  = 0. This theorem
admits a complex extension, which is essential for the analysis of recursive structures.

Without loss of generality, one restricts attention to (z0, w0) = (0, 0). We con-
sider here a function F(z, w) that is analytic in two complex variables in the sense
that it admits a convergent representation valid in a polydisc,

(30) F(z, w) =
∑

m,n≥0

fm,nzmwn, |z| < R, |w| < S.

for some R, S > 0 (cf Appendix B.8: Several complex variables, p. 767).

Theorem B.4 (Analytic Implicit Functions). Let F be bivariate analytic near (0, 0).
Assume that F(0, 0) ≡ f0,0 = 0 and F ′

w(0, 0) ≡ f0,1  = 0. Then, there exists a unique
function f (z) analytic in a neighbourhood |z| < ρ of 0 such that f (0) = 0 and

F(z, f (z)) = 0, |z| < ρ.

� B.16. Proofs of the Implicit Function Theorem. See Hille’s book [334] for details.
(i) Proof by residues. Make use of the principle of the argument and Rouché’s Theorem to

see that the equation F(z, w) has a unique solution near 0 for |z| small enough. Appeal then to
the result, based on the residue theorem, that expresses the sum of the solutions to an equation
as a contour integral: with C a small enough contour around 0 in the w–plane, one has

(31) f (z) = 1

2iπ

∫
C
w

F ′
w(z, w)

F(z, w)
dw

(Note IV.39, p. 270), which is checked to represent an analytic function of z.

(i i) Proof by majorant series. Set G(z, w) := w− f −1
0,1 F(z, w). The equation F(z, w) = 0

becomes the fixed-point equation w = G(z, w). The bivariate series G has its coefficients
dominated termwise by those of

Ĝ(z, w) = A

(1 − z/R)(1 − w/S)
− A − A

w

S
.

The equation w = Ĝ(z, w) is quadratic. It admits a solution f̂ (z) analytic at 0,

f̂ (z) = A
z

R
+ A(A2 + AS + S2)

S2

z2

R2
+ · · · ,
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whose coefficients dominate termwise those of f .
(i i i) Proof by Picard’s method of successive approximants. With G as before, define the

sequence of functions
φ0(z) := 0; φ j+1(z) = G(z, φ j (z)),

each analytic in a small neighbourhood of 0. Then f (z) can be obtained as

f (z) = lim
j→∞

φ j (z) ≡ φ0(z)−
∞∑
j=0

(
φ j (z)− φ j+1(z)

)
,

which is itself checked to be analytic near 0 by the geometric convergence of the series. �

Weierstrass Preparation. The Weierstrass Preparation Theorem (WPT) also fa-
miliarly known as Vorbereitungssatz is a useful complement to the Implicit Function
Theorem.

Given a collection z = (z1, . . . , zm) of variables, we designate as usual by C[[z]]
the ring of formal power series in indeterminates z. We let C{z} denote the subset of
these that are convergent in a neighbourhood of (0, . . . , 0), i.e., analytic (cf Appen-
dix B.8: Several complex variables., p. 767).

Theorem B.5 (Weierstrass Preparation). Let F = F(z1, . . . , zm) in C[[z]] (respec-
tively, C{z}) be such that F(0, . . . , 0) = 0 and F depends on at least one of the z j with
j ≥ 2 (i.e., F(0, z2, . . . , zm) is not identically 0). Define a Weierstrass polynomial to
be a polynomial of the form

W (z) = zd + g1zd−1 + · · · + gd ,

where g j ∈ C[[z2, . . . , zm]] (respectively, g j ∈ C{z2, . . . , zm}), with g j (0, . . . , 0) =
0. Then, F admits a unique factorization

F(z1, z2, . . . , zm) = W (z1) · X (z1, . . . , zm),

where W (z) is a Weierstrass polynomial and X is an element of C[[z1, . . . , zm]] (re-
spectively, C{z1, . . . , zm}) satisfying X (0, 0 . . . , 0)  = 0.
� B.17. Weierstrass Preparation: sketch of a proof. An accessible proof and a discussion of
the formal algebraic result are found in Abhyankar’s lecture notes [2, Ch. 16].

The analytic version of the theorem is the one of use to us in this book. We prove it in the
representative case where m = 2 and write F(z, w) for F(z1, z2). First, the number of roots of
the equation F(z, w) = 0 is given by the integral formula

(32)
1

2iπ

∫
γ

F ′
w(z, w)

F(z, w)
dw,

where γ is a small contour encircling 0 in the w-plane. There exists a sufficiently small open
set � containing 0 such that the quantity (32), which is an analytic function of z while being
an integer, is constant, and thus necessarily equal to its value at z = 0, which we call d . The
quantity d is the multiplicity of 0 as a root of the equation F(0, w) = 0. In other words, we
have shown that if F(0, w) = 0 has d roots equal to 0, then there are d values of w near 0
(within γ ) such that F(z, w) = 0, provided z remains small enough (within �).

Let y1, . . . , yd be these d roots. Then, we have for the power sum symmetric functions,

yr
1 + · · · + yd

r = 1

2iπ

∫
γ

F ′
w(z, w)

F(z, w)
wr dw,

which are analytic functions of z when z is sufficiently near to 0. There results from relations be-
tween symmetric functions (Note III.64, p. 88) that y1, . . . , yr are the solutions of a polynomial
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equation with analytic coefficients, W , which is a uniquely defined Weierstrass polynomial.
The factorization finally results from the fact that F/W has removable singularities. �

In essence, by Theorem B.5, functions implicitly defined by a transcendental
equation (an equation F = 0) are locally of the same nature as algebraic functions
(corresponding to the equation W = 0). In particular, for m = 2, when the solu-
tions have singularities, these singularities can only be branch points and companion
Puiseux expansions hold (Section VII. 7, p. 493). The theorem acquires even greater
importance when perturbative singular expansions (corresponding to m ≥ 3) become
required for the purpose of extracting limit laws in Chapter IX.
� B.18. Multivariate implicit functions. The following extension of Theorem B.4 is important,
with regard to the solution of systems of equations (Section VII. 6, p. 482). Its statement [104,
§IV.5] makes use of the notion of analytic functions of several variables (Appendix B.8, p. 767).
Theorem B.6 (Multivariate implicit functions). Let fi (x1, . . . , xm; z1, . . . , z p), with i =
1, . . . ,m, be analytic functions in the neighbourhood of a point x j = a j , zk = ck . Assume that
the Jacobian determinant defined as

J := det

(
∂ fi
∂x j

)
is non-zero at the point considered. Then the equations (in the x j )

yi = fi (x1, . . . , xm; z1, . . . , z p), i = 1, . . . ,m,

admit a solution with the x j near to the a j , when the zk are sufficiently near to the ck and the yi
near to the bi := fi (a1, . . . , am; c1, . . . , cp): one has

x j = g j (y1, . . . , ym; z1, . . . , z p),

where each g j is analytic in a neighbourhood of the point (b1, . . . , bm; c1, . . . , cp).

The basic idea is that the linear approximations expressed by the Jacobian matrix
(
∂ fi
∂x j

)
can be inverted. Hence the x j depend locally linearly on the yi , zk ; hence they are analytic. �

B.6. Laplace’s method

The method of Laplace serves to estimate asymptotically real integrals depending
on a large parameter n (which may be an integer or a real number). Although it is
primarily a real analysis technique, we present it in detail, given its relevance to the
saddle-point method, which deals instead with complex contour integrals.

Case study: a Wallis integral. In order to demonstrate the essence of the method,
consider first the problem of estimating asymptotically the Wallis integral

(33) In :=
∫ π/2

−π/2
(cos x)n dx,

as n → +∞. The cosine attains its maximum at x = 0 (where its value is 1), and
since the integrand of In is a large power, the contribution to the integral outside any
fixed segment containing 0 is exponentially small and can consequently be discarded
for all asymptotic purposes. A glance at the plot of cosn x as n varies (Figure B.2) also
suggests that the integrand tends to conform to a bell-shaped profile near the centre as
n increases. This is not hard to verify: set x = w/

√
n, then a local expansion yields

(34) cosn x ≡ exp(n log cos(x)) = exp

(
−w2

2
+ O(n−1w4)

)
,
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Figure B.2. Plots of cosn x [left] and cosn(w/
√

n) [right], for n = 1 . . 20.

the approximation being valid as long as w = O(n1/4). Accordingly, we choose
(somewhat arbitrarily)

κn := n1/10,

and define the central range by |w| ≤ κn . These considerations suggest to rewrite the
integral In as

In = 1√
n

∫ +π√n/2

−π√n/2

(
cos

w√
n

)n

dw,

and expect under this new form an approximation by a Gaussian integral arising from
the central range.

Laplace’s method proceeds in three steps.
(i) Neglect the tails of the original integral.
(i i) Centrally approximate the integrand by a Gaussian.
(i i i) Complete the tails of the Gaussian integral.

In the case of the cosine integral (33), the chain is summarized in Figure B.3. Details
of the analysis follow.

(i) Neglect the tails of the original integral: By (34), we have

cosn
(
κn√

n

)
∼ exp

(
−1

2
n1/5

)
,

and, since the integrand is unimodal, this exponentially small quantity bounds the
integrand throughout |w| > κn , that is, on a large part of the integration interval. This
gives

(35) In =
∫ +κn/

√
n

−κn/
√

n
cosn x dx + O

(
exp

(
− 1

2
κ2

n

))
,

and the error term is of the order of exp(− 1
2 n1/5).
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∫ π/2

−π/2
cosn x dx = 1√

n

∫ π
2
√

n

− π
2
√

n

(
cos

w√
n

)n
dw Set x = w/

√
n; choose κn = n1/10

∼ 1√
n

∫ κn

−κn

(
cos

w√
n

)n
dw [Neglect the tails]

∼ 1√
n

∫ κn

−κn

e−w2/2dw [Central approxim.]

∼ 1√
n

∫ ∞

−∞
e−w2/2dw [Complete the tails]

∼
√

2π

n
.

Figure B.3. A typical application of the Laplace method.

(i i) Centrally approximate the integrand by a Gaussian: In the central region, we
have

(36)

I (1)n :=
∫ +κn/

√
n

−κn/
√

n
cosn x dx

= 1√
n

∫ +κn

−κn

e−w
2/2 exp

(
O(n−1w4)

)
dw

= 1√
n

∫ +κn

−κn

e−w
2/2

(
1 + O(n−1w4)

)
dw

= 1√
n

∫ +κn

−κn

e−w
2/2 dw + O(n−3/5),

given the uniformity of approximation (34) for w in the integration interval.

(i i i) Complete the tails of the Gaussian integral: The incomplete Gaussian inte-
gral in the last line of (36) can be easily estimated once it is observed that its tails are
small. Precisely, one has, for W ≥ 0,∫ ∞

W
e−w

2/2 dw ≤ e−W 2/2
∫ ∞

0
e−h2/2 dh ≡

√
π

2
e−W 2/2

(by the change of variable w = W + h). Thus,

(37)
∫ +κn

−κn

e−w
2/2 dw =

∫ +∞

−∞
e−w

2/2 dw + O

(
exp

(
− 1

2
κ2

n

))
.

It now suffices to collect the three approximations, (35), (36), and (37): we have
obtained in this way.

(38) In = 1√
n

∫ +∞

−∞
e−w

2/2 dw + O
(
n−3/5) ≡ √

2π

n
+ O(n−3/5).

These three steps comprise Laplace’s method.
� B.19. A complete asymptotic expansion. In the asymptotic scale of the problem, the expo-
nentially small errors in the tails can be completely neglected; the main error in (38) then arises
from the central approximation (34), and its companion O(w4n−1) term. This can easily be
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improved and it suffices to appeal to further terms in the expansion of log cos x near 0. For
instance, one has (with x = w/

√
n):

cosn x = e−w2/2
(

1 − w4/12n + O(n−2w8)
)
.

Proceeding as before, we find that a further term in the expansion of In is obtained by consid-
ering the additive correction

εn := − 1√
n

∫ +∞

−∞
e−w2/2

(
w4

12n

)
dw ≡ −

√
π

8n3
,

so that

In =
√

2π

n
−

√
π

8n3
+ O(n−17/10).

A complete asymptotic expansion in the scale n−1/2, n−3/2, n−5/2, . . . can easily be obtained
in this way. �

� B.20. Wallis integrals, central binomials, and the squaring of the circle. The integral In is an
integral considered by John Wallis (1616–1703). It can be evaluated through partial integration
or by its relation to the Beta integral (Note B.10, p. 747) as In = �( 1

2 )�(
n
2 + 1

2 )/�(
n
2 + 1).

There results (n 	→ 2n):(
2n

n

)
∼ 22n

√
πn

(
1 − 1

8n
+ 1

128n2
+ 5

1024n3
− · · ·

)
,

which is yet another avatar of Stirling’s formula. Wallis’ evaluation, when combined with its
asymptotic estimate, is, in Euler’s terms, a formula for “squaring the circle”

π

4
= 2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10

3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11
&c,

albeit one that cannot be finitely implemented with ruler and compass. �

General case of large powers. Laplace’s method applies under general condi-
tions to integrals involving large powers of a fixed function.

Theorem B.7 (Laplace’s method). Let f and g be indefinitely differentiable real-
valued functions defined over some compact interval I of the real line. As-
sume that |g(x)| attains its maximum at a unique point x0 interior to I and that
f (x0), g(x0), g′′(x0)  = 0. Then, the integral

In :=
∫

I
f (x)g(x)n dx

admits a complete asymptotic expansion:

(39) In ∼
√

2π

λn
f (x0)g(x0)

n

⎛⎝1 +
∑
j≥1

δ j

n j

⎞⎠ , λ := −g′′(x0)

g(x0)
.

� B.21. Proof of Laplace’s method. Assume first that f (x) ≡ 1. Then, one chooses κn as a
function tending slowly to infinity like before (κn = n1/10 is suitable). It suffices to expand

I (1)n :=
∫ x0+κn/

√
n

x0−κn/
√

n
en log g(x) dx,

as the difference In − I (1)n is exponentially small. Set first x = x0 + X and

L(X) := log g(x0 + X)− log g(x0)+ λ
X2

2
,
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so that, with w = X
√

n, the central contribution becomes:

I (1)n = g(x0)
n

√
n

∫ κn

−κn

e−λw2/2enL(w/
√

n) dw.

Then, expanding L(X) to any order M ,

L(X) =
M−1∑
j=3

� j X j + O(X M ),

shows that enL(w/
√

n) admits a full expansion in descending powers of
√

n:

enL(w/
√

n) ∼ 1 + �3w
3

√
n

+ 2�4w
4 + �2

3w
6

2n
+ · · · .

There, by construction, the coefficient of n−k/2 is a polynomial Ek(w) of degree 3k. This
expression can be truncated to any order, resulting in

I (1)n = g(x0)
n

√
n

∫ κn

−κn

e−λw2/2

⎛⎝1 +
M−1∑
k=1

Ek(w)

nk/2
+ O

(
1 + w3M

nM/2

)⎞⎠ dw.

One can then complete the tails at the expense of exponentially small terms since the Gaussian
tails are exponentially small.

The full asymptotic expansion is revealed by the following device: for any power series
h(w), introduce the Gaussian transform,

G[ f ] :=
∫ ∞

−∞
e−w2/2 f (w) dw,

which is understood to operate by linearity on integral powers of w,

G[w2r ] = 1 · 3 · · · (2r − 1)
√

2π, G[w2r+1] = 0.

Then, the complete asymptotic expansion of In is obtained by the formal expansion

(40)
g(x0)

n
√

nλ
· G

[
exp

(
λ−3/2w3 yL̃(λ−1/2wy)

)]
, L̃(X) := 1

X3
L(X), y 	→ 1√

n
.

The addition of the prefactor f (x) (omitted so far) induces a factor f (x0) in the main
term of the final result and it affects the coefficients in the smaller order terms in a computable
manner. Details are left as an exercise to the reader. �

� B.22. The next term? One has (with f j := f ( j)(x0), etc):

In
√
λn√

2πg(x0)
n
= f0 + −9λ3 f0 + 12λ2 f2 + 12λ f1g3 + 3λ f0g4 + 5g2

3 f0

24λ3n
+ O(n−2),

which is best determined using a symbolic manipulation system. �

The method is amenable to a large number of extensions. Roughly it requires
a point where the integrand is maximized, which induces some sort of exponential
behaviour, local expansions then allowing for a replacement by standard integrals.
� B.23. Special cases of Laplace’s method. When f (x0) = 0, the integral normalizes to an

integral of the form
∫
w2e−w2/2. If g′(x0) = g′′(x0) = g(i i i)(x0) = 0 but g(iv)(x0)  = 0

then a factor �(1/4) replaces the characteristic
√
π ≡ �(1/2). [Hint:

∫∞
0 exp(−wβ)wα dw =

β−1�((α + 1)β−1).] If the maximum is attained at one end of the interval I = [a, b] while
g′(x0) = 0, g′′(x0)  = 0, then the estimate (39) must be multiplied by a factor of 1/2. If the
maximum is attained at one end of the interval I while g′(x0)  = 0, then the right normalization
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is w = x/n and the integrand is reducible to an exponential e−w . Here are some dominant
asymptotic terms:

x0  = a, b g′′(x0)  = 0, f (x0) = 0
√

π
2λ5n3 g(x0)

n(λ f ′′(x0)+ f ′(x0)g
′′′(x0))

x0  = a, b g′′(x0) = 0, g(iv)(x0)  = 0 �( 1
4 )

4
√

3
2λ�n f (x0)g(x0)

n
(
λ� = − g(iv)(x0)

g(x0)

)
x0 = a f (x0)  = 0, g′(x0)  = 0 − 1

ng′(x0)
f (x0)g(x0)

n+1 .

A similar analysis is employed in Section VIII. 10, p. 600, when we discuss coalescence cases
of the saddle-point method. �

Example B.2. Stirling’s formula via Laplace’s method. Start from an integral representation
involving n!, namely,

In :=
∫ ∞

0
e−nx xn dx = n!

nn+1
.

This is a direct case of application of the theorem, except for the fact that the integration interval
is not compact. The integrand attains its maximum at x0 = 1 and the remainder integral

∫∞
2 is

accordingly exponentially small as proved by the chain∫ ∞

2
e−nx xn dx = (2e−2)n

∫ ∞

0

(
1 + x

2

)n
e−nx dx [x 	→ x + 2]

< (2e−2)n
∫ ∞

0
enx/2e−nx dx = 2

n
(2e−2)n [log(1 + x/2) < x/2].

Then the integral from 0 to 2 is amenable to the standard version of Laplace’s method as stated
in Theorem B.7 to the effect that

n! = nne−n
√

2πn

(
1 + O

(
1

n

))
.

The asymptotic expansion of In is derived from (40) and involves the combinatorial GF

(41) H(z, u) := exp

(
u

(
log(1 − z)−1 − z − z2

2

))
.

The noticeable fact is that H(z, u) is the exponential BGF of generalized derangements involv-
ing no cycles of length 1 or 2, with z marking size and u marking the number of cycles:

H(z, u) =
∑

n,k≥0

hn,kuk zn

n!
= 1+ 1

3 uz3+ 1
4 uz4+ 1

5 uz5+( 1
6 u+ 1

18 u2)z6+( 1
7 u+ 1

12 u2)z7+· · · .

Then, a complete asymptotic expansion of In is obtained by applying the Gaussian transform
G to H(wy,−y−2) (with y = n−1/2), resulting in

n! ∼ nne−n
√

2πn

(
1 + 1

12n
+ 1

288n2
− 139

51840n3
− · · ·

)
.

Proposition B.1 (Stirling’s formula). The factorial function admits the asymptotic expansion:

x! ≡ �(x + 1) ∼ xx e−x
√

2πx

⎛⎝1 +
∑
q≥1

cq

xq

⎞⎠ (x → +∞).

The coefficients satisfy cq =
2q∑

k=1

(−1)k

2q+k(q + k)!
h2q+2k,k , where hn,k counts the number of

permutations of size n having k cycles, all of length ≥ 3.
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The derivation above is due to Wrench (see [129, p. 267]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The scope of the method goes much beyond the case of integrals of large powers.
Roughly, what is needed is a localization of the main contribution of an integral to a
smaller range (“Neglect the tails”) where local approximations can be applied (“Cen-
trally approximate”). The approximate integral is then finally estimated by completing
back the tails (“Complete the tails”).

The Laplace method is excellently described in books by de Bruijn [143] and
Henrici [329]. A thorough discussion of special cases and multidimensional integrals
is found in the book by Bleistein and Handelsman [75]. Its principles are fundamental
to the development of the saddle-point method in Chapter VIII.
� B.24. The classical proof of Stirling’s formula. This proceeds from the integral

Jn :=
∫ ∞

0
e−x xn dx ( = n!)

The maximum is at x0 = n and the central range is now n ± κn
√

n. Reduction to a Gaussian
integral follows, but the estimate is no longer a direct application of Theorem B.7. �

Laplace’s method for sums. The basic principles of the method of Laplace (for
integrals) can often be recycled for the asymptotic evaluation of discrete sums. Take a
finite or infinite sum Sn defined by

Sn :=
∑

k

t (n, k).

A preliminary task consists in working out the general aspect of the family of num-
bers {t (n, k)} for fixed (but large) n as k varies. In particular, one should locate the
value k0 ≡ k0(n) of k for which t (n, k) is maximal. In a vast number of cases, tails
can be neglected; a central approximation t̂(n, k) of t (n, k) for k in the “central” re-
gion near k0 can be determined, frequently under the form [remember that we use in
this book ‘≈’ in the loose sense of “approximately equal”]

t̂(n, k) ≈ s(n)φ

(
k − k0

σn

)
,

where φ is some smooth function while s(n) and σn are scaling constants. The quan-
tity σn indicates the range of the asymptotically significant terms. One may then
expect

Sn ≈ s(n)
∑

k

φ

(
k − k0

σn

)
.

Then provided σn → ∞, one may further expect to approximate the sum by an inte-
gral, which after completing the tails, gives

Sn ≈ s(n)σn

∫ ∞

−∞
φ(t) dt.

Example B.3. Sums of powers of binomial coefficients. Here is, in telegraphic style, an appli-
cation to sums of powers of binomial coefficients:

S(r)n =
+n∑

k=−n

(
2n

n + k

)r
.
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The largest term arises at k0 = 0. Furthermore, one has elementarily( 2n
n+k

)(2n
n
) =

(
1 − 1

n
) · · · (1 − k−1

n
)(

1 + 1
n
) · · · (1 + k

n
) .

By the exp–log transformation and the expansion of log(1 ± x), one has

(42)

( 2n
n+k

)(2n
n
) = exp

(
− k2

n
+ O(k3n−2)

)
.

This approximation holds for k = o(n2/3), where it provides a Gaussian approximation

(φ(x) = e−r x2
) with a span of σn = √

n. Tails can be neglected, so that

1(2n
n
)r S(r)n ∼

∑
k

exp

(
−r

k2

n

)
,

say with |k| < n1/2κn where κn = n1/10. Then approximating the Riemann sum by an integral
and completing the tails, one gets

Sr
n ∼

(
2n

n

)r√
n
∫ ∞

−∞
e−rw2

dw, that is, Sr
n ∼ 22rn

√
r
(πn)−(r−1)/2,

which is our final estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

� B.25. Elementary approximation of Bell numbers. The Bell numbers counting set partitions
(p. 109) are

Bn = n![zn]eez−1 = e−1
∞∑

k=0

kn

k!
.

The largest term occurs for k near eu where u is the positive root of the equation ueu = n + 1;
the central terms are approximately Gaussian. There results the estimate,

(43) Bn = n!e−1(2π)−1/2(1 + u−1)−1/2 exp

(
eu(1 − u log u)− 1

2
u

) (
1 + O(e−u)

)
.

This alternative to saddle-point asymptotics (p. 560) is detailed in [143, p. 108]. �

B.7. Mellin transforms

The Mellin transform2 of a function f defined over R>0 is the complex-variable
function f �(s) defined by the integral

(44) f �(s) :=
∫ ∞

0
f (x)xs−1 dx .

This transform is also occasionally denoted by M[ f ] or M[ f (x); s]. Its importance
devolves from two properties: (i) it maps asymptotic expansions of a function at 0
and +∞ to singularities of the transform; (i i) it factorizes harmonic sums (defined
below). The conjunction of the mapping property and the harmonic sum property
makes it possible to analyse asymptotically rather complicated sums arising from a

2In the context of this book, Mellin transforms are useful in analyses relative the longest run problem
(p. 311), the height of trees (p. 329) polylogarithms (p. 408), and integer partitions (p. 576). They also serve
to establish fundamental asymptotic expansions, as in the case of harmonic and factorial numbers (below).
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linear superposition of models taken at different scales. Major properties are summa-
rized in Figure B.4. In this brief review, detailed analytic conditions must be omitted:
see the survey [234] as well as comments and references at the end of this entry.

It is assumed that f is locally integrable. Then, the two conditions,

f (x) =
x→0+

O(xu), f (x) =
x→+∞ O(xv),

guarantee that f ∗ exists for s in a strip,

s ∈ 〈−u,−v〉, i.e., −u < -(s) < −v.
Thus existence of the transform is granted provided v < u. The prototypical Mellin
transform is the Gamma function discussed earlier in this appendix:

�(s) :=
∫ ∞

0
e−x xs−1 dx = M[e−x ; s], 0 < -(s) < ∞.

Similarly f (x) = (1 + x)−1 is O(x0) at 0 and O(x−1) at infinity, and hence its
transform exists in the strip 〈0, 1〉; it is in fact π/ sinπs, as a consequence of the
Eulerian Beta integral. The Heaviside function defined by H(x) := [[0 ≤ x < 1]]
exists in 〈0,+∞〉 and has transform 1/s.

Harmonic sum property. The Mellin transform is a linear transform. In addition,
it satisfies the simple but important rescaling rule:

f (x)
M	→ f �(s) implies f (μx)

M	→ μ−s f �(s),

for any μ > 0. Linearity then entails the derived rule

(45)
∑

k

λk f (μk x)
M	→

(∑
k

λkμ
−s
k

)
· f �(s),

valid a priori for any finite set of pairs (λk, μk) and extending to infinite sums when-
ever the interchange of

∫
and

∑
is permissible. A sum of the form (45) is called

a harmonic sum, the function f is the “base function”, the λ values are the “ampli-
tudes” and the μ values the “frequencies”. Equation (45) then yields the “harmonic
sum rule”: The Mellin transform of a harmonic sum factorizes as the product of the
transform of the base function and a generalized Dirichlet series associated to ampli-
tudes and frequencies. Harmonic sums surface recurrently in the context of analytic
combinatorics and Mellin transforms are a method of choice for coping with them.

Here are a few examples of application of the harmonic sum rule (45):∑
k≥1

e−k2x2 	→
-(s)>1

1
2�(s/2)ζ(s)

∑
k≥0

e−x2k 	→
-(s)>0

�(s)

1 − 2−s∑
k≥0

(log k)e−
√

kx 	→
-(s)>2

−ζ ′(s/2)�(s)
∑
k≥1

1

k(k + x)
	→

0<-(s)<1
ζ(2 − s)

π

sinπs
.

� B.26. Connection between power series and Dirichlet series. Let ( fn) be a sequence of
numbers with at most polynomial growth, fn = O(nr ), and with OGF f (z). Then, one has∑

n≥1

fn
ns = 1

�(s)

∫ ∞

0
f
(
e−x ) xs−1 dx, -(s) > r + 1.
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Function ( f (x)) Mellin transform ( f �(s))

f (x)
∫ ∞

0
f (x)xs−1 dx definition, s ∈ 〈−u,−v〉

1

2iπ

∫ c+i∞

c−i∞
f �(s)x−s ds f �(s) inversion th., −u < c < −v∑

i

λi fi (x)
∑

i

λi f �i (s) linearity

f (μx) μ−s f �(s) scaling rule (μ > 0)

xρ f (xθ )
1

θ
f �

(
s + ρ

θ

)
power rule∑

i

λi f (μi x)

(∑
i

λiμ
−s
i

)
· f �(s) harmonic sum rule (μi > 0)∫ ∞

0
λ(t) f (t x) dt

∫ ∞

0
λ(t)t−s dt · f �(s) harmonic integral rule

f (x) logk x ∂k
s f �(s) diff. I, k ∈ Z≥0, ∂s := d

ds

∂k
x f (x)

(−1)k�(s)

�(s − k)
f �(s − k) diff. II, k ∈ Z≥0, ∂x := d

dx

∼
x→0

xα(log x)k ∼
s→−α

(−1)kk!

(s + α)k+1
mapping: x → 0, left poles

∼
x→+∞ xβ(log x)k ∼

s→−β
(−1)k−1k!

(s + β)k+1
mapping: x → ∞, right poles

Figure B.4. A summary of major properties of Mellin transforms.

For instance, one obtains the Mellin pairs

(46)
e−x

1 − e−x
M	→ ζ(s)�(s) (-(s) > 1), log

1

1 − e−x
M	→ ζ(s + 1)�(s) (-(s) > 0).

These serve to analyse sums or, conversely, deduce analytic properties of Dirichlet series. �

Mapping properties. Mellin transforms map asymptotic terms in the expansions
of a function f at 0 and +∞ onto singular terms of the transform f �. This property
stems from the basic Heaviside function identities

H(x)xα
M	→ 1

s + α
(s ∈ 〈−α,+∞〉), (1−H(x))xβ

M	→ − 1

s + β
(s ∈ 〈−∞,−β〉),

as well as what one obtains by differentiation with respect to α, β.
The converse mapping property also holds. Like for other integral transforms,

there is an inversion formula: if f is continuous in an interval containing x , then

(47) f (x) = 1

2iπ

∫ c+i∞

c−i∞
f �(s)x−s ds,

where the abscissa c should be chosen in the “fundamental strip” of f ; for instance
any c satisfying −u < c < −v with u, v as above is suitable.

In many cases of practical interest, f � is continuable as a meromorphic function
to the whole of C. If the continuation of f � does not grow too fast along vertical lines,
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then one can estimate the inverse Mellin integral of (47) by residues. This corresponds
to shifting the line of integration to some d  = c and taking poles into account by the
residue theorem. Since the residue at a pole s0 of f � involves a factor of x−s0 , the
contribution of s0 will give useful information on f (x) as x → ∞ if s0 lies to the
right of c, and on f (x) as x → 0 if s0 lies to the left. Higher order poles introduce
additional logarithmic factors. The “dictionary” is simply

(48)
1

(s − s0)k+1
M−1

−→ ± (−1)k

k!
x−s0(log x)k,

where the sign is ‘+’ for a pole on the left of the fundamental strip and ‘−’ for a pole
on the right.

Mellin asymptotic summation. The combination of mapping properties and the
harmonic sum property constitutes a powerful tool of asymptotic analysis, as shown
by the examples and the notes below.

Example B.4. Asymptotics of a simple harmonic sum. Let us first investigate the pair

F(x) :=
∑
k≥1

1

1 + k2x2
, F�(s) = 1

2

π

sin 1
2πs

ζ(s),

where F� results from the harmonic sum rule and has fundamental strip 〈1, 2〉. The function
F� is continuable to the whole of C with poles at the points 0, 1, 2 and 4, 6, 8, . . .. The trans-
form F� is small towards infinity, so that application of the dictionary (48) is justified. One
finds

F(x) ∼
x→0+

π

2x
− 1

2
+ O(x M ), F(x) ∼

x→+∞
π2

6x2
− π4

90x4
+ · · · ,

where the expansion at 0 is valid for any M > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

Example B.5. Asymptotics of a dyadic sum. A particularly important quantity in analytic
combinatorics is the following harmonic sum, stated here together with its Mellin transform:

	(x) :=
∞∑

k=0

(
1 − e−x/2k

)
; 	�(s) = − �(s)

1 − 2s , s ∈ 〈−1, 0〉.

It occurs for instance in the analysis of longest runs in words (p. 311). The transform of e−x −1
is also �(s), but in the shifted strip 〈−1, 0〉. The singularities of 	� are at s = 0, where there is
a double pole, at s = −1,−2, . . . which are simple poles, but also at the complex points

χk = 2ikπ

log 2
.

The Mellin dictionary (48) can still be applied provided one integrates along a long rectangular
contour that passes in-between poles. The salient feature is here the presence of fluctuations
induced by the imaginary poles, since x−χk = exp

(−2ikπ log2 x
)
, and each pole induces a

Fourier element. All in all, one finds (any M > 0):

(49)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
	(x) ∼

x→+∞ log2 x + γ

log 2
+ 1

2
+ P(x)+ O(x M )

P(x) := 1

log 2

∑
k∈Z\{0}

�

(
2ikπ

log 2

)
e−2ikπ log2 x .
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The analysis for x → 0 yields, in this particular case, 	(x) ∼
x→0

∑
n≥1

(−1)n−1

1 − 2−n
xn

n!
, which

would also result from expanding exp(−x/2k) in 	(x) and reorganizing the terms. . . . . . . . �

Example B.6. Euler–Maclaurin summation via Mellin analysis. Let f be continuous on
(0,+∞) and satisfy f (x) =x→+∞ O(x−1−δ), for some δ > 0, and

f (x) ∼
x→0+

∞∑
k=0

fk xk .

The summatory function F(x) satisfies

F(x) :=
∑
n≥1

f (nx), F�(s) = ζ(s) f �(s),

by the harmonic sum rule. The collection of (trimmed) singular expansions of f � at s =
0,−1,−2, . . . is summarized by the formal expansion, conventionally represented by 6:

f �(s) 6
(

f0
s

)
s=0

+
(

f1
s + 1

)
s=1

+
(

f2
s + 2

)
s=1

+ · · · .

Thus, by the mapping properties, provided F�(s) is small towards ±i∞ in finite strips, one has

F(x) ∼
x→0

1

x

∫ ∞

0
f (t) dt +

∞∑
j=0

f j ζ(− j)x j ,

where the main term is associated to the singularity of F� at 1 and arises from the pole of ζ(s),
with f �(1) giving the integral of f . The interest of this approach is that it is very versatile and
allows for various forms of asymptotic expansions of f at 0 as well as multipliers like (−1)k ,
log k, and so on; see [234] for details and Gonnet’s note [300] for alternative approaches. . . �

� B.27. Mellin-type derivation of Stirling’s formula. One has the Mellin pair

L(x) =
∑
k≥1

log
(

1 + x

k

)
− x

k
, L�(s) = π

s sinπs
ζ(−s), s ∈ 〈−2,−1〉.

Note that L(x) = log(e−γ x/�(1 + x)). Mellin asymptotics provides

L(x) ∼
x→+∞−x log x − (γ − 1)x − 1

2
log x − log

√
2π − 1

12x
+ 1

360x3
− 1

1260x5
+ · · · ,

where one recognizes Stirling’s expansion of x!:

log x! ∼
x→+∞ log

(
xx e−x

√
2πx

)
+

∑
n≥1

B2n

2n(2n − 1)
x1−2n

(the Bn are the Bernoulli numbers). �

� B.28. Mellin-type analysis of the harmonic numbers. For α > 0, one has the Mellin pair:

Kα(x) =
∑
k≥1

(
1

kα
− 1

(k + x)α

)
, K �

α(s) = −ζ(α − s)
�(s)�(α − s)

�(α)
.

This serves to estimate harmonic numbers and their generalizations, for instance,

Hn ∼
n→∞ log n + γ − 1

2n
−

∑
k≥2

Bk

k
n−k ∼ log n + γ + 1

2n
− 1

12n2
+ 1

120n4
− · · · ,

since K1(n) = Hn . �
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General references on Mellin transforms are the books by Doetsch [168] and Wid-
der [605]. The term “harmonic sum” and some of the corresponding technology orig-
inates with the abstract [253]. This brief presentation is based on the survey article
by Flajolet, Gourdon, and Dumas [234] to which we refer for a detailed treatment;
see also the self-contained treatment by Butzer and Jansche [100]. Mellin analysis of
“harmonic integrals” is a classical topic of applied mathematics for which we refer
to the books by Wong [614] and Paris–Kaminski [472]. Valuable accounts of proper-
ties of use in discrete mathematics and analysis of algorithms appear in the books by
Hofri [335], Mahmoud [429], and Szpankowski [564].

B.8. Several complex variables

The theory of analytic (or holomorphic) functions of one complex variables ex-
tends non-trivially to several complex variables. This profound theory has been largely
developed in the course of the twentieth century. Here we shall only need the most
basic concepts, not the deeper results, of the theory.

Consider the space Cm endowed with the metric

|z| = |(z1, . . . , zm)| =
m∑

j=1

|z j |2,

under which it is isomorphic to the Euclidean space R2m . A function f from Cm to C

is said to be analytic at some point a if in a neighbourhood of a it can be represented
by a convergent power series,

(50) f (z) =
∑

n

fn(z − a)n ≡
∑

n1,...,nm

fn1,...,nm (z1 − a1)
n1 · · · (zm − am)

nm .

There and throughout the theory, extensive use is made of the multi-index convention,
as encountered in Chapter III, p. 165.

An expansion (50) converges in a polydisc
∏

j {|z j − a j | < r j }, for some r j > 0.
A convergent expansion at (0, . . . , 0) has its coefficients majorized in absolute value
by those of a series of the form

m∏
j=1

1

1 − z j/R j
=

∑
n

R−nzn ≡
∑

n1,...,nm

R−n1
1 · · · R−nm

m zn1
1 · · · znm

m .

Closure of analytic functions under sums, products, and compositions results from
standard manipulations of majorant series (see p. 250 for the univariate case). Finally,
a function is analytic in an open set � ⊆ Cm iff it is analytic at each a ∈ �.

A remarkable theorem of Hartogs asserts that f (z) with z ∈ Cm is analytic jointly
in all the z j (in the sense of (50)) if it is analytic separately in each variable z j . (The
version of the theorem that postulates a priori continuity is elementary.)

As in the one-dimensional case, analytic functions can be equivalently defined by
means of differentiability conditions. A function is C-differentiable or holomorphic
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at a if, as �z → 0 in Cm , one has

f (a +�z)− f (a) =
m∑

j=1

c j�z j + o (|�z|) .

The coefficients c j are the partial derivatives, c j = ∂z j f (a). The fact that this relation
does not depend on the way �z tends to 0 implies the Cauchy–Riemann equations.
In a way that parallels the single variable case, it is proved that two conditions are
equivalent: f is analytic; f is complex-differentiable.

Iterated integrals are defined in the natural way and one finds, by a repeated use
of calculus in a single variable,

(51) f (z) = 1

(2iπ)m

∫
C1

· · ·
∫

Cm

f (ζ )

(ζ1 − z1) · · · (ζm − zm)
dζ1 · · · dζm,

where C j is a small circle surrounding z j in the z j –plane. By differentiation under the
integral sign, Equation (51) also provides an integral formula for the partial derivatives
of f , which is the analogue of Cauchy’s coefficient formula. Iterated integrals are
independent of details of the “polypath” on which they are taken, and uniqueness of
analytic continuation holds.

The theory of functions of several complex variables develops in the direction of
an integral calculus that is much more powerful than the iterated integrals mentioned
above; see, for instance, the book by Aı̆zenberg and Yuzhakov [8] for a multidimen-
sional residue approach. Egorychev’s monograph [187] develops systematic applica-
tions of the theory of functions of one or several complex variables to the evaluation
of combinatorial sums. Pemantle together with several coauthors [474, 475, 476] has
launched an ambitious research programme meant to extract the coefficients of mero-
morphic multivariate generating functions by means of this theory, with the ultimate
goal of obtaining systematically asymptotics from multivariate generating functions.
By contrast, see especially Chapter IX, we can limit ourselves to developing a pertur-
bative theory of one-variable complex function theory.

In the context of this book, the basic notion of analyticity in several complex vari-
ables serves to confer a bona fide analytic meaning to multivariate generating func-
tions. Basic definitions are also needed in the context of functions f defined implicitly
by functional relations of the form H(z, f ) = 0 or H(z, u, f ) = 0, where analytic
functions of two or more complex variables make an appearance. (See in particular the
discussion of the analytic Implicit Function Theorem and the Weierstrass Preparation
Theorem in this appendix, p. 753.)
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APPENDIX C

Concepts of Probability Theory

This appendix contains entries arranged in logical order regarding the following topics:

Probability spaces and measure; Random variables; Transforms of distributions;
Special distributions; Convergence in law.

In this book we start from probability spaces that are finite, since they arise from objects of a
fixed size in some combinatorial class (see Chapter III and Appendix A.3: Combinatorial prob-
ability, p. 727 for elementary aspects), then need basic properties of continuous distributions in
order to discuss asymptotic limit laws. The entries in this appendix are related principally to
Chapter IX of Part C (Random Structures). They present a unified framework that encompasses
discrete and continuous probability distributions alike. For further study, we recommend the su-
perb classics of Feller [205, 206], given the author’s concrete approach, and of Billingsley [68],
whose coverage of limit distributions is of great value for analytic combinatorics.

C.1. Probability spaces and measure

An axiomatization of probability theory1 was discovered in the 1930s by Kol-
mogorov. A measurable space consists of a set �, called the set of elementary events
or the sample set and a σ -algebra A of subsets of � called events (that is, a collec-
tion of sets containing ∅ and closed under complement and denumerable unions). A
measure space is a measurable space endowed with a measure μ : A 	→ R≥0 that
is additive over finite or denumerable unions of disjoint sets; in that case, elements
of A are called measurable sets. A probability space is a measure space for which the
measure satisfies the further normalization μ(�) = 1; in that case, we also write P for
μ. Any set S ⊆ � such that μ(S) = 1 is called a support of the probability measure.
These definitions given above cover several important cases.

(i) Finite sets with the uniform measure (also known as “counting” measure).
In this case, � is finite, all sets are in A (i.e., are measurable), and (|| · || denotes
cardinality)

μ(E) := ||E ||
||S|| .

Non-uniform measures over a finite set � are determined by assigning a non-negative
weight p(ω) to each element of � (with

∑
ω∈� p(ω) = 1) and setting

μ(E) :=
∑
e∈E

p(e).

(We also write P(e) for P({e}) ≡ μ({e}) = p(e).) In this book, � is usually the sub-
class Cn formed by the objects of size n in some combinatorial class C. The uniform
measure is usually assumed, although suitably weighted models often prove to be of

1For this entry we refer to the vivid and well-motivated presentation in Williams’ book [609] or to
many classical treatises such as those by Billingsley [68] and Feller [205].

769
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interest: see for instance in Chapter III the discussion of weighted word models and
Bernoulli trials as well as the case of weighted tree models and branching processes.

(i i) Discrete probability measures over the integers (supported by Z or Z≥0). In
this case the measure is determined by a function p : Z 	→ R≥0 and

μ(E) :=
∑
e∈E

p(e),

with μ(Z) = 1. (All sets are measurable.) More general discrete measures supported
by denumerable sets of R can be similarly defined.

(i i i) The real line R equipped with the σ -algebra generated by the open intervals
constitutes a standard example of a measurable space; in that case, any member of
the σ -algebra is known as a Borel set. The measure, denoted by λ, that assigns to an
interval (a, b) the value λ(a, b) = b−a (and is extended non-trivially to all Borel sets
by additivity) is known as the Lebesgue measure. The interval [0, 1] endowed with λ
is a probability space. The line R itself is not a probability space since λ(R) = +∞.

In the measure-theoretic framework, a random variable is a mapping X from
a probability space � (equipped with its σ -algebra A and its measure P�) to R

(equipped with its Borel sets B) such that the preimage X−1(B) of any B ∈ B lies
in A. For B ∈ B, the probability that X lies in B is then defined as

P(X ∈ B) := P�(X
−1(B)).

Since the Borel sets can be generated by the semi-infinite intervals (−∞, x], this
probability is equivalently determined by the function

F(x) := P(X ≤ x),

which is called the distribution function or cumulative distribution function of X . It
is then possible to introduce random variables directly by means of distribution func-
tions, see the entry below, Random variables.

Integration. The next step is to go from measures of sets to integrals of (real-
valued) functions. Lebesgue integrals are constructed, first for indicator functions of
intervals, then for simple (staircase) functions, then for non-negative functions, finally
for integrable functions. One defines in this way, for an arbitrary measure μ, the
Lebesgue integral

(1)
∫

f dμ, also written
∫

f (x)dμ(x) or
∫

f (x)μ(dx),

where the last notation is often preferred by probabilists. The basic idea is to decom-
pose the domain of values of f into finitely many measurable sets (Ai ) and, for a
positive function f , consider the supremum over all finite decompositions (Ai )

(2)
∫

f dμ := sup
(Ai )

∑
i

[
inf
ω∈Ai

f (ω)

]
μ(Ai ).

(Thus Riemann integration proceeds by decomposing the domain of the function’s
arguments while Lebesgue integrals decomposes the domain of values and appeals to
a richer notion of measure for point sets.)
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In (1) and (2), the possibility exists that μ assigns a non-zero measure to cer-
tain individual points. In such a context, the integral is sometimes referred to as
the Lebesgue-Stieltjes integral. It suitably generalizes the Riemann-Stieltjes integral
which, given a real valued function M , defines the following extension of the standard
Riemann integral:

(3)
∫

f (x) d M(x) = lim
(Bk )

∑
k

f (xk)�Bk (M).

There the Bk form a finite partition of the domain in which the argument of f ranges,
the limit is taken as the largest Bk tends to 0, each xk lies in Bk , and �Bk (M) is the
variation of M on Bk .

The great advantage of Stieltjes (hence automatically of Lebesgue) integrals is to
unify many of the formulae relative to discrete and continuous probability distributions
while providing a simple framework adapted to mixed cases.

C.2. Random variables

A real random variable X is fully characterized by its (cumulative) distribution
function

FX (x) := P(X ≤ x),

which is a non-decreasing right-continuous function satisfying F(−∞) = 0,
F(+∞) = 1.

A variable is discrete if it is supported by a finite or denumerable set. Almost all
discrete distributions in this book are supported by Z or Z≥0. (An interesting excep-
tion is the collection of distributions occurring in longest runs of words, Chapter IV,
p. 308.)

A variable X is continuous if it assigns zero probability mass to any finite or
denumerable set. In particular, it has no jump. An easy theorem states that any distri-
bution function can be decomposed into a discrete and a continuous part,

F(x) = c1 Fd(x)+ c2 Fc(x), c1 + c2 = 1.

(The jumps must sum to at most 1, hence their set is at most denumerable.) A variable
is absolutely continuous if it assigns zero probability mass to any Borel set of mea-
sure 0. In that case, the Radon–Nikodym Theorem asserts that there exists a function
w such that

FX (x) =
∫ x

−∞
w(y) dy.

(There, in all generality, the Lebesgue integral is required but the Riemann integral is
sufficient for all practical purposes in this book.) The function w(x) is called a density
of the random variable X (or of its distribution function). When FX is differentiable
everywhere it admits the density

w(x) = d

dx
FX (x),

by the Fundamental Theorem of Calculus.
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� C.1. The Lebesgue decomposition theorem. It states that any distribution function F(x)
decomposes as

F(x) = c1 Fd(x)+ c2 Fac + c3 Fs(x), c1 + c2 + c3 = 1,

where Fd is discrete, Fac is absolutely continuous, and Fs is continuous but singular, i.e., it
is supported by a Borel set of Lebesgue measure 0. Singular random variables are constructed,
e.g., from the Cantor set. �

In this book, all combinatorial distributions are by nature discrete (and then sup-
ported by Z≥0). All continuous distributions obtained as limits of discrete ones are,
in our context, absolutely continuous and the qualifier “absolutely” is globally under-
stood when discussing continuous distributions.

If X is a random variable, the expectation of a function g(X) is defined as

E (g(X)) =
∫

R

g(x)d F(x),

which involves the distribution function F of X . In particular the expectation or mean
of X is E(X), and generally its moment of order r is

μ(r) = E(Xr ).

(These quantities may not exist for r  = 0.)
� C.2. Alternative formulae for expectations. If X is supported by R≥0:

E(X) =
∫ ∞

0
(1 − F(x)) dx .

If X is supported by Z≥0:

E(X) =
∑
k≥0

P(X > k).

Proofs are by partial integration and summation: for instance with pk = P(X = k),

E(X) =
∑
k≥1

kpk = (p1 + p2 + p3 + · · · )+ (p2 + p3 + · · · )+ (p3 + · · · )+ · · · .

Similar formulae hold for higher moments. �

C.3. Transforms of distributions

The Laplace transform of X (or of its distribution function F) is defined by

λX (s) := E

(
es X

)
=

∫ +∞

−∞
esx d F(x).

(If F has a discrete component, then integration is to be taken in the sense of
Lebesgue–Stieltjes or Riemann–Stieltjes.) The Laplace transform is also known as
the moment generating function (see below for an existential discussion). The char-
acteristic function is defined by

φX (t) = E

(
eit X

)
=

∫ +∞

−∞
eitx d F(x),

and it is a Fourier transform. Both transforms are formal variants of one another and
φX (t) = λX (i t).
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If X is discrete and supported by Z, then its probability generating function (PGF)
is, as defined as in Appendix A.3: Combinatorial probability, p. 727:

PX (u) := E(u X ) =
∑
k∈Z

P(X = k)uk .

As an analytic object this always exists when X is non-negative (supported by Z≥0),
in which case the PGF is analytic at least in the open disc |u| < 1. If X ∈ Z assumes
arbitrarily large negative values, then the PGF certainly exists on the unit circle, but
sometimes not on a larger domain. The precise domain of existence of the PGF as an
analytic function depends on the geometric rate of decay of the left and right tails of
the distribution, that is, of P(X = k) as k → ±∞. The characteristic function of the
variable X (and of its distribution function FX ) is

φX (t) := E(eit X ) = PX (e
it ) =

∑
k∈Z

P(X = k)eikt .

It exists for all real values of t . The Laplace transform of the discrete variable X is

λX (s) := E(es X ) = PX (e
s) =

∑
k∈Z

P(X = k)eks .

If X is a continuous random variable with distribution function F(x) and density
w(x), then the characteristic function is expressed as

φX (t) := E(eit X ) =
∫

R

eitxw(x) dx .

and the Laplace transform is

λX (s) := E(es X ) =
∫

R

esxw(x) dx .

The Fourier transform always exists for real arguments (by integrability of the Fourier
kernel eit whose modulus is 1). The Laplace transform, when it exists in a strip,
extends analytically the characteristic function via the equality φX (t) = λX (i t). The
Laplace transform is also called the moment generating function since an alternative
formulation of its definition, valid for discrete and continuous cases alike, is

λX (s) :=
∑
k≥0

E(Xk)
sk

k!
,

which indeed represents the exponential generating function of moments. (We avoid
this terminology in the text, because of a possible confusion with the many other types
of generating functions employed in this book.)

The importance of the transforms is due to the existence of continuity theorem by
which convergence of distributions can be established via convergence of transforms.

� C.3. Centring, scaling, and standardization. Let X be a random variable. Define Y = X−μ
σ .

The representations as expectations of the Laplace transform and of the characteristic function
make it obvious that

φY (t) = e−μi tφX

(
t

σ

)
, λY (s) = e−μsλX

( s

σ

)
.
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One says that Y is obtained from X by centring (by a shift of μ) and scaling (by a factor of σ ).
If μ and σ are the mean and standard deviation of X , then one says that Y is a standardized
version of X . �

� C.4. Moments and transforms. The moments are accessible from either transform,

μ(r) := E{Y r } = dr

dsr λ(s)

∣∣∣∣
s=0

= (−i)r
dr

dtr φ(t)

∣∣∣∣
t=0

.

In particular, we have

(4)

μ = d

ds
λ(s)

∣∣∣∣
s=0

= −i
d

dt
φ(t)

∣∣∣∣
t=0

μ(2) = d2

ds2
λ(s)

∣∣∣∣∣
s=0

= − d

dt
φ(t)

∣∣∣∣
t=0

σ 2 = d2

ds2
log λ(s)

∣∣∣∣∣
s=0

= − d2

dt2
logφ(t)

∣∣∣∣∣
t=0

.

The direct expression of the standard deviation in terms of log λ(s), called the cumulant gener-
ating function, often proves computationally handy. �

� C.5. Mellin transforms of distributions. The quantity M(s) := E(Xs−1) is the Mellin trans-
form of X or of its distribution function F , when X is supported by R≥0 (see Appendix B.7:
Mellin transform, p. 762). In particular, if X admits a density, then this notion coincides with
the usual definition of a Mellin transform. When it exists, the value of the Mellin transform at
an integer s = k provides the moment of order k − 1; at other points, it provides moments of
fractional order. �

� C.6. A “symbolic” fragment of probability theory. Consider discrete random variables sup-
ported by Z≥0. Let X, X1, . . . be independent random variables with PGF p(u) and let Y have
PGF q(u). Then, certain natural operations admit a translation into PGFs.

Operation PGF

switch (Bern(λ) ⇒ X | Y ) λp(u)+ (1 − λ)q(u)

sum X + Y p(u) · q(u)

X1 + · · · + Xn p(u)n

random sum X1 + · · · + XY q(p(u))

size bias ∂X
up′(u)
p′(1)

(“Bern” means a Bernoulli {0, 1} variable B, with P(1) = λ; the switch is interpreted as B X +
(1 − B)Y . Size-biased distributions occur in Chapter VII.) �

C.4. Special distributions

A compendium of special probability distributions of frequent occurrence in ana-
lytic combinatorics is provided by Figure C.1.

A Bernoulli trial of parameter q is an event such that it has probability p of hav-
ing value 1 (interpreted as “success”) and probability q of having value 0 (interpreted
as “failure”), with p + q = 1. Formally, this is the set � = {0, 1} endowed with
the probability measure P(0) = q, P(1) = p. (By extension, we also refer to in-
dependent experiments with finitely many possible outcomes as Bernoulli trials. In
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Distribution Prob. (D), density (C) PGF(D), Char. f. (C)

D Binomial (n, p)

(
n

k

)
pk(1 − p)n−k (q + pu)n

D Geometric (q) (1 − q)qk 1 − q

1 − qu

D Neg. binomial[m] (q)

(
m + k − 1

k

)
qk(1 − q)m

(
1 − q

1 − qu

)m

D Log. series (λ)
1

− log(1 − λ)

λk

k!

log(1 − λu)

log(1 − λ)

D Poisson (λ) e−λ λ
k

k!
eλ(1−u)

C Gaussian or Normal, N (0, 1)
e−x2/2
√

2π
e−t2/2

C Exponential e−x 1

1 − i t

C Uniform [−1/2,+1/2] [[−1/2 ≤ x ≤ +1/2]]
sin(t/2)

(t/2)

Figure C.1. A list of commonly encountered discrete (D) and continuous (C) prob-
ability distributions: type, name, probabilities or density, probability generating func-
tion or characteristic function.

that sense, the model of words of some fixed length over a finite alphabet and non-
uniform letter weights (or probabilities) belongs to the category of Bernoulli models;
see Chapter III.) The binomial distribution of parameters n, q is the random vari-
able that represents the number of successes in n independent Bernoulli trials. This is
the probability distribution associated with the game of heads-and-tails. The geomet-
ric distribution is the distribution of a random variable X that records the number of
failures till the first success is encountered in a potentially arbitrarily long sequence
of Bernoulli trials. The negative binomial distribution of index m (written N B[m])
and parameter q corresponds to the number of failures before m successes are en-
countered. We have found in Chapter VII that it is systematically associated with the
number of r–components in an unlabelled multiset schema F = M(G) whose com-
position of singularities is of the exp–log type. The geometric distribution appears
in several schemas related to sequences while the logarithmic series distribution is
closely tied to cycles (Chapter V). indexlogarithmic-series distribution

The Poisson distribution counts among the most important distributions of prob-
ability theory. Its essential properties are recalled in Figure C.1. It occurs for instance
in the distribution of singleton cycles and of r–cycles in a random permutation and
more generally in labelled composition schemes (Chapter IX).

In this book all probability distributions arising directly from combinatorics are a
priori discrete as they are defined on finite sets—typically a certain subclass Cn of a
combinatorial class C. However, as the size n of the objects considered grows, these
finite distributions usually approach a continuous limit. In this context, by far the most
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important law is the Gaussian law also known as normal law, which is defined by its
density and its distribution function:

(5) g(x) = e−x2/2

√
2π

, 	(x) = 1√
2π

∫ x

−∞
e−y2/2 dy.

The corresponding Laplace transform is then evaluated by completing the square,

λ(s) = 1√
2π

∫ +∞

−∞
e−y2/2+sy dy. = es2/2,

and, similarly, the characteristic function is φ(t) = e−t2/2. The distribution of (5) is
referred to as the standard normal distribution, N (0, 1); if X is N (0, 1), the variable
Y = μ + σ X defines the normal distribution with mean μ and standard deviation σ ,
denoted N (μ, σ ).

Among other continuous distributions appearing in this book, we mention the
theta distributions associated with the height of trees and Dyck paths (Chapter V) and
the stable laws, which surface in Chapter IX.

C.5. Convergence in law

The central notion, which is of the greatest interest for analytic combinatorics, is
the notion of convergence in law, also known as weak convergence.

Definition C.1. Let Fn be a family of distribution functions. The Fn are said to con-
verge weakly to a distribution function F if pointwise there holds

(6) lim
n

Fn(x) = F(x),

at every continuity point x of F. This is expressed by writing Fn ⇒ F as well as
Xn ⇒ X, if Xn, X are random variables corresponding to Fn, F. We say that Xn

converges in distribution or converges in law to X.

This definition has the merit of covering discrete and continuous distributions
alike. For discrete distributions supported by Z, an equivalent form of (6) is
limn Fn(k) = F(k) for each k ∈ Z; for continuous distributions, Equation (6) just
means that limn Fn(x) = F(x) for all x ∈ R. Although in all generality anything can
tend to anything else, due to the finite nature of combinatorics, we only need in this
book the convergences

Discrete ⇒ Discrete, Discrete ⇒ Continuous (after standardization).

Three major tools can be used to establish convergence in law: characteristic
functions, Laplace transforms, and moment convergence theorems.

Characteristic functions and limit laws. Properties of random variables are re-
flected by probabilities of characteristic functions, in accordance with general princi-
ples of Fourier analysis—Figure C.2 offers an aperçu. Most important for us is the
Continuity Theorem for characteristic functions due to Lévy and used extensively in
Chapter IX, starting on p. 639, through the Quasi-powers Theorem of p. 645.
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Characteristic function (φ(t)) distribution function (F(x))

φ(0) = 1 F(−∞) = 0, F(+∞) = 1

|φ(t0)| = 1 for some t0  = 0 Lattice distribution, span 2π
t0

φ(t) =
t→0

1 + iμt + o(t) E(X) = μ < ∞

φ(t) =
t→0

1 + iμt − ν
t2

2
+ o(t2) E(X2) = ν < ∞

logφ(t) = − t2

2 X
d=N (0, 1)

φ(t) → 0 as t → ∞ X is continuous

φ(t) integrable (is in L1) X is absolutely continuous

density is w(x) = 1

2π

∫ +∞

−∞
e−i t xφ(t) dt

λ(s) := φ(−is) exists in α < -(s) < β Exponential tails

limT→∞ 1
2T

∫+T
−T |φ(t)|2 dt equals

∑
i (pi )

2; the pi are the jumps

φn(t) → φ(t) (point conv.) Fn ⇒ F (weak conv.)

Xn ⇒ X (conv. in distribution)

φn “close” to φ Fn “close” to F (Berry–Esseen)

Figure C.2. The correspondence between properties of the distribution function (F)
of a random variable (X) and properties of its characteristic function (φ).

Theorem C.1 (Continuity theorem for characteristic functions). Let Y,Yn be random
variables with characteristic functions φ, φn. A necessary and sufficient condition for
the weak convergence Yn ⇒ Y is that φn(t) → φ(t) for each t.

For a proof, see [68, §26]. What is notable is that the theorem provides a nec-
essary and sufficient condition. In addition, the Berry–Esseen inequalities stated in
Chapter IX, p. 641, lie at the origin of precise speed of convergence estimates to
asymptotic limits.

Laplace transforms and limit laws. The continuity theorem for Laplace trans-
forms is stated in Chapter IX, p. 639. In principle, it is of a more restricted scope
than Theorem C.1 since Laplace transforms need not exist. Also, error bounds de-
rived from Laplace transform can be exponentially worse than those resulting from
Berry–Esseen inequalities [557]. For these reasons, the rôle of Laplace transforms in
this book is mostly confined to large deviation estimates (Section IX. 10, p. 699).

The method of moments. For the purpose of establishing limit laws in combi-
natorics, it is may be convenient (sometimes even necessary) to access distributions
by moments. One then attempts to deduce convergence of distributions from conver-
gence of moments. This approach requires conditions under which a distribution is
uniquely characterized by its moments—finding these is known as the moment prob-
lem in analysis. A lucid discussion is offered by Billingsley in [68, §30], which we
follow.
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A distribution function F(x), with x ∈ R, is characterized by its moments if the
sequence of real numbers

μk =
∫

R

xk d F(x), k = 0, 1, 2, . . . ,

uniquely determines F (that is:
∫

xkd F = ∫
xkdG for all k implies F = G). The

following basic conditions are known to be sufficient for such a property to hold: (i) F
has finite support; (i i) the exponential generating function of (μk) is analytic at 0, that
is, for some R > 0, one has

(7) μk
Rk

k!
→ 0, k → ∞.

(The first case is proved by appealing to Weierstrass’ theorem to the effect that poly-
nomials are dense among continuous functions over a finite interval with respect to
the uniform norm; the second case results from the continuity theorem of Laplace
transforms, which are none other than exponential generating functions of moments.)
Clearly, the uniform distribution over [0, 1], the exponential distribution, and the
Gaussian distribution are characterized by their moments.

Equation (7) expresses the fact that a distribution is characterized by its moments
provided they do not grow too fast, which indicates that its tails decay sufficiently
rapidly. Other useful sufficient conditions for F(x) to be characterized by moments
are [157, XIV.2]:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Carleman :
∞∑

k=0

μ
−1/(2k)
2k = +∞ (support(F) ⊂ R)

—— :
∞∑

k=0

μ
−1/(2k)
k = +∞ (support(F) ⊂ R≥0)

Krein :
∫ ∞

−∞
log( f (x))

dx

1 + x2
= −∞ (F ′(x) = f (x)).

One has the following theorem.

Theorem C.2 (Moment Convergence Theorem). Let F be determined by its moments
and assume that a sequence of distribution functions Fn(x), x ∈ R satisfies for each
k = 0, 1, 2 . . .,

lim
n→∞

∫
R

xk d Fn(x) =
∫

R

xk d F(x).

Then weak convergence holds: Fn ⇒ F.

For a proof, see [68, §30]. In this book, moment methods are used to validate the
moment pumping method expounded in Chapter VII, p. 532.
� C.7. The log–normal distribution. As its name indicates, this is the distribution of the ex-

ponential of a standard normal, with density f (x) = e−(log x)2/2/(x
√

2π), for x > 0. The
distribution with density f (x)(1 + sin(2π log x)) has the same moments (Stieltjes, 1895). �
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[83] BOUSQUET-MÉLOU, M. Limit laws for embedded trees: Applications to the integrated SuperBrow-
nian excursion. Random Structures and Algorithms 29 (2006), 475–523.
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of Lecture Notes in Mathematics. Springer Verlag, 1969. (New free web edition, 2006).
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manières peut-on le partager en triangles au moyen de diagonales? Journal de Mathématiques Pures
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[124] CLÉMENT, J., FLAJOLET, P., AND VALLÉE, B. Dynamical sources in information theory: A general
analysis of trie structures. Algorithmica 29, 1/2 (2001), 307–369.

[125] COMPTON, K. J. A logical approach to asymptotic combinatorics. I. First order properties. Advances
in Mathematics 65 (1987), 65–96.

[126] COMPTON, K. J. A logical approach to asymptotic combinatorics. II. Second–order properties. Jour-
nal of Combinatorial Theory, Series A 50 (1987), 110–131.

[127] COMPTON, K. J. 0–1 laws in logic and combinatorics. In Proceedings NATO Advanced Study Insti-
tute on Algorithms and Order (Dordrecht, 1988), I. Rival, Ed., Reidel, pp. 353–383.

[128] COMTET, L. Calcul pratique des coefficients de Taylor d’une fonction algébrique. Enseignement
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[165] DIEUDONNÉ, J. Calcul Infinitésimal. Hermann, Paris, 1968.
[166] DIXON, J. D. The number of steps in the Euclidean algorithm. Journal of Number Theory 2 (1970),

414–422.
[167] DIXON, J. D. Asymptotics of generating the symmetric and alternating groups. Electronic Journal

of Combinatorics 12, R56 (2005), 1–5.
[168] DOETSCH, G. Handbuch der Laplace-Transformation, Vol. 1–3. Birkhäuser Verlag, Basel, 1955.
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bach”. In Leonhard Euler Briefwechsel, Vol. I, p. 159, letter 868.
[197] EULER, L. Enumeration modorum, quibus figurae planae rectlineae per diagonales dividuntur in

triangula, auct. i. a. de segner. Novi Commentarii Academiae Scientiarum Petropolitanae 7 (1758/59),
13–14. Report by Euler on de Segner’s note [146].



“book” — 2008/10/3 — 16:05 — page 786 — #800

786 BIBLIOGRAPHY

[198] EULER, L. De seriebus divergentibus. Novi Commentarii Academiae Scientiarum Petropolitanae 5
(1760), 205–237. In Opera Omnia: Series 1, Volume 14, pp. 585–617. Available on the Euler Archive
as E247.

[199] EULER, L. Observationes analyticae. Novi Commentarii Acad. Sci. Imper. Petropolitanae 11 (1765),
124–143.

[200] EVEREST, G., VAN DER POORTEN, A., SHPARLINSKI, I., AND WARD, T. Recurrence sequences,
vol. 104 of Mathematical Surveys and Monographs. American Mathematical Society, 2003.

[201] FARKAS, H. M., AND KRA, I. Riemann surfaces, second ed., vol. 71 of Graduate Texts in Mathe-
matics. Springer-Verlag, 1992.

[202] FAYOLLE, G., AND IASNOGORODSKI, R. Two coupled processors: the reduction to a Riemann-
Hilbert problem. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 47, 3 (1979),
325–351.

[203] FAYOLLE, G., IASNOGORODSKI, R., AND MALYSHEV, V. Random walks in the quarter-plane.
Springer-Verlag, 1999.

[204] FAYOLLE, J. An average-case analysis of basic parameters of the suffix tree. In Mathematics and
Computer Science III: Algorithms, Trees, Combinatorics and Probabilities (2004), M. Drmota et al.,
Ed., Trends in Mathematics, Birkhäuser Verlag, pp. 217–227.
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[235] FLAJOLET, P., GOURDON, X., AND MARTÍNEZ, C. Patterns in random binary search trees. Random
Structures & Algorithms 11, 3 (Oct. 1997), 223–244.

[236] FLAJOLET, P., GOURDON, X., AND PANARIO, D. The complete analysis of a polynomial factor-
ization algorithm over finite fields. Journal of Algorithms 40, 1 (2001), 37–81.

[237] FLAJOLET, P., GRABNER, P., KIRSCHENHOFER, P., AND PRODINGER, H. On Ramanujan’s Q–
function. Journal of Computational and Applied Mathematics 58, 1 (Mar. 1995), 103–116.

[238] FLAJOLET, P., AND GUILLEMIN, F. The formal theory of birth-and-death processes, lattice path
combinatorics, and continued fractions. Advances in Applied Probability 32 (2000), 750–778.

[239] FLAJOLET, P., HATZIS, K., NIKOLETSEAS, S., AND SPIRAKIS, P. On the robustness of inter-
connections in random graphs: A symbolic approach. Theoretical Computer Science 287, 2 (2002),
513–534.

[240] FLAJOLET, P., KIRSCHENHOFER, P., AND TICHY, R. F. Deviations from uniformity in random
strings. Probability Theory and Related Fields 80 (1988), 139–150.

[241] FLAJOLET, P., KNUTH, D. E., AND PITTEL, B. The first cycles in an evolving graph. Discrete
Mathematics 75 (1989), 167–215.

[242] FLAJOLET, P., LABELLE, G., LAFOREST, L., AND SALVY, B. Hypergeometrics and the cost struc-
ture of quadtrees. Random Structures & Algorithms 7, 2 (1995), 117–144.

[243] FLAJOLET, P., AND LAFFORGUE, T. Search costs in quadtrees and singularity perturbation asymp-
totics. Discrete and Computational Geometry 12, 4 (1994), 151–175.

[244] FLAJOLET, P., AND LOUCHARD, G. Analytic variations on the Airy distribution. Algorithmica 31,
3 (2001), 361–377.

[245] FLAJOLET, P., AND NOY, M. Analytic combinatorics of non-crossing configurations. Discrete Math-
ematics 204, 1-3 (1999), 203–229. (Selected papers in honor of Henry W. Gould).

[246] FLAJOLET, P., AND ODLYZKO, A. M. The average height of binary trees and other simple trees.
Journal of Computer and System Sciences 25 (1982), 171–213.

[247] FLAJOLET, P., AND ODLYZKO, A. M. Random mapping statistics. In Advances in Cryptology
(1990), J.-J. Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes in Computer Science,
Springer Verlag, pp. 329–354. Proceedings of EUROCRYPT’89, Houtalen, Belgium, April 1989.

[248] FLAJOLET, P., AND ODLYZKO, A. M. Singularity analysis of generating functions. SIAM Journal
on Algebraic and Discrete Methods 3, 2 (1990), 216–240.

[249] FLAJOLET, P., POBLETE, P., AND VIOLA, A. On the analysis of linear probing hashing. Algorith-
mica 22, 4 (Dec. 1998), 490–515.



“book” — 2008/10/3 — 16:05 — page 788 — #802

788 BIBLIOGRAPHY

[250] FLAJOLET, P., AND PRODINGER, H. Level number sequences for trees. Discrete Mathematics 65
(1987), 149–156.

[251] FLAJOLET, P., AND PRODINGER, H. On Stirling numbers for complex argument and Hankel con-
tours. SIAM Journal on Discrete Mathematics 12, 2 (1999), 155–159.

[252] FLAJOLET, P., AND PUECH, C. Partial match retrieval of multidimensional data. Journal of the ACM
33, 2 (1986), 371–407.
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[506] RÉGNIER, M., AND SZPANKOWSKI, W. On pattern frequency occurrences in a Markovian sequence.

Algorithmica 22, 4 (1998), 631–649.
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de Bordeaux I, Dec. 1998.
[534] SCHMITT, W. R., AND WATERMAN, M. S. Linear trees and RNA secondary structure. Discrete

Applied Mathematics. Combinatorial Algorithms, Optimization and Computer Science 51, 3 (1994),
317–323.
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Polytechnique, 1991.

[629] ZOLOTAREV, V. M. One-dimensional stable distributions. American Mathematical Society, 1986.
Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver.

[630] ZVONKIN, A. K. Matrix integrals and map enumeration: An accessible introduction. Mathematical
and Computer Modelling 26, 8–10 (1997), 281–304.



“book” — 2008/10/3 — 16:05 — page 801 — #815

Index

a . . b (integer interval), 17
∂ (derivative), 87
E (expectation), 113, 728, 772
. (imaginary part), 230
lg (binary logarithm), 308
m (analytic mean), 645
O (asymptotic notation), 722
o (asymptotic notation), 722
P (probability), 113, 157
R (resultant notation), 739
Rconv (radius of convergence), 230
- (real part), 230
Res (residue operator), 233
v (analytic variance), 645
V (variance), 728
�–domain, see Delta–domain
� (asymptotic notation), 723
� (pointing), 86
σ (standard deviation), 728
� (asymptotic notation), 723
�·� (nearest integer function), 43, 260
[zn ] (coefficient extractor), 19
[[·]] (Iverson’s notation), 58
∼= (combinatorial isomorphism), 19
.= (numerically close), 7
< (much larger), 566
> (much smaller), 566
≈ (roughly equal), 50
∼ (asymptotic notation), 722
/0 (exponential order), 243∮

(contour integral), 549
� (labelled product), 101
+, see disjoint union
〈·〉 (strip of C), 763
◦ (substitution), 87, 136

CYC (cycle construction), 26, 103
MSET (multiset construction), 26
PSET (powerset construction), 26
SEQ (sequence construction), 25, 102
SET (set construction), 102
K� (�–restricted construction), 30

Abel identity, 733
Abel–Plana summation, 238
adjacency matrix (of graph), 336
admissibility (of function), 564–572

admissible construction, 22, 100
Airy area distribution, 365, 534, 706
Airy function, 534, 598, 606, 707, 714
Airy map distribution, 713–714
alcohol, 284, 477–478
algebraic curve, 495
algebraic function, 482–518, 539

asymptotics, 493–518
branch, 495
coefficient, 500–518
elimination, 739–741
exceptional set, 495–496
Newton polygon, 498–500
Puiseux expansion, 444, 498–500
singularities, 495–518
singularity perturbation, 681–684

algebraic topology, 200
algebraic–logarithmic singularity, 376, 393
algorithm

approximate counting, 313–315
balanced tree, 91, 280
binary adder, 308
binary search tree, 203, 428–430, 685, 688
digital tree (trie), 356, 693
Floyd’s cycle detection, 465–466
hashing, 111, 146, 178, 534, 600
integer gcd, 664
irreducible polynomials, 450
Lempel–Ziv compression, 694
paged trees, 688
Pollard’s integer factoring, 466–467
polynomial factorization, 449, 450
polynomial gcd, 662–664
shake and paint, 417
TCP protocol, 315

alignment, 119, 261, 296, 654
alkanes, 477–479
allocation, see balls-in-bins model
alphabet, 49
ambiguity

context-free grammar, 82
regular expression, 316, 734

analytic continuation, 239
analytic depoissonization, 572–574, 694
analytic function, 230–238

equivalent definitions, 741–743
composition, 411–417

801
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differentiation, 418–422, 741–743
Hadamard product, 422–427
integration, 418–422, 742–743
inversion, 249, 275–280, 402–407
iteration, 280–283
Lindelöf integrals, 237, 409

animal (lattice), 80–82, 396
aperiodic function, system, see periodicity con-

ditions
apparent singularity, see singularity, apparent
approximate counting, 313–315
area (of Dyck path), 330, 533–534, 706
argument principle, 270
arithmetical functions, 721
arithmetical semigroups, 91, 673
arrangement, 112, 113
asymptotic

algebraic, 518
expansion, 724
notations, 722–725
scale, 724–725

atom, 24, 98
autocorrelation (in words), 60, 271, 659
automaton, see finite automaton
average, see expectation

balanced tree, see tree
ballot problem, 68, 76
balls-in-bins model, 113, 177–178

capacity, 598–600
Poisson law, 177

Bell numbers, 109
asymptotics, 560–562, 762

Bell polynomials, 188
Bernoulli number, 747
Bernoulli numbers, 268, 726–727, 766
Bernoulli trial, 191, 307, 774
Berry–Esseen inequalities, 624–625, 641, 777
Bessel function, 46, 332, 534, 607, 661, 753
Beta function (B), 384, 524, 601, 747
BGF, see bivariate generating function
bibliometry, 45
bijective equivalence (∼=), 19
binary decision tree (BDT), 78
binary search tree (BST), 203, 428–430, 685,

688
binary tree, 738
binomial coefficient, 100

asymptotics, 380–385
central approximation, 160, 328, 588, 642,

761–762
sum of powers, 761–762

binomial convolution, 100
binomial distribution, 627, 642, 775
birth and death process, 319
birth process, 312
birthday paradox, 114–119, 192, 416
bivariate generating function (BGF), 157
Boltzmann model, 280, 566, 701
boolean function, 70, 77–78, 487–488

bootstrapping, 309
bordering condition (permutation), 202
Borges’s Theorem, 61–62, 680, 683–684
Borges, Jorge Luis, 61
boson, 532
boxed product, 139–142
branch (of curve), 495
branch point (analytic function), 230, 277
branching processes, 196–198
bridge, 707
bridge (lattice path), 77, 506–513, 636
Brownian motion, 185, 360, 413, 534, 706
Bürmann inversion, see Lagrange inversion

canonicalization, 87
cartesian product construction (×), 23
Catalan numbers (Cn ), 17, 34–36, 38, 67, 73–

78, 738
asymptotics, 7, 37–39, 383
generating function, 35

Catalan sum., 417
Catalan tree, 35, 173, 738
Cauchy’s residue theorem, 234
Cauchy–Riemann equations, 742
Cayley tree, 127–129, 179
Cayley tree function, see Tree function (T )
Central Limit Theorem (CLT), 593, 642–643,

696
centring (random variable), 773
characteristic function (probability), 639, 772–

774
Chebyshev inequalities, 161, 729
Chebyshev polynomial, 327
chessboard, 373
circuit (in graph), 336, 346
circular graph, 99
class (of combinatorial structures), 16

labelled, 95–149
cluster, 209, 212
coalescence of saddle-point

with other saddle-point, 606
with roots, 589
with singularity, 590–591

code (words), 62
coding theory, 38, 53, 62, 246
coefficient extractor ([zn ]), 19
coin fountain, 331, 662
combination, 52
combinatorial

class, 16, 96
isomorphism (∼=), 19
parameter, 151–219
sums, 415–417

combinatorial chemistry, 443, 474–479
combinatorial identities, 747–753
combinatorial probability, 727–729
combinatorial schema, see schema
complete generating function, 186–198
complex differentiability, 231
complex dynamics, 280, 535
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complexity theory, 77
composition (of integer), 39–49

Carlitz type, 201, 206, 263, 666
complete GF, 188
cyclic (wheel), 47
largest summand, 169, 298, 300
local constraints, 199–200, 263
number of summands, 44, 167–168, 654
prime summands, 43, 298–300, 654
profile, 169, 296
r–parts, 168
restricted summands, 297–300

composition schema, 411–417, 628, 703
critical, 412, 416–417, 707–714
subcritical, 629, 634
supercritical, 414–416, 650–655

computable numbers, 251
computer algebra, see symbolic manipulation
concentration (of probability distribution), 161–

163
conformal map, 231
conjugacy principle (paths), 75
connection problem, 470–472, 483–505, 521,

525, 583
constructible class, 250–255
construction

cartesian product (×), 23
cycle (CYC), 26, 165, 729–730

labelled, 103, 174
disjoint union (+), 25
implicit, 88–91
labelled product (�), 100–102
multiset (MSET), 26, 165
pointing(�), 86–88, 198
powerset (PSET), 26, 165, 174
sequence (SEQ), 25, 165

labelled, 102, 174
set (SET), 102
substitution (◦), 86–88, 198–201

context-free
asymptotics, 440, 482–484
language, 82–83, 482
specification, 78–83, 482–488

continuant polynomial, 321
continuation (analytic), 239
continued fraction, 195, 216, 283, 318–336, 663
continuity theorems (probability), 623–627,

639–641, 776–777
continuous random variable, 638–644, 771
contour integral (

∮
), 549

convergence
in law, 620–623, 638–639
speed (probability), 624–625, 641

convexity (of GFs), 280, 550
correlation, see autocorrelation
coupon collector problem, 114–119, 192
cover time (walk), 363
covering (of interval), 27

critical composition schema, see composition
schema

critical point, 607
cumulant (of random variable), 647, 774
cumulated value (of parameter), 159
cumulative distribution function, see distribu-

tion function
cumulative generating function, 159
cycle construction (CYC), 26, 165, 729–730

labelled, 103, 174
undirected, labelled, 133

cycle lemma (paths), 75
cyclic permutation, 99

�–domain, 389, 398
D–finite functions, see holonomic functions
Daffodil Lemma, 266
Darboux’s method, 436
data compression, 274, 694
data mining, 315, 417
de Bruijn graph, 354–355
Dedekind η function, 577
degree (of tree node), 737
Delta–domain (�), 389, 398
density (random variable), 771
denumerant, 43, 257–258
dependency graph, 33, 250, 340, 483
depoissonization, 572–574
derangement, 122, 207, 261, 368, 448, 671, 760
derivative (∂), 87
devil’s staircase, 352–353
dice games, 587
Dickman function, 675
difference equation, see q–calculus
differential equations, 518–532, 581–585, 684–

690, 748–753
differential field, 522
differentiation (singular), 418–422
digital tree (trie), 356, 693
digraph, see graph
dilogarithm, 238, 410, 749–750
dimensioning heuristic (saddle point), 554, 555,

566
diophantine inequalities (linear), 46
directed graph, 336
Dirichlet generating function (DGF), 664, 721,

763
disc of convergence (series), 230, 726
discrete random variable, 620–628, 771
discriminant (of polynomial), 495, 741
disjoint union construction (+), 25, 100
distribution, see probability distribution
distribution function (random variable), 621,

638, 641, 771
divergent series, 89, 138, 731
DLW Theorem, see Drmota–Lalley–Woods

Theorem
dominant singularity, 242
double exponential distribution, 118, 308
Drmota–Lalley–Woods Theorem, 443, 482–493
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drunkard problem, 90, 425–427
Dyck path, see also excursion, 77, 319, 511

area, 330, 533–534, 706–707
height, 326–330
initial ascents, 635

dynamical system, 318, 664, 716

EGF, see exponential generating function
Ehrenfest urn model, 118, 336, 530
eigenvalue, see matrix
EIS (Sloane’s Encyclopedia), 18
Eisenstein’s lemma (algebraic functions), 505
elimination (algebraic function), 739–741
elliptic function, 330, 531
entire function, 243
entropy, 587
error function (erf), 638
Euclid’s algorithm, see greatest common divisor

(gcd)
Euler numbers, 144, 268–269
Euler’s constant (γ ), 117, 726, 746, 747
Euler–Maclaurin summation, 238, 268, 726–

727, 766
Eulerian numbers, 210, 658, 697–698, 702
Eulerian tour (in graph), 354
exceedances (in permutations), 368
exceptional set (algebraic function), 495–496
excursion (lattice path), 77, 319, 506–513
exp–log schema, 441–442, 445–452, 670–676
exp–log transformation, 29, 85
expectation (or mean, average), E, 113, 158,

728, 772
exponential families (of functions), 197, 701
exponential generating function (EGF)

definition, 97
multivariate, 156
product, 100

exponential growth formula, 243–249
exponential order (/0), 243
exponential–polynomial, 255, 290–293, 319–

326

Faà di Bruno’s formula, 188
factorial moment, 158, 728
factorial, falling, 520, 751
Ferrers diagram, 39
Fibonacci numbers (Fn ), 42, 59, 256, 363
Fibonacci polynomial, 327
finite automaton, 56, 339–356
finite field, 90
finite language, 64
finite state model, 350, 358–367
forest (of trees), 68, 128, 737
formal language, see language
formal power series, see power series
formal topology (power series), 731
four-colour theorem, 513
Fourier transform, 639, 772
fractals, 282
fragmented permutation, 125

asymptotics, 247, 562–563
free group, 206
free tree, see tree, unrooted
function (of complex variable)

analytic, 230–238
differentiable, 231
entire, 231, 243
holomorphic, 231
meromorphic, 233

functional equation, 33, 275–285
Dedekind η function, 577
difference equation, see q–calculus
elliptic theta function, 330
Gamma function, 744
kernel method, 508
quadratic method, 515
zeta function, 747

functional graph, 129–132, 480, 673
Fundamental Theorem of Algebra, 270, 546

Galton–Watson process, 197
gambler ruin sequence, 76
gamma constant (γ ), see Euler’s constant
Gamma function (�), 378, 743–747
Gaussian binomial, 45
Gaussian distribution, 593–594, 638, 776
Gaussian integral, 744
general tree, 738
generating function

algebraic, see also algebraic function, 518
complete, 186–198
exponential, 95–149
holonomic, see holonomic functions
horizontal, 153
multivariate, 151–219
ordinary, 15
rational, see rational function
vertical, 153

geometric distribution, 775
Gessel’s calculus, 752–753
GF, see generating function
golden ratio (ϕ), 42, 91
graph

acyclic, 132, 406
adjacency matrix, 336
aperiodic, 341
bipartite, 138
circuit, 336, 346
circular, 99
colouring, 513
connected, 138–139
de Bruijn, 354–355
directed, 336
enumeration, 105–106
excess, 133, 406
functional, 129–132, 480
labelled, 96–97, 105–106, 132–136
map, 513–518
non-crossing, 485–487, 502–503
path, 336–356
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periodic, 341
planar, 517
random, 134–136
regular, 133, 189, 379, 395–396, 449, 583–

585, 671, 752
spanning tree, 339
strongly connected, 341
unicyclic, 133
unlabelled, 105–106

greatest common divisor (gcd), 662–664
Green’s formula, 742
Gröbner basis, 80, 739
group

free, 206
symmetric, 139

Hadamard product, 303, 422–427, 748
Hamlet, 54
Hankel contour, 382, 745
Hardy–Ramanujan expansion, 579
harmonic function, 742
harmonic number (Hn ), 117, 161, 389, 724

asymptotics, 723–724, 726, 766
generating function, 160

harmonic sum, 763
Hartogs’ Theorem, 767
hashing algorithm, 111, 146, 178, 600
Hayman admissibility, 564–572
heap of pieces, 81, 308
Heaviside function, 763
height of tree, see tree, height
Hermite polynomial, 334
hidden pattern, 54, 315–318
hierarchy, 128, 280, 472–474, 479
Hipparchus, 69
histograms, 157
holomorphic functions, 231
holonomic functions, 445, 494, 518, 581–585,

747–753
homotopy (of paths), 233
horizontal generating function, 153
horse kicks, 627
hypergeometric function, 423, 525, 750–751

basic, 315

implicit construction, 88–91, 137–139, 203–206
Implicit Function Theorem, 753–755
implicit-function schema, 467–475
inclusion–exclusion, 206–214, 367–373
increasing tree, 143–146, 202–203, 526–528,

684–685
Indo-European languages, 473
inheritance (of parameters), 163, 174
integer composition, see composition (of inte-

ger)
integer partition, see partition (of integer)
integration (singular), 418–422
interconnection network, 333
inverse-function schema, 452–467
inversion

analytic, 275
inversion (analytic), 249, 402–407
inversion table (permutation), 146
involution (permutation), 122, 333, 558–560,

691–692
irregular singularity (ODE), 519, 581–585
isomorphism (combinatorial, ∼=), 19
iteration (of analytic function), 280–283
iterative specification, 31–34, 250–255
Iverson’s notation ([[·]]), 58

Jacobi trace formula, 339
Jacobian matrix, determinant, 483, 491, 755

kangaroo hops, 373
kernel method (functional equation), 508
kings, 373
kitten, 517
Knuth–Ramanujan function, see Ramanujan’s

Q-function

labelled class, object, 95–149, 174–181
labelled construction, 100–106
labelled product (�), 101
Lagrange inversion, 66–70, 126, 194, 732–733
Lambert W -function, 128
language, 733

context-free, 82–83, 482
formal, 49
regular, 373, 733–735

Laplace transform, 639, 750, 772–774
Laplace’s method, 601, 755–762

for sums, 761–762
Laplacian, 742

of graph, 339
large deviations, 587, 699–703
large powers, 585–594
largest components, 300
Latin rectangle, 752
lattice path, 76–77, 318–336, 506–513

decompositions, 320
initial ascents, 635–637

lattice points, 49, 589
Laurent series, 507
law of large numbers, 158, 162, 728
law of small numbers, 627
leader, 103, 136, 141, 142
leaf (of tree), 182, 737
Lebesgue measure, integral, 770
letter (of alphabet), 49
light bulb, 655
limit law, 611–718, 776–778
Lindelöf integrals, 237, 409
linear fractional transformation, 323
Liouville’s theorem, 237
local limit law, 593, 615, 694–699
localization (of zeros and poles), 269
logarithm, binary (lg), 308
logarithmic-series distribution, 297
logic (first-order), 467
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logistic map, 536
longest run (in word), 308–312
loop (in complex region), 233
Łukasiewicz codes, 75, 511
Lyndon words, 85

MacMahon’s Master Theorem, 338
magic duality, 238
majorant series, 250, 753
map, 414, 513–518, 713–714
mapping, 129–132, 462–467, 708, 733

connected components, 129–136, 449, 671
idempotent, 571
regressive, 145

mapping pattern, see functional graph
marking variable, 19, 164, 167
Markov chain, 56, 339, 666
Markov–Chebyshev inequalities, 161, 729
Master Theorem (of MacMahon), 338
matrix

aperiodic, 341
irreducible, 341
non-negative, 342
Perron–Frobenius theory, 340–342, 345
positive, 342
spectrum, 290
stochastic, 339, 352
trace, 339
transfer, 358–367, 664, 666
tridiagonal, 367

matrix integrals, 517
Matrix Tree Theorem, 339
Maximum Modulus Principle, 545
mean, see expectation
meander (lattice path), 77, 506–513, 637
meander (topology), 525
measure theory, 769–771
Meinardus’ method (integer partitions), 578–

580
Mellin transform, 311, 329, 409, 537, 576, 664,

762–767
ménage problem, 368
meromorphic function, 233

coefficient asymptotics, 289
singularity perturbation, 650–666

MGF, see multivariate generating function
mobile (tree), 454
Möbius function (μ), 721
Möbius inversion, 89, 722
model theory, 467
modular form, 331, 577
moment generating function, see Laplace trans-

form
moment inequalities, 161–163, 729
moment method, 318, 777–778
moment pumping, 532–535
moments (of random variable), 158, 727, 772
monkey saddle, 542, 545, 600–606
monodromy, 498
Morera’s Theorem, 743

Motzkin numbers, 68, 77, 81, 88
asymptotics, 396, 502, 589

Motzkin path, 77, 319, 326, 330, 511
multi-index convention, 165, 767
multinomial coefficient, 100, 187
multiset construction (MSET), 26, 165
multivariate generating function (MGF), 151–

219

naming convention, 19, 98
Narayana numbers, 182
natural boundary, 249
nearest integer function (�·�), 43, 260
necklace, 18, 64
negative binomial distribution, 451, 621, 627,

775
Neptune, 339
nested sequences, 290, 291, 318–336
network, 333
neutral object, 24, 98
Newton polygon, 498–500
Newton’s binomial expansion, 35
Newton–Puiseux expansion, see Puiseux expan-

sion
Newton–Raphson iteration, 88
nicotine, 21
non-crossing configuration, 485–487, 502–503
non-plane tree, 71–72, 127
non-recursive specification, see iterative specifi-

cation
Nörlund–Rice integrals, 238
normal distribution, see Gaussian distribution
normalization (of random variable), see stan-

dardization
numerology, 318

O (asymptotic notation), 722
o (asymptotic notation), 722
ODE (ordinary differential equation), see differ-

ential equations
OGF, see ordinary generating function
order constraints (in constructions), 139–146,

201–203
ordinary generating function (OGF), 19
ordinary point (analytic function), 543
orthogonal polynomials, 323, 332
oscillations (of coefficients), 264, 283, 384
outdegree, see degree (of tree node)

P–recurrence, 748–749
Painlevé equation, 532, 598
pairing (permutation), 122
parallelogram polyomino, 660–662
parameter (combinatorial), 151–219

cumulated value, 159
inherited, 163–165
recursive, 181–185

parenthesis system, 77
parking, 146, 534
parse tree, 82
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partially commutative monoid, 307–308
partition (of integer), 39–49

asymptotics, 248, 574–581
denumerant, 43, 257–258
distinct summands, 579
Durfee square, 45
Ferrers diagram, 39
Hardy–Ramanujan–Rademacher expansion,

579
largest summand, 44
Meinardus’ method, 578–580
number of summands, 44, 171, 581, 666
plane, 580
prime summands, 580
profile, 171
r–parts, 172

partition of set, see set partition
path (in graph), 336
path (in complex region), 233
path length, see tree
patterns

in permutations, 211, 689
in trees, 213–214, 680–681
in words, 54–56, 58–62, 211, 271–274, 315–

318, 659–660, 666
pentagonal numbers, 49
periodicity conditions

coefficients, 264, 266, 302
Daffodil Lemma, 266
generating function, 294, 302
graph, 341
linear system, 341
polynomial system, 483

permutation, 17, 98, 119–124
alternating, 143–144, 269
ascending runs, 209–211, 658–659, 697–698
avoiding exceedances, 368
bordering condition, 202
cycles, see also Stirling numbers (1st kind),

119–124, 155, 175–177, 448, 644–645,
671

cycles of length m, 625–627
cyclic, 99
derangement, 122, 207, 261, 368, 448, 671,

760
exceedances, 368
fixed order, 569
increasing subsequences, 596–598
indecomposable, 89, 139
inversion table, 146
involution, 122, 248, 333, 558–560, 596,

691–692
local order types, 202–203
longest cycle, 122, 569
longest increasing subsequence, 211, 596–

598, 716, 752–753
ménage, 368
pairing, 122
pattern, 211, 689

profile, 175
records, 140–141, 644–645
rises, 209–211
shortest cycle, 122, 261–262
singletons, 622–623
succession gap, 373
tree decomposition, 143–144

Perron–Frobenius theory, 340–342, 345
perturbation theory, 11–12, 591, 612, 617–618,

650–694, 703
PGF, see probability generating function
phase transition, 704–714

diagram, 704
phylogenetic trees, 129
Picard approximants, 754
Plana’s summation, 238
planar graph, 517
plane partition (of integer), 580
plane tree, 65–70
pointing construction (�), 86–88, 136–137, 198
Poisson distribution, 176, 451, 572–574, 627,

643, 775
Poisson–Dirichlet process, 676
poissonization, 572–574
political (in)correctness, 146
Pólya operators, 34, 252, 447, 475–482
Pólya theory, 83, 85–86
Pólya urn process, see urn model
Pólya–Carlson Theorem, 253
Pólya–Redfield Theorem, 85
polydisc, 767
polylogarithm, 237, 408–411, 749–750
polynomial

primitive, 358
polynomial (finite field), 90–91, 449–450, 662–

664, 672–673
polynomial system, 488, 494
polyomino, 45, 201, 331, 363, 365–367, 535,

660–662
power series, 15, 19, 97, 153, 164, 187, 730–731

convergence, 731
divergent, 89, 138, 731
formal topology, 731
product, 731
quasi-inverse, 731
sum, 731

powerset construction (PSET), 26, 165
preferential arrangement numbers, 109
preorder traversal (tree), 74
prime number, 228, 721
Prime Number Theorem, 91
principal determination (function), 230
Pringsheim’s theorem, 240
prisoners, 124, 176
probabilistic method, 729
probability (P), 113, 157
probability distribution

Airy area, 365, 707
Airy map, 713–714



“book” — 2008/10/3 — 16:05 — page 808 — #822

808 INDEX

arcsine law, 705
Bernoulli, 775
binomial, 627, 642, 775
double exponential, 118, 308–311
Gaussian, 593–594, 638, 776
geometric, 775
geometric–birth, 314
logarithmic series, 296, 775
negative binomial, 451, 621, 627, 775
Poisson, 451, 572–574, 627, 643, 775
Rayleigh, 116, 708
stable laws, 413, 707–714
theta function, 328, 360, 538
Tracy–Widom, 598
Zipf laws, 711

probability generating function (PGF), 157,
623, 728, 773

probability space, 769
profile (of objects), 169, 451–452
pruned binary tree, 738
psi function (ψ), 725, 746
Puiseux expansion (algebraic function), 444,

498–500

q–calculus, 45, 49, 315, 331, 661
quadratic method (functional equation), 515
quadtree, 522–525, 687–688
quasi-inverse, 34, 291, 731

matrix, 349
quasi-powers, 11, 586, 612, 644–690

generalized, 690–694
large deviations, 699–703
local limit law, 694–699
main theorem, 645–648

Rabin–Scott Theorem, 57–59, 735
radioactive decay, 627
radius of convergence (series), 230, 243–244
Radon–Nikodym Theorem, 771
Ramanujan’s Q-function, 115, 130, 416–417
random generation, 77, 300
random matrix, 597, 674
random number generator, 465
random variable, 727, 769–778

continuous, 638–644, 771
density, 771
discrete, 157, 620–628, 771

random walk, see walk
rational function, 236, 255–258, 269–271

positive, 356, 357
Rayleigh distribution, 116, 708
record

in permutation, 140–141
in word, 189

recurrence
tree, 427–433

recursion (semantics of), 33
recursive parameter, 181–185
recursive specification, 32–34
region (of complex plane), 229

regular
expression, 373, 733–735
language, 300–308, 373, 733–735
specification, 300–308

regular graph, see graph, regular
regular point (analytic function), 239
regular singularity (ODE), 519–525
relabelling, 100
removable singularity, see singularity, apparent
renewal process, 300, 655
Res (residue operator), 233
residue, 233–238

Cauchy’s theorem, 234
resultant (R), 80, 739–741
Riccati differential equation, 689
Rice integrals, see Nörlund-Rice integrals
Riemann surface, 239
Rogers–Ramanujan identities, 331
rotation correspondence (tree), 73
Rouché’s theorem, 270
round (children’s), 397
RV, see random variable

SA (amenable to singularity analysis), 401
saddle-point

analytic function, 543–546
bounds, 246, 546–550, 586
depoissonization, 572–574
dimensioning heuristic, 554, 555, 566
large powers, 585–594
method, 541–608
multiple, 545, 600–606
perturbation, 690–694

scaling (random variable), 773
schema (combinatorial–analytic), see also com-

position schema, context-free specifica-
tion, exp–log schema, implicit-function
schema, inverse function schema, nested
sequences, regular specification, simple
variety (of trees), supercritical sequence
schema, 12, 170–171, 178–181, 289

Schröder’s problems, 69, 129, 474
section (of sequence), 302
self-avoiding configurations, 363–365
semantics of recursion, 33
sequence construction (SEQ), 25, 165

labelled, 102, 174
series–parallel network, 69, 72
set construction (SET), 102, 174
set partition, see also Bell numbers, Stirling

numbers (2nd kind), 62–64, 106–119, 179
asymptotics, 247, 560–562
block, 108
largest block, 569
number of blocks, 179, 594–596, 692–693

several complex variables, 767–768
shifting of the mean, 700, 701
shuffle product, 306
sieve formula, see inclusion–exclusion
Simon Newcomb’s problem, 192–193
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simple variety (of trees), 66, 128, 194, 452
singular expansion (function), 393
singularity, 239–243

algebraic–logarithmic, 376, 393
apparent, 243, 743
dominant, 242
irregular (ODE), 581, 585
perturbation, 650–690
regular (ODE), 519–525
removable, 243, 743

singularity analysis, 375–438
applications, 439–540
perturbation, 650–690
uniform expansions, 668–669

singularity perturbation, 703–707
size (of combinatorial object), 16, 96
size-biased (probability), 461
Skolem-Mahler-Lech Theorem, 266
slicing, 199, 366, 508
slow variation, 434
Smirnov word, 204, 262, 312, 350
society (combinatorial class), 571
spacings, 52
span (of sequence, GF), 266
spanning tree, 339
special functions, 747–753
species, 30, 94, 137, 149
specification, 33

iterative, 31–34, 250–255, 280
recursive, 32–34

spectrum, see matrix
speed of convergence (probability), 624–625,

638–639
squaring of the circle, 758
stable laws, see probability distribution
standard deviation, (σ ), 728
standardization (random variable), 614, 638,

773
star-continuable function, 398
statistical physics, 46, 81, 201, 362–363, 440,

525, 704
steepest descent, 544, 547, 607
Stieltjes integral, 770–771
Stirling numbers, 735–737

cycle (1st kind), 121, 155, 644–645, 654, 698
partition (2nd kind), 62–64, 109, 179, 653–

654, 692–694
Stirling’s approximation, 37, 407, 410, 555–

558, 747, 760–761, 766
Stokes phenomenon, 582–583
string, see word
strip (〈·〉), 763
subcritical composition schema, see composi-

tion schema
subexponential factor, 243
subsequence statistics, see hidden patterns,

words
substitution construction (◦), 86–88, 136–137,

198–201

supercritical composition schema, see composi-
tion schema

supercritical cycle, 414
supercritical sequence, 293–300, 652–655
supernecklace, 125
supertree, 412–414, 503, 714
support (of probability measure), 769
support (of sequence, GF), 266
surjection, 106–119, 296, 653–654

asymptotics, 259
complete GF, 188

surjection numbers, 109, 268
symbolic manipulation, 253
symbolic method, 15, 22, 33, 92, 104
symmetric functions, 189, 752–753

Tauberian theory, 434, 572
Taylor expansion, 201, 723, 726, 742
theory of species, see species
theta function, 328–330, 360, 538
threshold phenomenon, 211
tiling, 360–363, 665
total variation distance (probability), 623
totient function (ϕ), 27, 721
trace monoid, see partially commutative monoid
trains, 253–255, 398
transcendental function, 506
transfer matrix, 358–367, 664–666
transfer operator, 664
transfer theorem, 389–392
tree, 31, 64–72, 125–136, 737

additive functional, 457–462
balanced, 91, 280–283
binary, see also Catalan numbers, 67, 738
branching processes, 196–198
Catalan, 35
Cayley, see also Tree function (T ), 127–129
degree profile, 194, 459–460
exponential bounds, 277–280
forests, 68
general, 31, 738
height, 216, 327–330, 458–459, 535–538
increasing, 143–146, 202–203, 526–528,

684–685
leaf, 182, 473, 678, 737
level profile, 194–195, 458–459, 711–712
Łukasiewicz codes, 75
mobile, 454
non-crossing, 485–487, 502–503
non-plane, 71–72, 462, 475–482
non-plane, labelled, 127
parse tree, 82
path length, 184–185, 195, 461, 534–535,

706–707
pattern, 213–214, 680–681
plane, 65–70, 738
plane, labelled, 126
quadtree, 522–525, 687–688
regular, 68
root subtrees, 633
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root-degree, 173, 179, 456–457, 632
rooted, 737
search, 203
simple variety, 66, 128, 194, 404–407, 452–

467, 589–590, 633, 683, 711–712
supertree, 412–414, 503, 714
t–ary, 68
unary–binary, see also Motzkin numbers, 68,

88, 396, 501
unrooted, 132, 480–482
valuated, 414
width, 359–360, 666, 712

tree concepts, 737–738
Tree function (T ), 127–128, 403–407
tree recurrence, 427–433
triangulation (of polygon), 17, 20, 35–36, 79
tridiagonal matrix, 367
trinomial numbers, 588
trivial bound (integration), 547
truncated exponential, 111

unambiguous, see ambiguity
unary–binary tree, see tree, unary–binary and

Motzkin numbers
undirected cycle construction (UCYC), 86, 133
undirected sequence construction (USEQ), 86
uniform expansions

asymptotics, 725–726
singularity analysis, 668–669, 676

uniform probability measure, 727
uniformization (algebraic function), 497
universality, 7, 12, 440–443, 455, 606
unlabelled structures, 163–174
unrooted tree, see tree, unrooted
urn (combinatorial class), 99
urn model, 118, 336, 529–531

Vallée’s identity, 30
valley (saddle-point), 544
variance (V), 728

vertical generating function, 153
Vitali’s theorem (analytic functions), 624

w.h.p. (with high probability), 135, 162
walk, 367

birth type, 312–315
cover time, 363
devil’s staircase, 352–353
in graphs, 336–356
integer line, 319–324
interval, 319–330
lattice path, 76–77, 318–336, 506–513
self-avoiding, 363–365

Wallis integral, 747, 758
weak convergence (probability distributions),

621
Weierstrass Preparation Theorem (WPT), 754–

755
wheel, 47
width (of tree), 359–360, 666, 712
winding number, 270
word, 49–64, 111–119

aperiodic, 85
code, 62
excluded patterns, 355
language, 49, 733
local constraints, 349
longest run, 308–312
pattern, 54–56, 58–62, 211, 271–274, 315–

318, 659–660, 666
record, 189
runs, 51–54, 204
Smirnov, 204, 262, 312, 350

Young tableau, 752

zeta function of graphs, 346
zeta function, Riemann (ζ ), 228, 269, 408, 721,

746–747, 752
Zipf laws, 711
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